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Abstract

This paper introduces the R package ordinalCont, which implements an ordinal re-
gression framework for response variables which are recorded on a visual analogue scale
(VAS). This scale is used when recording subjects’ perception of an intangible quantity
such as pain, anxiety or quality of life, and consists of a mark made on a linear scale.
We implement continuous ordinal regression models for VAS as the appropriate method
of analysis for such responses, and introduce smoothing terms and random effects in the
linear predictor. The model parameters are estimated using constrained optimization of
the penalized likelihood and the penalty parameters are automatically selected via max-
imization of their marginal likelihood. The estimation algorithm is shown to perform
well, in a simulation study. Two examples of application are given: the first involves the
analysis of pain outcomes in a clinical trial for laser treatment for chronic neck pain; the
second is an analysis of quality of life outcomes in a clinical trial for chemotherapy for the
treatment of breast cancer.

Keywords: continuous ordinal regression, visual analogue scale, maximum penalized likelihood,
splines, R.

1. Introduction

Visual analogue scales (VAS) are used for measuring quantities which are intangible and
difficult to measure on conventional scales, such as pain, anxiety and quality of life. These
are generally used for self-rating. Subjects are given a linear scale of 100 mm and asked to
put a mark where they perceive themselves. The scale has verbal anchor descriptors at each
extreme, as depicted for the measurement of pain in Figure 1. The VAS reading is taken as
the measurement from the left endpoint to the subject’s mark, and is usually normalized to
lie in the interval [0, 1].

https://doi.org/10.18637/jss.v096.i08
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Figure 1: The visual analogue scale, with verbal descriptors for pain.

Statistical analysis of the VAS is controversial. While it is a bounded, continuous variable,
several authors have argued that it is ordinal, rather than ratio in nature, and should be
treated as such in analysis (for example Philip 1990; Wewers and Lowe 1990; Svensson 2000;
Kersten, Küçükdeveci, and Tennant 2012). The issue is that the VAS cannot be considered
a ratio measurement, or “linear”, because for example a 1-cm difference in VAS scores at
the lower end of the scale does not necessarily represent the same difference in the intangible
outcome as a 1-cm difference at the upper end; and a doubling of VAS score may not translate
to a doubling of e.g., the pain or anxiety. Whatever the extent of the “linear” portion in the
VAS, it seems reasonable that some nonlinearity will be observed around the limits, where
a higher density of observations, caused by perceptive states considered extreme or close
to extreme, could be expected. The problem of non–interpretability of distances between
measurements and the possibility of nonlinear behaviour, particularly at one or both extremes
of the scale, is overcome by treating VAS measurements as ordinal rather than ratio data.
We therefore refer to scales of this type as continuous ordinal.
We have developed a regression framework for continuous ordinal responses (Manuguerra and
Heller 2010) and implemented it in the R package ordinalCont, which we present in this
paper. The package, created in R (R Core Team 2020), is available from the Comprehen-
sive R Archive Network (CRAN) at https://CRAN.R-project.org/package=ordinalCont
(Manuguerra and Heller 2020). The relevance of continuous self-rating scales in the pain lit-
erature has been described in Heller, Manuguerra, and Chow (2016), where the frequent use
of suboptimal methods in the analysis of VAS and the superior power of continuous ordinal
regression analysis are discussed.
The remainder of this paper is structured as follows. Section 2 gives an overview of ordinal
regression, in which the response variable is an ordered category. In Section 3 we develop a
regression model based on responses such as VAS, which are measured on a bounded continu-
ous scale but are at an ordinal level. Section 4 describes its implementation in the R package
ordinalCont. Sections 6 and 7 give two examples of application, the first a pain response and
the second quality of life.

2. Ordinal regression
Ordinal regression models (McCullagh 1980) are widely used for regression analysis of discrete
ordinal responses Y within K ordered categories. The Y ’s are considered as coarse versions
of an unobserved, continuous latent variable W , such that

Y = j ⇐⇒ αj−1 < W ≤ αj , j = 1, . . . ,K

where the αj ’s are the correspondence on the latent variable scale of the category boundaries
on the ordinal scale and −∞ = α0 < α1 < · · · < αK =∞. This is depicted in Figure 2. Typ-
ically W is an intangible quantity such as pain, anxiety or quality of life and y = 1, 2, . . . ,K
codes for ordinal states such as “none”, “mild”, “moderate”, “severe”.

https://CRAN.R-project.org/package=ordinalCont
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Figure 2: Correspondence between latent variable W and observed response Y , with K = 5.

The ordinal nature of Y is preserved by basing the regression model on the cumulative prob-
abilities γj = P(Y ≤ j). To relate the γj to covariates x = (x1, . . . , xp)> in the jth category,
we write:

γj(x) = P(Y ≤ j |x) = P(W ≤ αj |x) .

The covariates are modelled on the latent scale:

W = −X>β + ε , (1)

where ε is a random error term, whose distribution we need to specify. A convenient choice
for the distribution of ε is the standard logistic distribution, having cumulative distribution
function (CDF) F(z) = P(ε ≤ z) = 1/(1 + e−z) (Johnson, Kotz, and Balakrishnan 1995).
Then

γj(x) = F(αj +X>β) = 1
1 + e−(αj+X>β) .

