
JSS Journal of Statistical Software
June 2017, Volume 78, Code Snippet 1. doi: 10.18637/jss.v078.c01

Multivariate-From-Univariate MCMC Sampler:
The R Package MfUSampler

Alireza S. Mahani
Sentrana Inc.

Mansour T. A. Sharabiani
Imperial College London

Abstract

The R package MfUSampler provides Markov chain Monte Carlo machinery for gen-
erating samples from multivariate probability distributions using univariate sampling al-
gorithms such as the slice sampler and the adaptive rejection sampler. The multivariate
wrapper performs a full cycle of univariate sampling steps, one coordinate at a time. In
each step, the latest sample values obtained for other coordinates are used to form the
conditional distributions. The concept is an extension of Gibbs sampling where each step
involves, not an independent sample from the conditional distribution, but a Markov tran-
sition for which the conditional distribution is invariant. The software relies on propor-
tionality of conditional distributions to the joint distribution to implement a thin wrapper
for producing conditionals. Examples illustrate basic usage as well as methods for im-
proving performance. By encapsulating the multivariate-from-univariate logic, package
MfUSampler provides a reliable package for rapid prototyping of custom Bayesian mod-
els while allowing for incremental performance optimizations such as taking advantage of
conditional independence, and high-performance implementation of function evaluations.
Utility functions for MCMC diagnostics as well as sample-based construction of predictive
posterior distributions are provided in MfUSampler.

Keywords: Markov chain Monte Carlo, slice sampler, adaptive rejection sampler, Gibbs sam-
pling, Metropolis.

1. Introduction
Bayesian inference software such as Stan (Carpenter et al. 2017; Stan Development Team
2017), OpenBUGS (Thomas, O’Hara, Ligges, and Sturtz 2006), and JAGS (Plummer 2003)
provide high-level, domain-specific languages (DSLs) to specify and sample from probabilistic
directed acyclic graphs (DAGs). In some Bayesian projects, the convenience of using such
DSLs comes at the price of reduced flexibility in model specification, and suboptimality of
the underlying sampling algorithms used by the compilers for the particular distribution that

http://dx.doi.org/10.18637/jss.v078.c01

2 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

must be sampled. Furthermore, for large projects the end-goal might be to implement all or
part of the sampling algorithm in a high-performance – perhaps parallel – language. In such
cases, researchers may choose to start their development work by ‘rolling their own’ joint
probability distributions from the DAG specification, followed by application of their choice
of a sampling algorithm to the joint distribution.
Many Markov chain Monte Carlo (MCMC) algorithms have been proposed over the years
for sampling from complex posterior distributions. Perhaps the most widely-known algo-
rithm is Metropolis (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953) and its
generalization, Metropolis-Hastings (MH; Hastings 1970). These multivariate algorithms are
easy to implement, but they can be slow to converge without a carefully-selected proposal
distribution. A particular flavor of MH is the stochastic Newton sampler (Qi and Minka
2002), where the proposal distribution is a multivariate Gaussian based on the second-order
Taylor series expansion of the log-probability. This method has been implemented in the
R package sns (Mahani, Hasan, Jiang, and Sharabiani 2016). It can be quite effective for
twice-differentiable, log-concave distributions such as those encountered in generalized linear
regression (GLM) problems. Another flavor of MH is the t-walk algorithm (Christen and
Fox 2010) which uses a set of scale-invariant proposal distributions to co-evolve two points
in the state space. Hamiltonian Monte Carlo (HMC) algorithms (Girolami and Calderhead
2011; Neal 2011) have also gained popularity due to emerging techniques for their automated
tuning (Hoffman and Gelman 2014).
Univariate samplers tend to have few tuning parameters and thus are well suited for black-box
MCMC software. Two important examples are adaptive rejection sampling (Gilks and Wild
1992) (or ARS) and slice sampling (Neal 2003). ARS requires the log-density to be concave,
and needs its first derivative, while the slice sampler is generic and derivative-free. To apply
these univariate samplers to multivariate distributions, they must be applied one-coordinate-
at-a-time according to the Gibbs sampling algorithm (Geman and Geman 1984), where at the
end of each univariate step the sampled value is used to update the conditional distribution for
the next coordinate. MfUSampler encapsulates this logic into a package function, providing
a fast and reliable path towards Bayesian model estimation for researchers working on novel
DAG specifications. In addition to slice sampler and ARS, the current version of MfUSampler
(1.0.4) contains the adaptive rejection Metropolis sampler (Gilks, Best, and Tan 1995) and the
univariate Metropolis sampler with Gaussian proposal. Univariate samplers have their limits:
When the posterior distribution exhibits a strong correlation structure, one-coordinate-at-
a-time algorithms can become inefficient as they fail to capture important geometry of the
space (Girolami and Calderhead 2011). This has been a key motivation for research on black-
box multivariate samplers, such as adaptations of the slice sampler (Thompson 2011) or the
no-U-turn sampler (Hoffman and Gelman 2014).
The rest of this article is organized as follows. In Section 2 we provide an overview of the
theory, the software components and the process flow underlying MfUSampler. In Section 3
we illustrate how to use the software with an example based on a real data set. Section 4
presents and illustrates several performance optimization techniques that can be used within
the MfUSampler framework. Section 5 provides a summary and concluding remarks. Com-
putational details are included about the session information used to run the R scripts in
this paper and Appendix A contains the proof of Lemma 1. Package MfUSampler (Mahani
and Sharabiani 2017) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=MfUSampler.

https://CRAN.R-project.org/package=MfUSampler

Journal of Statistical Software – Code Snippets 3

2. Theory and implementation of package MfUSampler
In this section, we discuss the theoretical underpinnings of the MfUSampler package, in-
cluding extended Gibbs sampling (Section 2.1), and proportionality of conditional and joint
distributions (Section 2.2). Software components of MfUSampler, described in Section 2.3,
are best understood given this theoretical background.

2.1. Extended Gibbs sampling
Gibbs sampling (Bishop 2006) involves iterating through state space coordinates, one at a
time, and drawing samples from the distribution of each coordinate, conditioned on the latest
sampled values for all remaining coordinates. Gibbs sampling reduces a multivariate sampling
problem into a series of univariate problems, which can be more tractable.
In what we refer to as ‘extended Gibbs sampling’, rather than requiring an independent
sample from each coordinate’s conditional distribution, we expect a Markov transition for
which the conditional distribution is an invariant distribution. Among the current univariate
samplers implemented in MfUSampler, the adaptive rejection sampler produces a standard
Gibbs sampler while the remaining samplers fall in the ‘extended Gibbs sampler’ category.
The following lemma forms the basis for proving the validity of extended Gibbs sampling
as an MCMC sampler. (For a discussion of ergodicity of MCMC samplers, see Roberts and
Rosenthal 1999; Jarner and Hansen 2000.)

