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Abstract

The R package lcmm provides a series of functions to estimate statistical models based
on linear mixed model theory. It includes the estimation of mixed models and latent class
mixed models for Gaussian longitudinal outcomes (hlme), curvilinear and ordinal uni-
variate longitudinal outcomes (lcmm) and curvilinear multivariate outcomes (multlcmm),
as well as joint latent class mixed models (Jointlcmm) for a (Gaussian or curvilinear)
longitudinal outcome and a time-to-event outcome that can be possibly left-truncated
right-censored and defined in a competing setting. Maximum likelihood esimators are
obtained using a modified Marquardt algorithm with strict convergence criteria based on
the parameters and likelihood stability, and on the negativity of the second derivatives.
The package also provides various post-fit functions including goodness-of-fit analyses,
classification, plots, predicted trajectories, individual dynamic prediction of the event and
predictive accuracy assessment. This paper constitutes a companion paper to the pack-
age by introducing each family of models, the estimation technique, some implementation
details and giving examples through a dataset on cognitive aging.

Keywords: curvilinearity, dynamic prediction, Fortran 90, growth mixture model, joint model,
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1. Introduction
The linear mixed model (Laird and Ware 1982; Verbeke and Molenberghs 2000; Hedeker
and Gibbons 2006; Fitzmaurice, Davidian, Verbeke, and Molenberghs 2009) has become a
standard statistical method to analyze change over time of a longitudinal Gaussian outcome
and assess the effect of covariates on it. Yet longitudinal data collected in cohort studies may
be too complex to enter the framework of the linear mixed model:
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• The longitudinal outcomes are not necessarily Gaussian but possibly binary, ordinal or
continuous but asymmetric (e.g., absence/presence of symptoms, psychological scale).

• Not only one but several longitudinal outcomes may be collected, especially when the
interest is in a biological or psychological process that cannot be measured directly (e.g.,
quality of life, cognition, immune response).

• The longitudinal process may be altered by the occurrence of one or multiple times-to-
event (e.g., death, onset of disease, disease progression).

• Non-observed heterogeneity may exist in the population (e.g., responders/non-
responders, patterns of subjects linked to an unknown behavior/disease risk/set of
genes).

The study of cognitive decline in the elderly combines all these complexities. Indeed, cognition
which is the central longitudinal process in aging is not directly observed. It is measured by
one or multiple psychometric tests collected repeatedly at cohort visits. These test results
are not necessarily Gaussian variables; they can be sum-scores, items or ratios. They are
usually bounded with asymmetric distributions, or even ordinal (Proust-Lima, Dartigues,
and Jacqmin-Gadda 2011). In addition, cognitive decline is strongly associated with onset of
dementia and death so it may be necessary to jointly model these processes (Proust-Lima,
Joly, and Jacqmin-Gadda 2009). Finally, a population of elderly subjects usually combines
groups of subjects with different types of cognitive trajectory (e.g., normal and pathological
aging toward dementia; Proust and Jacqmin-Gadda 2005).
The aim of the lcmm package (Proust-Lima, Philipps, Diakite, and Liquet 2017) developed for
R (R Core Team 2017) is to provide estimation functions that address these different extensions
of the linear mixed model. The package is named lcmm in reference to the latent class mixed
models as all the estimation functions can handle heterogeneity through latent classes of
trajectory. However, beyond latent class mixed models, the package provides estimation
functions for mixed models involving latent processes, and joint models. Package lcmm is
available from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.
org/package=lcmm.
The estimation relies on the maximum likelihood theory with a powerful modified Marquardt
iterative algorithm (Marquardt 1963), a Newton-Raphson like algorithm (Fletcher 1987), and
involves strict convergence criteria. Post-fit functions are also provided in order to assess the
goodness-of-fit of the models, their predictive accuracy, as well as to compute outputs and
average or individual predictions from the models. In its current version (version 1.7.8), lcmm
includes four main estimation functions: hlme, lcmm, multlcmm and Jointlcmm.
The paper is organized as follows. Section 2 defines the statistical models implemented in
the package and Section 3 details the common estimation process. Section 4 describes the
implementation of the four estimation functions and gives details on the management of
initial values. Section 5 details post-fit analyses and computations. Sections 2, 3 and 5
can be skipped if the reader is already familiar with the statistical methodology. Finally,
Section 6 provides a series of examples based on the paquid dataset available in the package
and Section 7 concludes.

https://CRAN.R-project.org/package=lcmm
https://CRAN.R-project.org/package=lcmm
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2. Extended mixed models
This section describes each family of statistical models implemented in the package. The
first three subsections detail the standard linear mixed model, its extension to other types of
longitudinal outcomes and its extension to the multivariate setting. The fourth subsection is
dedicated to their extension to heterogeneous populations with the latent class mixed model
theory that applies to all the models estimated within lcmm. Finally, the joint latent class
mixed model for jointly analyzing a longitudinal marker and a time-to-event is introduced.

2.1. The linear mixed model

For each subject i in a sample of N subjects, let us consider a vector of ni repeated measures
Yi = (Yi1, . . . , Yij , . . . , Yini)> where Yij is the outcome value at occasion j that is measured
at time tij . We distinguish the time of measurement tij from occasion j because an asset of
the linear mixed model is that the times and the number of measurements can vary from one
subject to another. This makes it possible for example to include subjects with intermittent
missing data and/or dropout, or to consider the actual individual time of measurement rather
than the planned visit, which in some applications can greatly differ.
Following Laird and Ware (1982), we define the linear mixed model as follows:

Yij = XLi(tij)>β + Zi(tij)>ui + wi(tij) + εij , (1)

where XLi(tij) and Zi(tij) are two vectors of covariates at time tij of respective length p and
q. The vector XLi(tij) is associated with the vector of fixed effects β. The vector Zi(tij),
which typically includes functions of time tij , is associated with the vector of random effects
ui. Shapes of trajectories considered in XLi and Zi can be of any type: polynomial (Proust
and Jacqmin-Gadda 2005), specifically designed to fit the trajectory (Proust-Lima and Taylor
2009), or approximated using a basis of splines.
The vector ui of q random effects has a zero-mean multivariate normal distribution with
variance-covariance matrix B, where B is an unspecified matrix. The measurement errors εij
are independent Gaussian errors with variance σ2

ε . Finally, the process (wi(t))t∈R is a zero-
mean Gaussian stochastic process (e.g., Brownian motion with covariance cov(wi(t), wi(s)) =
σ2
w min(t, s) or a stationary process with covariance cov(wi(t), wi(s)) = σ2

w exp(−ρ|t− s|).
The vector of parameters to be estimated is (β>, vec(B)>, σw, ρ, σε)> where vec(B) is the
vector of parameters involved for modeling the symmetric positive definite matrix B. In the
package, vec(B) corresponds to the q standard errors of the random effects in the event of a
diagonal matrix B or the q(q+1)

2 -vector of parameters in the Cholesky transformation of B.

2.2. The latent process mixed model

The linear mixed model applies to longitudinal markers that are continuous and have Gaus-
sian random deviations (random effects, correlated errors and measurement errors). It also
assumes that the covariate effects are constant (β) across the entire range of marker values.
In practice, these assumptions do not hold for many longitudinal outcomes, especially psy-
chological scales. The generalized linear mixed model extends the theory to binary, ordinal or
Poisson longitudinal outcomes (Hedeker and Gibbons 2006; Fitzmaurice et al. 2009). In order
to study non-Gaussian longitudinal markers, we chose another direction by defining a family
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of mixed models called the latent process mixed models (Proust, Jacqmin-Gadda, Taylor,
Ganiayre, and Commenges 2006; Proust-Lima, Amieva, and Jacqmin-Gadda 2013). Coming
from the latent variable framework, this approach consists in separating the structural model
that describes the quantity of interest (a latent process) according to time and covariates
from the measurement model that links the quantity of interest to the observations.
The latent process Λi(t) is defined in continuous time according to a standard linear mixed
model without error of measurement:

Λi(t) = XLi(t)>β + Zi(t)>ui + wi(t) , ∀t ∈ R, (2)

where XLi(t), Zi(t), β, ui and wi(t) are defined in Section 2.1.
In order to take into account different types of longitudinal markers, a flexible nonlinear
measurement model is defined between the latent process Λi(tij) and the observed value Yij
at the measurement time tij :

Yij = H(Ỹij ; η) = H(Λi(tij) + εij ; η), (3)

where εij are independent Gaussian measurement errors with variance σ2
ε , H is a parameter-

ized link function and Ỹij denotes the noisy latent process at time tij .
For a quantitative marker, H−1 is a monotonic increasing continuous function. The following
are currently implemented:

• The linear transformation that reduces to the Gaussian framework of the linear mixed
model:

H−1(Yij) = Yij − η1
η2

;

• The rescaled cumulative distribution function (CDF) of a Beta distribution:

H−1(Yij ; η) =
h(Y ∗ij ; η1; η2)− η3

η4

with
h(Y ∗ij ; η1; η2) =

∫ Y ∗ij

0

xη
∗
1−1(1− x)η∗2−1

B(η∗1, η∗2) dx,

B(η∗1, η∗2) is the complete Beta function. Because of the positiveness properties of the
canonical parameters η∗1 and η∗2 and computation reasons, the Beta distribution is pa-
rameterized as follows: η∗1 = eη1

eη2(1 + eη1) and η∗2 = 1
eη1(1 + eη2) . In addition, Yij is

rescaled in (0, 1) using

Y ∗ij = Yij −min(Y ) + εY
max(Y )−min(Y ) + 2εY

with the constant εY > 0 and min(Y) and max(Y) the (theoretical or observed) mini-
mum and maximum values of Y.

• A basis of quadratic I-splines with m knots:

H−1(Yij ; η) = η0 +
m+1∑
l=1

η2
l B

I
l (Yij)

with (BI
1 , . . . , B

I
m+1) the basis of I-splines (Ramsay 1988).
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For an ordinal or binary marker (with M levels), Equation 3 reduces to a probit (cumulative)
model with Yij = H(Λi(tij) + εij ; η) = M0 + l if Λi(tij) + εij ∈ [η∗l , η∗l+1] for l = 0, . . . ,M − 1,
M0 the minimum value of the marker, η0 = η∗0 = −∞, ηM = η∗M = +∞ and η∗1 = η1,
η∗l = η1 +

∑l
j=2 η

2
j for l > 1 to ensure increasing thresholds η∗0 ≤ η∗1 ≤ . . . ≤ η∗M−1 ≤ η∗M for

the noisy latent process.
Latent process mixed models need two constraints to be identified: one on the location of
the latent process managed by the mean intercept β0 = 0 and the other for the scale of
the latent process managed by σ2

ε = 1. So the vector of parameters to be estimated is
(β>, vec(B)>, σw, ρ, η>)>, where vec(B) is defined in Section 2.1.

2.3. The latent process mixed model for multivariate longitudinal markers
The concept of separation between the structural model for the underlying quantity of interest
and the measurement model for its observations applies naturally to the case where multiple
longitudinal markers of the quantity of interest are observed. It assumes that the underlying
latent process (Λi(t)) defined in Section 2.2 generated K longitudinal markers instead of a
unique one. In this case, the latent process can be seen as the common factor underlying the
markers (Proust et al. 2006; Proust-Lima et al. 2013).
In this multivariate mixed model, the structural model for (Λi(t)) according to time and
covariates is exactly the same as defined in (2) but the measurement model defined in (3)
is extended to the multivariate setting in order to take into account the specific relationship
between the underlying latent process and each longitudinal marker.
Let Ykij be the measure of marker k (k = 1, . . . ,K) for subject i (i = 1, . . . , N) at occasion
j (j = 1, . . . , nki). The corresponding time of measurement is denoted tkij . Note that the
number of repeated measurements nki and the times of measurement can differ according to
the subject and the marker for more flexibility.
The measurement model now takes into account two aspects of the measure:

• The measurement error is accounted for through the definition of the intermediate
variable Ỹkij :

Ỹkij = Λi(tkij) +XY i(tkij)>γk + bki + εkij , (4)
where XY i(tkij) are covariates with a marker-specific effect γk called contrast since∑K
k=1 γk = 0. As in item response theory with differential items functioning (Clauser

and Mazor 1998), they capture a differential marker functioning that could have induced
a measurement bias if not taken into account. The random intercept bki also captures
a systematic deviation for each subject that would not be captured by covariates; bki ∼
N (0, σ2

αk
). The independent random measurement error εkij ∼ N (0, σ2

εk
).

• The marker-specific nonlinear relationship with the underlying quantity of interest is
modeled through the marker-specific link function Hk:

Ykij = Hk(Ỹkij ; ηk), (5)

where each Hk is defined using a rescaled Beta CDF, I-splines or a linear transformation
as detailed in Section 2.2.