Inverting this translates to the cumulative logistic model (also called the proportional odds
model) for Y :

ln
(

γj(x)
1− γj(x)

)
= αj +X>β , j = 1, . . . ,K − 1 . (2)

In the ordinal regression literature, the intercepts αj are either ignored or used to characterize
differences in category “size”. In agreement with the latter approach, we argue that the αjs
are worthy of careful modelling as they relate to an important cognitive aspect, i.e., how
the perception of W changes at different levels. This behaviour can be of particular interest
around the extremes of the scale, where steep curvature is indicative of a tendency for subjects
to perceive and score their outcome at the extreme.
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The ordinal regression model has developed to incorporate additive and non-linear functional
forms of predictors (Hastie and Tibshirani 1987) and spline-based smoothers of predictors (Yee
and Wild 1996). In Tutz (2003), a general framework to deal with semiparametrically struc-
tured models is given, with predictors that can contain parametric parts, additive parts with
an unspecified functional form, and interactions. In particular global effects and category-
specific effects are distinguished. In R, the standard ordinal regression is implemented in the
package ordinal (Christensen 2019).
Typically VAS responses are analyzed by simply treating the VAS measurements as continuous
responses in a normal model (for example Olivan-Blázquez et al. 2014); or by nonparametric
methods such as the Mann-Whitney and Kruskal-Wallis tests (for example Mentula, Kalso,
and Heikinheimo 2014); or by dichotomizing (“pain”, “no pain”) and using logistic regression
(for example Choi et al. 2014); or by categorizing into a small number of levels and using
model (2). Of these, the latter approach is most satisfactory, although it involves a loss of
information. In a PubMed search we could only find one instance of it (Atrian, Abbaszadeh,
Sarvieh, Sarafraz, and Jafarabadi 2013). The other approaches are less than optimal: use of
the normal regression model has obvious distributional shortcomings; nonparametric methods
are valid in that they are rank-based and therefore respect the ordinality of the measure;
however, they are limited to comparisons between groups and cannot incorporate covariates
or other more sophisticated regression features such as random effects.
We have proposed (Manuguerra and Heller 2010) a generalization of the standard ordinal
model (2) which leads to an ordinal regression model for continuous scales. In this, the inter-
cepts are modelled using parametric functions or B-splines. The original Bayesian estimation
methodology has been updated (Manuguerra, Heller, and Ma 2017) to maximum penalized
likelihood (MPL), which is faster and more stable. An extended version of this is described in
Section 3. Similarly, Liu, Shepherd, Li, and Harrell Jr (2017) have used cumulative probabil-
ity models for continuous outcomes. Their approach makes use of non-parametric maximum
likelihood to estimate the parameters of the model and the intercepts and is then robust, but
has the disadvantage of estimating a high number of parameters.

3. Regression model for continuous ordinal responses

3.1. The continuous ordinal regression model
Consider VAS measurements v which are sampled from a continuous response variable V ∈
(0, 1) 1, with density fv(v) and CDF γ(v). The continuous ordinal response variable V reflects
the subjective perception of the underlying continuous latent variable W defined on the real
line. The dependence between V and W is modelled by a smooth one-to-one function g :
(0, 1) 7→ R that maps v on the VAS scale to w = g(v) on the latent scale. This mapping is
the link between the recorded perception of the latent variable and an underlying metric. As
for the standard ordinal model, the covariates X are modelled on the latent scale. Defining
the regressor h?(X) and assuming W = −h?(X) + ε, the cumulative distribution function for
the score V can then be written as:

γ(v|X) = P(V ≤ v|X) = P(W ≤ g(v)|X) = F(g(v) + h?(X)) = F(h(v,X)) (3)
1For mathematical convenience and without loss of generality, we assume in what follows that v is scaled

to lie in (0, 1).
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From Equation 3 it is clear that the ordinal regression model is a transformational model (Möst
and Hothorn 2015; Hothorn, Möst, and Bühlmann 2018) for the conditional distribution of V ,
which depends on the distribution function of ε, F(·), and the regressor h(v,X) = g(v)+h?(X).
The function g(v) is the continuous analog of the discrete intercepts αj in model (2), and its
shape is informative of the change in perception of the latent variable at different levels (as are
the αj). The systematic component h?(X) may incorporate fixed effects, random effects and
smoothing terms. Random effects are useful not only for modelling clustered or longitudinal
data, as in the examples in Sections 6 and 7, but also for modelling individual variation due
to subjective perception of the latent variable.
Differentiating Equation 3, we can write the density of V as:

fv(v |X) = ∂γ(v |X)
∂v

= Ḟ(h(v,X)) ∂h(v,X)
∂v

= Ḟ(h(v,X)) ġ(v) (4)

where Ḟ(h) = ∂F(h)
∂h , ∂h(v,X)

∂v = ∂(g(v)+h?(X))
∂v = ∂g(v)

∂v and ġ(v) = ∂g(v)
∂v .

The log-likelihood is obtained taking the logarithm of Equation 4. Re-ordering the terms, for
subject i it can be written in the general form:

`0i = log
(
ġ(vi)

)
+ log

(
Ḟ(h(vi, Xi))

)
(5)

A variety of distributions can be used for F(·), and some of the most popular ones (logit, pro-
bit, loglog, cloglog, Cauchit) are implemented in the ordinalCont package. We can comment
that if the cumulative distribution is F(h) = eh

1+eh (logistic model), the regressor h(v,X) can
be interpreted as the log-odds and the systematic component h?(X) as the log-odds ratio to
an observation with h?(X) = 0, regardless of the value of v. When F(h) = 1− e−eh (cloglog
link function) and the score v is the time to event, the model can be used for survival analysis
and the g function is the log-cumulative hazard at baseline. From Equations 3 and 4, we
can derive the general forms of the survival function S(v|X) = 1−F(h(v,X)), the cumulative
hazard function Λ(v|X) = − log(1−F(h(v,X))) and the hazard function λ(v|X) = Ḟ(h)ġ(v)

1−F(h(v,X)) .