Lemma 1. If a coordinate-wise Markov transition leaves the conditional distribution invari-
ant, it will also leave the joint distribution invariant.

The proof is given in Appendix A. A full Gibbs cycle is simply a succession of coordinate-wise
Markov transitions, and since each one leaves the target distribution invariant according to
the above lemma, the same is true of the resulting composite Markov transition kernel.

2.2. Proportionality of conditional and joint distributions
Using univariate samplers within the Gibbs sampling framework requires access to conditional
distributions, up to a multiplicative constant (in terms of each coordinate being sampled).
Referring to the conditional distribution for the kth coordinate as p(xk|x\k), we examine the
following application of Bayes’ rule

p(xk|x\k) =
p(xk, x\k)

p(x\k) ∝ p(xk, x\k), (1)

to observe that, since the normalizing factor – p(x\k) – is independent of xk, the joint and
conditional distributions are proportional. Therefore, the joint distribution can be supplied
to univariate sampling routines in lieu of conditional distributions during each step of Gibbs
sampling. MfUSampler takes advantage of this property, as described next.

2.3. Implementation
The MfUSampler software consists of 5 components: (1) connectors, (2) univariate samplers,
(3) Gibbs wrappers, (4) diagnostic utilities, and (5) full Bayesian prediction. Figure 1 provides
an overview of how these components fit in the overall process flow of MfUSampler. Below
we describe each component in some detail.

4 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

Log-PDF

Univariate samplers
MfU.Slice

ars (ars package)

arms (HI package)

MfU.UniMet

Connectors
MfU.fEval

MfU.fgEval.f

MfU.fgEval.g

Gibbs wrappers
MfU.Sample

MfU.Sample.Run

Diagnostics
summary.MfU

plot.MfU

Prediction
predict.MfU

summary.predict.MfU

MfUSampler

Coefficient

samples
“MfU” class

Sample

diagnostics

Predictive

posterior

samples

PublicPrivate

Prediction

function

Input

Software module

Output

Figure 1: Software components and process flow for MfUSampler. Connector and sampler
private modules mediate Gibbs sampling of user-supplied PDF.

Connectors: The internal functions MfU.fEval, MfU.fgEval.f and MfU.fgEval.g return
the conditional log-density and its gradients for each coordinate, using the underlying
joint log-density and its gradient vector (Section 2.2). These functions act as the bridge
between the user-supplied, multivariate log-densities and the univariate samplers. The
vectorized functions MfU.fgEval.f and MfU.fgEval.g are used by the ars function
(see below). Other samplers, which are derivative-free, use MfU.fEval.

Univariate samplers: These functions are responsible for producing a single MCMC jump
for univariate distributions resulting from applying the connector functions to the user-
supplied, multivariate distribution. As of version 1.0.0, MfUSampler supports the fol-
lowing 4 samplers:

1. Univariate slice sampler with stepout and shrinkage (Neal 2003). The code, wrapped
in the internal function MfU.Slice, is taken – with small modifications – from Rad-
ford Neal’s website (http://www.cs.toronto.edu/~radford/ftp/slice-R-prog).
The slice sampler is derivative-free and robust, i.e., its performance is rather in-
sensitive to its tuning parameters. It is the default option in MfU.Sample and
MfU.Sample.Run.

2. Adaptive rejection sampler (ARS; Gilks and Wild 1992), imported from the R
package ars (Pérez-Rodríguez, Wild, and Gilks 2014). ARS requires the log-density
to be concave, and requires access to its gradient. Our experience shows that it is
somewhat more sensitive to the choice of tuning parameters, compared to the slice
sampler (Section 3.3).

3. Adaptive rejection Metropolis sampler (Gilks et al. 1995), imported from the R

http://www.cs.toronto.edu/~radford/ftp/slice-R-prog

Journal of Statistical Software – Code Snippets 5

package HI (Petris, Tardella, and Gilks 2013). This algorithm is an adaptation
of ARS with an additional Metropolis acceptance test, aimed at accommodating
distributions that are not log-concave. The algorithm can also be applied directly
to a multivariate distribution. However, see Gilks, Neal, Best, and Tan (1997) for
a discussion of how the initial values for this algorithm may – and may not – be
chosen to ensure validity of the resulting MCMC chain.

4. Univariate Metropolis with Gaussian proposal, implemented by the internal func-
tion MfU.UniMet. This simple sampler can be inefficient, unless the standard devi-
ation of the Gaussian proposal is chosen carefully. It has been primarily included
as a reference for other, more practical choices.

For technical details on the sampling algorithms and their tuning parameters, see the
help file for MfU.Sample, as well as the aforementioned publications or statistical text-
books (Robert and Casella 1999).

Gibbs wrappers: The function MfU.Sample implements the extended Gibbs sampling con-
cept (Section 2.1), using a for loop that applies the underlying univariate sampler to
each coordinate of the multivariate distribution. The function MfU.Control allows the
user to set the tuning parameters of the univariate sampler. MfU.Sample.Run is a light
wrapper around MfU.Sample for drawing multiple samples.

Diagnostic utilities: Implementations of generic S3 methods summary and plot for ‘MfU’
class objects – output of MfU.Sample.Run – are light wrappers around corresponding
methods for the ‘mcmc’ class in the R package coda (Plummer, Best, Cowles, and Vines
2006), with the addition of the sample-based covariance matrix, effective sample size,
time, and number of independent samples per second returned by the summary method
for ‘MfU’ objects.

Full Bayesian prediction: The S3 predict method for ‘MfU’ objects allows for sample-
based reconstruction of the predictive posterior distribution for any user-supplied pre-
diction function. The mechanics and advantages of full Bayesian prediction are discussed
in the sns package vignette (Mahani et al. 2016). See Section 3.4 of this document for
an example.

3. Using MfUSampler
In this section, we illustrate how MfUSampler can be used for building Bayesian models.
We begin by introducing the data set used throughout the examples in this paper. This is
followed by the illustration of how univariate samplers can be readily applied to sample from
the posterior distribution of our problem. Application of diagnostic and prediction utility
functions are illustrated last.
Before proceeding, we load MfUSampler into an R session, and select the seed value to feed
to the random number generator at the beginning of each code segment (for reproducibility),
and the number of MCMC samples to collect in each run:

R> library("MfUSampler")
R> my.seed <- 0
R> nsmp <- 1000

6 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

3.1. Diabetic retinopathy data set

This data set is a 2×8 contingency table, containing the number of occurrences of diabetic
retinopathy for patients with 8 different durations of diabetes. The tabular form of the data
set can be found in Knuiman and Speed (1988).
The mid-point of diabetes duration bands are encoded in the vector z below, while the
number of patients with/without retinopathy are encoded in m1 and m2 vectors: The prior
suffix corresponds to numbers from a previous study, while current reflects the results of the
current study.