As in the univariate version of the latent process mixed model, two constraints are required
to obtain an identified model. In the multivariate setting, the dimension of the latent process
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is constrained by the intercept β0 = 0 (for the location) and the variance of the random
intercept VAR(ui0) = 1 (for the scale) rather than the standard error of one marker-specific
residual error. As a consequence, a random intercept is required and no mean intercept is
allowed in the structural model defined in (2).
The vector of parameters to be estimated is now (β>, vec(B)>, σw, ρ, (γ>k )k=1,K−1, (σαk)k=1,K ,
(η>k )k=1,K , (σεk)k=1,K)>, where vec(B) is defined in Section 2.1.

2.4. The latent class linear mixed model

The linear mixed model assumes that the population of N subjects is homogeneous and
described at the population level by a unique profile XLi(t)>β. In contrast, the latent class
mixed model consists in assuming that the population is heterogeneous and composed of G
latent classes of subjects characterized by G mean profiles of trajectories.
Each subject belongs to one and only one latent class so latent class membership is defined
by a discrete random variable ci that equals g if subject i belongs to latent class g (g =
1, . . . , G). The variable ci is latent; its probability is described using a multinomial logistic
model according to covariates Xci:

πig = P (ci = g|Xci) = eξ0g+X>ciξ1g∑G
l=1 e

ξ0l+X>ciξ1l
, (6)

where ξ0g is the intercept for class g and ξ1g is the q1-vector of class-specific parameters
associated with the q1-vector of time-independent covariates Xci. For identifiability, the scalar
ξ0G = 0 and the vector ξ1G = 0. When no covariate predicts the latent class membership,
this model reduces to a class-specific probability.
The G mean profiles are defined according to time and covariates through latent class-specific
mixed models. The difference with a standard linear mixed model is that both fixed effects
and the distribution of the random effects can be class-specific. For a Gaussian outcome, the
linear mixed model defined in (1) becomes for class g:

Yij |ci=g = XL1i(tij)>β +XL2i(tij)>υg + Zi(tij)>uig + wi(tij) + εij , (7)

where XLi(tij) previously defined is split into XL1i(tij) with common fixed effects β over
classes and XL2i(tij) with class-specific fixed effects υg. The vector Zi(tij) is still associated
with the individual random effects ui|ci=g called uig in Equation 7 whose distributions are
now class-specific. In class g, they have a zero-mean multivariate normal distribution with
variance-covariance matrix ω2

gB, where B is an unspecified variance-covariance matrix and
ωg is a proportional coefficient (ωG=1 for identifiability) allowing for a class-specific intensity
of individual variability. The autocorrelated process wi(t) and the errors of measurement εij
are the same as in Section 2.1.
This extension of the linear mixed model also applies to the latent process mixed model
described in Sections 2.2 and 2.3 by replacing the structural model in (2) by:

Λi(t)|ci=g = XL1i(t)>β +XL2i(t)>υg + Zi(t)>uig + wi(tij). (8)

The location constraint for this model becomes β01 = 0, that is, the mean intercept in the
first class is constrained to 0. The scale constraint remains unchanged. The measurement
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models remain the same by assuming that the heterogeneity in the population only affects
the underlying latent process of interest. The vector of parameters to be estimated defined
in Sections 2.1, 2.2 and 2.3 now also includes ((ξ0g, ξ

>
1g)g=1,G−1, (υ>g )g=1,G, (ωg)g=1,G−1).

2.5. The joint latent class mixed model

The linear mixed model assumes that the missing data are missing at random (Little 1995),
that is, the probability that a value of Y is missing is explained by the observations (dependent
markers Y and covariates X). When this assumption does not hold, the longitudinal process
and the missing data process can be simultaneously modeled in a so-called joint model. More
generally, it is usual that the longitudinal process is associated with a survival process (e.g.,
disease onset, death, disease progression), and the joint model captures this correlation to
provide valid inference.
Among joint models, one can distinguish two families: the shared random effect models (see
Rizopoulos 2012) in which functions of the random effects from the linear mixed model are
included in the survival model, and the joint latent class model (Lin, Turnbull, McCulloch,
and Slate 2002; Proust-Lima, Sène, Taylor, and Jacqmin-Gadda 2014). The latter is a direct
extension of the latent class mixed model described in Section 2.4.
It assumes that each of the G latent classes of subjects is characterized by a class-specific linear
mixed model for the longitudinal process and a class-specific survival model for the survival
process. As such, it is composed of three submodels: the multinomial logistic model defined
in (6), the class-specific linear mixed model defined in (7) or the class-specific latent process
mixed model defined in (3) and (8), and finally the class-specific survival model defined below.
Let T ∗i denote the time-to-event of interest, T̃i the censoring time, Ti = min(T ∗i , T̃i) and
Ei = 1{T ∗i ≤T̃i}

. In latent class g, the risk of an event is described using a proportional hazard
model:

λi(t)|ci=g = λ0g(t)eX
>
Si1ν+X>Si2δg , (9)

where XSi1 and XSi2 are vectors of covariates respectively associated with the vector of
parameters common over classes ν and of class-specific parameters δg. The class-specific
baseline hazard is defined according to a vector of parameters ζg. It can be stratified on the
latent class structure (λ0g(t) = λ0(t; ζg)) or be proportional in each latent class (λ0g(t) =
λ0(t; ζ∗)eζg with eζg the proportional factor and ζG = 0). A series of parametric baseline risk
functions parameterized by a vector ζ are considered:

• Weibull specified either by λ0(t; ζ) = ζ1ζ2t
ζ2−1 or λ0(t; ζ) = ζ1ζ2(ζ1t)ζ2−1 depending on

the transformation used to ensure positivity of parameters;

• piecewise constant specified by λ0(t; ζ) =
∑nz−1
l=1 ζl1{t∈[tl,tl+1]} with nz the number of

knots;

• cubic M-splines specified by λ0(t; ζ) =
∑nz+2
l=1 ζlMl(t) with nz the number of knots and

(Ml(t))l=1,...,nz+2 the basis of cubic M-splines (Proust-Lima et al. 2009).

In these three families of baseline risk functions, parameters are restricted to be positive.
This was ensured in practice by a square transformation or an exponential transformation
(see Section 4.4).
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Instead of a unique cause of event, multiple causes of event can be considered in a competing
setting (Proust-Lima, Dartigues, and Jacqmin-Gadda 2016). This is achieved by denoting
T ∗ip the time to the event of cause p (p = 1, . . . , P ), and T̃i the time to censoring so that
Ti = min(T̃i, T ∗i1, . . . , T ∗iP ) is observed with indicator Ei = p if the event of nature p occurred
first or Ei = 0 if the subject was censored before any occurrence. In this case, the cause-
specific and class-specific proportional hazard model is:

λip(t)|ci=g = λ0gp(t)eX
(p)
Si1
>
νp+X(p)

Si2
>
δgp , (10)

where covariates X(p)
Si1 and X(p)

Si2 and effects νp and δgp can be cause-specific, as well as baseline
risk functions λ0gp. The cause-specific baseline risk functions can be stratified on the latent
classes or proportional across latent classes like when one cause is modeled. The covariate
effects can be cause-specific or the same over causes.
In the joint latent class model, the vector of parameters to be estimated is ((ξ0g, ξ

>
1g)g=1,G−1,

(ζtotTp )p=1,P , (ν>p )p=1,P , (δ>gp)p=1,P,g=1,G, β
>, (υ>g )g=1,G, vec(B)>, (ωg)g=1,G−1), σw, ρ, σε)> where

vec(B) is defined in Section 2.1 and ζtotp includes the vector of class-specific parameters in-
volved in the G λ0gp.

3. Estimation
All these extended mixed models can be estimated within the maximum likelihood framework.
For each model, we note θG the entire vector of parameters involved in the model as estimation
is performed at a fixed number G of latent classes (G = 1 for the homogeneous case). The
log-likelihood l(θG) =

∑N
i=1 log(Li(θG)) with Li the individual contribution to the likelihood

of the model considered.

3.1. Individual contributions to the likelihoods

Linear mixed model

The individual contribution to the likelihood of a linear mixed model as defined in Section 2.1
is:

Li(θ1) = φi(Yi; θ1) (11)

with φi the density function of a multivariate normal distribution with mean µi = XLiβ and
variance Vi = ZiBZ

>
i + Ri + Σi with XLi and Zi the design matrices with row j vectors

XLi(tij)> and Zi(tij)>, Σi = σ2
ε Ini with In the identity matrix of size n and Ri the variance-

covariance matrix for the stochastic process (wi(t)). For example, for element j, j′ and a
Brownian motion, Ri[j, j′] = σ2

w min(tij , tij′).

Latent process mixed model

For continuous link functions, the individual contribution to the likelihood of a latent process
mixed model as defined in Section 2.2 is:

Li(θ1) = φi(Ỹi; θ1)
ni∏
j=1

J(H−1(Yij ; θ1)), (12)
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where φi is the same density function of a multivariate normal variable as defined in Equa-
tion 11, and J is the Jacobian determinant of the inverse of the link function, that is, the
derivative of the linear transformation, the rescaled Beta CDF or the quadratic I-splines.
For discrete link functions (ordinal data with M levels), the individual contribution to the
likelihood of a latent process mixed model as defined in Section 2.2 is written conditionally to
the random effects and as such, no stochastic process is considered for the moment (∀t, wi(t) =
0):

Li(θ1) =
∫ ni∏

j=1
P(Yij |ui; θ1)φu(ui)dui, (13)

where P(Yij |ui; θ1) =
∏M−1
l=0 (Φ(ηl+1 − Λi(tij); θ1)− Φ(ηl − Λi(tij); θ1))1{Yij=l} with Φ the CDF

of a standard Gaussian variable, and φu is the density function of a zero-mean multivariate
normal variable with variance-covariance matrix B.
In the presence of random effects, the integral over the random effects distribution in (13)
needs to be evaluated numerically. This is done using either the univariate Gauss-Hermite
quadrature with 30 points in the presence of a unique random effect or using the multivariate
Gauss-Hermite quadrature implemented by Genz and Keister (1996) otherwise.

Latent process mixed model for multivariate longitudinal markers
Currently, only continuous link functions are considered in the multivariate version of the
latent process mixed model defined in Section 2.3. In this case, the individual contribution
to the likelihood is:

Li(θ1) = φi(Ỹi; θ1)
K∏
k=1

nik∏
j=1

Jk(H−1
k (Ykij)), (14)

where Jk is the Jacobian determinant of the link function H−1
k and φi is the density function

of a multivariate normal variable with mean µ∗i = (µ>1i, . . . , µ>Ki)>, µki = XLikβ + XY ikγk
and variance-covariance matrix V ∗i = Z∗i BZ

∗
i
> + R∗i + Σ∗i . In these definitions, the matrices

Zik, XLik and XY ik have row vectors Zi(tkij), XLi(tkij) and XY i(tkij) for j = 1, . . . , nik,
Z∗i = (Z>i1, . . . , Z>iK)>, R∗i defines the covariance matrix of the stochastic process (wi(t))t∈R+

at times t∗i = {tkij , k = 1, . . . ,K, j = 1, . . . , nik}, and Σ∗i is the K-block diagonal matrix with
kth block Σik = σ2

αk
Jnik +σ2

εk
Inik , Jn the n×n matrix of elements 1, and In the n×n identity

matrix.

Latent class linear mixed model
The individual contribution to the likelihood of a latent class linear mixed model as defined
in Section 2.4 is:

Li(θG) =
G∑
g=1

πigφig(Yi|ci = g; θG), (15)

where πig is given in (6) and φig is the density function of a multivariate normal distribution
with mean µig = XL1iβ+XL2iυg and variance Vig = ZiBgZ

>
i +Ri+Σi and XL.i is the matrix

with row j vector XL.i(tij)>.
Individual contributions to latent process mixed models with latent classes for one or multiple
longitudinal markers are obtained by replacing φig in (15) by the individual contribution given
in (12), (13) or (14) with appropriate class-specific parameters.
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Joint latent class mixed model

The individual contribution to the likelihood of a joint latent class mixed model as defined in
Section 2.5 for a P -cause right-censored time to event is:

Li(θG) =
G∑
g=1

πigφig(Yi|ci = g; θG)e−
∑P

p=1 Ap(Ti|ci=g;θG)
P∏
p=1

λp(Ti | ci = g; θG)1{Ei=p} , (16)

where πig and φig are defined in (15), λp(t | ci = g; θG) is the cause-p-specific instantaneous
hazard defined in (10) and Ap(t | ci = g; θG) is the corresponding cumulative hazard.
With curvilinear longitudinal outcomes, φig is replaced by the individual contribution given
in (12) with appropriate class-specific parameters.
In the case of a left-truncated time-to-event with delayed entry at time T0i, the contribution
for the truncated data becomes LT0

i (θG) = Li(θG)
Si(Ti0; θG) with the marginal survival function in

Ti0: Si(Ti0; θG) =
∑G
g=1 πige

−
∑P

p=1 Ap(Ti0|ci=g;θG).