3.2. The g function

In order to specify model (5), we need to define the form of the function g(v). It has to be
differentiable, monotonic increasing and “flexible enough” to capture the nonlinear behaviour
of the ordinal measure. In the contest of the ordinal regression, where the recorded scores
are always bounded and can be normalised to the interval [0, 1], any function which maps
(0, 1) to R could be appropriate (see next paragraph for how to transform data from a closed
to an open interval). The choice of such a function does not decrease the generality of the
formulation of the problem and its applicability to other models (e.g., transformational models
which are not ordinal models), as real data are always bounded in an interval and can then be
normalised. The function g(v) has previously been expressed using a parametric approach, as
in Manuguerra and Heller (2010), or non-parametrically, as in Liu et al. (2017). In this study
we have implemented an approach based on monotonic I-splines Ψu (Ramsay 1988). We can
then write g(v) = ∑pθ

u=1 θuΨu(v), where pθ is the number of basis functions. This specific
formulation allows for more flexibility than the parametric approach, not assuming the shape
of the function g(v); makes it easy to satisfy the monotonicity constraint, by imposing θu ≥
0, ∀u; provide the first two derivatives in easy-to-express forms, i.e., ġ(v) = ∑pθ

u=1 θuΨ̇u(v)
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and g̈(v) = ∑pθ
u=1 θuΨ̈u(v), where Ψ̇u(v) and Ψ̈u(v) can be efficiently computed using the

properties of I-splines and M-Splines.

Scale endpoints

A problem in extending the ordinal regression model to continuous scales is that the VAS is a
closed scale, i.e., it contains the extremes 0 and 1. As limv→0 g(v) = −∞ and limv→1 g(v) =
∞, the presence of either 0 or 1 results in the model not being identifiable. Both extremes are
valid recordings, in particular v = 0, reflecting an absence of the latent variable (e.g., pain or
anxiety). In order to deal with this numerically, where necessary we use the scaling proposed
by Smithson and Verkuilen (2006). Assuming raw VAS observations v∗, use v defined as

v = (n− 1)v∗ + 0.5
n

,

where n is the sample size. This scales v∗ ∈ [0, 1] to v ∈ (0, 1).

3.3. Covariates

In the current formulation, the roles of the observed score v and the covariates X in the
regressor h(v,X) are separated in the two terms g(v) and h?(X). Assuming p fixed effects, r
individual effects and s smoothing terms, the latter can be written as:

h?(X) =
t∑

m=1
Xmηm = Uβ +

r∑
j=1

Zjbj +
s∑
l=1

Φl(Yl)ϑl (6)

where U is a n × p design matrix for the fixed effects, Zj is the design matrix for the j-th
individual effect and Φl is the matrix containing the basis functions (B-splines) evaluated at
the values of the covariate Yl. Here η is the set of parameters

{
η>1 , . . . , η

>
t

}> =
{
β>, b>, ϑ>

}>,
with β> =

{
β1, . . . , βp

}
, b> =

{
b>1 , . . . , b

>
r

}
, ϑ> =

{
ϑ>1 , . . . , ϑ

>
s

}
, t = p+ r + s and Xm is the

mth element in
{
U1, . . . , Up, Z1, . . . Zr,Φ1, . . .Φs

}
.

3.4. Penalized likelihood estimation

B-splines, I-splines and individual effects in the model can lead to overfitting. We avoid it
using penalty functions, i.e., including additional constraints on ϑ and θ, the parameters that
define the smoothing terms and the g function. Our experience (see also Ruppert, Wand, and
Carroll 2003, page 66) reveals that a penalty function can stabilize the estimation process
and makes the selection of number and location of knots less important.
The penalized log-likelihood can then be written as:

`p =
n∑
i=1

`0i − λgJg(θ)−
r∑
j=1

λbjJ(bj)−
s∑
l=1

λϑlJ(ϑl)

=
n∑
i=1

`0i − λgJg(θ)−
t∑

m=1
λmJm(ηm)

(7)

where the J ’s are penalty functions, such as roughness penalties, and the first p terms in the
last sum account for penalty terms relative to the fixed effects, and are zero. The roughness
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penalties can be written in general as J(θ) = θ>Rθ where theR terms are square matrices with
elements given by Rjk =

∫
Ψ̈j(y)Ψ̈k(y) dy. For the individual effect terms, R is an identity

matrix and the penalty term is J(b) = b>b, which implies normally distributed random effects
b with variance σ2

b = 1
2λb .

