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Abstract

In several applied fields, multimodality assessment is a crucial task as a previous
exploratory tool or for determining the suitability of certain distributions. The goal of
this paper is to present the utilities of the R package multimode, which collects different
exploratory and testing non-parametric approaches for determining the number of modes
and their estimated location. Specifically, some graphical tools (SiZer map, mode tree
or mode forest) are provided, allowing for the identification of mode patterns, based
on the kernel density estimation. Several formal testing procedures for determining the
number of modes are described in this paper and implemented in the multimode package,
including methods based on the ideas of the critical bandwidth, the excess mass or using
a combination of both. This package also includes a function for estimating the modes
locations and different classical data examples that have been considered in mode testing
literature.
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1. A brief introduction on mode assessment
Given a data sample from a random variable, determining the number of modes in the un-
derlying density is a relevant question for supporting further decisions during the modeling
approach. It is clear that unimodal distributions (such as the Gaussian density) may not
be adequate for characterizing the behavior of more complex data generating mechanisms in
applied sciences. Some examples requiring more complex distributions for reflecting the real
number of modes can be found in many applied fields, such as astronomy, e.g., in the study
of unimodal or multimodal patterns of the stars rotation periods for different temperatures
(McQuillan, Mazeh, and Aigrain 2014); business administration, e.g., when analyzing the
invested capital in crowdfunding campaigns (Colombo, Franzoni, and Rossi-Lamastra 2015);
forest science, e.g., in the analysis of the number of modes in the distribution of backscat-
ter measurements (for unvegetated and dense forest areas), depending on the percentage of
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ground pixels (Santoro et al. 2011); genetics, e.g., for identifying which CpGs (regions of DNA
where a cytosine nucleotide is followed by a guanine nucleotide) present multimodal distri-
butions (Joubert et al. 2016); or psychology, where, for example, the study of the number
of modes is crucial for detecting the presence of single or dual-process cognitive phenomena
(Freeman and Dale 2013); among others.
In principle, non-parametric density smoothers, such as the kernel density estimator intro-
duced by Rosenblatt (1956) and Parzen (1962), may overcome the problem of restricting the
density estimation to a previously specified parametric family. Nevertheless, two important
issues arise when performing density estimation via kernel (or any other) density smoothing
methods. The first issue is that practitioners may be more comfortable interpreting and deal-
ing with parametric models, since in many cases parameter estimates can be interpreted in
terms of the data distribution given that they control some specific features. The second issue
is that, even being satisfied with the non-parametric kernel density estimator output, since
it provides an estimated version of the underlying distribution, there may be some doubts
about the features highlighted by this curve estimator: are they genuine from the distribution
or are they just due to sampling variability?
The previous concerns can be partially solved or answered by the identification of the (sig-
nificant) modes in the kernel density estimator. Hence, as a previous step before fitting a
parametric model, one should check how many distinguishable groups there are in the data
distribution, being these groups identified by the modes of the density. This can be done by
exploratory methods or by testing procedures. In both cases, it should be also determined
how much of the pattern observed in the density estimator is real, and how much is due to
sampling artifacts. In addition, a very flexible and yet simple parametric approximation with
several groups/modes can be carried out by fitting mixtures of normals (a revision on this
topic can be found in, for example, McLachlan and Peel 2000).
Quite a few contributions have been focused on solving the problem of identifying modes in
a data distribution using non-parametric approaches, both from exploratory and testing per-
spectives. Regarding the exploratory approach, different proposals have been mainly focused
on analyzing the behavior of the kernel density estimator along a range of different smooth-
ing (bandwidth) parameters, where an expert eye should try to identify persistent patterns.
The mode tree by Minnotte and Scott (1993) and the mode forest (Minnotte, Marchette, and
Wegman 1998), as well as the SIgnificant ZERo (SiZer) map by Chaudhuri and Marron (1999)
produce graphical displays where the change in the mode pattern of the density estimator
can be clearly seen along different bandwidth values.
The aforementioned exploratory tools, although providing a complete analysis of the density
estimate from a scale-space perspective (see Chaudhuri and Marron 1999), require a decision
on the number of modes to be taken after examining a graphical output. Therefore, conclu-
sions cannot be directly obtained by applying an automatic procedure which indicates how
many of the modes observed in the previous representations are really significant. However,
this question can be answered by an hypothesis test: H0 : j = k vs. Ha : j > k, denoting
by j the real number of modes in the density and being k a positive integer (so k = 1 is a
unimodality test). This testing problem has been solved designing test statistics which are
based on the critical bandwidth (Silverman 1981; Hall and York 2001; Fisher and Marron
2001) and/or the excess mass (Hartigan and Hartigan 1985; Müller and Sawitzki 1991; Cheng
and Hall 1998; Ameijeiras-Alonso, Crujeiras, and Rodríguez-Casal 2019). These procedures
will be briefly described in the paper, along with the previous exploratory methods.
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Some of the parametric and non-parametric tools for exploring the number of modes on a
data distribution are already implemented in other packages available from the Comprehen-
sive R Archive Network (CRAN) repository of R (R Core Team 2021). A brief summary of the
capabilities of some packages are provided below, including also some mention to packages
devoted to mixture models fitting. Although mode identification and mixture modeling are
not equivalent statistical problems, it is worth to briefly discuss also this parametric approach.
The aim of the R package presented in this paper, multimode (Ameijeiras-Alonso, Crujeiras,
and Rodríguez-Casal 2021), is to provide an easy-to-use toolbox with different non-parametric
methods for assessing multimodality in real distributions. The methods included in the pack-
age facilitate both the exploratory and inferential analysis. The package is available from
CRAN at https://CRAN.R-project.org/package=multimode.

• diptest (Maechler 2016): This package is focused in the dip test of Hartigan and Har-
tigan (1985), which allows for testing unimodality against multimodality.

• feature (Duong and Wand 2015): Based on the SiZer map, this package provides some
exploratory tools for detecting where the smoothed curve is significantly increasing or
decreasing for the 1-dimensional case (with similar ideas to Chaudhuri and Marron
1999), 2-dimensional (Godtliebsen, Marron, and Chaudhuri 2002) and also for the 3-
and 4-dimensional cases (Duong, Cowling, Koch, and Wand 2008).

• Mixture modeling: The mixtools package (Benaglia, Chauveau, Hunter, and Young
2009) includes different parametric methods based on finite mixture models. Among
other functionalities, it allows for testing or exploring the number of components on
finite mixture models (McLachlan and Peel 2000, Chapter 6). It performs a parametric
bootstrap likelihood ratio test for testing a m-component versus a (m+ 1)-component
fit (boot.comp) and it computes different information criteria (multmixmodel.sel,
repnormmixmodel.sel and regmixmodel.sel) for mixtures of multinomials, multivari-
ate normals and some kinds of regression models. Apart from mixtools, in R, there are
also other packages for selecting the number of mixture components. Some examples
include the mclust package (Scrucca, Fop, Murphy, and Raftery 2016) which determines
the number of components in a Gaussian mixture model with the functions mclustModel
(based on the Bayesian Information Criterion) and mclustBootstrapLRT (based on a
bootstrap likelihood ratio test). Also, the package mixAK (Komárek and Komárková
2014) provides, in the function NMixMCMC, the reversible jump Markov chain Monte Carlo
proposed by Richardson and Green (1997) for selecting the number of components in a
normal mixture, given weak prior information.

• modeest (Poncet 2019): When knowing that the underlying distribution of the data is
unimodal, this package provides different parametric and non-parametric methods for
estimating the mode location.

• modehunt (Rufibach and Walther 2015): This package implements some non-parametric
methods that do not employ the kernel density estimation and, therefore, do not depend
on the bandwidth parameter (Dümbgen and Walther 2008; Rufibach and Walther 2010).
Based on the ordered sample, the methods provide open intervals, with endpoints at
data points, for which the density function f is significantly increasing or decreasing.

https://CRAN.R-project.org/package=multimode
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• NPCirc (Oliveira, Crujeiras, and Rodríguez-Casal 2014b): In this package, the two
functions circsizer.density and circsizer.regression extend the SiZer map to
the context of circular data, i.e., samples that can be represented as points on the
circumference of a unit circle (Oliveira, Crujeiras, and Rodríguez-Casal 2014a).