3.2. Iterative Marquardt algorithm

The log-likelihoods of models based on the mixed model theory can be maximized using
algorithms in the EM family (e.g., Verbeke and Lesaffre 1996; Muthén and Shedden 1999; Xu
and Hedeker 2001 for latent class mixed models) or the Newton-Raphson family (e.g., Proust
and Jacqmin-Gadda 2005 for latent class mixed models). In our work, whatever the type
of model, we chose the latter using an extended Marquardt algorithm because of the better
convergence rate and speed found in previous analyses.
In the extended Marquardt algorithm, the vector of parameters θG is updated until conver-
gence using the following equation for iteration l + 1:

θ
(l+1)
G = θ

(l)
G − δ(H̃

(l))−1∇(L(θ(l)
G )). (17)

Step δ equals 1 by default but is internally modified to ensure that the log-likelihood is
improved at each iteration. The matrix H̃ is a diagonal-inflated Hessian to ensure positive-
definiteness: if necessary, diagonal terms H̃ii are inflated so that H̃ii = Hii + λ[(1− η)|Hii|+
ηtr(H)] where H is the Hessian matrix with diagonal terms Hii, and λ and η are initially
fixed at 0.01 and are reduced if H̃ is positive-definite and increased if not. ∇(L(θ(l)

G )) is the
gradient of the log-likelihood at iteration l. First derivatives are computed by central finite
differences with steps 2×max(10−7, 10−4|θGv|) for parameter v. Second derivatives are com-
puted by forward finite differences with steps max(10−7, 10−4|θGu|) and max(10−7, 10−4|θGv|)
for parameters u and v.
Three convergence criteria are used:

• one based on parameter stability
∑nθ
j=1(θG(j)(l) − θG(j)(l−1))2 ≤ εa;

• one based on log-likelihood stability |L(l) − L(l−1)| ≤ εb;

• one based on the size of the derivatives ∇(L(θ(l)
G ))>H(l)−1∇(L(θ(l)

G ))>
nθ

≤ εd with nθ the length
of θG.
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The default values are εa = εb = εd = 10−4. The thresholds might seem relatively large
but the three convergence criteria must be simultaneously satisfied for convergence and the
criterion based on derivatives is very stringent so that it ensures a good convergence even
at εd = 10−4. A drawback of other algorithms may be that they only converge according
to likelihood or parameter stability, and that in complex settings such as latent class mixed
models or joint latent class mixed models, the log-likelihood can be relatively flat in some
areas of the parameters space so that likelihood or parameter stability does not systematically
ensure convergence to an actual maximum.
An estimate of the variance-covariance matrix of the maximum likelihood estimates (MLE)
V̂ (θ̂G) is provided by the inverse of the Hessian matrix.

4. Implementation
The package currently includes 4 estimation functions:

• Linear mixed models and latent class linear mixed models are estimated with hlme.

• Univariate latent process mixed models possibly including latent classes are estimated
with lcmm.

• Multivariate latent process mixed models possibly including latent classes are estimated
with multlcmm or mlcmm.

• Joint latent class mixed models are estimated with Jointlcmm or jlcmm.

The four estimation functions rely on estimation programs (log-likelihood computation, opti-
mization algorithm) written in Fortran 90. This section describes the calls of these functions
and details the initialization of the iterative algorithm.
The package also includes other functions (generic, post-fit, etc.). Table 1 gives the list of the
main functions. The exhaustive list can be obtained with code ls("package:lcmm"). The
post-fit functions are detailed in Section 5.

4.1. Function hlme

The call of hlme is

hlme(fixed, mixture, random, subject, classmb, ng = 1, idiag = FALSE,
nwg = FALSE, cor = NULL, data, B, convB = 0.0001, convL = 0.0001,
convG = 0.0001, prior, maxiter = 500, subset = NULL, na.action = 1,
posfix = NULL)

Argument fixed defines the two-sided formula for the linear regression at the population level
with the dependent variable (Y ) on the left-hand side and the combination of covariates (XL1
and XL2) with fixed effects on the right-hand side. Argument random defines the one-sided
formula with the covariates having a random effect (Z). Argument subject provides the
name of the identification variable for the random effects. Argument ng indicates the number
of latent classes G. When G > 1, mixture indicates a one-sided formula with the subset of
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Function Description
Estimation functions
hlme Estimation of latent class linear mixed models.
lcmm Estimation of univariate latent process (and latent class) mixed

models.
multlcmm or mlcmm Estimation of multivariate latent process (and latent class) mixed

models.
Jointlcmm or jlcmm Estimation of joint latent class models for longitudinal and time to

event data.
Generic functions
print Brief summary of the estimation.
summary Summary of the estimation and tables of maximum likelihood esti-

mates with standard errors and Wald tests.
plot Different types of plots (residuals, fit, link functions, hazard, etc.).
coef or estimates Vector of maximum likelihood estimates (MLE).
vcov or VarCov Variance-covariance matrix of the MLE.
ranef Matrix of best linear unbiased predictors for the random effects.
residuals or resid Subject-specific residuals.
fitted Subject-specific longitudinal predictions.
fixef Vectors of fixed effects by submodel.
Post-fit functions
WaldMult Univariate and multivariate Wald tests for combinations of param-

eters.
VarCovRE Estimates, standard errors and Wald tests of the parameters consti-

tuting the variance-covariance matrix of the random effects.
postprob Posterior classification stemming from latent class models.
predictY Marginal predictions (possibly class-specific) in the natural scale of

the markers for a profile of covariates.
predictL Marginal predictions (possibly class-specific) in the latent process

scale for a profile of covariates.
fitY Marginal predictions of the longitudinal observations in their natural

scale.
predictlink Confidence intervals for estimated link functions.
cuminc Predictive cumulative incidence of event according to a profile of

covariates.
dynpred Individual dynamic prediction from a joint latent class model.
epoce Estimators of the expected prognostic cross-entropy.
Diffepoce Difference of expected prognostic cross-entropy estimators.
VarExpl Percentage of variance explained by the (latent class) linear mixed

model regression.
Other functions
gridsearch Automatic grid search for latent class models.

Table 1: Brief description of main functions available in package lcmm.
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covariates having a class-specific effect (XL2) and classmb provides the optional covariates
explaining the latent class membership (Xc). An optional argument prior provides a vector
of a priori known class-memberships when relevant (very rare).
Argument idiag indicates whether the variance-covariance matrix for the random effects (B)
is diagonal (TRUE) or unstructured (FALSE by default), the Boolean nwg indicates whether the
matrix B is proportional over classes (ωg 6= 1, g = 1, . . . , G− 1), and cor indicates the nature
of the optional zero-mean Gaussian stochastic process, either a Brownian motion with cor
= BM(time) or a stationary process with cor = AR(time) with time the time variable (by
default, none is included). Argument data provides the name of the dataframe containing the
data in the longitudinal format, that is, with ni rows by subject (or maxk(nik) for multlcmm).
Optional subset provides the vector of rows to be selected in the dataframe and na.action
is an indicator for the management of missing data which are omitted by default.
Argument B specifies the vector of initial values. This argument is described in detail in
Section 4.5. When a vector is specified in B, argument posfix can be used to fix some
parameters to the value indicated in B. These parameters are not estimated. Arguments
convB, convL, convG indicate the thresholds for convergence criteria on the parameters, the
log-likelihood and the derivatives, respectively. Argument maxiter indicates the maximum
number of iterations in the optimization algorithm.

Example of call

The functionalities of hlme are detailed in Section 6.2 using the paquid dataset. We give here
two simple examples of calls with data_hlme, a simulated dataset available in the package:

R> hlme1 <- hlme(Y ~ Time * X1, random = ~ Time, subject = "ID", ng = 1,
+ data = data_hlme)
R> hlme2 <- hlme(Y ~ Time * X1, random = ~ Time, subject = "ID", ng = 2,
+ data = data_hlme, mixture = ~ Time, classmb = ~ X2 + X3, B = hlme1)

For dataset data_hlme, the first call (hlme1) fits a standard linear mixed model in which the
dependent variable Y is explained according to Time, X1 and the interaction between Time and
X1. Two correlated random effects are assumed for the intercept and Time. These random
effects are grouped by ID, the identification variable for the subjects.
The second call fits a 2-class linear mixed model (hlme2) in which the dependent variable Y
is explained again according to Time, X1 and the interaction between Time and X1 but the
intercept and the effect of Time are different in class 1 and 2. The same two correlated random
effects are assumed for the intercept and Time grouped by ID. The latent-class membership
is explained according to two time-independent covariates X2 and X3. Finally, the iterative
algorithm starts from automatic initial values generated from the estimates of model m1 (see
Section 4.5.)

4.2. Function lcmm

The call of lcmm has the same structure as the one of hlme. It is
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lcmm(fixed, mixture, random, subject, classmb, ng = 1, idiag = FALSE,
nwg = FALSE, link = "linear", intnodes = NULL, epsY = 0.5, cor = NULL,
data, B, convB = 1e-04, convL = 1e-04, convG = 1e-04, maxiter = 100,
nsim = 100, prior, range = NULL, subset = NULL, na.action = 1,
posfix = NULL, partialH = FALSE)

Most of the arguments are detailed in Section 4.1. Arguments are added to specify the link
function (H or H−1) in Equation 3. Argument link indicates the nature of the link function,
either link = "linear" for a linear transformation, link = "beta" for a rescaled Beta CDF,
link = "thresholds" for the cumulative probit model or link = "splines" for an I-splines
transformation. In the case of a splines transformation, the number and location of the knots
(5 equidistant knots by default) can be specified by link = "X-type-splines" where X is the
total number of knots (X > 2) and type is equi, quant or manual for knots placed at regular
intervals, at the percentiles of the Y distribution or knots entered manually. In the latter case,
argument intnodes provides the vector of internal knots. Optional argument epsY provides
the constant used to rescale Y with the rescaled Beta CDF. Optional range indicates the
range of Y that should be considered when different from the observed one in the data and
when using splines or Beta CDF transformations only. Finally, nsim indicates the number
of equidistant values within the range of Y at which the estimated link function should be
computed in the output. When the link functions are Beta CDF or splines, option partialH
= TRUE indicates that the corresponding parameters should not be considered in the final
Hessian matrix computation. This might solve problems of convergence due to parameters
at the edge of the parameter space. However, in such situations, fixing the problematic
parameters using posfix usually works better.

Example of call

The functionalities of lcmm are detailed in Section 6.3 using the paquid dataset. We give here
two simple examples of calls with data_lcmm, a simulated dataset available in the package:

R> lcmm1 <- lcmm(Ydep2 ~ poly(Time, degree = 2, raw = TRUE),
+ random = ~ Time, subject = "ID", data = data_lcmm)
R> lcmm2 <- lcmm(Ydep2 ~ poly(Time, degree = 2, raw = TRUE),
+ random = ~ Time, subject = "ID", data = data_lcmm,
+ link = "5-quant-splines")

For dataset data_lcmm, the first call (lcmm1) fits a standard linear mixed model in which
the dependent variable Ydep2 is explained according to a quadratic function of Time at the
population level (fixed effects), and a linear function of Time at the individual level with
two correlated random effects on the intercept and Time (the random effect on the quadratic
function of Time is not relevant on these data). The random effects are grouped by ID, the
identification variable for the subjects. This model could also have been fitted with function
hlme.
The second call (lcmm2) fits exactly the same model except that a nonlinear link function is
considered to normalize Ydep2. The nonlinear function is a basis of quadratic I-splines with
5 knots placed at the quantiles of the Ydep2 distribution.
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4.3. Function multlcmm

The call of multlcmm (or of its shortcut mlcmm) uses the same structures as those of hlme and
lcmm. It is

multlcmm(fixed, mixture, random, subject, classmb, ng = 1, idiag = FALSE,
nwg = FALSE, randomY = FALSE, link = "linear", intnodes = NULL, epsY = 0.5,
cor = NULL, data, B, convB = 1e-04, convL = 1e-04, convG = 1e-04,
maxiter = 100, nsim = 100, prior, range = NULL, subset = NULL,
na.action = 1, posfix = NULL, partialH = FALSE)

To account for the multivariate nature of the model estimated by multlcmm, the left-hand
side of the fixed formula includes the sum of all the dependent variables’ names, and the
right-hand side can now include covariates with a mean effect on the common factor or
marker-specific effects in addition to the mean effect (with contrast(X) instead of X). When
the family of link functions is not the same for all dependent variables, a vector of link function
names is provided in link. Argument intnodes now provides the vector of internal knots
for all the splines link functions involving knots entered manually. Argument range possibly
indicates the range of the dependent variables with transformations splines or Beta CDF
when it differs from the one observed in the data.
The Boolean argument randomY is the only specific argument of multlcmm. It indicates
whether marker-specific random intercepts (bki) should be considered in the measurement
model defined in (4).