The model parameters we want to estimate are η =
{
η>1 , . . . , η

>
t

}> and θ =
{
θ1, . . . , θm

}>.
Their constrained MPL estimates are then defined by

(η̂, θ̂) = arg max
η,θ

{
`p =

n∑
i=1

`0i − λgJg(θ)−
t∑

m=1
λmJm(ηm)

}
. (8)

3.5. Estimation of model parameters

The estimation procedure iterates through two steps repeated until convergence. First, given
the current values of the λ’s, the parameters that define the g function and the predictor, θ
and η, are estimated, then given the current value of θ and η the λ’s are calculated according
to the method detailed in Section 3.6. The first estimation of the parameters θ and η is
done using maximum likelihood, i.e., with the starting value λ0 = 0. When the number
of observations is large compared to the number of parameters, this choice does not create
convergence problems, but the user should be careful in the opposite case. We comment that
this is a constrained optimization as θ ≥ 0, and that g(v) and h(v,X) are estimated jointly,
as they are updated at every step.
The Karush-Kuhn-Tucker (KKT) necessary conditions for the constrained MPL estimation
of θ and η are:

∂`p
∂ηm

= 0 for any m (9)

∂`p
∂θu

=
{

0 if θu > 0
< 0 if θu = 0 .

(10)

Equations 9 and 10 can be solved iteratively, with the unconstrained parameters η estimated
using a Newton method and the positively constrained parameters θ estimated using the
multiplicative iterative (MI) algorithm (Ma 2010).
Given the estimated values of η and θ at iteration k, the values of each ηm ∈ η at iteration
k + 1 are obtained with the Newton algorithm:

η(k+1)
m = η(k)

m + ω(k)
( ∂2`p
∂ηm∂η>m

(η(k), θ(k))
)−1( ∂`p

∂ηm
(η(k), θ(k))

)
where ω(k) ∈ (0, 1] is a line search step size that guarantees that `p(η(k+1), θ(k)) ≥ `p(η(k), θ(k)).
The first and the second derivative of the penalized log-likelihood (7) with respect to η are:

∇η`p = ∇ηh>
(
F̈ (h)
Ḟ (h)

)
− 2λRη

and
∇2
η`p = ∇ηh> L ∇ηh −2λR
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where ∇ηh> is the transpose of the n × t matrix with elements ∂hi(v,η)
∂ηm

, with ηm the m-th
element of the vector η, L is the n× n diagonal matrix with diag(L) =

...
F (h) Ḟ(h)−F̈(h)2

Ḟ(h)2 , R is a
block diagonal matrix with Rm matrices on the diagonal and λ = λ1, . . . , λt.
Given the estimated values of η at iteration k + 1 and θ at iteration k, the values of θ at
iteration k+ 1 are obtained with the MI algorithm (Ma, 2010). The MI algorithm can handle
a large number of non-negatively constrained parameters as it is very efficient to implement,
involving only the first derivative of the penalized likelihood function. When θ > 0, by the
second KKT condition (10):

∇θ`p = Ψ>
(

F̈(h)
Ḟ(h)

)
+ Ψ′>E − 2λθRθθ = 0

where E is a diagonal matrix with diag(E) = 1
g′(v) and 0 otherwise.

Following Ma (2010), it is straightforward to derive the updating algorithm:

θ(k+1) = θ(k) + ω
(k)
θ s(k)∇θ`p(η(k+1), θ(k)),

where a line search of size ω(k) ∈ (0, 1] is introduced to guarantee that `p(η(k+1), θ(k+1)) ≥
`p(η(k+1), θ(k)), s(k) = − θ(k)[

∇θ`p(η(k+1),θ(k))
]−

+τ
, [x]− = x if x ≤ 0, and 0 otherwise, and τ is a

small constant introduced to avoid computational instability.

3.6. Automatic smoothing parameter estimation
Fixing the values of η to the most current estimate, the optimal smoothing parameters are the
roots of the partial derivatives with respect to each λm of the marginal posterior computed
integrating out θ and η from (7). The log-posterior can be written as:

Φ =
n∑
i=1

`0i −
(pθ

2 log(σ2
θ) + 1

2σ2
θ

θ>Rθ
)
−

t∑
m=1

(pm
2 log(σ2

m) + λmη
>
mXmηm

)
where pm is the number of parameters estimated for the m-th smoother or random effect.
From here the marginal log-posterior is obtained by integrating out θ and η:

Φmarg = log
∫ ∫

exp
(
Φ(θ, η;σ2

θ , σ
2
η)
)
dθ dη

Exact solution to this integral is infeasible, but it can be approximated following Laplace
(1774):

Φmarg = −pθ2 log(σ2
θ)−

t∑
m=1

pm
2 log(σ2

m) + `p(θ̂, η̂;σ2
θ , σ

2
η)−

1
2 log

∣∣∣−Q(θ̂, η̂;σ2
θ , σ

2
η)
∣∣∣

where Q(θ, η;σ2
θ , σ

2
η) = ∇2

θη`p(θ, η;σ2
θ , σ

2
η). Solving

∂Φmarg
∂σ2

θ

= 0

∂Φmarg
∂σ2

ηm

= 0
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for σ2
θ and σ2

ηm we obtain the desired smoothing parameters estimates:

σ2
θ = 1

2λθ
= θ>Rθθ

pθ − tr
(
Q−1Qθ

)
σ2
m = 1

2λm
= η>mRmηm

pm − tr
(
Q−1Qm

)
where Qθ = λθ∇2

θη(θRθ), Qm = λm∇2
θη(ηmAmηm) and ∇2

θη = ∂2

∂θ∂η .