There are different combinations of views and goals that must be considered when proceeding
with multimodality assessment. First, a parametric or a non-parametric approach can be
used. Then, it may be enough with an exploratory tool for determining the number of modes
or maybe a formal testing procedure could be required. Finally, it may be crucial also to
determine the modes locations.
First, if the parametric approach is chosen, among other packages, mixtools, mclust and
mixAK provide different techniques for determining the number of mixture components in
this context. When choosing this approach, special care must be taken with the conclusions
since the number of modes may be different to the number of components. In particular,
when employing a mixture of univariate normals, the number of modes may be less than the
number of components. Following a non-parametric perspective, available methods in R are
based in the ordered sample (package modehunt) or in density smoothing approaches.
As observed in the previous analysis of the different R packages, just a few techniques are
available for identifying the number of modes using the kernel density estimation. In par-
ticular, if the exploratory way is chosen, package feature provides some graphical methods
(based on the SiZer map) and package diptest the testing approach of Hartigan and Hartigan
(1985). The objective of the functions in multimode is complementing other implementations
on non-parametric multimodality analysis. When referring to other statistical software lan-
guages, up to the authors’ knowledge, besides the aforementioned non-parametric proposals,
just the Silverman (1981) testing approach was already available (see, e.g., silvtest function
in Stata; Salgado-Ugarte, Shimizu, and Taniuchi 1998).
When focusing on graphical methods, apart from the SiZer, multimode provides other ex-
ploratory methods, such as the mode tree and the mode forest. Referring to the SiZer map,
the main difference with function SiZer in the feature package is the way of calculating the
confidence intervals for the derivative of the smoothed density. While in feature, its own
approximation is performed, the four proposed methods by Chaudhuri and Marron (1999)
(based on normality and bootstrap techniques) for calculating where the smoothed curve is
significantly increasing/decreasing are provided in multimode. In Figure 1, the differences
between both packages can be observed. Note that, for representing the bandwidth values,
although feature uses a base e instead of the base 10 logarithm (the last one suggested by
Chaudhuri and Marron 1999), for comparative purposes, in this case, both are given in log10
scale. The SiZer maps are represented using a sample including the thickness of stamps (in-
troduced in Section 3.1) where at least two modes are expected (see Izenman and Sommer
1988). Modes in SiZer can be detected by blue-red patterns (see Section 2.1). Hence, the
SiZer obtained from the feature package, Figure 1 (g) (and, also, using the Gaussian approxi-
mations in multimode, Figure 1 panels (e) and (f)), detects at most just one mode, while more
than one mode can be observed in the SiZer maps obtained from multimode with bootstrap
methods, Figure 1 (h) and (i) (see Section 3.2).
Apart from the unimodality test of Hartigan and Hartigan (1985) (already implemented in
diptest package), multimode includes several proposal for testing the number of modes. Since
the dip test presents an extremely conservative behavior (see Ameijeiras-Alonso et al. 2019),
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the objective here is including other proposals and provide a way of testing a general number
of modes.
Finally, when the objective is to estimate the modes locations, the aforementioned graphical
tools already provide a way of exploring their locations (depending on the bandwidth pa-
rameter). Based on the idea of determining the significant modes for a given bandwidth pa-
rameter, Genovese, Perone-Pacifico, Verdinelli, and Wasserman (2016) derived the confidence
intervals for the eigenvalues of the Hessian matrix, at modes, of the kernel density estimate.
The implementation of their proposal can be found on the personal web page of the sec-
ond author (https://sites.google.com/a/uniroma1.it/marcoperonepacifico/R-code).
A semi-parametric approach for estimating modes location has been proposed by Mukhopad-
hyay (2017), starting with a unimodal parametric density which is modified in order to
search if there are extra modes. The R code for implementing this proposal can be found at
https://sites.temple.edu/deepstat/files/2018/10/LPMode_demo.txt. For a unimodal
distribution, package modeest includes some (parametric and non-parametric) tools for es-
timating the mode location. Also, without selecting a bandwidth parameter and when the
(general) number of modes is known, package multimode provides a (non-parametric) way of
estimating the modes (and antimodes) locations.
With the objective of presenting how to tackle the problem of identifying the number and
locations of modes and showing the capabilities of the multimode package, this paper is
organized as follows: in Section 2, some background on both exploratory and testing methods
for assessing multimodality will be provided. Initially, the kernel density estimator will be
briefly introduced, as it is the key tool for the exploratory and testing methods to be presented.
In this section an overview of different graphical tools (namely, the mode tree, the mode forest
and the SiZer map) will be provided. Also, different procedures for testing the number of
modes are described, including those ones using the critical bandwidth or the excess mass.
In Section 3, the reader will find a guided tour across multimode, illustrating its use with a
real data example. Finally, some discussion will be provided in Section 4, commenting also
on the possible extensions of the package.

2. Exploratory and testing tools for assessing multimodality

This section provides a brief background on the design of the different (exploratory and
testing) tools included in multimode. A key element in the foundations of the different
proposals is the kernel density estimator. Given a random sample (X1, . . . , Xn) from a random
variable X with (unknown) density f , the kernel density estimator for a fixed x ∈ R is defined
as:

f̂h(x) = 1
nh

n∑
i=1

K

(
x−Xi

h

)
, (1)

where K is the kernel function (usually a symmetric and unimodal density) and h > 0 is the
smoothing parameter or bandwidth. This parameter controls the smoothness of the estimator
in the sense that large (small) values of h provide oversmoothed (undersmoothed) curves. For
the particular case of a Gaussian kernel, and focusing on the modes exhibited by f̂h, it should
be noted that the number of modes is monotone in h (Silverman 1981). This feature is
essential to guarantee the validity of the different proposals.

https://sites.google.com/a/uniroma1.it/marcoperonepacifico/R-code
https://sites.temple.edu/deepstat/files/2018/10/LPMode_demo.txt
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2.1. Exploratory tools

Since the number of modes in f̂h is a monotone decreasing function of h, when the Gaussian
kernel is used, a simple exploratory solution, for determining the number of modes, is rep-
resenting this density estimation for different values of h (see Figure 1, panel (a)). In fact,
this is the idea underlying some graphical tools, such as the mode tree and the mode forest,
where an example of both representations is provided in Figure 1 (panels (b) and (c)).
In the mode tree, Minnotte and Scott (1993) created a tree diagram (similar to the dendro-
gram) representing, with continuous vertical lines, the modes locations (primary axis) of f̂h
for different bandwidth parameters h (secondary axis). In addition, it represents, with hori-
zontal dashed lines, how each mode splits into more modes as the bandwidth decreases (from
top to bottom), showing the relationship between the new modes and the original modes from
which they split.
As pointed out by Minnotte et al. (1998), the problem of the mode tree is the strong de-
pendence on the available sample. That is the reason why the mode forest is constructed
by computing the position of the estimated modes from different mode trees obtained from
sampling with replacement the original sample. In order to facilitate the visualization of this
exploratory method, the graphical window is divided in different (previously chosen) location-
bandwidth (horizontal-vertical axis) pixels. Then, this tool represents the number of times
that an estimated mode falls in each (location-bandwidth) pixel shading it proportionally to
counts (large counts corresponding to darker pixels and low counts to lighter ones). Then, in
the mode forest, modes are identified by dark grey regions.
A problem of the mode tree and the mode forest is that they do not identify which modes
are artificially created by atypical data points. An exploratory tool that avoids this issue
is the SiZer proposed by Chaudhuri and Marron (1999) and whose representation can be
observed in Figure 1 (panels (e), (f), (h) and (i)). SiZer identifies the significant features
of the density, by analyzing the behavior of the derivative of the kernel density estimation.
For a given location (horizontal axis) and using a specified bandwidth parameter (vertical
axis), the SiZer map represents where the smoothed curve, fh(x) = E

(
f̂h(x)

)
, is significantly

increasing (blue color), decreasing (red) or not significantly different from zero (orchid, a light
tone of purple). Thus, for a given bandwidth, a significantly increasing region followed by a
significantly decreasing region (blue-red pattern) indicates where a significant peak is present.
For determining the behavior of the smoothed curve, fixing a location x and a bandwidth
h, the confidence limits of f ′h(x) are of the form CI±(x, h) = f̂ ′h(x)± quantile(α) · ŝd(f̂ ′h(x)),
where ŝd is the estimated standard deviation and α is the significance level. The estimation
of the variance of f̂ ′h(x) is obtained in the following way

V̂ar
(
f̂ ′h(x)