Example of call

The functionalities of multlcmm are detailed in Section 6.4 using the paquid dataset. We give
here an example of a call with data_lcmm, a simulated dataset available in the package:

R> mlcmm1 <- multlcmm(Ydep1 + Ydep2 + Ydep3 ~ X1 * poly(Time, degree = 2,
+ raw = TRUE), random = ~ Time, subject = "ID", data = data_lcmm,
+ link = c("linear", "3-quant-splines", "3-quant-splines"))

From dataset data_lcmm, the call fits a latent process mixed model for three dependent
variables Ydep1, Ydep2, Ydep3 in which the latent process underlying the three dependent
variables is explained at the population level (fixed effects) according to a quadratic function
of Time for each level of the binary covariate X1, and at the individual level according to a
linear function of Time with two correlated random effects on the intercept and Time. The
random effects are grouped by ID, the identification variable for the subjects. The three tests
are transformed using a linear transformation for Ydep1 and bases of quadratic I-splines with
one internal knot placed at the median for Ydep2 and Ydep3. No marker-specific random
intercept or marker-specific effects of covariates are considered here.

4.4. Function Jointlcmm

The call of Jointlcmm (or of its shortcut jlcmm) is

Jointlcmm(fixed, mixture, random, subject, classmb, ng = 1, idiag = FALSE,
nwg = FALSE, survival, hazard = "Weibull", hazardtype = "Specific",
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hazardnodes = NULL, TimeDepVar = NULL, link = NULL, intnodes = NULL,
epsY = 0.5, range = NULL, cor = NULL, data, B, convB = 1e-4,
convL = 1e-4, convG = 1e-4, maxiter = 100, nsim = 100, prior,
logscale = FALSE, subset = NULL, na.action = 1, posfix = NULL,
partialH = FALSE)

Most arguments of the Jointlcmm call are the same as those of the hlme or lcmm calls.
Arguments defining the class-specific survival model are added. Argument survival is a two-
sided formula that defines the structure of the survival model. The left-hand side includes
a ‘Surv’ object as defined in the survival package (Therneau 2017). The right-hand side
indicates the time-independent covariates involved in the survival model with mixture(X)
when covariate X has a class-specific effect, cause(X) when X has a different effect on all the
causes of event or cause1(X) when X has an effect on type 1 cause (similar functions for
causes 2 to P ). No time-dependent covariates are considered in the survival part.
Argument hazard indicates the family of the baseline risk functions or the vector of families
of the cause-specific baseline risk functions in the presence of competing events. The program
includes "Weibull" for 2-parameter Weibull hazards, "piecewise" for piecewise constant
hazards or "splines" for hazards approximated using M-splines. By default, "piecewise"
and "splines" consider 5 regular knots within the range of event times. The first knot is
at the minimum time of entry and the last knot is at the maximum observed time. The
number and locations of the knots can be specified by indicating "X-type-piecewise" or
"X-type-splines" where X is the total number of knots (X > 2) and type is equi, quant
or manual for knots placed at regular intervals, at the percentiles of the event times distri-
bution or knots entered manually. In the latter case, argument hazardnodes provides the
corresponding vector of internal knots. Argument hazardtype indicates whether the baseline
risk functions are stratified on the latent classes (hazardtype = "Specific") or propor-
tional across latent classes (hazardtype = "PH") or common over latent classes (hazardtype
= "Common").
Two parameterizations are implemented to ensure the positivity of the parameters of the
baseline risk functions: logscale = TRUE uses the exponential transformation and logscale
= FALSE uses the square transformation. For Weibull, these parameterizations also imply
two different specifications of the baseline hazard λ0(t; ζ) = ζ1ζ2t

ζ2−1 with logscale = TRUE
(by noting ζ∗ the vector of unconstrained parameters to be estimated, ζ = exp(ζ∗)) and
λ0(t; ζ) = ζ1ζ2(ζ1t)ζ2−1 with logscale = FALSE (by noting ζ∗ the vector of unconstrained
parameters to be estimated, ζ = (ζ∗)2). Indeed, depending on the range of times to events,
one specification or the other may be better suited to ensure convergence of the program. The
optional argument nsim indicates the number of points within the range of event times at
which the estimated baseline risk functions and cumulative risk functions should be computed
in the output.

Example of call
The functionalities of Jointlcmm are detailed in Section 6.5 using the paquid dataset. We
give here an example of calls with data_lcmm, a simulated dataset available in the package:

R> jlcmm1 <- Jointlcmm(Ydep1 ~ X1 * Time, random = ~ Time, subject = "ID",
+ survival = Surv(Tevent, Event) ~ X1 + X2, hazard = "3-quant-splines",
+ data = data_lcmm)
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R> jlcmm2 <- Jointlcmm(Ydep1 ~ Time * X1, random = ~ Time, subject = "ID",
+ mixture = ~ Time, survival = Surv(Tevent, Event) ~ X1 + mixture(X2),
+ hazard = "3-quant-splines", hazardtype = "PH", ng = 2,
+ data = data_lcmm, B = jlcmm1)

For dataset data_lcmm, the first call (jlcmm1) fits a linear mixed model and a survival model
independently (since there is a unique latent class by default). The linear mixed model
explains the dependent variable Ydep1 according to a linear trajectory of Time specific to
each level of X1 at the population level and accounts for two random effects on the intercept
and Time at the individual level. The grouping variable is ID. The survival model for the
censored observed time Tevent (with Event the indicator of event) involves a baseline risk
function approximated by a basis of cubic M-splines with one internal knot placed at the
quantiles of the times of event and an effect of X1 and X2.
The second call (jlcmm2) fits the model in the case of two latent classes. The linear mixed
model has the same definition as above except that the linear trajectory according to Time is
now specific to each latent class while the effects of X1 and X1:Time remain the same in the
two classes. No covariate explains the latent class membership. In the survival model, the
baseline risk function is still approximated by cubic M-splines but the risk of event is now
proportional in each latent class and the effect of X2 is class-specific. The effect of X1 remains
common over classes. Initial values for the iterative algorithm are automatically specified
from jlcmm1 estimates (see below).

4.5. Initial values

Iterative estimation algorithms need to be initialized using a set of initial values for the vector
of parameters θ. In each estimation function, argument B specifies the initialization of the
algorithm. Depending on the number of latent classes, several techniques are available.

In the presence of a unique latent class
The default initial values are defined in Table 2. Alternatively, the user can enter any vector
of specific initial values in argument B.

In the presence of at least two latent classes
In the presence of a mixture, initial values are crucial for the correct convergence of the
program so specific attention should be paid to this section. Indeed, in mixture modeling,
the log-likelihood may have multiple maxima and algorithms based on maximization of the
likelihood might converge to local maxima (Redner and Walker 1984). This means that
convergence towards the global maximum of the log-likelihood is not ensured when running
the algorithm once. To ensure the convergence to the global maximum, we thus strongly
recommend running each model several times from different sets of initial values (typically
from a grid of initial values).
There are currently four different ways of initializing the algorithm when G > 1:

1. Automatic specification from G = 1 model estimates (B = m1 with m1 the model with
1 class): All common parameters over classes are those obtained with G = 1. For
each class-specific parameter generically called θg, initial value θ(0)

g is automatically
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Parameters Initial value
Linear mixed model in hlme, lcmm, multlcmm, Jointlcmm
β & υ (intercepts in hlme) Ȳ
β & υ (coefficients) 0
B Iq
σw 1
ρ 0
σε (except for multcmm) 1

Outcome-specific regression in multlcmm
σαk , k = 1, . . . ,K 1
γk, k = 1, . . . ,K 0
σεk , k = 1, . . . ,K 1

Link functions in lcmm, multlcmm, Jointlcmm (for k = 1, . . . ,K)
ηk for link = "linear" (Ȳ , 1)
ηk for link = "splines" (−2, 0.1, . . . , 0.1)
ηk for link = "beta" (0,− log(2), 0.7, 0.1)
ηk for link = "thresholds" & M = 2 0
ηk for link = "thresholds" & M > 2

(
2U0.98(−med(Y )+min (Y )+1)

M−2 ,√
2U0.98
M−2 , . . . ,

√
2U0.98
M−2

)
Survival or cause-specific model in Jointlcmm (for p = 1, . . . , P )
νp & δp 0
ζp for hazard = "Weibull" & logscale = TRUE

(
log

( ∑
1{Ei=p}∑
Ti1{Ei=p}

)
, 0
)

ζp for hazard = "Weibull" & logscale = FALSE
(√ ∑

1{Ei=p}∑
Ti1{Ei=p}

, 1
)

ζp for hazard = "piecewise" & logscale = TRUE (− log(nz − 1)){1,nz−1}

ζp for hazard = "piecewise" & logscale = FALSE
(√

1
nz−1

)
{1,nz−1}

ζp for hazard = "splines" & logscale = TRUE (− log(nz + 2)){1,nz+2}

ζp for hazard = "splines" & logscale = FALSE
(√

1
nz+2

)
{1,nz+2}

Table 2: Automatic choice of initial values for the iterative estimation process when G = 1. Ȳ ,
med(Y ) and min(Y ) respectively indicates the mean, median and minimum of the dependent
variable, (Ti, Ei) the couple of survival data, and nz the number of knots for the baseline risk
functions.

set at θ(0)
g = θ̂G=1 +

(
g − G+ 1

2

)
× ̂SE(θ̂G=1) where θ̂G=1 and ̂SE(θ̂G=1) are the

corresponding estimated parameter and standard error under the assumption G = 1.
There are exceptions for ξ0g and ξ1g (for g = 1, . . . , G − 1) set to 0, ωg (for g =
1, . . . , G − 1) set to 1 and the proportional coefficients over classes for hazardtype =
"PH" in Jointlcmm set to g

2 for g = 1, . . . , G− 1. Note that this automatic specification
does not ensure convergence towards the global maximum, may be inappropriate for a
specific analysis, and thus should only be used for first attempts.
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2. No specification (B = NULL, by default): For an easier discovery of the program, the
program can run without specifying any initial values. The same strategy as above is
used except that the model with G = 1 is first estimated internally. This should be
avoided whenever possible as it substantially increases the estimation time.

3. Random draws from G = 1 model estimates (B = random(m1) with m1 the model with
1 class): Instead of using an automatic specification of the initial values from G = 1
model, the initial values can be drawn from the asymptotic distribution of the MLE of
the G = 1 model (N (θ̂G=1,

̂V (θ̂G=1))). This permits the use of an automatic grid search
as implemented in the gridsearch function (see below).

4. Specification of the initial values (B = Binit with Binit a vector of initial values): The
user can provide any set of initial values. This is particularly useful to manually change
initial values or constraining parameters to specific values. The most difficult part is to
enter the correct number of parameters.

An automatic grid search is also implemented in the generic function gridsearch. It consists
in running the estimation function for a maximum of m iterations from B random sets of
initial values. The parameters corresponding to the best log-likelihood after m iterations are
used as initial values for the final estimation of the parameters. This procedure is derived
from the emEM technique (Biernacki, Celeux, and Govaert 2003).
The different specifications of initial values described in this section are illustrated in Sec-
tions 6.2 and 6.5, including the grid search.

5. Post-fit computations
A series of post-fit analyses and computations is available in the package, most of which
are common to the four estimation functions (hlme, lcmm, multlcmm, Jointlcmm). The next
subsections describe the post-fit computations. In the following, the hat symbol (̂ ) denotes
the value of a parameter/vector/matrix/function computed at the maximum likelihood esti-
mates θ̂G.

5.1. Maximum likelihood estimates

This subsection applies to the four estimation functions. The table of the maximum likelihood
estimates along with their estimated standard errors are given in function summary. The
vector is directly given by function estimates or in output value best.
The estimated variance-covariance matrix of the maximum likelihood estimates is given in
function VarCov and in output value V. In the latter, the upper triangular matrix is given as
a vector.
The parameters of the variance-covariance matrix of the random effects are not directly
estimated although they are provided in the summaries. The Cholesky parameters used for
the estimation are available in output vector cholesky or in function estimates. Estimated
standard errors of the parameters of the variance-covariance matrix are computed in function
VarCovRE.
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Function WaldMult provides univariate and multivariate Wald tests for combinations of pa-
rameters from ‘hlme’, ‘lcmm’, ‘multlcmm’ or ‘Jointlcmm’ objects.

5.2. Posterior classification

In models involving latent classes, a posterior classification of the subjects in each latent class
can be made. It is based on the posterior calculation of the class-membership probabilities
and is used to characterize the classification of the subjects as well as to evaluate the goodness-
of-fit of the model (Proust-Lima et al. 2014).