3.7. Quantile residuals

The estimated CDF of V , commonly called probability integral transform, is

F̂(v |X) = F
(
ĥ(v,X)

)
= F

(
ĝ(v) + ĥ?(X)

)
where ĝ(v) and ĥ?(X) are calculated at the estimated values of θ and η. Quantile residuals
(Dunn and Smyth 1996) are computed at observed vi as

qi = Φ−1
(
F̂(vi |Xi)

)
, i = 1, . . . , n ,

where Φ−1(·) is the inverse standard normal CDF. If model assumptions are satisfied and there
is sufficient diversity in the observations (vi, Xi), then the residuals qi should be normally
distributed. On the other hand, if observations are highly discretized, for example at value
v = 0 with limited covariate values, the qi could deviate from normality. In this case, we
recommend the use of randomized quantile residuals (Dunn and Smyth 1996).

4. Package overview
The ordinalCont R package implements the continuous ordinal regression models, using max-
imum penalized likelihood estimation. The main function is ocm for both fixed- and mixed-
effect models. Model equations are specified with syntax as in, for example, function lm and
the package lme4 (Bates, Mächler, Bolker, and Walker 2015). The output of the ocm function
is an object of class ‘ocm’, and several methods are provided for it, including plot, print,
summary, extractAIC, logLik, predict and anova. The plot method displays the following
graphical summaries:

• a plot of the estimated g function with 95% confidence intervals;

• the histogram and normal Q-Q plot of the quantile residuals;

• plots of the smooth terms (B-splines) for covariates x, specified as s(x) in the formula
(if included in the model).

The predict method provides, for given covariate values X∗ and parameter estimates η̂ and
θ̂, the predicted values for v, the conditional density function of v, the conditional distribution
function, the conditional quantile function, the linear regressor, the exponential of the linear
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regressor, the conditional hazard functions, the conditional cumulative hazard function and
the conditional survival function.

5. Simulation

To test the accuracy and precision of the model parameter estimates, we have generated
random data according to the model:

h(ηi, vi) = g(vi) + β1a1 + β2a2 + f(a3) + bi,

where i is an index identifying the subjects in the sample, β1 = 1.7, β2 = −0.4, f(a3) =
2 − 2a3 + 0.1a2

3 + sin(a3), bi ∼ N(0, σb = 4) are random effects and the g function is the
generalized logistic function (Richards 1959):

g(v) = M + 1
B

log
(

Tv>

1− v>

)
, 0 < v < 1

with parameters chosen to make it fairly asymmetric (M = 0.2, B = 0.3, T = 2). The
covariates have been sampled from arbitrary normal and uniform distributions, specifically
a1 ∼ N (µ = 10, σ2 = 9), a2 ∼ U(3, 5), a3 ∼ U(0, 20).

5.1. Results

In the simulations we have used four sample sizes, n = 100, 200, 500, 1000, and for each sample
size we have generated and analysed 1000 samples. In Table 1 we report the means and the
standard deviations of the 1000 estimates, while in Figures 3 and 4 the estimates of the
smoother and the g function are shown together with the true values of the functions for a
typical simulation.
As expected with penalized likelihood regressions, increasing the sample size has the effect of
decreasing the bias and the variance of the parameter estimates. It is worth noting that both
the variance of the random effects and the nonlinear effect of a3 are well estimated for all the
sample sizes, n = 100 included. In the latter case, despite the limited number of observations,
the estimates are still good indicators of the strength and direction of the effects.

β1 (1.7) β2 (−0.4) σb (5) penalized logLik edf
n mean sd mean sd mean sd mean sd mean sd
100 1.489 0.200 −0.361 0.346 4.264 1.181 199.08 27.22 29.52 2.18
200 1.582 0.161 −0.378 0.235 4.539 1.181 406.01 52.83 33.99 1.86
500 1.652 0.104 −0.395 0.136 4.722 1.204 1036.37 105.69 38.37 1.27
1000 1.673 0.063 −0.390 0.104 4.784 1.135 2072.27 189.17 40.59 0.72

Table 1: Simulation results: means and standard deviations of the estimates, penalized log-
likelihood values, and equivalent degrees of freedom (edf).



Journal of Statistical Software 11

v

s(
v)

n = 100

−
4

0
2

4
6

8

v

s(
v)

n = 200

v

s(
v)

n = 500

0 5 10 15 20

−
4

−
2

0
2

4
6

8

v

s(
v)

n = 1000

0 5 10 15 20

a3

s(
a3

)

Estimated function True values
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6. Application 1: Chronic neck pain study
In this example, we illustrate the use of the continuous ordinal model when treatment effects,
interaction effects and random effects are included in the model.
This study (Chow, Heller, and Barnsley 2006) is a randomized controlled trial on the efficacy
of low-level laser therapy (LLLT) in the treatment of chronic neck pain. Patients with chronic
neck pain were randomized to receive 14 LLLT treatments over 7 weeks, with either active
or placebo laser (laser = 1, laser = 2 respectively). The primary outcome measure of
the study was the VAS, marked by the patients at baseline, at the end of the course of
treatment and one month after completion of the treatment. We analyzed data from n = 84
subjects measured at the three time points. The VAS scores are in [0, 1], and the ocm function
automatically scales them to (0, 1) for the purpose of analysis.
The data layout is (first three cases):

R> neck_pain[1:9, ]

id vas laser time
1 1 0.91 1 1
2 1 0.31 1 2
3 1 0.51 1 3
4 2 0.12 2 1
5 2 0.30 2 2
6 2 0.30 2 3
7 3 0.18 2 1
8 3 0.18 2 2
9 3 0.18 2 3

To illustrate the ocm function, we model just a treatment effect at the end of the treatment
period (time = 2). The continuous ordinal model is:

log
(

γ(vi)
1− γ(vi)

)
= g(vi) + x1iβ1 i = 1, . . . , n , (11)

where x1 is an indicator variable for treatment.