)
= 1
nh4S

2
(
K ′
(
x−X1
h

)
, . . . ,K ′

(
x−Xn

h

))
, (2)

where S2 in Equation 2 denotes the sample variance. In order to calculate the quantiles,
Chaudhuri and Marron (1999) proposed four approximations: two based on Gaussian methods
and two based on bootstrap techniques. The first proposal is based on pointwise Gaussian
quantiles (q1; Figure 1, panel (e)), where quantiles are calculated as q1(α) = Φ−1 (1− α/2),
being Φ−1 the normal quantile function. The second method provides approximate Gaussian
quantiles simultaneous over x (q2; Figure 1, panel (f)) and they are defined as q2(α;h) =
Φ−1

(
1 + (1− α)1/m(h)/2

)
. For each bandwidth, m(h) are obtained from the effective sample
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Figure 1: Exploratory analysis for a sample of 485 stamps (1872 Hidalgo Issue of Mexico).
In (a) and (d), kernel density estimators with Gaussian kernel and different bandwidths; the
points represent stamps watermarked with LA+-F (blue) and Papel sellado (red). In (a),
from dark to light grey, h values: 0.007, 0.005, 0.003 and 0.001. In (d), h = 0.0039 (rule of
thumb – continuous line –) and h = 0.0012 (plug-in rule – dashed line –, see Wand and Jones
1994, Chapter 3). Mode tree (b) and mode forest (c) between the bandwidths 8 · 10−4 and
8 · 10−3. For each h, the estimated modes locations are identified by continuous lines in (b)
and dark grey pixels in (c). The horizontal discontinuous lines (b) indicate how each mode
splits. Panels (e)–(i): SiZer maps between log10(h) = −1.7 (h = 0.02) and log10(h) = −3.1
(h = 8·10−4); given a value of log10(h), modes can be detected by blue-red patterns. Obtained
from multimode, using Gaussian, q1 (e) and q2 (f), and bootstrap, q3 (h) and q4 (i), quantiles.
Derived from the results of the feature package (g).
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size (ESS, see Chaudhuri and Marron 1999) in the following way

m(h) = n

ESS(x, h)
, being ESS(x, h) =

∑n
i=1K

(
x−Xi
h

)
K(0) (3)

and ESS(x, h) the average mean over x of the values of ESS(x, h). Small values of ESS provide
an indicative of areas with too sparse data for meaningful inference. For that reason, in the
methods employing the ESS (q2, q3 and q4), the significant features are just represented in
the regions satisfying x ∈ Dh = {x : ESS(x, h) ≥ n0} (remaining regions are marked with
grey color; see Figure 1, panels (f), (h) and (i)). Then, the parameter n0 (where Chaudhuri
and Marron 1999 proposed to use n0 = 5) can help to remove the spurious modes created by
atypical data points.
The two bootstrap quantiles are calculated from the following values

Z(x, h)∗b = f̂ ′h(x)∗b − f̂ ′h(x)
ŝd(f̂ ′h(x))

, with b = 1, . . . , B, (4)

where each f̂ ′h(x)∗b is calculated from a random sample generated drawn with replacement
from the original sample. The third approach is a bootstrap quantile simultaneous over x,
q3(α;h) (Figure 1, panel (h)), and it is calculated with the empirical quantile (1−α/2) of the
B values maxx∈Dh

|Z(x, h)∗b|; with b = 1, . . . , B. Finally, the fourth approach, also calculated
from the quantities defined in Equation 4, is the bootstrap quantile simultaneous over x and
h, q4(α) (Figure 1, panel (i)), and it is defined as the empirical quantile (1 − α/2) of the
B values maxhmaxx∈Dh

|Z(x, h)∗|; with b = 1, . . . , B.

2.2. Testing procedures
Consider the testing problem presented in the Introduction. That is, given a sample X1, . . .,
Xn from a random variable X with unknown density f with j modes, and given a positive
integer k, the goal is to test H0 : j = k vs. Ha; j > k. The testing methods, briefly described
in this section and included in multimode, make use of one or both of the following concepts:
the critical bandwidth and the excess mass.

2.3. Using a critical bandwidth
The critical bandwidth for a fixed k was defined by Silverman (1981) as the smallest bandwidth
such that the kernel density estimator in Equation 1 has at most k modes:

hk = inf{h : f̂h has at most k modes}. (5)

This value can be used as a test statistic, as long as (1) is constructed with a Gaussian kernel,
as proposed by Silverman (1981): H0 is rejected for large values of hk. For calibrating hk, a
bootstrap algorithm is employed, where the resamples Y ∗bi = (1 + h2

k/σ̂
2)−1/2X∗bi (with i ∈

{1, . . . , n}, being n the sample size) are calculated from B bootstrap samples X∗bi generated
from f̂hk

, being σ̂2 the sample variance and with b ∈ {1, . . . , B}. Hall and York (2001) proved
that this bootstrap algorithm is not consistent and the authors suggested a correction for the
unimodality test (for k = 1), when f has a bounded support or when the mode is located in
a given closed interval I, defining the critical bandwidth as:

hHY = inf{h : f̂h has exactly one mode in I}. (6)
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The authors also proposed using hHY as a test statistic and designed a bootstrap algorithm
in this simplified scenario. However, the critical bandwidths for the bootstrap samples h∗HY,
calculated from X∗, are smaller than hHY, so for an α-level test, a correction factor λα to
empirically approximate the p value P(h∗HY ≤ λαhHY | X ) ≥ 1 − α must be considered.
Two different methods were suggested for computing this λα factor (see Hall and York 2001,
for details). The first one is based on a polynomial approximation where after imposing a
significance level α, the correction factor λα is approximated with the following expression:

λα = 0.94029α3 − 1.59914α2 + 0.17695α+ 0.48971
α3 − 1.77793α2 + 0.36162α+ 0.42423 . (7)

The second one uses Monte Carlo techniques considering a simple unimodal distribution. In
particular, Hall and York (2001) suggest to generate the resamples (of same sample size as
the original data) obtained from a unimodal distribution resembling the sampled one and
they claim that, in practice, normal distribution produce a good level accuracy.
Hall and York (2001) method should not be used in the general case of testing k-modality as
the bootstrap test cannot be directly calibrated under this hypothesis, since it depends on
the unknown quantities f1/5(ti)/|f ′′(ti)|2/5, where ti are the ordered turning points of f , with
i = 1, . . . , (2k − 1).
As showed in Ameijeiras-Alonso et al. (2019), the critical bandwidth of Hall and York (2001)
or Silverman (1981), when f has a bounded support, also plays a relevant role when the goal
is to estimate the modes locations. When the true number of modes is known, under some
general assumptions, the kernel density estimation with the critical bandwidth provides a
good estimation of the modes and antimodes locations.
A distribution estimation using the critical bandwidth of Silverman (1981) is also employed
by Fisher and Marron (2001), who considered the following Cramér-von Mises test statistic
for testing k-modality,

Tk =
n∑
i=1

(
F̂hk

(X(i))−
2i− 1

2n

)2
+ 1

12n, (8)

being F̂hk
(x) =

∫ x
−∞ f̂hk

(t)dt. H0 is rejected for large values of Tk (8), whose distribution is
approximated by a bootstrap algorithm, where resamples are generated from f̂hk

.