R> z <- c(1, 4, 7, 10, 13, 16, 19, 24)
R> m1.prior <- c(17, 26, 39, 27, 35, 37, 26, 23)
R> m2.prior <- c(215, 218, 137, 62, 36, 16, 13, 15)
R> m1.current <- c(46, 52, 44, 54, 38, 39, 23, 52)
R> m2.current <- c(290, 211, 134, 91, 53, 42, 23, 32)

Following Knuiman and Speed (1988), our model assumes that the linear predictor for this
grouped logistic regression problem has three variables: unit vector (corresponding to inter-
cept), z and z2:

R> X <- cbind(1, z, z^2)

3.2. Slice sampling from the posterior

The following function implements the log-posterior for our problem, assuming a multivariate
Gaussian prior on the coefficient vector, beta, with mean beta0 and covariance matrix W.
The default values represent a non-informative – or flat – prior.

R> loglike <- function(beta, X, m1, m2) {
+ beta <- as.numeric(beta)
+ Xbeta <- X %*% beta
+ return(-sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta))
+ }
R> logprior <- function(beta, beta0, W) {
+ return(-0.5 * t(beta - beta0) %*% solve(W, beta - beta0))
+ }
R> logpost <- function(beta, X, m1, m2, beta0 = rep(0, 0, 3),
+ W = diag(1e+6, nrow = 3)) {
+ return(logprior(beta, beta0, W) + loglike(beta, X, m1, m2))
+ }

(Note that, for simplicity of presentation, a straight-forward, non-optimized implementation
is used.) Incorporating prior information in this problem can be done in two ways: (1)
extracting beta0 and W from prior data (using flat priors during estimation), and feeding
these numbers as priors for estimating the model with current data, (2) simply adding prior
and current numbers to arrive at the posterior contingency table. We choose the first option
for this presentation which, as argued by Knuiman and Speed (1988), offers more flexibility

Journal of Statistical Software – Code Snippets 7

in the strength with which prior influences the posterior results. For presentation brevity,
we use the prior parameters reported in Knuiman and Speed (1988), rather than estimating
them from the data:

R> beta0.prior <- c(-3.17, 0.33, -0.007)
R> W.prior <- 1e-4 * matrix(c(638, -111, 3.9, -111, 24.1, -0.9, 3.9, -0.9,
+ 0.04), ncol = 3)

We begin by drawing 1000 samples using the slice sampler, and printing a summary of samples
(using a significance level of 0.01):

R> set.seed(my.seed)
R> beta.ini <- c(0.0, 0.0, 0.0)
R> beta.smp <- MfU.Sample.Run(beta.ini, logpost, nsmp = nsmp, X = X,
+ m1 = m1.current, m2 = m2.current, beta0 = beta0.prior, W = W.prior)
R> summ.slice <- summary(beta.smp, quantiles = c(0.005, 0.5, 0.995))
R> summ.slice

Iterations = 501:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
[1,] -2.370096 0.156957 7.019e-03 0.0342498
[2,] 0.208465 0.032041 1.433e-03 0.0100992
[3,] -0.003701 0.001283 5.737e-05 0.0003809

2. Quantiles for each variable:

2.5% 50% 97.5%
var1 -2.65060 -2.374412 -2.0369101
var2 0.14190 0.208619 0.2660260
var3 -0.00604 -0.003744 -0.0008024

time for all samples (1000): 1.061 sec
time assigned to selected samples (500): 0.5305 sec
Effective sample size / independent samples per sec:

ess iss
var1 21.00122 39.58760
var2 10.06534 18.97330
var3 11.34342 21.38251

R> summ.slice$covar

8 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

500 600 700 800 900 1000

−
2.

6
−

2.
2

Iterations

Trace of var1

−2.8 −2.6 −2.4 −2.2 −2.0 −1.8

0.
0

1.
0

2.
0

Density of var1

N = 500 Bandwidth = 0.04801

500 600 700 800 900 1000

0.
15

0.
20

0.
25

Iterations

Trace of var2

0.10 0.15 0.20 0.25 0.30
0

2
4

6
8

12

Density of var2

N = 500 Bandwidth = 0.0098

500 600 700 800 900 1000

−
0.

00
6

−
0.

00
3

0.
00

0

Iterations

Trace of var3

−0.008 −0.006 −0.004 −0.002 0.000

0
10

0
20

0
30

0

Density of var3

N = 500 Bandwidth = 0.0003847

Figure 2: Output of the plot method for ‘MfU’ objects, applied to 1000 samples drawn from
the posterior distribution for the diabetic retinopathy problem, using the slice sampler. This
function is a thin wrapper around the plot method for ‘mcmc’ objects from the R package
coda.

[,1] [,2] [,3]
[1,] 0.0246354313 -4.457720e-03 1.574388e-04
[2,] -0.0044577203 1.026602e-03 -3.951447e-05
[3,] 0.0001574388 -3.951447e-05 1.645770e-06

Despite drawing 1000 nominal samples, the effective sample sizes are much smaller, due to
sample auto-correlation. It would therefore be prudent to increase the number of samples,
e.g., to reach 100 independent samples. Closer examination of the MCMC chains, via the
command plot(summ.slice) can further help with diagnostics. For example, inspection of
Figure 2 confirms that the chains are far more correlated than what a white-noise pattern
would exhibit. The figure is generated with the following command:

R> plot(beta.smp)

Journal of Statistical Software – Code Snippets 9

3.3. Adaptive rejection sampling of the posterior

Next, we illustrate how ARS can be used for sampling from this posterior distribution. We
need to implement the gradient of the log-density in order to use ARS. Furthermore, we
must ensure that the distribution is log-concave, or equivalently that the Hessian of the log-
density is negative-definite. It is easy to verify that this distribution satisfies this requirement.
For theoretical and software support in assessing log-concavity of distributions and verifying
correct implementation of their derivatives, see the vignette of the R package sns (Mahani
et al. 2016).