Class-membership posterior probabilities and classification

The posterior class-membership probabilities are computed using the Bayes theorem as the
probability of belonging to a latent class given the information collected. In a longitudinal
model, they are defined for subject i and latent class g as

π̂
(Y )
ig = P(ci = g|XLi, Xci, Yi, θ̂G) = πigφig(Yi|ci = g; θ̂G)∑G

l=1 πilφil(Yi|ci = l; θ̂G)
. (18)

In a joint latent class model, the complete information also includes the time-to-event so that
for subject i and latent class g, the posterior class-membership probability can also be defined
for subject i and latent class g as

π̂
(Y,T )
ig = P(ci = g|XLi, Xci, XSi, Yi, Ti, Ei, θ̂G)

=
π̂igφig(Yi|ci = g; θ̂G)e−

∑P

p=1 Ap(Ti|ci=g;θ̂G)∏P
p=1 λp(Ti | ci = g; θ̂G)1{Ei=p}∑G

l=1 πilφil(Yi|ci = l; θ̂G)e−
∑P

p=1 Ap(Ti|ci=l;θ̂G)∏P
p=1 λp(Ti | ci = l; θ̂G)1{Ei=p}

.
(19)

A posterior classification can be obtained from these posterior probabilities by assigning
each subject to the latent class in which they have the highest posterior class-membership
probability (ĉi = argmaxg(π̂

(Y )
ig ) or ĉi = argmaxg(π̂

(Y,T )
ig )).

In ‘hlme’, ‘lcmm’ and ‘multlcmm’ objects, the output table pprob provides the posterior proba-
bilities π̂(Y )

ig and the corresponding posterior classification. In ‘Jointlcmm’ objects, the output
table pprob provides the posterior probabilities π̂(Y,T )

ig and the corresponding posterior clas-
sification while pprobY provides the posterior probabilities based only on the longitudinal
model π̂(Y )

ig .

Posterior classification

The posterior classification can be used to assess the goodness-of-fit of the model (for the
selection of the number of latent classes for instance) and the discrimination of the latent
classes. Many indicators can be derived from it (Proust-Lima et al. 2014). The package
lcmm provides two indicators in the function postprob:

• The proportion of subjects classified in each latent class with a posterior probability
above 0.7, 0.8 and 0.9. This indicates the proportion of subjects not ambiguously
classified in each latent class.
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Table 3: Posterior classification table provided in function postprob. π̂(.)
ig refers to π̂(Y )

ig except
for a ‘Jointlcmm’ object in which case it refers to π̂(Y,T )

ig .

• The posterior classification table as defined in Table 3 which computes the mean of the
posterior probabilities of belonging to the latent class among the subjects classified a
posteriori in each latent class. A perfect classification would provide ones in the diagonal
and zeros elsewhere. In practice, high diagonal terms indicate a good discrimination of
the population.

5.3. Longitudinal predictions and residuals
The four estimation functions rely on the linear mixed model theory, and as such empirical
Bayes estimates and longitudinal predictions are naturally derived.

Empirical Bayes estimates of the random effects
Empirical Bayes estimates of the random effects ui are provided in the output of the four
estimation functions with the output table predRE and generic function ranef.
For a standard linear mixed model defined in Equation 1, these empirical Bayes estimates are
ûi = B̂Z>i V̂

−1
i (Yi −XLiβ̂).

In the latent process mixed models defined by Equations 2 and 3 (for the univariate case) or 4
(for the multivariate case), the empirical Bayes estimates are computed when only continuous
link functions are assumed. In these cases, the random effects are predicted in the latent
process scale by ûi = B̂Z>i V̂

−1
i ( ˆ̃Yi − XLiβ̂) where ˆ̃Yi is the vector of transformed marker

values ˆ̃Yij = H−1(Yij ; η̂) for j = 1, . . . , ni in the univariate case, or of transformed markers
values ˆ̃Ykij = H−1

k (Ykij ; η̂k) with k = 1, . . . ,K and j = 1, . . . , nki in the multivariate case.
In models involving latent classes, class-specific empirical Bayes estimates are defined as
ûig = ω̂2

gB̂Z
>
i V̂
−1
ig (Yi − XL1iβ̂ − XL2iυ̂g) for linear mixed models (defined in (7)) or ûig =

ω̂2
gB̂Z

>
i V̂
−1
ig ( ˆ̃Yi−XL1iβ̂−XL2iυ̂g) for latent process mixed models with continuous link func-

tions (defined in (8)). Marginal empirical Bayes estimates are obtained as ûi =
∑G
g=1 π̂

(Y )
ig ûig.

Longitudinal predictions and residuals
Predictions and residuals of the linear mixed model are computed in the four estimation
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functions and provided in output table pred. Both subject-specific and marginal predic-
tions/residuals are computed.
For hlme and Jointlcmm (with link = NULL), marginal and subject-specific predictions are
respectively Ŷ (M)

ij = XLi(tij)>β̂ and Ŷ (SS)
ij = XLi(tij)>β̂ + Zi(tij)>ûi when G = 1. Marginal

and subject-specific residuals are R(M)
ij = Yij − Ŷ (M)

ij and R(SS)
ij = Yij − Ŷ (SS)

ij .

For G > 1, class-specific marginal and subject-specific predictions are respectively Ŷ (M)
ijg =

XL1i(tij)>β̂ + XL2i(tij)>υ̂g and Ŷ
(SS)
ijg = XL1i(tij)>β̂ + XL2i(tij)>υ̂g + Z>ij ûig. To compute

residuals, class-specific marginal and subject-specific predictions are averaged over latent
classes as Ŷ (M)

ij =
∑G
g=1 π̂igŶ

(M)
ijg and Ŷ

(SS)
ij =

∑G
g=1 π̂

(Y )
ig Ŷ

(SS)
ijg , and corresponding residu-

als are R(M)
ij = Yij − Ŷ (M)

ij and R(SS)
ij = Yij − Ŷ (SS)

ij .
For lcmm, multlcmm and Jointlcmm (with link != NULL), the exact same predictions are
computed and provide marginal and subject-specific predictions ( ˆ̃Y (M)

ijg and ˆ̃Y (SS)
ijg for lcmm

or Jointlcmm, ˆ̃Y (M)
kijg and ˆ̃Y (SS)

kijg for multlcmm) in the latent process scale. Residuals in the
latent process scale are: R(M)

ij = ˆ̃Yij − ˆ̃Y (M)
ij and R(SS)

ij = ˆ̃Yij − ˆ̃Y (SS)
ij for lcmm or Jointlcmm;

R
(M)
kij = ˆ̃Ykij− ˆ̃Y (M)

kij and R(SS)
kij = ˆ̃Ykij− ˆ̃Y (SS)

kij for multlcmm. Note that in these two functions,
variable obs in table pred contains the transformed data ˆ̃Y .
By default (option which = "residuals"), function plot provides graphs of the marginal
and subject-specific residuals. With option which = "fit", function plot provides graphs of
the class-specific marginal and subject-specific mean evolutions with time and the observed
class-specific mean evolution and its 95% confidence bounds. In these graphs, time is split
in time intervals provided in the input. When G > 1, the class-specific mean evolutions are
weighted by the class-membership probabilities.

Special case of longitudinal predictions in the marker scale for latent process mixed
models
For ‘Jointlcmm’ and ‘multlcmm’ objects and ‘lcmm’ objects with continuous link functions,
fitY computes the marginal longitudinal predictions in the marker scale (Ŷ (M)

ij or Ŷ (M)
kij ).

When G = 1, they are computed using a numerical integration of H(ỹij ; η̂) for a ‘lcmm’ or
‘Jointlcmm’ object or of Hk(ỹkij ; η̂k) for a ‘multlcmm’ object over the multivariate Gaussian
distribution of ỹi at the maximum likelihood estimate. In these formulae, a Newton algorithm
is used to compute H or Hk values. When G > 1, the same method is used but conditional
to each latent class g. Numerical integrations are managed by a Monte Carlo method.
For ‘lcmm’ objects with thresholds link functions, fitY computes the marginal longitudinal
predictions in the marker scale (Ŷij) as: Ŷij = M0 +M − 1−

∑M−1
l=1 Φ

(
η̂∗l −

ˆ̃Yij√
V̂ (Ỹij)

)
where Φ is

the standard Gaussian cumulative distribution function.

Predicted mean trajectory according to a profile of covariates
The predicted mean trajectory of the markers Y according to an hypothetical profile of
covariates can be computed (and represented). This is provided by the functions predictY
and the plot function applied on ‘predictY’ objects.
The computations are exactly the same as described previously, except that the longitudinal
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predictions are computed for an hypothetical (new) subject from a table containing the hy-
pothetical covariate information required in XLi, Zi, Xci, XSi and referred to as X. The pre-
dicted mean vector of the marker E(Y |X = x, θ̂G) is computed as the (class-specific) marginal
vector of predictions for hlme and Jointlcmm. For ‘lcmm’, ‘Jointlcmm’ and ‘multlcmm’ ob-
jects, the predicted mean vector of values for the latent process are computed in function
predictL and the predicted mean vector of values for the markers are computed in function
predictY. In the latter case, two numerical integrations can be specified: either a Monte
Carlo method or a Gauss-Hermite technique. The latter neglects the correlation between the
repeated measurements.
Instead of the mean trajectory at the point estimate θ̂G, the posterior prediction distribution
can be approximated by a Monte Carlo method by computing the quantity for a large number
of draws from the asymptotic distribution of the parameters N (θ̂G, V̂ (θ̂G))). Then the 2.5%,
50% and 97.5% percentiles provide the mean prediction and its 95% confidence interval.

5.4. Link functions

This section is specific to lcmm, multlcmm and Jointlcmm (with link != NULL).

Predicted link functions

Table estimlink provides the (inverse of the) link functions computed for a vector of marker
values at the maximum likelihood estimates η̂ in outputs of lcmm and multlcmm. These
estimated link functions can be plotted using function plot with option which = "link"
or which = "linkfunction". Function predictlink further computes the 50%, 2.5% and
97.5% percentiles of the posterior distribution of the estimated (inverse) link functions using a
Monte Carlo method (large set of draws from the asymptotic distribution of the parameters).
This function can also be used to compute the estimated link function at specific marker
values.

Discrete log-likelihood and derived criteria

In the case of ordinal outcomes with a large number of levels, the latent process mixed
model estimated in function lcmm with continuous nonlinear link functions constitutes an
approximation of the cumulative probit mixed model (much easier to estimate as it does
not involve any numerical integration over the random effects). However, it is important to
assess whether the approximation is acceptable. This can be done by using the discrete log-
likelihood and the derived information criteria: discrete AIC (Proust-Lima et al. 2013) and
UACV (Commenges, Proust-Lima, Samieri, and Liquet 2015) that are computed with respect
to the counting measure instead of the Lebesgue measure. These measures are computed in
the summary and in the output of lcmm.

5.5. Prediction of the event

This section is specific to the Jointlcmm function.

Profile of survival functions according to covariates

Class-specific baseline risks are plotted in the plot function with either option which =
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"baselinerisk" or which = "hazard". Class-specific survival functions in the category of
reference can also be plotted with plot and option which = "survival" when there is a
unique cause of event. Otherwise, predicted cumulative incidences of a specific cause of event
can be computed with cuminc and plotted with the associated plot method for any profile
of covariates given in the input. Again, a Monte Carlo method is implemented to provide
the 2.5%, 50% and 97.5% percentiles of the posterior distribution of the predicted cumulative
incidences.

Individual dynamic predictions
Individual dynamic predictions as developed in Proust-Lima et al. (2009, 2014) can be com-
puted with dynpred and plotted with the associated plot method. They consist of the pre-
dicted probability of event (of a cause p if multiple causes) in a window of time (s, s+ t) com-
puted for any subject according to his/her own longitudinal information collected up to time
s that is Y (s)

i = {Yij , j = 1, . . . , ni, such as tij ≤ s}, X(s)
i = {XL1i(tij), XL2i(tij), Zi(tij), j =

1, . . . , ni, such as tij ≤ s}, XSi = {XSi1, XSi2} and Xci. For cause p (p = 1, . . . , P ), it is:

P(Ti ≤ s+ t, δi = p|Ti ≥ s, Y (s)
i , X

(s)
i , XSi, Xci; θG) =

=
∑G
g=1 P(ci = g|Xci; θG)P(Ti ∈ (s, s+ t], δi = p|XSi, ci = g; θG)f(Y (s)

i |X
(s)
i , ci = g; θG)∑G

g=1 P(ci = g|Xci; θG)Si(s|XSi, ci = g; θG)f(Y (s)
i |X

(s)
i , ci = g; θG)

,

(20)

where the density of the longitudinal outcomes f(Y (s)
i |X

(s)
i , ci = g; θG) in class g, the class-

specific membership probability P(ci = g|Xci; θG) and the class-specific survival function
Si(s|XSi, ci = g; θG) are defined similarly as in Section 3.1. Finally, with a unique cause of
event, the class-specific cumulative incidence is:

P(Ti ∈ (s, s+ t], δi = 1|XSi, ci = g;θG) = P(Ti ∈ (s, s+ t]|XSi, ci = g; θG)
= Si(s|XSi, ci = g; θG)− Si(s+ t|XSi, ci = g; θG).