2.4. Using an excess mass statistic

The identification of a mode in a density estimate by finding a significant excess mass is
the basic idea in the proposals by Müller and Sawitzki (1991), Cheng and Hall (1998) and
Ameijeiras-Alonso et al. (2019). The empirical excess mass for k modes and a constant λ is
defined as:

En,k(Pn, λ) = sup
C1(λ),...,Ck(λ)

{
k∑

m=1
Pn(Cm(λ))− λ‖Cm(λ)‖

}
, (9)

where the supremum is taken over all families {Cm(λ) : m = 1, · · · , k} of closed intervals
with endpoints at data points. ‖Cm(λ)‖ denotes the measure of Cm(λ) and Pn(Cm(λ)) =
(1/n)∑n

i=1 I(Xi ∈ Cm(λ)), where I is the indicator function. The difference Dn,k+1(λ) =
En,k+1(Pn, λ) − En,k(Pn, λ) measures the plausibility of the null hypothesis, that is, large
values of Dn,k+1(λ) would indicate that H0 is false. An example of the theoretical excess
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Figure 2: The excess mass for k modes is the largest probability mass, exceeding a given level
λ, when taking k intervals. In this case, the excess mass for two modes is equal to the dark
grey area (and obtained with the union of the intervals [a, b] and [c, d]) and for one mode is
equal to the dark grey minus the light grey area (and obtained with [a, d]). Then, in terms of
excess mass, for the represented value of λ, the difference between assuming bimodality and
unimodality is the light grey area.

mass difference for a bimodal density is shown in Figure 2 for illustrative purposes. Using
these differences, Müller and Sawitzki (1991) defined as the excess mass statistic for testing
H0 : j = k,

∆n,k+1 = max
λ
{Dn,k+1(λ)}. (10)

Their proposal for testing unimodality is to calibrate this test statistic using a Monte Carlo
calibration, where resamples are generated from the uniform distribution. The same approach
was already proposed by Hartigan and Hartigan (1985) with the dip unimodality test, since
both quantities (dip and excess mass) coincide up to a factor.
The performance in practice of the calibration algorithm proposed for (10) was remarkably
conservative and Cheng and Hall (1998) designed a bootstrap procedure for approximating
the distribution of ∆n,2 under the hypothesis of unimodality generating the resamples from a
family of parametric functions, guaranteeing an asymptotic correct behavior. When analyzing
Cheng and Hall (1998) proposal in simulated scenarios (see Ameijeiras-Alonso et al. 2019), the
calibration of the test was not satisfactory in the “complicated” unimodal models (such as in
asymmetric scenarios, for a moderated sample size) due the lack of flexibility of this parametric
approach. Also, extending this test to the general case of testing k-modality is not an easy
task. For those reasons, a completely non-parametric alternative for testing H0 : j = k vs.
Ha : j > k has been proposed by Ameijeiras-Alonso et al. (2019). Their method consist
in calibrating the excess mass statistic given in (10) using a bootstrap procedure, where
the resamples are generated from (a modified version of) f̂hk

. The modification of the kernel
density estimator ensures the correct calibration of this test, under some regularity conditions
(similar to those ones needed in Cheng and Hall 1998). Although, in general, the Ameijeiras-
Alonso et al. (2019) proposal presents a correct behavior even when the sample size is “small”
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Data set Description
acidity Acid-neutralizing capacity
chondrite Percentage of silica in chondrite meteors
enzyme Blood enzymatic activity
galaxy Velocities of galaxies
geyser Waiting time between geyser eruptions
stamps Stamps thickness
Function Description
critbw Critical bandwidth computation
excessmass Excess mass statistic
locmodes Location of modes and antimodes
modeforest Mode forest
modetest Test for the number of modes
modetree Mode tree
nmodes Number of modes
sizer SiZer map

Table 1: Summary of multimode package contents.

(n = 50), when knowing the compact support I where the modes and antimodes lie, the Hall
and York (2001) bandwidth can be employed (for generating the resamples), improving the
results of this test.
When deciding which proposal should be chosen, it must be considered that an asymptotic
correct behavior is just expected in the unimodality tests of Hall and York (2001) (when f has
a bounded support or when employing the compact support I) and Cheng and Hall (1998)
and in the multimodality test of Ameijeiras-Alonso et al. (2019). A complete simulation
study comparing all the aforementioned proposals is provided in Ameijeiras-Alonso et al.
(2019), showing that the other proposals (Silverman 1981; Fisher and Marron 2001) for testing
H0 : j = k vs. Ha : j > k, when k > 1, exhibit an unsatisfactory behavior.

3. Using multimode
A complete description of the multimode package capabilities is provided in this section.
Specifically, the package includes the data sets and the functions shown in Table 1. First, the
different data sets available in the package will be described. Second, the usage of different
functions for exploring the number of modes will be illustrated. Finally, the functions for
testing multimodality and estimating the location of modes and antimodes will be introduced.

3.1. Data description

The package multimode includes some classical data sets for which determining the number
of different groups in the sample and/or exploring the location of modes and antimodes
are relevant issues. The first data set, acidity, analyzed by Crawford (1994), contains,
on the log scale, the acid-neutralizing capacity (ANC) measured in a sample of 155 lakes
in North-Central Wisconsin (USA). ANC describes the capability of a lake to absorb acid,
where low ANC values may lead to a loss of biological resources. The data set chondrite,
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included in Table 2 of Good and Gaskins (1980), gathers the percentage silica (in %) in
22 chondrite meteors. The data set enzyme, introduced by Bechtel, Bonaiti-Pellie, Poisson,
Magnette, and Bechtel (1993), collects a sample with the distribution of enzymatic activity in
the blood, for an enzyme involved in the metabolism of carcinogenic substances. The data set
galaxy provides the velocities in km/sec of different galaxies (diverging away from our own
galaxy) from the unfilled survey of the Corona Borealis region. In this data set introduced
by Postman, Huchra, and Geller (1986) and further studied by Roeder (1990), multimodality
is an evidence for voids and superclusters in the universe. The data set geyser presents the
interval times between the starts of the geyser eruptions observed during different periods in
the Old Faithful Geyser in Yellowstone National Park, Wyoming, USA. The included periods
are: October 1980, obtained from Table 3 of Härdle (2012) and the supplementary material of
Weisberg (2005); and August 1985, from Table 1 in Azzalini and Bowman (1990). Finally, the
data set stamps, analyzed in Izenman and Sommer (1988), consists of thickness measurements
(in millimeters) of 485 unwatermarked used white wove stamps of the 1872 Hidalgo stamp
issue of Mexico. All of them had an overprint with the year (1872 or either an 1873 or 1874)
and some of them were watermarked (Papel Sellado or LA+-F), being this information also
included inside stamps. Since the stamps value depends on its scarcity, it is of importance
to determine the number of available groups in a particular stamp issue. For this particular
stamp issue, although the watermark is some stamps (in 29 of 485) helps to conclude that
there are at least two groups, the question about the number of groups can be answered
analyzing the underlying number of modes.
Some of these data sets (acidity, enzyme, galaxy or stamps) were used in the statisti-
cal literature for illustrating mixtures of parametric models (see McLachlan and Peel 2000;
Richardson and Green 1997). For these cases, the non-parametric (both exploratory and in-
ferential) tools included in multimode could be seen as a preliminary tool for determining the
number of modes. In other data sets (chondrite, geyser or stamps), testing or exploring
the number of modes is an important problem per se. Some examples of their application
can be found in Chaudhuri and Marron (1999), Müller and Sawitzki (1991) or Scott (2015,
Section 9.2). In the subsequent sections, the stamps data set will be used for illustrating the
functions available in the multimode package.

3.2. Exploring data with multimode

When the objective is to explore the number of modes in a sample, a simple solution might
be to observe the number of peaks in the kernel density estimation for different values of h.
In order to facilitate this task, using the Gaussian kernel and a given bandwidth parameter
bw, the function nmodes computes the estimated number of modes in the real line or in a
support bounded by lowsup and uppsup. This kernel density estimation is calculated in n
equally spaced points of the variable for computational reasons (as in the density function
from the stats package). For instance, using the code below, it can be seen that the estimated
number of modes using the rule of thumb and the plug-in rule (bw.nrd0 and bw.SJ from the
stats package and illustrated in Figure 1, panel (d) is, respectively, two and nine.