R> lasermodel0 <- ocm(vas ~ laser, data = subset(neck_pain, time == 2))
R> summary(lasermodel0)

Call:
ocm(formula = vas ~ laser, data = subset(neck_pain, time == 2))

Coefficients:
Estimate StdErr t.value p.value

laser1 1.41659 0.40572 3.4915 0.004489 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Figure 5: Estimated g function, histogram of quantile residuals and quantile residual normal
Q-Q plot for fitted model lasermodel0.

We obtain a significant treatment effect (p = 0.004), with β̂1 = 1.417. Since eβ1 is the effect
of the active laser treatment on the odds of scoring V ≤ v, positive β1 signifies lower VAS
scores due to laser, i.e., pain relief.
To check the model fit, we look at the histogram of the quantile residuals and the quantile
residual normal Q-Q plot:

R> plot(lasermodel0)

The plots (Figure 5) suggest an adequate model fit, even if with a slightly skewed distribution
of the quantile residuals, confirmed by the Q-Q plot.
To model the VAS scores at the three time points, we use a random effect for patient. The
continuous ordinal model is

log
(

γ(vit)
1− γ(vit)

)
= g(vit) + x1iβ1 + x2tβ2 + x3tβ3 + x1ix2tβ12 + x1ix3tβ13 + bi

i = 1, . . . , n; t = 1, 2, 3 ,

where x2 and x3 are indicator variables for times t = 2 and t = 3 respectively, and within-
patient correlation is modelled using the random effect bi ∼ N (0, σ2) for patient i. The
function ocm is used, with the term (1|id) specifying the random intercept for patient (id):
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R> lasermodel1 <- ocm(vas ~ laser * time + (1 | id), data = neck_pain)
R> summary(lasermodel1)

Call:
ocm(formula = vas ~ laser * time + (1 | id), data = neck_pain)

Random effects:
Name Variance Std.Dev.

Intercept|id 6.07 2.464

Coefficients:
Estimate StdErr t.value p.value

laser1 -2.13735 0.63884 -3.3457 0.001171 **
time2 -0.59288 0.35276 -1.6807 0.096065 .
time3 -0.18980 0.34430 -0.5513 0.582729
laser1:time2 4.45469 0.55559 8.0180 2.539e-12 ***
laser1:time3 3.37869 0.51837 6.5179 3.258e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Significant treatment benefits are demonstrated at times 2 and 3, as evidenced by the signif-
icance of the interaction terms laser1:time2 (β̂12) and laser1:time3 (β̂13), with an atten-
uation of the positive effect at time 3. Note that there was an imbalance between treatment
groups at baseline, with the active treatment group having worse pain (β̂1 = −2.14, p = 0.001).
The random effects (bi) are sampled from a normal distribution with significant variance
σ̂2 ≈ 6.1, signifying a persistent subject effect. It is particularly important to incorporate
this effect because of the individual and subjective nature of the measurements.
We use the predict method to compare the observed and predicted values of the VAS score.

R> plot(lasermodel1$v, predict(lasermodel1), xlab = "observed score",
+ ylab = "predicted score", xlim = c(0, 1), ylim = c(0, 1))
R> lines(c(0, 1), c(0, 1))

The results are shown in Figure 6. The reader could notice that attenuation is present in the
plot, as predicted scores are higher than observed scores for low values of v, and vice-versa.
We can comment that, based on our experience with simulated and real data sets, this feature
is not commonly observed, even when a high proportion of the observed score v takes values
0 or 1.
In order to appreciate the estimated effect of the treatment on the score v, and under the
assumption of individual effect b = 0, we can calculate the conditional density distributions
f(v|treatment = "laser", b=0) and f(v|treatment="placebo", b=0), and the conditional cu-
mulative distributions F(v|treatment="laser", b=0) and F(v|treatment="placebo", b=0).

R> n <- nrow(neck_pain)
R> vas <- seq(0.01, 0.99, len = n)
R> laser <- placebo <- neck_pain$laser
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Figure 6: Observed and predicted scores for fitted model lasermodel1.

R> laser[laser != 1] <- 1
R> placebo[placebo != 2] <- 2
R> time <- neck_pain$time
R> time[time != 3] <- 3
R> plot(vas, predict(lasermodel1,
+ newdata = data.frame(vas = vas, laser = laser, time = time),
+ type = "density"),
+ t = "l", col = "red", xlab = "v", ylab = "f(v)", ylim = c(0,4))
R> lines(vas, predict(lasermodel1,
+ newdata = data.frame(vas = vas, laser = placebo, time = time),
+ type = "density"))
R> legend("topright", c("Active laser", "Placebo"),
+ col = c("red", "black"), lty = c(1,1))

The results, shown in Figure 7, illustrate how subjects treated with active laser (laser = 1)
experience lower values of VAS at time = 3 than those treated with placebo (laser = 2).

7. Application 2: Breast cancer study
In this example, we demonstrate the use of a smooth term for one of the covariates and of
the predict.ocm method.
Metastatic breast cancer is the most common cause of cancer death among Australian women.
The ANZ0001 trial is a randomized trial with three chemotherapy treatment arms (n =
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Figure 7: Estimated density distributions of the score v conditional on treatment and random
effects for fitted model lasermodel1, at time = 3.