(21)

With multiple causes of event (P > 1), the class-specific cause-specific cumulative incidence
is:

P(Ti ∈ (s, s+ t], δi = p|XSi, ci = g; θG) =∫ s+t

s
λp(u | ci = g; θG) exp

(
−

P∑
l=1

Al(u | ci = g; θG)
)
du

(22)

with λp(t | ci = g; θG) the cause-p-specific instantaneous hazard defined in (10) and Ap(t |
ci = g; θG) the corresponding cumulative hazard. When P > 1, the cause-specific cumulative
incidence requires the numerical computation of the integral. This is achieved by a 50-point
Gauss-Legendre quadrature.
Individual dynamic predictions can be computed for any subject (included or not in the
dataset used for estimating the model). Times s and t are respectively called the landmark
time and the horizon of prediction. Computation in dynpred is performed for any vectors of
landmark times and of horizons.
Individual predictions are computed either in θ̂ or the posterior distribution is approximated
using a Monte Carlo method with a large number of draws, in which case the 2.5%, 50% and
97.5% percentiles provide the median prediction and its 95% confidence interval.
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Assessment of predictive accuracy
Predictive accuracy of dynamic predictions based on ‘Jointlcmm’ objects can be assessed
using the prognostic information criterion EPOCE (Commenges, Liquet, and Proust-Lima
2012) implemented in the function epoce. Predictive accuracy is computed from a vector of
landmark times on the subjects still at risk at the landmark time and the biomarker history
up to the landmark time.
On external data, epoce provides the mean prognostic observed log-likelihood (MPOL) for
each landmark time. When applied to the same dataset as used for the estimation, the
function provides for each landmark time both the MPOL and the cross-validated observed
log-likelihood (CVPOL). The latter corrects the MPOL estimate for possible over-optimism
by approximated cross-validation. Further details on these estimators can be found in Com-
menges et al. (2012) and Proust-Lima et al. (2014).
Predictive accuracy of two models can also be compared using Diffepoce which computes
the difference in EPOCE estimators along with a 95% tracking interval. Functions epoce and
Diffepoce include a plot functionality.
Further predictive accuracy measures can be computed by using timeROC (Blanche, Proust-
Lima, Loubère, Berr, Dartigues, and Jacqmin-Gadda 2015) on individual dynamic predictions
computed by dynpred from a ‘Jointlcmm’ object.

6. Examples
This section details a series of examples of models estimated with the hlme, lcmm, multlcmm
and Jointlcmm functions described in Section 4. All the examples are based on the paquid
dataset provided with the lcmm R package. Examples also illustrate the initial values specifi-
cation described in Section 4.5 and the post-fit computations and generic functions described
in Sections 5.1 to 5.5 and listed in Table 1.
The first step consists in loading package lcmm. This automatically makes the datasets in
the package available.

R> library("lcmm")

6.1. Paquid data

The paquid dataset consists of a random subsample of 500 subjects (identified by ID) from the
Paquid prospective cohort study (Letenneur, Commenges, Dartigues, and Barberger-Gateau
1994) that aimed at investigating cerebral and functional aging in southwestern France. Re-
peated measures of three cognitive tests (MMSE, IST, BVRT), physical dependency (HIER, a
4-level factor) and depression symptomatology (CESD) were collected over a maximum pe-
riod of 20 years along with age at the visit (age), age at dementia diagnosis or last visit
(agedem) and dementia diagnosis (dem). Three time-independent socio-demographic vari-
ables are provided: education (CEP), gender (male), age at entry in the cohort (age_init).
In some cases, owing to the very asymmetric distribution of MMSE, a normalized version
of MMSE (normMMSE) obtained with package NormPsy (Philipps, Amieva, Andrieu, Dufouil,
Berr, Dartigues, Jacqmin-Gadda, and Proust-Lima 2014) will be analyzed instead of crude
MMSE scores. For computation and interpretation purposes, age will usually be replaced
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by age65, which is the age minus 65 and divided by 10. Centering around 65 makes the
interpretation of the intercepts easier and division by 10 reduces numerical problems due to
too large ages in quadratic models (and so too small effects or variances of random effects).
The following lines create the variables normMMSE and age65, and display the first lines of the
paquid dataset:

R> library("NormPsy")
R> paquid$normMMSE <- normMMSE(paquid$MMSE)
R> paquid$age65 <- (paquid$age - 65) / 10
R> head(paquid)

ID MMSE BVRT IST HIER CESD age agedem dem age_init CEP male normMMSE
1 1 26 10 37 2 11 68.50630 68.5063 0 67.4167 1 1 61.18
2 2 26 13 25 1 10 66.99540 85.6167 1 65.9167 1 0 61.18
3 2 28 13 28 1 15 69.09530 85.6167 1 65.9167 1 0 74.61
4 2 25 12 23 1 18 73.80720 85.6167 1 65.9167 1 0 55.98
5 2 24 13 16 3 22 84.14237 85.6167 1 65.9167 1 0 51.44
6 2 22 9 15 3 NA 87.09103 85.6167 1 65.9167 1 0 43.74

age65
1 0.350630
2 0.199540
3 0.409530
4 0.880720
5 1.914237
6 2.209103

6.2. hlme examples

The latent class linear mixed models implemented in hlme are illustrated by the study of
the quadratic trajectories of normMMSE with age65 adjusted for CEP and assuming correlated
random effects for the functions of age65. The next line estimates the corresponding standard
linear mixed model (1 latent class) in which CEP is in interaction with age functions:

R> m1a <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) * CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ data = paquid, ng = 1)
R> summary(m1a)

Heterogenous linear mixed model
fitted by maximum likelihood method

hlme(fixed = normMMSE ~ poly(age65, degree = 2, raw = TRUE) * CEP,
random = ~poly(age65, degree = 2, raw = TRUE), subject = "ID",
ng = 1, data = paquid)

Statistical Model:
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Dataset: paquid
Number of subjects: 500
Number of observations: 2214
Number of observations deleted: 36
Number of latent classes: 1
Number of parameters: 13

Iteration process:
Convergence criteria satisfied
Number of iterations: 27
Convergence criteria: parameters= 2.2e-06

: likelihood= 5.7e-08
: second derivatives= 3.9e-14

Goodness-of-fit statistics:
maximum log-likelihood: -8919.93
AIC: 17865.87
BIC: 17920.66

Maximum Likelihood Estimates:

Fixed effects in the longitudinal model:

coef Se Wald p-value
intercept 66.42132 3.53110 18.810 0.00000
poly(age65, degree = 2, raw = TRUE)1 2.13956 4.69993 0.455 0.64894
poly(age65, degree = 2, raw = TRUE)2 -4.72910 1.51977 -3.112 0.00186
CEP 11.28973 3.94099 2.865 0.00417
poly(age65, degree = 2, raw = TRUE)1:CEP 4.75517 5.33204 0.892 0.37249
poly(age65, degree = 2, raw = TRUE)2:CEP -1.90682 1.75031 -1.089 0.27597

Variance-covariance matrix of the random-effects:
intercept

intercept 211.7965
poly(age65, degree = 2, raw = TRUE)1 -214.0782
poly(age65, degree = 2, raw = TRUE)2 54.7010

poly(age65, degree = 2, raw = TRUE)1
intercept
poly(age65, degree = 2, raw = TRUE)1 451.5095
poly(age65, degree = 2, raw = TRUE)2 -143.7151

poly(age65, degree = 2, raw = TRUE)2
intercept
poly(age65, degree = 2, raw = TRUE)1
poly(age65, degree = 2, raw = TRUE)2 58.48017
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coef Se
Residual standard error: 10.07493 0.20284

The first part of the summary provides information about the dataset, the number of subjects,
observations, observations deleted (since by default, missing observations are deleted), latent
classes and parameters. Then, it details the convergence process with the number of iterations,
the convergence criteria and the most important information which is whether the model
converged correctly: “convergence criteria satisfied”. The next block provides the maximum
log-likelihood, Akaike information criterion and Bayesian information criterion. Finally, tables
of estimates are given with the estimated parameter, the estimated standard error, the Wald
test statistics (with normal approximation) and the corresponding p value. For the random-
effect distribution, the estimated matrix of covariance of the random effects is displayed (see
Section 5.1 for details). Finally, the standard error of the residuals is given along with its
estimated standard error.
The effect of CEP does not seem to be associated with change over age of normMMSE. This is
formally assessed using a multivariate Wald test:

R> WaldMult(m1a, pos = c(5, 6),
+ name = "CEP interaction with age65 & age65^2")

Wald Test p_value
CEP interaction with age65 & age65^2 1.38243 0.50097

Based on this, we now consider the model with an adjustment for CEP only on the intercept:

R> m1 <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID", ng = 1,
+ data = paquid)

The next lines provide the estimation of corresponding models for 2 and 3 latent classes using
the automatic specification for the initial values when G > 1:

R> m2 <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ ng = 2, data = paquid, B = m1)
R> m3 <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ ng = 3, data = paquid, B = m1)

Option B = m1 automatically generates initial values from the maximum likelihood estimates
of a 1-class model (here, m1). An alternative option is not to specify option B or specify B =
NULL but this is not recommended since it induces the internal pre-estimation of the model
with G = 1 (i.e., m1). As the model with G = 1 is generally estimated first to define the
structure of the model, this option uselessly slows the estimation procedure.
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With mixture models, convergence toward a global maximum is never guaranteed because of
the existence of local maxima. It is thus recommended to fit the model several times from
different sets of initial values. This can be done by pre-specifying different vectors of initial
values or by randomly and repeatedly generating initial values. In the following example, the
initial values are pre-specified by the user: Parameters of the variance-covariance matrix were
taken at the estimated values of the linear mixed model and arbitrary initial values were tried
for the class-specific trajectories:

R> m2b <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ subject = "ID", ng = 2, data = paquid,
+ B = c(0, 60, 40, 0, -4, 0, -10, 10, 212.869397, -216.421323,
+ 456.229910, 55.713775, -145.715516, 59.351000, 10.072221))

An alternative is to randomly generate the initial values from the asymptotic distribution
of the estimates of the 1-class model (here, m1). Note that the seed was defined here for
replication purposes only.

R> set.seed(1)
R> m2c <- hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ data = paquid, ng = 2, B = random(m1))

Finally, gridsearch function can be used to run an automatic grid search. In the next
examples with G = 2 and G = 3 classes (m2d and m3b, respectively), hlme is run for a
maximum of 15 iterations from 30 random vectors of initial values. The estimation procedure
is then finalized only for the initial values that provided the best log-likelihood after 15
iterations.

R> m2d <- gridsearch(hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) +
+ CEP, random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ data = paquid, ng = 2, verbose = FALSE), rep = 30, maxiter = 15,
+ minit = m1)
R> m3b <- gridsearch(hlme(normMMSE ~ poly(age65, degree = 2, raw = TRUE) +
+ CEP, random = ~ poly(age65, degree = 2, raw = TRUE),
+ mixture = ~ poly(age65, degree = 2, raw = TRUE), subject = "ID",
+ data = paquid, ng = 3, verbose = FALSE), rep = 30, maxiter = 15,
+ minit = m1)

The estimation process of a set of models (usually with a varying number of latent classes)
can be summarized with summarytable. The function gives the log-likelihood, the number of
parameters, the Bayesian information criterion, and the posterior proportion of each class:

R> summarytable(m1, m2, m2b, m2c, m2d, m3, m3b)
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G loglik npm BIC %class1 %class2 %class3
m1 1 -8920.623 11 17909.61 100.0
m2 2 -8899.228 15 17891.67 12.4 87.6
m2b 2 -8899.228 15 17891.67 87.6 12.4
m2c 2 -8899.228 15 17891.67 12.4 87.6
m2d 2 -8899.228 15 17891.67 87.6 12.4
m3 3 -8891.351 19 17900.78 4.0 85.8 10.2
m3b 3 -8890.148 19 17898.37 87.4 0.8 11.8

In this example, the optimal number of latent classes is two according to the BIC. The
posterior classification, defined in Section 5.2, is obtained with:

R> postprob(m2)

Posterior classification:
class1 class2

N 62.0 438.0
% 12.4 87.6

Posterior classification table:
--> mean of posterior probabilities in each class

prob1 prob2
class1 0.8054 0.1946
class2 0.1270 0.8730

Posterior probabilities above a threshold (%):
class1 class2

prob>0.7 61.29 90.18
prob>0.8 58.06 69.18
prob>0.9 43.55 47.95

The first class includes a posteriori 62 subjects (12.4%) while class 2 includes 438 (87.6%)
subjects. Subjects were classified in class 1 with a mean posterior probability of 80.5%, and
in class 2 with a mean posterior probability of 87.3%. In class 1, 61.3% were classified with
a posterior probability above 0.7 while 90.2% of the subjects were classified in class 2 with a
posterior probability above 0.7.
The goodness-of-fit of the model can be assessed by displaying the residuals as in Figure 1
and the mean predictions of the model as in Figure 2 according to the time variable given in
var.time (see Section 5.3 for computation details):

R> plot(m2)
R> plot(m2, which = "fit", var.time = "age65", bty = "l", ylab = "normMMSE",
+ xlab = "(age-65)/10", lwd = 2)
R> plot(m2, which = "fit", var.time = "age65", bty = "l", ylab= "normMMSE",
+ xlab = "(age-65)/10", lwd = 2, marg = FALSE)
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Normal QQ Plot for marginal residuals
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Figure 1: Subject-specific and marginal residuals in the two-class linear mixed model using
plot.