R> library("multimode")
R> data("stamps", package = "multimode")
R> bwRT <- bw.nrd0(stamps)
R> bwRT
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[1] 0.003909682

R> bwPI <- bw.SJ(stamps)
R> bwPI

[1] 0.001205108

R> nmodes(data = stamps, bw = bwRT)

[1] 2

R> nmodes(data = stamps, bw = bwPI, full.result = TRUE)

n= 485. Number of modes: 9
Bandwidth: 0.001205108
Support where the number of modes are computed

-Inf Inf

The function allows also for a full.result argument, whose default value FALSE, returns just
the number of modes. If this argument is TRUE, it returns an object of class ‘estmod’, which
is a list (that can be printed) containing: the number of modes for the provided bandwidth
(nmodes), the number of non-missing observations (sample.size), the employed bandwidth
(bw), the support where the number of modes are computed (lowsup and uppsup), the x
coordinates of the points where the density is estimated (fnx) and their estimated density
values (fny).
In general, the different functions in multimode were implemented in such a way that just
the minimum arguments are required. In this case, just data and bw are needed to obtain
a result (lowsup = -Inf, uppsup = Inf, n = 2ˆ15 and full.result = FALSE are given by
default).
Based on the idea of exploring the number of modes (and their location) for different values
of h, the three different graphical tools, presented in Section 2.1, have been implemented in
multimode: modetree, modeforest and sizer. The outputs from these exploratory func-
tions (an object of class ‘gtmod’) and the arguments used for their computation are detailed
below. The common characteristics, in the three of them, are: the exploratory features will
be calculated in a finite number of grid points (the common argument is the first element of
gridsize); the number of modes will be determined according to a value of h and the em-
ployed bandwidth values can be chosen by the practitioner (bws, cbw1, cbw2 and the second
element gridsize); a graphical display can be generated (or added to the current graphic)
with different plot arguments; an output related with the modes locations is returned.
The different exploratory tools (modetree, modeforest and sizer) include three options for
providing the bandwidths. The first one is to use a range of bandwidth parameters in the
argument bws and the exploratory tool is computed in a grid of h between the given values
and size equal to the second element of the argument gridsize. By default, a regular grid
of size 151 is computed between a lower bandwidth equal to twice the distance between the
grid points used for estimating the density and upper bandwidth equal to the data range.
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The second option considers the critical bandwidths for cbw1 and cbw2 modes as the range
of bandwidths. The third method allows to include a vector of bandwidths in the argument
bws with size greater than two. In order to distinguish between this and the first option a
warning message is displayed when a grid of bandwidths is computed between the two given
values. Then, these exploratory tools are represented (using a log10 scale for the bandwidths
if logbw = TRUE, this is the value by default just in the sizer) when the argument display
is TRUE (by default) or when plotting the output with the titles in the x and y axis provided
by xlab and ylab, as usual. As indicated before, unless the grid of bandwidth values is given
by the user, a regular grid over the bandwidths scale is employed. When the logical argument
logbw.regulargrid is TRUE, it allows to create a regular grid over the log10 bandwidths scale
(default is FALSE).
The mode tree introduced by Minnotte and Scott (1993) and implemented in the function
modetree, shows with continuous lines the estimated mode locations for each bandwidth. For
modetree, the first element of gridsize is equal to the number of equally spaced points at
which the density is to be estimated (by default, 512). Moreover, the mode tree can be added
to another plot when the argument addplot is TRUE (FALSE, by default). Also, the color
lines in the mode tree can be chosen with the argument col.lines (by default are "black").
Below, an example with the code lines for computing and plotting the mode tree for the
stamps data set between the bandwidths 8 · 10−4 and 8 · 10−3 is shown (its representation
appears in Figure 3, left).

R> mtstamps <- modetree(data = stamps, bws = c(0.0008, 0.008),
+ display = FALSE)

Warning message:
In modetree(data = stamps, bws = c(8e-04, 0.008), display = FALSE) :

A grid of 'bws' between the given ones were used

R> mtstamps

Call:
modetree(data = stamps, bws = c(8e-04, 0.008), display = FALSE)

n=485. Location values range: 0.06 0.131
Number of employed bandwidths: 151. log10 bandwidths scale: FALSE
Bandwidths range: 0.0008 0.008

R> plot(mtstamps, xlab = "Thickness (in mm)", ylab = "")
R> summary(mtstamps)

The estimated modes are located between the following values
(for the bandwidths range indicated in parenthesis)

Mode 1: 0.0765159 | 0.07923317 (0.0008 0.008)
Mode 2: 0.09865606 | 0.1010608 (0.0008 0.006704)
Mode 3: 0.08932064 | 0.09054959 (0.0008 0.0032)



Journal of Statistical Software 15

0.06 0.08 0.10 0.12

0.
00

1
0.

00
3

0.
00

5
0.

00
7

Thickness (in mm)

B
an

dw
id

th

0.06 0.08 0.10 0.12

0.
00

1
0.

00
3

0.
00

5
0.

00
7

Thickness (in mm)
B

an
dw

id
th

Figure 3: Mode tree (left) and forest (right) for the 485 stamps data set from the 1872 Hidalgo
Issue of Mexico. Bandwidth range from 8 ·10−4 to 8 ·10−3. For each bandwidth value, modes
location are identified by continuous lines and dark grey pixels, for the mode tree and forest,
respectively. The horizontal discontinuous lines in the left panel show how each mode splits.

Mode 4: 0.1077458 | 0.1095711 (0.0008 0.00296)
Mode 5: 0.1189791 | 0.1199551 (0.0008 0.002816)
Mode 6: 0.1277307 | 0.1291116 (0.0008 0.002576)
Mode 7: 0.07114923 | 0.07288025 (0.0008 0.002384)
Mode 8: 0.0598106 | 0.06027081 (0.0008 0.001472)
Mode 9: 0.06427515 | 0.06482456 (0.0008 0.001328)
Mode 10: 0.1140164 | 0.1143359 (0.0008 0.00104)
Mode 11: 0.07525205 | 0.07554669 (0.0008 0.000992)
Mode 12: 0.0921117 | 0.0924591 (0.0008 0.000992)
Mode 13: 0.105216 | 0.1053268 (0.0008 0.000944)
Mode 14: 0.1218804 | 0.1221264 (0.0008 0.000896)
Mode 15: 0.12461 | 0.1246481 (0.0008 0.000848)
Mode 16: 0.09735421 | 0.09735421 (0.0008 0.0008)

The output is an object of class ‘gtmod’ containing the following components: locations,
a matrix with the estimated modes locations for each bandwidth; range.x, the data range;
range.bws, the bandwidths employed for computing the mode tree; logbw, a logical value
indicating if the bandwidths are given in the log10 scale; sample.size, the number of non-
missing observations in the sample used for obtaining the mode tree; and call, the named
function applied to the given arguments. With the exception of locations, these elements
are common to all elements of class ‘gtmod’, which can be printed, plotted and summarized.
The plot and the summary can be useful for exploring where the different modes are located
when the number of modes is not clear and further insight on the data distribution is required.
In this case, the principal mode appears between the values 0.0765 and 0.0792, the secondary
mode between 0.0987 and 0.1011, and so forth.
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The mode forest, introduced by Minnotte et al. (1998), is provided by modeforest. This
graphical tool is generated by looking simultaneously at a collection of mode trees generated
by the original sample and B (B = 99 by default) random resamples drawn with replacement
from the original one.
For the modeforest and sizer, the first element of gridsize is equal to the number of
grid points in the horizontal (values of the variable) axis (by default equal to 100 in the
modeforest and 512 in the sizer). In both cases, the horizontal plotted values are bounded
by the interval (from, to), being this interval equal to the data range by default. In the
modeforest function, the number of equally spaced points at which the density is to be
estimated is chosen by the argument n (n = 512 by default). The mode forest for the stamps
data set between the bandwidths 8 · 10−4 and 8 · 10−3 (represented in Figure 3, right) can be
obtained as follows:

R> mfstamps <- modeforest(data = stamps, bws = c(0.0008, 0.008),
+ xlab = "Thickness (in mm)", ylab = "")

Warning message:
In modeforest(data = stamps, bws = c(8e-04, 0.008), :

A grid of 'bws' between the given ones were used

R> summary(mfstamps, levelmf = 0.4)

The estimated modes are located between the following values
(for the bandwidths range indicated in parenthesis)

Mode 1: 0.07598509 | 0.07959896 (0.0008 0.008)
Mode 2: 0.09983665 | 0.1005594 (0.0008 0.003056)
Mode 3: 0.1085099 | 0.1099555 (0.0008 0.002672)
Mode 4: 0.08899503 | 0.09044058 (0.0008 0.00248)
Mode 5: 0.07092566 | 0.07237121 (0.0008 0.00224)
Mode 6: 0.1186288 | 0.1200743 (0.0008 0.001568)
Mode 7: 0.05936127 | 0.06008404 (0.0008 0.001376)
Mode 8: 0.06369792 | 0.06442069 (0.0008 0.001184)
Mode 9: 0.07526231 | 0.07598509 (0.0008 0.000992)
Mode 10: 0.1142921 | 0.1150149 (0.0008 0.000944)
Mode 11: 0.124411 | 0.1251338 (0.0008 0.000944)
Mode 12: 0.0926089 | 0.09333168 (0.0008 0.0008)