292 patients with complete quality of life measurements) concluded in 2005 (Stockler et al.
2011). Health-related quality of life is assessed at each chemotherapy treatment cycle. The
treatments Intermittent Capecitabine (IC) and Continuous Capecitabine (CC) are compared
with the standard combination treatment CMF, each with its own protocol. There is no
maximum duration of treatment, but it is interrupted on disease progression, or when patient
intolerance or unacceptable toxicity are recorded.

In this analysis we aim to verify which treatment has a better impact on quality of life, and
in particular how this impact changes over chemotherapy cycle. Various aspects of quality
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Cycle Treatment
IC CC CMF

0 85 85 90
5 61 56 51
10 34 38 10
15 19 21 3
20 13 11 2
25 7 6 0
45 1 3 0
60 0 1 0

Table 2: Number of patients at different cycle numbers.

of life are assessed using the VAS2. The number of remaining patients in selected cycles, by
treatment arm, are shown in Table 2. Note that no patients on standard CMF treatment
progressed beyond cycle 20, and for the other two treatments the data are sparse beyond this
point. We should comment that the software does not natively accommodate censoring at
the moment. This includes informative censoring, e.g., cases in which subjects quit the study
for causes correlated with the covariates (death, relapses, etc.). In these cases, the results
could be biased.
We used the overall quality of life VAS scale as dependent variable. Among the several covari-
ates available, only treatment and chemotherapy cycle number were found to be significant.
We fitted eight models for the overall quality of life vij for patient i at chemotherapy cycle j:
Model 1: ∼ g(vij) + ti + j
Model 2: ∼ g(vij) + ti + j + bi
Model 3: ∼ g(vij) + ti ∗ j
Model 4: ∼ g(vij) + ti ∗ j + bi
Model 5: ∼ g(vij) + ti + s(j)
Model 6: ∼ g(vij) + ti + s(j) + bi
Model 7: ∼ g(vij) + ti ∗ s(j)
Model 8: ∼ g(vij) + ti ∗ s(j) + bi

where ti is the treatment arm of patient i, s(j) is a smooth term that depends on the cycle
number j, ti ∗s(j) = ti+s(j)+s(j|ti), s(j|ti) is a smooth term that depends on cycle number
j conditional on the treatment arm, bi are random effects sampled from N (0, σ2) and the
error on the latent scale follows the logistic distribution.

R> model1 <- ocm(overall ~ treatment + cycleno,
+ data = ANZ0001, scale = c(0, 100))
R> model2 <- ocm(overall ~ treatment + cycleno + (1 | randno),
+ data = ANZ0001, scale = c(0, 100))
R> model3 <- ocm(overall ~ treatment * cycleno,
+ data = ANZ0001, scale = c(0, 100))
R> model4 <- ocm(overall ~ treatment * cycleno + (1 | randno),
+ data = ANZ0001, scale = c(0, 100))

2The term used in the quality of life literature for VAS is Linear Analog Self-Assessment (LASA).
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R> model5 <- ocm(overall ~ treatment + s(cycleno),
+ data = ANZ0001, scale = c(0, 100))
R> model6 <- ocm(overall ~ treatment + s(cycleno) + (1 | randno),
+ data = ANZ0001, scale = c(0, 100))
R> model7 <- ocm(overall ~ treatment * s(cycleno),
+ data = ANZ0001, scale = c(0, 100))
R> model8 <- ocm(overall ~ treatment * s(cycleno) + (1 | randno),
+ data = ANZ0001, scale = c(0, 100))

We choose the best model comparing the AICs of the models:

R> anova(model1, model2, model3, model4, model5, model6, model7, model8)

[Penalized] likelihood ratio tests of ordinal regression models for
continuous scales:

formula link
model1 overall ~ treatment + cycleno logit
model3 overall ~ treatment * cycleno logit
model5 overall ~ treatment + s(cycleno) logit
model7 overall ~ treatment * s(cycleno) logit
model2 overall ~ treatment + cycleno + (1 | randno) logit
model6 overall ~ treatment + s(cycleno) + (1 | randno) logit
model4 overall ~ treatment * cycleno + (1 | randno) logit
model8 overall ~ treatment * s(cycleno) + (1 | randno) logit

edf AIC penlogLik LR.stat df Pr(>Chisq)
model1 21.473 -1673.1 849.33
model3 23.481 -1717.3 873.45 48.2406 2.00770 3.397e-11 ***
model5 23.698 -1686.0 856.33 -34.2485 0.21754 1.0000000
model7 27.959 -1719.8 875.38 38.1133 4.26036 1.477e-07 ***
model2 280.048 -3780.9 2031.60 2312.4260 252.08907 < 2.2e-16 ***
model6 282.125 -3783.6 2034.28 5.3778 2.07768 0.0729392 .
model4 282.246 -3788.5 2037.48 6.3931 0.12032 0.0006865 ***
model8 284.282 -3788.5 2037.91 0.8518 2.03688 0.6619574

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model 4 and Model 8 appear to be the best models. As Model 4 is simpler, we prefer it over
Model 8. The model parameter estimates are:

R> summary(model4)

Call:
ocm(formula = overall ~ treatment * cycleno + (1 | randno), data = ANZ0001,

scale = c(0, 100))
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Figure 8: Summary and diagnostic plots for the model4, including the estimated g function,
the histogram of the quantile residuals and the normal Q-Q plot.