Class-specific predictions, defined in Section 5.3, can be computed for any data contained in
a dataframe as soon as all the covariates specified in the model are included in the dataframe.
In the next lines, such a dataframe is created by generating a vector of age values between 65
and 95 and defining CEP at 1 or 0. The predictions are computed with predictY and plotted
with the associated plot functionality or by using standard R tools as illustrated below and
in Figure 3.

R> datnew <- data.frame(age = seq(65, 95, length = 100))
R> datnew$age65 <- (datnew$age - 65) / 10
R> datnew$CEP <- 0
R> CEP0 <- predictY(m2, datnew, var.time = "age")
R> datnew$CEP <- 1
R> CEP1 <- predictY(m2, datnew, var.time = "age")
R> plot(CEP1, lty = 1,lwd = 2, type = "l", col = 1:2 , ylim = c(20, 100),
+ bty = "l", xlab = "age in year", ylab = "normalized MMSE",
+ legend = NULL)
R> plot(CEP0, lty = 2, lwd = 2, type = "l", col = 1:2, ylim = c(20, 100),
+ add = TRUE)
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Figure 2: Weighted mean (marginal on the left, subject-specific on the right) predictions
and weighted mean observations according to intervals of age in the two-class linear mixed
model using plot and option which = "fit".
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model.
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R> legend(x = "topright", bty = "n", ncol = 3, lty = c(NA, NA, 1, 1, 2, 2),
+ col = c(NA, NA, 1, 2, 1, 2), legend = c("G=1 (12.4%):", "G=2 (87.6%):",
+ "EL+", "EL+", "EL-", "EL-"), lwd = 2)

6.3. lcmm examples

The latent process mixed models implemented in lcmm are illustrated by the study of the linear
trajectory of depressive symptoms (as measured by the CES-D scale) with age65 adjusted for
male and assuming correlated random effects for the intercept and age65. The next lines
estimate the corresponding latent process mixed model with different link functions:

R> mlin <- lcmm(CESD ~ age65 * male, random = ~ age65, subject = "ID",
+ data = paquid)
R> mbeta <- lcmm(CESD ~ age65 * male, random = ~ age65, subject = "ID",
+ data = paquid, link = "beta")
R> mspl <- lcmm(CESD ~ age65 * male, random = ~ age65, subject = "ID",
+ data = paquid, link = "splines")
R> mspl5q <- lcmm(CESD ~ age65 * male, random = ~ age65, subject = "ID",
+ data = paquid, link = "5-quant-splines")

Objects mlin, mbeta, mspl and mspl5q are latent process mixed models that assume the
exact same trajectory for the underlying latent process but different link functions: linear,
BetaCDF, I-splines with 5 equidistant knots (default with link = "splines") and I-splines
with 5 knots at percentiles, respectively. Note that mlin reduces to a standard linear mixed
model (link = "linear" by default). The only difference with a ‘hlme’ object is the param-
eterization for the intercept and the residual standard error that are considered as rescaling
parameters.
CES-D is an ordinal scale with more than 50 levels so it might be estimated with a cumulative
probit mixed model, even if it is rarely done in practice because of the very high number of
parameters induced as well as the substantial additional numerical complexity.
Owing to the numerical integration at each evaluation of the log-likelihood when assuming a
threshold link function, estimation of the cumulative probit mixed model can be very long.
We thus recommend estimating the model first without random effects to obtain satisfactory
initial values for the thresholds before any inclusion of random effects, as shown in the next
lines:

R> mord0 <- lcmm(CESD ~ age65 * male, random = ~ -1, subject = "ID",
+ data = paquid, link = "thresholds")
R> binit <- vector("numeric", length = 56)
R> binit[1:6] <- mspl$best[1:6]
R> binit[7:56] <- mord0$best[4:53]
R> mord <- lcmm(CESD ~ age65 * male, random = ~ age65, subject = "ID",
+ data = paquid, link = "thresholds", B = binit)

Note here that mord takes a lot of time to be estimated (can be more than 1 hour depending
on the computer).
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The output for a ‘lcmm’ object is very similar to that of a ‘hlme’ object, as shown for mspl5q
for example:

R> summary(mspl5q)

General latent class mixed model
fitted by maximum likelihood method

lcmm(fixed = CESD ~ age65 * male, random = ~age65, subject = "ID",
link = "5-quant-splines", data = paquid)

Statistical Model:
Dataset: paquid
Number of subjects: 500
Number of observations: 2104
Number of observations deleted: 146
Number of latent classes: 1
Number of parameters: 13
Link function: Quadratic I-splines with nodes

0 2 6 12 52

Iteration process:
Convergence criteria satisfied
Number of iterations: 19
Convergence criteria: parameters= 7.6e-09

: likelihood= 9.2e-08
: second derivatives= 1.8e-14

Goodness-of-fit statistics:
maximum log-likelihood: -6320.08
AIC: 12666.17
BIC: 12720.96

Discrete posterior log-likelihood: -6309.09
Discrete AIC: 12644.18

Mean discrete AIC per subject: 12.6442
Mean UACV per subject: 12.6439
Mean discrete LL per subject: -12.6182

Maximum Likelihood Estimates:

Fixed effects in the longitudinal model:

coef Se Wald p-value
intercept (not estimated) 0
age65 0.42421 0.06279 6.756 0.00000
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male -0.83140 0.19742 -4.211 0.00003
age65:male 0.23371 0.10301 2.269 0.02327

Variance-covariance matrix of the random-effects:
intercept age65

intercept 1.89911
age65 -0.39567 0.1711

Residual standard error (not estimated) = 1

Parameters of the link function:

coef Se Wald p-value
I-splines1 -2.03816 0.13469 -15.132 0.00000
I-splines2 1.04627 0.02461 42.510 0.00000
I-splines3 0.74190 0.03773 19.665 0.00000
I-splines4 0.98399 0.03237 30.400 0.00000
I-splines5 1.55606 0.04480 34.735 0.00000
I-splines6 0.93273 0.16614 5.614 0.00000
I-splines7 1.38790 0.17687 7.847 0.00000

As mentioned earlier, the intercept of the latent process and the standard error of the mea-
surement errors are respectively constrained to 0 and 1, and the parameters involved in the
link functions are given at the end. Models involving discrete and continuous link functions
can be compared using the discrete AIC provided in the summary. In this case, the model with
a link function approximated by I-splines with 5 knots placed at the quantiles provides the
best fit (12644.18 versus 12652.52 for the cumulative probit model, for example). To choose
the optimal link function and further evaluate the nonlinearity of the relationship between
the longitudinal marker and its underlying normal latent process, the estimated link functions
are provided in output value estimlink and can be plotted as follows (plot in Figure 4). In
this graph, confidence bands are obtained and plotted with function predictlink:

R> col <- rainbow(5)
R> plot(mlin, which = "linkfunction", bty = "l", ylab = "CES-D", lwd = 2,
+ col = col[1], xlab = "underlying latent process")
R> plot(mbeta, which = "linkfunction", add = TRUE, col = col[2], lwd = 2)
R> plot(mspl, which = "linkfunction", add = TRUE, col = col[3], lwd = 2)
R> plot(mspl5q, which = "linkfunction", add = TRUE, col = col[4], lwd = 2)
R> plot(mord, which = "linkfunction", add = TRUE, col = col[5], lwd = 2)
R> legend(x = "topleft", legend = c("linear", "beta",
+ "splines (5equidistant)", "splines (5 at quantiles)", "thresholds"),
+ lty = 1, col = col, bty = "n", lwd = 2)
R> linkspl5q <- predictlink(mspl5q, ndraws = 2000)
R> plot(linkspl5q, add = TRUE, col = col[4], lty = 2)
R> legend(legend = c("95% confidence bands", "for splines at quantiles"),
+ x = "left", lty = c(2, NA), col = c(col[4], NA), bty = "n", lwd = 1)
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Figure 4: Estimated link functions for CES-D in a latent process mixed model using function
plot with option which = "linkfunction", and function predictlink: linear, Beta CDF,
I-splines with 5 knots at quantiles or equidistant, and thresholds. 95% confidence bands are
only given for the I-splines with 5 knots at quantiles.

As for hlme, plots for the residuals and the predictions versus observations can be provided
but they are now in the latent process scale (only the code is provided here):

R> plot(mspl5q)
R> plot(mspl5q, which = "fit", var.time = "age65", xlab = "(age - 65) / 10",
+ bty = "l", break.times = 8, ylab = "latent process", lwd = 2,
+ marg = FALSE, ylim = c(-1, 2))

Predictions in the latent process scale and in the outcome scale are computed according to
a profile of covariates using respectively functions predictL and predictY at the maximum
likelihood estimates or using a Monte Carlo method with argument draws = TRUE (by default
2000 draws). The following lines give the code for computing the predictions in the original
scale (CES-D):

R> datnew <- data.frame(age = seq(65, 95, length = 100))
R> datnew$age65 <- (datnew$age - 65) / 10
R> datnew$male <- 0
R> women <- predictY(mspl5q, newdata = datnew, var.time = "age",
+ draws = TRUE)
R> datnew$male <- 1
R> men <- predictY(mspl5q, newdata = datnew, var.time = "age", draws = TRUE)

The predicted trajectories can be plotted from these predictions as described below; the
corresponding plot is displayed in Figure 5.
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Figure 5: Predicted CES-D trajectories versus age according to gender with 95% confidence
bands computed with function predictY.

R> plot(women, lwd = c(2, 1), type = "l", col = 6, ylim = c(0, 20),
+ xlab = "age in year", ylab = "CES-D", bty = "l", legend = NULL)
R> plot(men, add = TRUE, col = 4, lwd = c(2, 1))
R> legend(x = "topleft", bty = "n", ncol = 2, lty = c(1, 1, 2, 2),
+ col = c(6, 4, 6, 4), lwd = c(2, 2, 1, 1),
+ legend = c("women", "men", " 95% CI", " 95% CI"))

In this example, only one latent class was assumed but a higher number of latent classes could
be envisaged using the exact same syntax as shown in Section 6.2. The corresponding post-fit
functions also apply with the same syntax.