This function returns an object of class ‘gtmod’ containing the same components as modetree
with the exception of locations which is replaced by the matrix modeforest including the
percentage of times that an estimated mode falls in each location-bandwidth pixel. In the
case of the functions modeforest and sizer, in range.x, they return the employed location
values to represent the mode forest or the SiZer map. In the modeforest plot, modes can
be detected observing the dark grey vertical traces, but one should be careful with the very
dark areas (as the one next to 0.06) since, due to the resampling algorithm, it is possible that
spurious modes (created by some atypical data points) may seem visually more prominent
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than real modes (as pointed out by Minnotte et al. 1998). Observing Figure 3 (right), the
mode forest suggests at least nine modes for the stamps data set. Although the graphical tool
is more informative, this function also has an associated summary that tries to provide the
estimated location of the modes by seeing in which pixels the percentage given in modeforest
is greater than the value levelmf (default equal to 0.5).
With the sizer function the assessment of SIgnificant ZERo crossing of the derivative of
the smoothed curve is computed for a given sample. In each location-bandwidth pixel, the
SiZer map shows the significant features of the smoothed curve using, by default, the colors
described in Section 2.1, but they can be replaced using the col.sizer argument. For an-
alyzing the behavior of the curve, the four quantile approximations proposed by Chaudhuri
and Marron (1999) are implemented in the sizer function using the argument method. The
available quantiles are: the pointwise Gaussian quantiles (q1), when method = 1; approximate
simultaneous over location x Gaussian quantiles (q2), when method = 2 (value by default);
bootstrap quantile simultaneous over location x (q3), when method = 3; and bootstrap quan-
tile simultaneous over (location and bandwidth) x and h (q4), when method = 4. Bootstrap
quantiles q3 and q4 are computed generating B (B = 100 by default) random samples drawn
with replacement from the sample. The significance level α, is chosen with the argument
alpha (equal to 0.05 by default). In methods q2, q3 and q4; grey color (by default) is em-
ployed when the effective sample size in (3) is less than the value n0 (n0 = 5 by default, as
suggested by Chaudhuri and Marron 1999). A legend indicating the meaning of the different
colors is also provided in the plot position given in poslegend when the argument addlegend
is TRUE (by default the legend is included and shown at the topright position). The different
SiZer maps for the stamps data set between the bandwidths 8 · 10−4 and 0.02 (represented in
Figure 4) can be obtained as shown below.

R> szst1 <- sizer(data = stamps, method = 1, bws = c(0.0008, 0.02),
+ logbw.regulargrid = TRUE, xlab = "Thickness (in mm)", ylab = "")

Warning message:
In sizer(data = stamps, method = 1, bws = c(8e-04, 0.02), :

A grid of 'bws' between the given ones were used

R> summary(szst1)

The estimated modes are located between the following values
(for the log10 bandwidths range indicated in parenthesis)

Mode 1: 0.07382485 | 0.1049481 (-1.848084 -1.69897)

R> szst2 <- sizer(data = stamps, bws = c(0.0008, 0.02),
+ logbw.regulargrid = TRUE, xlab = "Thickness (in mm)", ylab = "")

Warning message:
In sizer(data = stamps, bws = c(8e-04, 0.02), :
A grid of 'bws' between the given ones were used

R> summary(szst2)
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The estimated modes are located between the following values
(for the log10 bandwidths range indicated in parenthesis)

Mode 1: 0.07201859 | 0.08799706 (-2.239507 -1.69897)

R> szst3 <- sizer(data = stamps, method = 3, bws = c(0.0008, 0.02), B = 500,
+ logbw.regulargrid = TRUE, xlab = "Thickness (in mm)", ylab = "")

Warning message:
In sizer(data = stamps, method = 3, bws = c(8e-04, 0.02), B = 500, :
A grid of 'bws' between the given ones were used

R> summary(szst3)

The estimated modes are located between the following values
(for the log10 bandwidths range indicated in parenthesis)

Mode 1: 0.07632583 | 0.08271722 (-3.09691 -1.69897)
Mode 2: 0.09813992 | 0.1030029 (-3.09691 -2.220868)
Mode 3: 0.08910861 | 0.09272114 (-3.09691 -2.62161)
Mode 4: 0.107727 | 0.1103669 (-3.059632 -2.649569)
Mode 5: 0.07035127 | 0.07271331 (-3.09691 -2.714806)

R> szst4 <- sizer(data = stamps, method = 4, bws = c(0.0008, 0.02), B = 500,
+ logbw.regulargrid = TRUE, xlab = "Thickness (in mm)", ylab = "")

Warning message:
In sizer(data = stamps, method = 4, bws = c(8e-04, 0.02), B = 500, :
A grid of 'bws' between the given ones were used

R> summary(szst4)

The estimated modes are located between the following values
(for the log10 bandwidths range indicated in parenthesis)

Mode 1: 0.07618689 | 0.08285616 (-3.09691 -1.69897)
Mode 2: 0.08869178 | 0.1117564 (-2.919838 -2.267466)
Mode 3: 0.07007339 | 0.07257436 (-3.059632 -2.8546)

Apart from the already described arguments, sizer returns an object of class ‘gtmod’ with
the element method (a number indicating what type of quantile was performed) and five
matrices containing different information in each location-bandwidth pixel: sizer, with the
significant behaviors of the smoothed curve in each location-bandwidth pixel (1: significantly
decreasing, 2: not significantly different from zero, 3: significantly increasing or 4: low data
for meaningful inference); lower.CI with the lower limits of the confidence interval, CI−(x, h);
estimate, with the derivative values of the kernel density estimation, f̂ ′h(x); upper.CI with
the upper limits of the confidence interval, CI+(x, h); and ESS, with the effective sample size.
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Figure 4: SiZer maps for the 485 stamps data set from the 1872 Hidalgo Issue of Mexico.
Bandwidth range from log10(h) = −3.1 (h = 8 · 10−4) to log10(h) = −1.7 (h = 0.02). Given
a value of log10(h), modes can be detected in the blue-red patterns. Top: Gaussian quantiles
q1 (left) and q2 (right). Bottom: bootstrap quantiles q3 (left) and q4 (right).

As noted before, in the SiZer maps (represented in Figure 4), by default, blue color indicates
locations where, for a given bandwidth, the smoothed curve is significantly increasing, red
color shows where it is significantly decreasing and orchid indicates where it is not significantly
different from zero. Then, focusing on log10(h) values, modes can be detected by blue-red
patterns. In this case, the SiZer maps computed with Gaussian quantiles just detect, at most,
one mode around 0.08. The conclusion with those ones constructed with bootstrap confidence
intervals vary with the bandwidth. For all the bandwidth values, both methods capture a
principal mode close to 0.08 and for several bandwidth parameters is also detected a secondary
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mode around 0.10. The third and the fourth mode (around 0.09 and 0.11) that appears in the
mode tree (Figure 3, left) are only significant modes for some bandwidth parameters for q3.
Finally, both methods, q3 and q4, detect another mode near 0.072 for some bandwidth values.
Then, depending on the bandwidth parameter, the conclusion using the quantile q3 is that
there are between one and five modes (in order of appearance, around 0.08, 0.10, 0.09, 0.11
and 0.07), while q4 detects between one and three modes (around 0.08, 0.10 and 0.07). As
in the mode forest, the summary of the ‘gtmod’ object returned by sizer tries to summarize
the information about the estimated mode location by detecting when an increasing pixel is
followed by a decreasing pixel for each bandwidth value.