R> logpost.fg <- function(beta, X, m1, m2, beta0 = rep(0.0, 3),
+ W = diag(1e+3, nrow = 3), grad = FALSE) {
+ Xbeta <- X %*% beta
+
+ if (grad) {
+ log.prior.d <- -solve(W, beta - beta0)
+ log.like.d <- t(X) %*% ((m1 + m2) / (1 + exp(Xbeta)) - m2)
+ return(log.prior.d + log.like.d)
+ }
+
+ log.prior <- -0.5 * t(beta - beta0) %*% solve(W, beta - beta0)
+ log.like <- -sum((m1 + m2) * log(1 + exp(-Xbeta)) + m2 * Xbeta)
+ log.post <- log.prior + log.like
+
+ return(log.post)
+ }

Note the use of the mandatory Boolean flag grad, indicating whether the log-density or its
gradient are returned. Next we feed this log-density to MfU.Sample.Run. Please note that
even after fixing the random seed, the results (also those not about the timings) are not
exactly reproducible. We suspect that the samples drawn are getting increasingly different
due to slight differences in floating-point arithmetics for different platforms which accumulate
over the sampling. Note that time-dependent results (e.g. effective sampling rate or speedups)
cannot be replicated exactly for obvious reasons.

R> set.seed(my.seed)
R> beta.ini <- c(0.0, 0.0, 0.0)
R> beta.smp <- MfU.Sample.Run(beta.ini, logpost.fg, nsmp = nsmp,
+ uni.sampler = "ars", control = MfU.Control(3, ars.x = list(
+ c(-10, 0, 10), c(-1, 0, 1), c(-0.1, 0.0, 0.1))), X = X,
+ m1 = m1.current, m2 = m2.current, beta0 = beta0.prior, W = W.prior)
R> summ.ars <- summary(beta.smp)
R> summ.ars

Iterations = 501:1000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 500

10 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
[1,] -2.385601 0.126267 5.647e-03 0.0271520
[2,] 0.212728 0.024940 1.115e-03 0.0067442
[3,] -0.003859 0.001014 4.535e-05 0.0002849

2. Quantiles for each variable:

2.5% 50% 97.5%
var1 -2.653789 -2.382039 -2.15136
var2 0.167205 0.210852 0.26317
var3 -0.005932 -0.003832 -0.00187

time for all samples (1000): 2.089 sec
time assigned to selected samples (500): 1.0445 sec
Effective sample size / independent samples per sec:

ess iss
var1 21.62600 20.70464
var2 13.67511 13.09249
var3 12.66920 12.12944

Note that we have provided custom values for the control parameter ars.x. For this problem,
the ARS algorithm is sensitive to these initial values, and can fail to identify log-concavity
of the distribution in some cases. Generally, we have found the slice sampler to require
less tuning to achieve reasonable performance. On the other hand, for a suitable choice of
tuning parameters, ARS can outperform the slice sampler, measured in terms of ‘independent
samples per second’. Interested readers can see examples of using other samplers included in
MfUSampler – namely ARMS and univariate Metropolis – by typing ?MfU.Sample in the R
session.
As in Section 3.2, effective sample sizes are small, and suggest that increasing the nominal
sample size is prudent. For example, increasing the number of samples to 10,000 will cause
the coefficient means estimated using slice sampler and ARS to consistently reproduce values
reported in Knuiman and Speed (1988) and Dellaportas and Smith (1993).

3.4. Full Bayesian prediction

The predict function in the MfUSampler package can be used to do sample-based recon-
struction of arbitrary functions of model parameters. This includes deterministic as well as
stochastic functions. For example, assume we want to know the probability distribution of
the probability of retinopathy for each value of z in our training set. The prediction function
has the following simple form:

R> predfunc.mean <- function(beta, X) {
+ return(1 / (1 + exp(-X %*% beta)))
+ }

Journal of Statistical Software – Code Snippets 11

We can now generate samples for this predicted quantity:

R> pred.mean <- predict(beta.smp, predfunc.mean, X)
R> predmean.summ <- summary(pred.mean)
R> print(predmean.summ, n = 8)

prediction sample statistics:
(nominal sample size: 500)
mean sd ess 2.5% 50% 97.5%

1 1.0227e-01 9.7785e-03 2.9238e+01 8.3478e-02 1.0193e-01 0.1215
2 1.6870e-01 9.5854e-03 1.9909e+02 1.5035e-01 1.6877e-01 0.1886
3 2.5264e-01 1.2029e-02 1.7275e+02 2.2917e-01 2.5282e-01 0.2764
4 3.4448e-01 1.6707e-02 3.7510e+01 3.1099e-01 3.4426e-01 0.3768
5 4.3245e-01 2.0333e-02 4.1497e+01 3.9308e-01 4.3232e-01 0.4711
6 5.0751e-01 2.2610e-02 1.1673e+02 4.6337e-01 5.0769e-01 0.5516
7 5.6522e-01 2.6223e-02 5.0000e+02 5.1204e-01 5.6594e-01 0.6148
8 6.2085e-01 4.2244e-02 1.5088e+02 5.3316e-01 6.2234e-01 0.7033

We can also ask a different question: What is the distribution of the occurrence of retinopathy
(as a binary variable) in each given band of diabetes duration. The prediction function is a
slight modification of the previous one:

R> predfunc.binary <- function(beta, X) {
+ return(as.numeric(runif(nrow(X)) < 1/(1 + exp(-X %*% beta))))
+ }
R> pred.binary <- predict(beta.smp, predfunc.binary, X)
R> predbinary.summ <- summary(pred.binary)
R> print(predbinary.summ, n = 8)

prediction sample statistics:
(nominal sample size: 500)

mean sd ess 2.5% 50% 97.5%
1 0.12200 0.32761 500.00000 0.00000 0.00000 1
2 0.15800 0.36511 500.00000 0.00000 0.00000 1
3 0.24800 0.43228 500.00000 0.00000 0.00000 1
4 0.32800 0.46996 400.26263 0.00000 0.00000 1
5 0.41400 0.49304 500.00000 0.00000 0.00000 1
6 0.49000 0.50040 423.67823 0.00000 0.00000 1
7 0.58600 0.49304 550.23479 0.00000 1.00000 1
8 0.64200 0.47989 500.00000 0.00000 1.00000 1

We see that the mean values from the two predictions are close, and in the limit of infinite
samples they will converge towards the same values. However, the SD numbers are much
larger for the binary prediction as it combines the uncertainty of estimating the coefficients,
with the uncertainty of the stochastic process that generates the (binary) outcome. The value
of full Bayesian prediction, particularly in business and decision-making settings, is that it

12 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

combines these two sources of uncertainty to provide the user with a full representation of
uncertainty in estimating actual outcomes, and not just mean/expected values.