Random effects:
Name Variance Std.Dev.

Intercept|randno 5.732 2.394

Coefficients:
Estimate StdErr t.value p.value

treatment2 0.2864264 0.3702171 0.7737 0.43977
treatment3 0.4345589 0.3709857 1.1714 0.24244
cycleno 0.0422235 0.0079961 5.2805 2.576e-07 ***
treatment2:cycleno -0.0121871 0.0110996 -1.0980 0.27315
treatment3:cycleno -0.0785763 0.0269390 -2.9168 0.00382 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can check how well the model fits the data:

R> plot(model4)

The histogram of the quantile residuals and the Q-Q plot (Figure 8) show that model4 captures
the main sources of variability in the data.
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In the following, we show how to use smoothers stratified by a categorical variable, and to
do so we study the effect of body-surface area (BSA), treatment and cycle number on the
patients’ appetite, which, similarly to the overall quality of life, has been measured on a VAS.
Drug dosage in cancer chemotherapy is often based on BSA (Pinkel 1958). BSA can be
computed according to a variety of formulae and several studies have analysed the distribution
of the different BSA versions in cancer patients. According to Verbraecken, Van de Heyning,
De Backer, and Van Gaal (2006) a reasonable value to distinguish female normal weight
patients from female overweight patients is 1.68 m2. In the following, we study the effect of
cycle number over appetite for subjects with a BSA lower or higher than 1.68 m2, according
to the model:
Model 9: ∼ g(vij) + ti +BSAi + (s(j)|BSAi) + bi

The R code below creates the categorical variable BSA_over1.68 and fits the model.

R> ANZ0001$bsa_over1.68 = as.factor(ANZ0001$bsa > 1.68)
R> model9 <- ocm(appetite ~ treatment + bsa_over1.68 +
+ bsa_over1.68:s(cycleno) + (1 | randno), data = ANZ0001,
+ scale = c(0, 100))
R> summary(model9)
R> plot(model9)

Call:
ocm(formula = appetite ~ treatment + bsa_over1.68 + bsa_over1.68:s(cycleno) +

(1 | randno), data = ANZ0001, scale = c(0, 100))

Random effects:
Name Variance Std.Dev.

Intercept|randno 4.711 2.171

Smoother (penalized likelihood smoothing parameter = 1/(2*Std.Dev.)):
Name Variance Std.Dev.

bsa_over1.68FALSE:s(cycleno) 0.002 0.040
bsa_over1.68TRUE:s(cycleno) 0.000 0.006

Coefficients:
Estimate StdErr t.value p.value

treatment2 0.77094 0.33494 2.3017 0.02209 *
treatment3 0.53409 0.33195 1.6090 0.10876
bsa_over1.68TRUE 0.26458 0.30019 0.8814 0.37887
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can comment that the variable BSA_over1.68 has not a significant main effect, while the
second treatment (CC) is associated with significantly lower values of appetite. Here we can
recall Equation 1 and highlight that a positive value of a parameter implies lower values of
the outcome (and vice-versa). It is somehow challenging to interpret the estimated values
of the parameters, as their direct effect is on the latent and unobserved variable W . In the
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Figure 9: Effect of cycle number on appetite stratified by BSA level, with 95% confidence
intervals, as estimated in model9. Higher values correspond to lower scores on the continuous
ordinal scale.

present case, as we are using the logistic distribution for F(·), we refer the reader to Section 3.1
and recall that the systematic component h?(X) can be interpreted as the log-odds ratio to
an observation with h?(X) = 0, regardless of the value of v. This implies that, keeping the
other covariates constant, the odds ratio for subjects who have been treated with the second
treatment (CC) to those treated with the first treatment (IC) is exp(0.77094) = 2.1618. The
appetite loss associated with the second treatment, relative to the first, is then quantified
with a more than two-fold increase in the odds of having less rather than more appetite,
independently of the level of appetite. The plot (Figure 9) suggests that patients with low
BSA lose their appetite, especially at the beginning of the treatment, with the effect peaking
at around the 10th chemotherapy cycle. There is not a significant effect of chemotherapy on
the appetite of patients with BSA over 1.68 m2.

8. Discussion
The package ordinalCont implements a regression framework for a response variable that
is a recorded perception on a visual analog scale, of an underlying latent variable which is
difficult or impossible to observe or measure. The model is an extension of the cumulative
logistic ordinal regression model for discrete ordinal responses and is general in the sense of
incorporating parametric and smoothing terms, as well as random effects, similarly to what is
done in a generalized additive mixed model (GAMM). The recorded perception is mapped to
the latent variable using a smooth function, and to avoid overfitting, the model parameters are
estimated using constrained optimization of the penalized likelihood. The penalty parameters
are automatically selected via maximization of their marginal likelihood.
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A commonly used approach for VAS responses is to treat them as ratio variables; while
this may in some cases deliver a similar analysis to our approach, this does not recognize
the inherent non-ratio and nonlinear nature of the VAS measure. Another approach is to
categorize the VAS responses, and analyze them as discrete ordinal responses. While this
approach is not incorrect it involves loss of information; our model obviates the need for this
aggregation of information.

Computational details
The results in the simulation were obtained on OS X using the reference BLAS libraries
shipped with R. The results differ slightly when using a different BLAS, e.g., the vecLib-
based BLAS.
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