3.3. Testing and locating modes with multimode

The multimode package has implemented all the test presented in the Section 2.2. In par-
ticular, it allows to compute the critical bandwidth of Silverman (1981) and Hall and York
(2001) (with the function bw.crit) and the excess mass of Müller and Sawitzki (1991) (with
excessmass). Their associated p values can be also obtained, with modetest, using different
testing proposals. For the three functions (bw.crit, excessmass and modetest), the inves-
tigated number of modes can be specified in the argument mod0 (unimodality, mod0 = 1, is
explored by default).
For bw.crit and for the testing proposals using the critical bandwidth in modetest, when
the compact support is unknown, the critical bandwidth introduced by Silverman (1981) is
computed and if the finite values of the support limits are provided (via arguments lowsup
and uppsup) the one proposed by Hall and York (2001) is calculated. Although the whole real
line is employed by default, both arguments should be used in modetest when employing the
Hall and York (2001) proposal or for computing the new proposal when the compact support
is known (see Section 2.4). As in the nmodes function, the number of equally spaced points at
which the density is to be estimated can be chosen by the argument n and a full result list of
class ‘estmod’ is returned when full.result = TRUE (otherwise, the output is just the value
of the critical bandwidth). Since a dichotomy method is employed for computing the critical
bandwidth, the parameter tol (equal to 10−5 by default) is used to determine a stopping
time in such a way that the error committed in the computation of the critical bandwidth is
less than tol.
For excessmass and in the testing proposals using the excess mass in modetest, when there
are repeated data in the sample or the distance between different pairs of data points shows
ties, a data perturbation is applied. This modification is made in order to avoid the induced
discretization of the data which has important effects on the computation of this test statistic.
A warning message is displayed if this data perturbation is done. The perturbed sample is
obtained by adding a sample from the uniform distribution in the support minus/plus a half
of the minimum of the positive distances between two sample points. In this case, when
full.result = TRUE, apart from the value of the excess mass test statistic (excess.mass),
the object of class ‘estmod’ contains the arguments nmodes and sample.size, as in the
function nmodes, but also a logical value indicating if the excess mass was approximated
(approximate).
Since the excess mass for one mode is twice the dip, this equality can be used for a “fast”
computation of the excess mass for one mode. When mod0 is greater than one and the sample
size is “large”, a two-step approximation (when approximate = TRUE, being this argument
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FALSE by default) can be performed in order to improve the computational time efficiency.
This two-step approximation is achieved creating two grids of values of size the elements in
gridsize (by default, both equal to 20). First, since the possible λ candidates for maximizing
Dn,k+1(λ) can be directly obtained from the Cm(λ) sets that could maximize En,k+1 and En,k
(see Supplementary Material in Ameijeiras-Alonso et al. 2019), the possible values of λ are
computed by looking to the empirical excess mass function in some endpoints candidates for
Cm(λ) (the number of employed points is equal to the first element of gridsize) and also
in the λ values associated to the empirical excess mass for one mode. Once a λ maximizing
the approximated values of Dn,k+1(λ) is chosen, in order to obtain the approximation of the
excess mass test statistic, in its neighborhood, a grid of possible λ values is created, being its
length equal to the second element of gridsize, and the exact value of Dn,k+1(λ) is calculated
for these values of λ (using the algorithm proposed by Müller and Sawitzki 1991).
An illustration with the stamps data set is shown below. First, the critical bandwidth of
Silverman (1981) and Hall and York (2001), in the interval I = [0.04, 0.15], is computed for
two modes. Second, the exact and approximated version of the excess mass test statistic of
Müller and Sawitzki (1991) for two modes are obtained.

R> bwSI <- bw.crit(data = stamps, mod0 = 2)
R> bwSI

[1] 0.003234863

R> bwHY <- bw.crit(data = stamps, mod0 = 2, lowsup = 0.04, uppsup = 0.15,
+ full.result = TRUE)
R> bwHY

n= 485. Number of modes: 2
Bandwidth: 0.003234863
Support where the number of modes are computed

0.04 0.15

R> emEx <- excessmass(data = stamps, mod0 = 2)
R> emEx

Warning message:
In excessmassex(data, mod0) :

A modification of the data was made in order to compute the excess mass
statistic

[1] 0.02177329

R> emApp <- excessmass(data = stamps, mod0 = 2, approximate = TRUE,
+ gridsize = c(50, 50), full.result = TRUE)
R> emApp

n= 485. Number of modes: 2
Approximated excess mass:0.02177101
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Warning message:
In excessmassapp(data, mod0, gridsize) :
A modification of the data was made in order to compute the excess mass
statistic

Once the different test statistics are computed, the number of modes for the underlying
density of a given sample can be tested with the function modetest. The different proposals
that can be used for testing the number of modes (using the argument method) are those
ones introduced in Section 2.2. The available methods, based on the critical bandwidth
(see Section 2.3), include: Silverman (1981) ("SI"), Hall and York (2001) ("HY") and Fisher
and Marron (2001) ("FM"). Based on the excess mass (Section 2.4): Hartigan and Hartigan
(1985) ("HH", equivalent to the proposal of Müller and Sawitzki 1991), Cheng and Hall (1998)
("CH") and the new proposal of Ameijeiras-Alonso et al. (2019) ("ACR", value by default) are
also included. For calculating the corresponding p value, all the available proposals require
bootstrap or Monte Carlo resamples and the number of replicates can be specified with the
argument B (B = 500 by default).
For "SI", "HY" and "ACR" proposals, the argument submethod is available (in general,
submethod = 1 is employed by default). In the "SI" case, two resampling methods are
implemented: when submethod = 1, the resamples are generated from the rescaled boot-
strap resamples as proposed by Silverman (1981) (see Section 2.3); if submethod = 2, the
resamples are generated from f̂hk

. In the "ACR" method, the approximated version of the ex-
cess mass can be employed, for computational time efficiency reasons, by setting submethod
= 2 (this method is used by default when mod0>1 and the sample size is greater than 200); if
submethod = 1, then the exact value of the excess mass test statistic is computed.
As pointed out in Section 2.2, the bounded support (lowsup and uppsup) is necessary when
the Hall and York (2001) proposal ("HY") is employed and f has not a compact support and
it can be also used with the "ACR" proposal. In the "ACR" case, the parameter tol2 (equal
to 10−5 by default) is the accuracy required in the integration of the calibration function
when the compact support is known (see Ameijeiras-Alonso et al. 2019). As mentioned
in Section 2.3, a level correction (achieved with the λα factor) is needed in the bootstrap
procedure of Hall and York (2001). The two suggested approximations for its computation
are provided in the "HY" test using the argument submethod. The submethod 1 corresponds
to the asymptotic correction of Silverman (1981) test based on the limiting distribution of the
test statistic, i.e., it consists in using equality (7). In Equation 7, since the value of λα depends
on α, when submethod = 1, the significance level must be previously determined with alpha
(alpha = 0.05 by default). The submethod 2 is based on Monte Carlo techniques where the
resamples are generated from the normal distribution. For this reason, when submethod =
2, the number of normal-distributed samples (nMC) and the number of bootstrap resamples
(BMC) used for computing the p value in each Monte Carlo sample are needed (both quantities
are equal to 100 by default).
The modetest function returns a "htest" list containing: the test statistic (statistic), the
associated p value (p.value), the number of modes that have been tested (null.value), a
character string with the alternative hypothesis (alternative, which is always "greater"),
the type of multimodality test that was performed (method), the number of non-missing
observations in the employed sample (sample.size), a character string giving the name of
the data (data.name) and the number of missing values that were removed from the data
prior to performing the test (bad.obs).
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The different p values obtained for the stamps data set with the Ameijeiras-Alonso et al.
(2019) proposal (calculating the exact value of the excess mass) are reproduced in Table 3
and they can be obtained as follows (varying the value of mod0 between 1 and 9):

R> modeteststamps <- modetest(data = stamps, mod0 = 1, submethod = 1)

Warning message:
In modetest(data = stamps) :
A modification of the data was made in order to compute the excess mass or
the dip statistic

R> modeteststamps

Ameijeiras-Alonso et al. (2018) excess mass test

data: stamps
Excess mass = 0.049948, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1

Assuming that the compact support for the stamps data set is I = [0.04, 0.15] (see Izenman
and Sommer 1988), the modification of the Ameijeiras-Alonso et al. (2019) proposal with
known compact support can be obtained as follows

R> modetest(data = stamps, mod0 = 1, lowsup = 0.04, uppsup = 0.15)

Ameijeiras-Alonso et al. (2018) excess mass test

data: stamps
Excess mass = 0.049948, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1

The p values of the other proposals allowing for testing a general number of modes ("SI" and
"FM") are obtained with the below code lines (varying the value of mod0 between 1 and 9).