4. Performance improvement
Applying MfU.Sample.Run to the full joint PDF of a Bayesian model, implemented in R, is
often a good starting point. For small data sets, this may well be sufficient. For example, in the
diabetic retinopathy data set described in Section 3, and using an average laptop, we should
be able to draw 10,000 samples from the posterior distribution in a few minutes. However, for
large data sets we must look for opportunities to improve the performance. In this section,
we describe two general strategies for speeding up sampling of posterior distributions within
the framework of MfUSampler: (1) utilizing the structure of the underlying model graph, and
(2) high-performance evaluation of the posterior function. We describe these two strategies
using extensions of the diabetic retinopathy data set.

4.1. Diabetic retinopathy: Hierarchical Bayesian with continuous z

To illustrate the performance optimization strategies discussed in this section, we extend the
diabetic retinopathy data set – by simulations – to define a hierarchical Bayes (HB) problem
with continuous z. In other words, we turn the grouped logistic regression into a standard
logistic regression, where the outcome is not frequency of occurrence of retinopathy within a
diabetic duration band (with mid-point z), but a binary indicator for each continuous value
of z. We generate coefficients for 5 observation groups (ngrp = 5) from the multivariate
Gaussian prior discussed in the last section (numbers from Knuiman and Speed 1988 are
used), and simulate binary outcome in each group based on its coefficients. The number of
observations per group can be adjusted via the parameter nrep. z values are sampled – with
replacement – from real data, with the addition of a small random jitter. The data generation
code is as follows:

R> library("mvtnorm")
R> set.seed(my.seed)
R> nrep <- 50
R> m.current <- m1.current + m2.current
R> nz.exp <- nrep * sum(m.current)
R> jitter <- 1.0
R> z.exp <- sample(z, size = nz.exp, replace = TRUE, prob = m.current) +
+ (2 * runif(nz.exp) - 1) * jitter
R> X.exp <- cbind(1, z.exp, z.exp^2)
R> ngrp <- 5
R> beta.mat <- t(rmvnorm(ngrp, mean = beta0.prior, sigma = W.prior))
R> y.mat.exp <- matrix(as.numeric(runif(ngrp * nz.exp) <
+ 1 / (1 + exp(-X.exp %*% beta.mat))), ncol = ngrp)

In real problems, ngrp must typically be larger than 5 to justify the pooling of information
across groups. But here we limit ourselves to this small number to keep code execution times
relatively small.

Journal of Statistical Software – Code Snippets 13

4.2. Utilizing graph structure

In directed acyclic graphs, the joint distribution can be factorized into the product of con-
ditional distributions for all nodes, conditioned on parent nodes of each node (Bishop 2006).
For undirected graphs, factorization can be done over maximal cliques of the graph. When
sampling from conditional distribution of a variable – conditioned on all remaining variables
– as is done during Gibbs sampling, not all such multiplicative factors depend on the variable
being sampled, and can be safely ignored during evaluation of the conditional distribution
and its derivatives. In some cases, the resulting time savings can be quite significant, with
a prime example being the hierarchical Bayesian models (Gelman and Hill 2006). In HB
models, the conditional distribution of the low-level coefficient vector for each group during
Gibbs sampling contains multiplicative contributions from other groups. This is reflected in
the following log-posterior functions for the coefficients of all groups that contain one additive
term per group:

R> hb.logprior <- function(beta.flat, beta0, W) {
+ beta.mat <- matrix(beta.flat, nrow = 3)
+ return(sum(apply(beta.mat, 2, logprior, beta0, W)))
+ }
R> hb.loglike <- function(beta.flat, X, y) {
+ beta.mat <- matrix(beta.flat, nrow = 3)
+ ngrp <- ncol(beta.mat)
+ return(sum(sapply(1:ngrp, function(n) {
+ xbeta <- X %*% beta.mat[, n]
+ return(-sum((1 - y[, n]) * xbeta + log(1 + exp(-xbeta))))
+ })))
+ }
R> hb.logpost <- function(beta.flat, X, y, beta0, W) {
+ return(hb.logprior(beta.flat, beta0, W) +
+ hb.loglike(beta.flat, X, y))
+ }

A naive implementation of the full PDF is thus pointlessly duplicating computations by ngrp
times:

R> nsmp <- 10
R> set.seed(my.seed)
R> beta.flat.ini <- rep(0.0, 3 * ngrp)
R> beta.flat.smp <- MfU.Sample.Run(beta.flat.ini, hb.logpost, X = X.exp,
+ y = y.mat.exp, beta0 = beta0.prior, W = W.prior, nsmp = nsmp)
R> t.naive <- attr(beta.flat.smp, "t")
R> cat("hb sampling time - naive method:", t.naive, "sec\n")

hb sampling time - naive method: 43.635 sec

Note that, in the above, we have made the simplifying assumption that we know the true
values of the parameters of the multivariate Gaussian prior, i.e., beta0.prior and W.prior.
In reality, of course, prior parameters must also be estimated from the data, and thus the

14 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

Gibbs cycle includes not just the lower-level coefficients but also the prior parameters. (In-
terested readers can consult the literature on ‘eliciting prior distributions’. See, e.g., O’Hagan
1998.) However, all the strategies discussed in this section can be conceptually illustrated
while focusing only on sampling beta.
The first optimization strategy is to take advantage of the conditional independence property
by evaluating only the relevant term during sampling of coefficients in each group:

R> hb.loglike.grp <- function(beta, X, y) {
+ beta <- as.numeric(beta)
+ xbeta <- X %*% beta
+ return(-sum((1 - y) * xbeta + log(1 + exp(-xbeta))))
+ }
R> hb.logprior.grp <- logprior
R> hb.logpost.grp <- function(beta, X, y, beta0 = rep(0.0, 3),
+ W = diag(1e+6, nrow = 3)) {
+ return(hb.logprior.grp(beta, beta0, W) +
+ hb.loglike.grp(beta, X, y))
+ }

The price to pay is that we must implement a custom for loop to replace MfU.Sample.Run:

R> set.seed(my.seed)
R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)
R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))
R> t.revised <- proc.time()[3]
R> for (i in 1:nsmp) {
+ for (n in 1:ngrp) {
+ beta.mat.buff[, n] <- MfU.Sample(beta.mat.buff[, n], hb.logpost.grp,
+ uni.sampler = "slice", X = X.exp, y = y.mat.exp[, n],
+ beta0 = beta0.prior, W = W.prior)
+ }
+ beta.mat.smp[i, ,] <- beta.mat.buff
+ }
R> t.revised <- proc.time()[3] - t.revised
R> cat("hb sampling time - revised method:", t.revised, "sec\n")

hb sampling time - revised method: 8.064 sec

R> cat("incremental speedup:", t.naive / t.revised, "\n")

incremental speedup: 5.411086

As expected, this revised approach produces a speedup factor that is close to ngrp, i.e.,
∼5. (The fact that actual speedup is slightly higher than 5 is interesting and suggests other
factors such as cache utilization might be at play. Studying these computational factors are
beyond the scope of this paper. Interested readers can see Mahani and Sharabiani (2015) for
a thorough analysis of performance optimization techniques for Bayesian MCMC.

Journal of Statistical Software – Code Snippets 15

Another implication of conditional independence for HB models is that the conditional dis-
tribution for coefficients of each group does not include the coefficients of other groups. This
can be verified by examining hb.logpost.grp. As such, it is mathematically valid to sample
coefficients of all groups concurrently, while conditioning all distributions on values of the
remaining variables (Mahani and Sharabiani 2015). We can use the doParallel package for
multi-core parallelization (Revolution Analytics and Weston 2015):

R> library("doParallel")
R> ncores <- 2
R> registerDoParallel(ncores)
R> set.seed(my.seed)
R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)
R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))
R> t.parallel <- proc.time()[3]
R> for (i in 1:nsmp) {
+ beta.mat.buff <- foreach(n = 1:ngrp, .combine = cbind,
+ .options.multicore = list(preschedule = TRUE)) %dopar% {
+ MfU.Sample(beta.mat.buff[, n], hb.logpost.grp,
+ uni.sampler = "slice", X = X.exp, y = y.mat.exp[, n],
+ beta0 = beta0.prior, W = W.prior)
+ }
+ beta.mat.smp[i, ,] <- beta.mat.buff
+ }
R> t.parallel <- proc.time()[3] - t.parallel
R> cat("hb sampling time - revised & parallel method:", t.parallel, "sec\n")

hb sampling time - revised & parallel method: 5.42 sec

R> cat("incremental speedup:", t.revised / t.parallel, "\n")

incremental speedup: 1.487823

In the above, we have continued to use the default R random number generator for code
brevity. In practice, in order to generate uncorrelated random numbers across multiple exe-
cution threads, one should use parallel RNG streams such as those provided in the R package
rstream (Leydold 2015). Also, note that the parallelization speedup does not equal the num-
ber of cores used, i.e., 2. We expect the speedup to improve as we increase ngrp. It is also
reasonable to expect that multi-threading in R has significantly larger overhead, compared to
doing so in a high-performance language such as C.

4.3. High-performance PDF evaluation

For most MCMC algorithms, the majority of sampling time is spent on evaluating the log-
density (and its derivatives if needed). Efficient implementation of functions responsible for
log-density evaluation is therefore a rewarding optimization strategy which can be combined
with the strategies discussed in Section 4.2. The Rcpp (Eddelbuettel and François 2011)

16 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

framework offers a convenient way to port R functions to C++. Here we use the RcppAr-
madillo (Eddelbuettel and Sanderson 2014) package for its convenient matrix algebra opera-
tions to transform the log-likelihood component of the log-posterior (as it takes the majority
of time for large data, compared to the log-prior):

R> library("RcppArmadillo")
R> library("inline")
R> code <- "
+ arma::vec beta_cpp = Rcpp::as<arma::vec>(beta);
+ arma::mat X_cpp = Rcpp::as<arma::mat>(X);
+ arma::vec y_cpp = Rcpp::as<arma::vec>(y);
+ arma::vec xbeta = X_cpp * beta_cpp;
+ int n = X_cpp.n_rows;
+ double logp = 0.0;
+ for (int i = 0; i < n; i++) {
+ logp -= (1.0 - y_cpp[i]) * xbeta[i] + log(1.0 + exp(-xbeta[i]));
+ }
+ return Rcpp::wrap(logp);
+ "
R> hb.loglike.grp.rcpp <- cxxfunction(
+ signature(beta = "numeric", X = "numeric", y = "numeric"),
+ code, plugin = "RcppArmadillo")
R> hb.logpost.grp.rcpp <- function(beta, X, y, beta0 = rep(0.0, 3),
+ W = diag(1e+6, nrow = 3)) {
+ return(hb.logprior.grp(beta, beta0, W) +
+ hb.loglike.grp.rcpp(beta, X, y))
+ }

We simply replace hb.logpost.grp with hb.logpost.grp.rcpp in the parallel sampling
approach from the previous section:

R> set.seed(my.seed)
R> beta.mat.buff <- matrix(rep(0.0, 3 * ngrp), nrow = 3)
R> beta.mat.smp <- array(NA, dim = c(nsmp, 3, ngrp))
R> t.rcpp <- proc.time()[3]
R> for (i in 1:nsmp) {
+ beta.mat.buff <- foreach(n = 1:ngrp, .combine = cbind,
+ .options.multicore = list(preschedule = TRUE)) %dopar% {
+ MfU.Sample(beta.mat.buff[, n], hb.logpost.grp.rcpp,
+ uni.sampler = "slice", X = X.exp, y = y.mat.exp[, n],
+ beta0 = beta0.prior, W = W.prior)
+ }
+ beta.mat.smp[i, ,] <- beta.mat.buff
+ }
R> t.rcpp <- proc.time()[3] - t.rcpp
R> cat("hb sampling time - revised & parallel & rcpp method:", t.rcpp,
+ "sec\n")

Journal of Statistical Software – Code Snippets 17

naive + separability + parallel + Rcpp

optimization level

sa
m

pl
in

g
tim

e
(s

ec
)

43.64

 8.06
 5.42 4.10

5.4x

1.5x
1.3x

Figure 3: Time needed to draw 1000 samples for the HB logistic regression problem, based
on the diabetic retinopathy data set introduced in Section 3.1, at various stages of optimiza-
tion. Each step represents the cumulative effect of strategies, starting with the left-most bar
corresponding to the naive implementation. Numbers above bars show speedup due to each
optimization.

hb sampling time - revised & parallel & rcpp method: 4.105 sec

R> cat("incremental speedup:", t.parallel / t.rcpp, "\n")

incremental speedup: 1.320341

While the result is a decent speedup given the relatively small effort put in, yet the impact is
not as significant as the previous two strategies. It must be noted that matrix algebra opera-
tions in R are handled by BLAS and LAPACK libraries, written in C and Fortran. Therefore,
the major benefit of porting the log-likelihood function to C++ in the above example is likely
to be the consolidation of data and control transfer between the interpretation layer and the
computational back-end. For large problems, even parallel hardware such as Graphic Pro-
cessing Units (GPUs) can be utilized by writing log-density functions in languages such as
CUDA (Nickolls, Buck, Garland, and Skadron 2008), while continuing to take advantage of
MfUSampler for sampler control logic. Minimizing data movement between processor and
co-processor is a key performance factor in such cases.
An even easier method for improving the performance of log-density evaluation function is
compiling it to byte code, using the compiler package (cmpfun function). However, testing
this approach on our logistic regression problem resulted in very modest speedup (less than
10%).
Figure 3 summarizes the impact of the three optimization strategies discussed in this section.
Combining all three optimization strategies (while using only 2 cores for parallelization) has
provided a significant speedup over the naive approach:

18 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

R> cat("combined speedup:", t.naive / t.rcpp, "\n")

combined speedup: 10.62972

In addition to the above-mentioned strategies, there are several other options available for
improving performance of MCMC sampling techniques for Bayesian models. Examples include
differential update, single-instruction multiple-data (SIMD) parallelization of log-likelihood
calculation, and batch random number generation. For a detailed discussion of these topics,
see Mahani and Sharabiani (2015).