R> modetest(data = stamps, mod0 = 1, method = "SI")

Silverman (1981) critical bandwidth test

data: stamps
Critical bandwidth = 0.0067291, p-value = 0.014
alternative hypothesis: true number of modes is greater than 1

R> modetest(data = stamps, mod0 = 1, method = "FM")

Fisher and Marron (2001) Cramer-von Mises test

data: stamps
Cramer-von Mises = 1.2302, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1
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The other critical bandwidth based method, "HY", should only be used for testing unimodality
when when f has a bounded support or when the modes and antimodes lie in a known closed
interval I, in this case I = [0.04, 0.15]. The test with both alternatives for approximating the
λα: a first approach based on a polynomial approximation (submethod = 1) and a second
option using Monte Carlo techniques (submethod = 2), can be computed as follows:

R> modetest(data = stamps, method = "HY", lowsup = 0.04, uppsup = 0.15)

Hall and York (2001) critical bandwidth test

data: stamps
Critical bandwidth = 0.0067291, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1

R> modetest(data = stamps, method = "HY", lowsup = 0.04, uppsup = 0.15,
+ submethod = 2)

Hall and York (2001) critical bandwidth test

data: stamps
Critical bandwidth = 0.0067291, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1

The p values of the unimodality test based on the excess mass ("HH" and "CH") can be
obtained with the following code lines:

R> modetest(data = stamps, method = "HH")

Warning message:
In modetest(data = stamps, method = "HH") :
A modification of the data was made in order to compute the excess mass or
the dip statistic

Hartigan and Hartigan (1985) dip test

data: stamps
Dip = 0.024974, p-value = 0.04
alternative hypothesis: true number of modes is greater than 1

R> modetest(data = stamps, method = "CH")

Warning message:
In modetest(data = stamps, method = "CH") :
A modification of the data was made in order to compute the excess mass or
the dip statistic

Cheng and Hall (1998) excess mass test
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method SI HY FM HH CH ACR
submethod 1 2 1 2 1
p value 0.014 0.002 0 0 0 0.040 0 0

Table 2: p value obtained using different proposals for testing unimodality, with B = 500
resamples. The employed testing procedures are: "SI" (using the rescaled, submethod 1,
and the non-rescaled, submethod 2, bootstrap resamples), "HY" (using the two suggested
approximations of λα), "FM", "HH", "CH" and "ACR" (employing the exact version of the
excess mass test statistic).

k 1 2 3 4 5 6 7 8 9
SI 0.014 0.452 0.094 0.006 0.006 0 0.542 0.342 0.630
FM 0 0.006 0 0 0 0 0 0 0
FM* 0 0.008 0 0 0 0 0.116 0.048 0.044
ACR* 0 0.024 0.002 0.746 0.894 0.980 0.958 0.986 0.936

Table 3: p value obtained using different proposals for testing k-modality, with k between
1 and 9, employing B = 500 resamples. The employed testing procedures are: "SI" over
the original sample (using the rescaled bootstrap resamples), "FM" over the original sample,
"FM" over the perturbed sample ("FM"*) and "ACR" over the perturbed sample (employing
the exact version of the excess mass test statistic).

data: stamps
Excess mass = 0.049948, p-value < 2.2e-16
alternative hypothesis: true number of modes is greater than 1

Table 2 shows the p.values obtained for all the unimodality tests available. Note that, in
the "ACR" case, submethod = 2 was not employed as when mod0 = 1 the exact version of
the excess mass is computed in a more efficient way. For all of them the null hypothesis of
unimodality is rejected for a significance level α = 0.05.
The results for the tests ("SI", "FM" and "ACR") that allow testing k-modality, with k > 1,
are displayed in Table 3 (with k between 1 and 9). In the case of the "FM" proposal, for
reproducing the Fisher and Marron (2001) results, the stamps data were also perturbed as
done with the excessmass function. Similar results are obtained for the "SI" proposal, with
and without data perturbation when using submethod = 1 or submethod = 2; and for the
"ACR" proposal, independently of using or not the known support I = [0.04, 0.15]. Fixing
a significance level α = 0.05, there is not a clear conclusion when using "SI" and "FM". In
the "SI" case the null hypothesis is not rejected for k = 2, 3, 7, 8, 9 and for the "FM", using
the perturbed sample, it is not rejected just for k = 7. While, in the single proposal that
is well calibrated ("ACR", see Ameijeiras-Alonso et al. 2019), the null hypothesis is rejected
until k = 3 and it is not for k ≥ 4, suggesting that the number of modes is equal to 4.
Once the number of modes is known, the function locmodes provides the estimation of the
locations of modes and antimodes and their estimated density value. In this case, the compact
support of the variable (which is known) can be used to obtain a good estimator of the modes
and antimodes locations (see Section 2.3). In other scenarios, one should be careful about
the conclusions as the critical bandwidth of Silverman (1981) may create artificial modes in
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Figure 5: Estimation of the density, modes and antimodes for the sample of 485 stamps from
the 1872 Hidalgo Issue of Mexico, obtained with the function locmodes for mod0 = 4 (left)
and mod0 = 7 (right) modes.

the tails (see Hall and York 2001).
The arguments for locmodes function include those ones mentioned in the bw.crit function:
mod0, lowsup, uppsup, n and tol (with same values by default). It also allows the represen-
tation of the estimation (for the number of modes indicated in mod0) of the density, modes
and antimodes with the argument display (FALSE by default) or plotting the output. The
remaining graphical arguments (addplot, xlab, ylab, addLegend, posLegend) were already
described in the modetree and sizer functions.
The estimation of the modes and antimodes locations and their density value, assuming four
(mod0 = 4, Ameijeiras-Alonso et al. 2019) and seven (mod0 = 7, Izenman and Sommer 1988)
modes, can be obtained as follows (their representation is provided in Figure 5):

R> lms <- locmodes(data = stamps, mod0 = 4, lowsup = 0.04, uppsup = 0.15,
+ display = TRUE, xlab = "Thickness (in mm)")
R> lms

Estimated location
Modes: 0.07856903 0.09064666 0.1005547 0.1083469
Antimodes: 0.08788637 0.0939225 0.1063922

Estimated value of the density
Modes: 45.36839 10.32331 14.946 11.44271
Antimodes: 9.752408 9.673075 11.25519

Critical bandwidth: 0.002830505

This function returns an object of class ‘locmod’ (that can be printed and plotted) containing:
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locations, a vector with the estimated location s of modes (odd positions of the vector) and
antimodes (even positions); fvalue, a vector with their estimated density values; and cbw, the
critical bandwidth of the sample for mod0 modes. Regarding the obtained results assuming
that the distribution has four modes, the estimated modes (odd positions of locations) are:
0.07857, 0.09065, 0.1006 and 0.1083.

The results obtained after applying the modetest function can be helpful for having a better
interpretation of the SiZer map (Figure 4). If the conclusion is that there are four modes,
the most plausible results are obtained with the bootstrap quantiles q3 and, in that case, the
estimated modes (in locmodes) coincide with those ones observed when a value of log10(h)
close to −2.7 is taken.

4. Discussion

The available functions of the R package multimode were described in this paper. This package
was developed with the objective of making the mode testing and exploring procedures, for
linear data, accessible for the scientific community, and therefore, enabling its use in practical
problems. As pointed out in Section 1, there are many examples in different disciplines where
the identification of the number (and location) of modes is important per se, or as a previous
step for applying other procedures. Package multimode contains non-parametric graphical
tools for (visually) exploring the number of modes and their estimated location and also
testing proposals for determining the number of modes in the data distribution.

Up to the authors’ knowledge, multimode is the only statistical package that allows for
testing, in a non-parametric way, a general number of modes and, also, it is the only one
providing a well-calibrated method for testing unimodality. Obtaining a final p value, instead
of a graphical tool, can be useful when the objective is, e.g., to obtain conclusions about
the number of modes in a systematic manner. This is the case of McQuillan et al. (2014) or
Joubert et al. (2016) where they performed several times the unimodality test of Hartigan and
Hartigan (1985), dividing the sample, in the first case, in a temperature bin, and in the second
case, in a collection of different CpGs (see Section 1). The combination of this package with
other False Discovered Rate techniques (see, e.g., p.adjust from the stats package) allows to
account for the multiple testing problem when the objective is to determine the number of
modes.

So far, multimode includes just exploratory and testing procedures for mode assessment
for real random variables. However, the ideas in Ameijeiras-Alonso et al. (2019) can be
extended to settings where there is a natural non-parametric estimator. This is the case with
circular random variables, for instance. As mentioned before, in R, there are already some
packages allowing for exploring the number of modes in this setting, such as the circular
version of the SiZer map implemented in NPCirc (see Oliveira et al. 2014b). Referring to the
testing approach, Fisher and Marron (2001) already introduced a proposal for determining
the number of modes in this circular setting. In particular, they suggested to use the circular
version of the Tk test statistic, namely the U2 of Watson (1961). Future extensions of the
multimode package could include some procedures for assessing the number of modes in other
settings, such as the mentioned proposal of Fisher and Marron (2001).
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