5. Summary
The R package MfUSampler enables MCMC sampling of multivariate distributions using
univariate algorithms. It relies on an extension of Gibbs sampling from univariate indepen-
dent sampling to univariate Markov transitions, and proportionality of conditional and joint
distributions. By encapsulating these two concepts in a package, MfUSampler reduces the
possibility of subtle mistakes by researchers while re-implementing the Gibbs sampler and
thus allows them to focus on other, more innovative aspects of their Bayesian modeling.
Brute-force application of MfUSampler allows researchers to get their project off the ground,
maintain full control over model specification, and utilize robust univariate samplers. This can
be followed by an incremental optimization approach by taking advantage of DAG properties
such as conditional independence and by porting log-density functions to high-performance
languages and hardware. As of this writing, MfUSampler has been utilized in the R package
BSGW (Mahani and Sharabiani 2016) for Gibbs sampling of posteriors in dynamic Bayesian
survival models, and in HBglm (Hasan and Mahani 2015) for hierarchical Bayesian generalized
linear regression models.

Computational details
All R code shown in this paper was executed on an Intel Xeon W3680, with a CPU clock rate
of 3.33GHz and 24GB of installed RAM. Below is the corresponding R session information,
obtained using the command sessionInfo():

R version 3.3.3 (2017-03-06)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Amazon Linux AMI 2017.03

locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

Journal of Statistical Software – Code Snippets 19

[1] methods parallel stats graphics grDevices utils datasets
[8] base

other attached packages:
[1] inline_0.3.14 RcppArmadillo_0.7.900.2.0
[3] doParallel_1.0.10 iterators_1.0.8
[5] foreach_1.4.3 mvtnorm_1.0-6
[7] MfUSampler_1.0.4

loaded via a namespace (and not attached):
[1] compiler_3.3.3 ars_0.5 HI_0.4 coda_0.19-1
[5] Rcpp_0.12.11 codetools_0.2-15 grid_3.3.3 lattice_0.20-34

Acknowledgments
The authors wish to thank the JSS editors and reviewers for their thorough and constructive
feedback, resulting in significant improvements in the quality of our software and manuscript.

References

Bishop CM (2006). Pattern Recognition and Machine Learning, volume 1. Springer-Verlag.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1–32. doi:10.18637/jss.v076.i01.

Christen JA, Fox C (2010). “A General-Purpose Sampling Algorithm for Continuous Distri-
butions (the t-Walk).” Bayesian Analysis, 5(2), 263–281. doi:10.1214/10-ba60.

Dellaportas P, Smith AFM (1993). “Bayesian Inference for Generalized Linear and Propor-
tional Hazards Models via Gibbs Sampling.” Journal of the Royal Statistical Society C,
42(3), 443–459. doi:10.2307/2986324.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with High-Performance
C++ Linear Algebra.” Computational Statistics & Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Gelman A, Hill J (2006). Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press.

Geman S, Geman D (1984). “Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine Intelligence,
PAMI-6(6), 721–741. doi:10.1109/tpami.1984.4767596.

http://dx.doi.org/10.18637/jss.v076.i01
http://dx.doi.org/10.1214/10-ba60
http://dx.doi.org/10.2307/2986324
http://dx.doi.org/10.18637/jss.v040.i08
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1016/j.csda.2013.02.005
http://dx.doi.org/10.1109/tpami.1984.4767596

20 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

Gilks WR, Best NG, Tan KKC (1995). “Adaptive Rejection Metropolis Sampling within
Gibbs Sampling.” Journal of the Royal Statistical Society C, 44(4), 455–472. doi:10.
2307/2986138.

Gilks WR, Neal RM, Best NG, Tan KKC (1997). “Corrigendum: Adaptive Rejection
Metropolis Sampling.” Journal of the Royal Statistical Society C, 46(4), 541–542. doi:
10.1111/1467-9876.00091.

Gilks WR, Wild P (1992). “Adaptive Rejection Sampling for Gibbs Sampling.” Journal of
the Royal Statistical Society C, 41(2), 337–348. doi:10.2307/2347565.

Girolami M, Calderhead B (2011). “Riemann Manifold Langevin and Hamiltonian Monte
Carlo Methods.” Journal of the Royal Statistical Society B, 73(2), 123–214. doi:10.1111/
j.1467-9868.2010.00765.x.

Hasan A, Mahani AS (2015). HBglm: Hierarchical Bayesian Regression for GLMs. R package
version 0.1, URL https://CRAN.R-project.org/package=HBglm.

Hastings WK (1970). “Monte Carlo Sampling Methods Using Markov Chains and Their
Applications.” Biometrika, 57(1), 97–109. doi:10.2307/2334940.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15, 1593–1623.

Jarner SF, Hansen E (2000). “Geometric Ergodicity of Metropolis Algorithms.” Stochastic
Processes and Their Applications, 85(2), 341–361. doi:10.1016/s0304-4149(99)00082-4.

Knuiman M, Speed T (1988). “Incorporating Prior Information into the Analysis of Contin-
gency Tables.” Biometrics, 44(4), 1061–1071. doi:10.2307/2531735.

Leydold J (2015). rstream: Streams of Random Numbers. R package version 1.3.3, URL
https://CRAN.R-project.org/package=rstream.

Mahani AS, Hasan A, Jiang M, Sharabiani MTA (2016). Stochastic Newton Sampler: The R
Package sns. doi:10.18637/jss.v074.c02.

Mahani AS, Sharabiani MTA (2015). “SIMD Parallel MCMC Sampling with Applications
for Big-Data Bayesian Analytics.” Computational Statistics & Data Analysis, 88, 75–99.
doi:10.1016/j.csda.2015.02.010.

Mahani AS, Sharabiani MTA (2016). BSGW: Bayesian Survival Model with Lasso Shrink-
age Using Generalized Weibull Regression. R package version 0.9.2, URL https://CRAN.
R-project.org/package=BSGW.

Mahani AS, Sharabiani MTA (2017). MfUSampler: Multivariate-from-Univariate (MfU)
MCMC Sampler. R package version 1.0.4, URL https://CRAN.R-project.org/package=
MfUSampler.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953). “Equation of
State Calculations by Fast Computing Machines.” The Journal of Chemical Physics, 21(6),
1087–1092. doi:10.1063/1.1699114.

http://dx.doi.org/10.2307/2986138
http://dx.doi.org/10.2307/2986138
http://dx.doi.org/10.1111/1467-9876.00091
http://dx.doi.org/10.1111/1467-9876.00091
http://dx.doi.org/10.2307/2347565
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00765.x
https://CRAN.R-project.org/package=HBglm
http://dx.doi.org/10.2307/2334940
http://dx.doi.org/10.1016/s0304-4149(99)00082-4
http://dx.doi.org/10.2307/2531735
https://CRAN.R-project.org/package=rstream
http://dx.doi.org/10.18637/jss.v074.c02
http://dx.doi.org/10.1016/j.csda.2015.02.010
https://CRAN.R-project.org/package=BSGW
https://CRAN.R-project.org/package=BSGW
https://CRAN.R-project.org/package=MfUSampler
https://CRAN.R-project.org/package=MfUSampler
http://dx.doi.org/10.1063/1.1699114

Journal of Statistical Software – Code Snippets 21

Neal R (2011). “MCMC Using Hamiltonian Dynamics.” Handbook of Markov Chain Monte
Carlo, 2, 113–162. doi:10.1201/b10905-6.

Neal RM (2003). “Slice Sampling.” The Annals of Statistics, 31(3), 705–741. doi:10.1214/
aos/1056562461.

Nickolls J, Buck I, Garland M, Skadron K (2008). “Scalable Parallel Programming with
CUDA.” Queue, 6(2), 40–53. doi:10.1145/1365490.1365500.

O’Hagan A (1998). “Eliciting Expert Beliefs in Substantial Practical Applications.” Journal
of the Royal Statistical Society D, 47(1), 21–35. doi:10.1111/1467-9884.00114.

Pérez-Rodríguez P, Wild P, Gilks W (2014). ars: Adaptive Rejection Sampling. R package
version 0.5, URL https://CRAN.R-project.org/package=ars.

Petris G, Tardella L, Gilks WR (2013). HI: Simulation from Distributions Supported by Nested
Hyperplanes. R package version 0.4, URL https://CRAN.R-project.org/package=HI.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Vienna. URL
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf.

Plummer M, Best N, Cowles K, Vines K (2006). “coda: Convergence Diagnosis and Output
Analysis for MCMC.” R News, 6(1), 7–11. URL http://CRAN.R-project.org/doc/Rnews.

Qi Y, Minka TP (2002). “Hessian-Based Markov Chain Monte-Carlo Algorithms.”
Unpublished Manuscript, URL https://www.cs.purdue.edu/homes/alanqi/papers/
qi-minka-HMH-AMIT-02.ps.

Revolution Analytics, Weston S (2015). doParallel: Foreach Parallel Adaptor for the par-
allel Package. R package version 1.0.10, URL https://CRAN.R-project.org/package=
doParallel.

Robert CP, Casella G (1999). Monte Carlo Statistical Methods. Springer-Verlag.

Roberts GO, Rosenthal JS (1999). “Convergence of Slice Sampler Markov Chains.” Journal
of the Royal Statistical Society B, 61(3), 643–660. doi:10.1111/1467-9868.00198.

Stan Development Team (2017). “Stan: A C++ Library for Probability and Sampling, Version
2.14.0.” URL http://mc-stan.org/.

Thomas A, O’Hara B, Ligges U, Sturtz S (2006). “Making BUGS Open.” R News, 6(1), 12–17.
URL http://CRAN.R-project.org/doc/Rnews.

Thompson MB (2011). Slice Sampling with Multivariate Steps. Ph.D. thesis, University of
Toronto.

http://dx.doi.org/10.1201/b10905-6
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1214/aos/1056562461
http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1111/1467-9884.00114
https://CRAN.R-project.org/package=ars
https://CRAN.R-project.org/package=HI
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
http://CRAN.R-project.org/doc/Rnews
https://www.cs.purdue.edu/homes/alanqi/papers/qi-minka-HMH-AMIT-02.ps
https://www.cs.purdue.edu/homes/alanqi/papers/qi-minka-HMH-AMIT-02.ps
https://CRAN.R-project.org/package=doParallel
https://CRAN.R-project.org/package=doParallel
http://dx.doi.org/10.1111/1467-9868.00198
http://mc-stan.org/
http://CRAN.R-project.org/doc/Rnews

22 MfUSampler: Multivariate-From-Univariate MCMC Sampler in R

A. Proof of extended Gibbs sampling lemma
The premise can be mathematically expressed as

p(x′
k|x\k) =

∫
xk

T (x′
k, xk|x\k)p(xk|x\k) dxk, (2)

while the conclusion can be expressed as

p(x′
k, x\k) =

∫
xk

T (x′
k, xk|x\k)p(xk, x\k) dxk. (3)

In the above x\k denotes all coordinates except for xk and T (x′
k, xk|x\k) denotes the coordinate-

wise Markov transition density from x′
k to xk. Employing the product rule of probability, we

have p(xk, x\k) = p(xk|x\k) × p(x\k). Since the coordinate-wise Markov transition does not
change x\k, we can factor p(x\k) out of the integral, thereby easily reducing Equation 3 to
Equation 2.
Note that standard Gibbs sampling is a special case of the above lemma where T (x′

k, xk|x\k) =
p(x′

k|x\k). The reader can easily verify that this special transition density satisfies the premise.

Affiliation:
Alireza S. Mahani
Scientific Computing Group
Sentrana Inc.
1725 I St NW
Washington, DC 20006, United States of America
E-mail: alireza.mahani@sentrana.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

June 2017, Volume 78, Code Snippet 1 Submitted: 2014-12-28
doi:10.18637/jss.v078.c01 Accepted: 2016-05-22

mailto:alireza.mahani@sentrana.com
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v078.c01

	Introduction
	Theory and implementation of package MfUSampler
	Extended Gibbs sampling
	Proportionality of conditional and joint distributions
	Implementation

	Using MfUSampler
	Diabetic retinopathy data set
	Slice sampling from the posterior
	Adaptive rejection sampling of the posterior
	Full Bayesian prediction

	Performance improvement
	Diabetic retinopathy: Hierarchical Bayesian with continuous z
	Utilizing graph structure
	High-performance PDF evaluation

	Summary
	Proof of extended Gibbs sampling lemma