6.4. multlcmm examples

The latent process mixed models for multivariate longitudinal data implemented in multlcmm
are illustrated by the study of the quadratic trajectory with time of the global cognitive
level defined as the common factor underlying three psychometric tests: MMSE, BVRT and IST.
Here the time scale is years since entry into the cohort and the model is adjusted for age
at entry. To further investigate the effect of gender, both an effect on the common factor
and differential effects (contrasts) on each marker are included. Correlated random effects
on the time functions are considered, as well as a Brownian motion with cor = BM(time)
and a marker-specific random intercept with randomY = TRUE. The next lines estimate the
corresponding latent process mixed model with Beta CDF link functions and provide the
summary output:

R> paquid$time <- (paquid$age - paquid$age_init)
R> paquid$age0_centered <- paquid$age_init - 75
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R> mult <- multlcmm(MMSE + IST + BVRT ~ age0_centered + male +
+ contrast(male) + time + I(time^2 / 10),
+ random = ~ time + I(time^2 / 10), subject = "ID", data = paquid,
+ randomY = TRUE, cor = BM(time), link = c("beta", "beta", "beta"))
R> summary(mult)

General latent class mixed model
fitted by maximum likelihood method

multlcmm(fixed = MMSE + IST + BVRT ~ age0_centered + male + contrast(male) +
time + I(time^2/10), random = ~time + I(time^2/10), subject = "ID",
randomY = TRUE, link = c("beta", "beta", "beta"), cor = BM(time),
data = paquid)

Statistical Model:
Dataset: paquid
Number of subjects: 500
Number of observations: 6216
Number of latent classes: 1
Number of parameters: 30
Link functions: Standardised Beta CdF for MMSE

Standardised Beta CdF for IST
Standardised Beta CdF for BVRT

Iteration process:
Convergence criteria satisfied
Number of iterations: 16
Convergence criteria: parameters= 1.2e-10

: likelihood= 1.1e-08
: second derivatives= 3.6e-13

Goodness-of-fit statistics:
maximum log-likelihood: -14374.6
AIC: 28809.21
BIC: 28935.65

Maximum Likelihood Estimates:

Fixed effects in the longitudinal model:

coef Se Wald p-value
intercept (not estimated) 0.00000
age0_centered -0.10941 0.01133 -9.657 0.00000
male 0.14755 0.11882 1.242 0.21431
time -0.12226 0.01878 -6.511 0.00000
I(time^2/10) -0.02396 0.00975 -2.459 0.01394
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Contrasts on male (p=0.00027)
MMSE -0.07482 0.06917 -1.082 0.27940
IST -0.26814 0.07853 -3.415 0.00064
BVRT** 0.34296 0.08807 3.894 0.00010

Variance-covariance matrix of the random-effects:
(the variance of the first random effect is not estimated)

intercept time I(time^2/10)
intercept 1.00000
time 0.00385 0.01399
I(time^2/10) -0.00729 -0.00467 0.00298

coef Se
BM standard error: 0.30856 0.04186

MMSE IST BVRT
Residual standard error: 1.01369 0.92830 1.42295
Standard error of the random effect: 0.57499 0.85364 0.88877

Parameters of the link functions:

coef Se Wald p-value
MMSE-Beta1 1.42040 0.07114 19.966 0.00000
MMSE-Beta2 -0.24691 0.08368 -2.951 0.00317
MMSE-Beta3 0.45613 0.02603 17.521 0.00000
MMSE-Beta4 0.06458 0.00580 11.125 0.00000
IST-Beta1 -0.03694 0.05647 -0.654 0.51295
IST-Beta2 -0.42183 0.07554 -5.584 0.00000
IST-Beta3 0.65192 0.01561 41.776 0.00000
IST-Beta4 0.08294 0.00676 12.262 0.00000
BVRT-Beta1 0.40165 0.08063 4.982 0.00000
BVRT-Beta2 -0.26390 0.12251 -2.154 0.03124
BVRT-Beta3 0.55731 0.01977 28.185 0.00000
BVRT-Beta4 0.06290 0.00632 9.952 0.00000

** coefficient not estimated but obtained from the others as minus the sum
of them

In this example, squared time was divided by 10 in order to avoid very small numbers for
the corresponding fixed effect and variance of the random effect. The summary has the same
appearance as the summaries of ‘hlme’ or ‘lcmm’ objects. In addition to the fixed effects on
the latent process (common factor), the marker-specific contrasts are given and their global
significance is tested with a multivariate Wald test. Then the estimated variance-covariance
of the random effects and the standard error of the marker-specific intercept (“Standard
error of the random effect”) are given along with the standard error of the independent
Gaussian error (“Residual standard error”). Finally, the marker-specific link function
parameters are provided. Note that in multlcmm, the intercept of the latent process and the
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Figure 6: Estimated link functions for MMSE, BVRT and IST with 95% confidence bands using
predictlink.

variance of the random intercept are respectively constrained to 0 and 1.
As for ‘lcmm’ objects, the estimated link function can be plotted with function plot and option
"linkfunction" or with the 95% confidence bands using predictlink as shown below and
in Figure 6:

R> plot(mult, which = "linkfunction", col = c(1, 4, 6), lwd = 2)
R> CI <- predictlink(mult)
R> plot(CI, col = c(1, 4, 6), lwd = 2)
R> head(CI$pred)

Yname Yvalues transfY_50 transfY_2.5 transfY_97.5
1 MMSE 0.0000000 -7.039481 -8.272866 -6.088553
2 MMSE 0.3030303 -7.005178 -8.214649 -6.062041
3 MMSE 0.6060606 -6.969232 -8.158112 -6.040532
4 MMSE 0.9090909 -6.931033 -8.103282 -6.006305
5 MMSE 1.2121212 -6.895605 -8.055205 -5.975374
6 MMSE 1.5151515 -6.856988 -8.010372 -5.949715

Note here that the predicted values of the link functions shown above are the median (50%),
and the 2.5% and 97.5% percentiles of 2000 draws generated from the asymptotic distribution.
As such, they may vary depending on the seed.
The percentage of variance explained by the common latent process (that is ∀t, VAR(Λ(t))

VAR(Yk(t)))
can be computed at a given time with function VarExpl. Note that VarExpl is also available
with ‘lcmm’, ‘hlme’ and ‘Jointlcmm’ objects. In these cases, it computes the percentage of
variance not explained by the measurement error.
Here is the call for the explained variance at time 0 and time 5 in model mult:

R> VarExpl(mult, values = data.frame(time = 0))
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class1
%Var-MMSE 42.40560
%Var-IST 38.60366
%Var-BVRT 26.21439

R> VarExpl(mult, values = data.frame(time = 5))

class1
%Var-MMSE 56.01423
%Var-IST 52.09580
%Var-BVRT 38.06074

In this example, the latent process explains between 26% and 42% of the total variance of
the markers at time 0, and between 38% and 56% after 5 years.
The model was estimated with a unique latent class but the exact same function also applies
with a higher number of latent classes specified in input of multlcmm according to the same
syntax as explained in Section 6.2. All the functions described in the hlme and lcmm sections
(i.e., Section 6.2 and Section 6.3) also apply to a ‘multlcmm’ object.

6.5. Jointlcmm examples

The joint latent class mixed models implemented in Jointlcmm are illustrated by the study of
the trajectories of normMMSE with age and the associated risk of dementia. Indeed, cognitive
change over time and the risk of dementia are two processes that are closely linked. Their joint
study is useful both to better understand the natural history of cognitive aging and dementia,
and to provide dynamic tools to evaluate the individual risk of dementia based on observed
repeated cognitive measures. For the sake of simplicity and because this illustration only aims
at explaining the function implementation, we do not take into account the competing risk
of death although this could be done with the package, and neglecting death in the dementia
context may lead to biased estimates of dementia incidence.
In this example, we assumed class-specific quadratic trajectories of normMMSE with age65
adjusted for CEP, and we jointly modelled the risk of dementia according to CEP and male
assuming class-specific Weibull baseline risk functions with age. No covariates are included
in the class-membership model. Note that the survival model only handles time-independent
covariates. In this illustration, the delayed entry into the cohort at age age_init was taken
into account in the estimation process. The observed time of event was agedem and the
indicator of event was dem. We selected the 499 subjects for whom agedem > age_init:

R> paquidS <- paquid[paquid$agedem > paquid$age_init, ]

The next lines give the code for estimating the joint latent class mixed model with one latent
class, i.e., the model assuming independence between the cognitive measures and time to
dementia.

R> mj1 <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 1)



42 lcmm: Extended Mixed Models Using Latent Classes and Processes in R

From this model, joint latent class mixed models with two to four classes are estimated using
the automatic specification of the initial values:

R> mj2 <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 2, B = mj1)
R> mj3 <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 3, B = mj1)
R> mj4 <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 4, B = mj1)

Function summarytable provides a table summarizing the results of these four models:

R> summarytable(mj1, mj2, mj3, mj4)

G loglik npm BIC %class1 %class2 %class3 %class4
mj1 1 -9449.079 15 18991.35 100.00000
mj2 2 -9337.187 21 18804.84 78.95792 21.04208
mj3 3 -9449.079 27 19065.90 0.00000 100.00000 0.00000
mj4 4 -9337.187 33 18879.39 0.00000 78.95792 21.04208 0

This table provides the maximum log-likelihood, the number of parameters npm, the BIC and
the posterior proportion of each latent class. It is useful to compare the different models
estimated and select the most appropriate one. Here, we first see that for each additional
latent class, there is a 6-parameter increase. This corresponds to the additional class-specific
parameters: the proportion of the class, the two Weibull parameters, and the three fixed
effects for the quadratic trajectory (intercept, time and time squared).
The two-class model provides a better BIC than the one-class model and posterior classes
with proportions 21% and 79%. With the automatic choice of initial values, models with three
and four latent classes reached local maxima (but without correct convergence thanks to the
derivative criterion): mj3 reached the one-class solution of mj1, and mj4 reached the two-class
solution of mj2. This illustrates once again that default initial values do not necessarily lead
to a global maximum (and a convergence), and that multiple sets of initial values should be
systematically tried. The models were thus reestimated with various sets of initial values
specified in B. For example, the following code illustrates a reestimation of the three-class
model using estimates of the two-class model as initial values along with arbitrary initial
values for an additional class:

R> Binit <- rep(0, length(mj2$best) + 6)
R> Binit[c(2, 5:10, 12, 13, 15, 16, 18, 19:(length(Binit)))] <- mj2$best
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R> Binit[c(1, 3, 4, 11, 14, 17)] <- c(0, 0.11, 4, 70, 0, 0)
R> mj3b <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 3, B = Binit)

Similarly for the four-class model:

R> Binit <- rep(0, length(mj3b$best) + 2 + 3 + 1)
R> Binit[c(1, 2, 4:7, 10:15, 17:19, 21:23, 25:length(Binit))] <- mj3b$best
R> Binit[c(3, 8, 9, 16, 20, 24)] <- c(0, 0.1, 10, 60, 5, -10)
R> mj4b <- Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male,
+ hazard = "Weibull", subject = "ID", data = paquidS, ng = 4, B = Binit)

A grid search can also be used for the three- and four-class models. The next lines provide
the code with 30 random vectors of initial values and a maximum of 15 iterations for selecting
the best log-likelihood from which the estimation procedure can be finalized.

R> mj3c <- gridsearch(rep = 30, maxiter = 15, minit = mj1,
+ Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male, hazard = "Weibull",
+ subject = "ID", data = paquidS, ng = 3, verbose = FALSE))
R> mj4c <- gridsearch(rep = 30, maxiter = 15, minit = mj1,
+ Jointlcmm(normMMSE ~ poly(age65, degree = 2, raw = TRUE) + CEP,
+ mixture = ~ poly(age65, degree = 2, raw = TRUE),
+ random = ~ poly(age65, degree = 2, raw = TRUE),
+ survival = Surv(age_init, agedem, dem) ~ CEP + male, hazard = "Weibull",
+ subject = "ID", data = paquidS, ng = 4, verbose = FALSE))

The trials can be summarized using:

R> summarytable(mj1, mj2, mj3, mj3b, mj3c, mj4, mj4b, mj4c)

G loglik npm BIC %class1 %class2 %class3 %class4
mj1 1 -9449.079 15 18991.35 100.00000
mj2 2 -9337.187 21 18804.84 78.95792 21.042084
mj3 3 -9449.079 27 19065.90 0.00000 100.000000 0.000000
mj3b 3 -9294.952 27 18757.64 68.33667 18.637275 13.026052
mj3c 3 -9294.952 27 18757.64 13.02605 68.336673 18.637275
mj4 4 -9337.187 33 18879.39 0.00000 78.957916 21.042084 0.00000
mj4b 4 -9267.481 33 18739.98 69.13828 13.827655 3.006012 14.02806
mj4c 4 -9285.207 33 18775.43 27.65531 9.819639 14.028056 48.49699
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The model with four latent classes mj4b is selected as providing the lowest BIC. Note however
that the model with five latent classes should also be estimated to ensure that the model
with four latent classes provides the best BIC – we did not do it here to avoid additional
computations. Note also that the grid search, as defined here with 30 replicates and 15
iterations, did not provide the global maximum for four classes. This might happen as the
method only reduces the odds of converging towards a local maximum. Other grid searches
could be tested by changing the number of replicates and/or iterations.
The summary of the selected four-class joint model is given below:

R> summary(mj4b)

Joint latent class model for quantitative outcome and competing risks
fitted by maximum likelihood method

Jointlcmm(fixed = normMMSE ~ poly(age65, degree = 2, raw = TRUE) +
CEP, mixture = ~poly(age65, degree=2, raw=TRUE), random = ~poly(age65,
degree=2, raw=TRUE), subject = "ID", ng = 4, survival = Surv(age_init,
agedem, dem) ~ CEP + male, hazard = "Weibull", data = paquidS)

Statistical Model:
Dataset: paquidS
Number of subjects: 499
Number of observations: 2213
Number of latent classes: 4
Number of parameters: 33
Event 1:

Number of events: 128
Class-specific hazards and
Weibull baseline risk function

Iteration process:
Convergence criteria satisfied
Number of iterations: 37
Convergence criteria: parameters= 9.1e-05

: likelihood= 1.5e-07
: second derivatives= 7.3e-11

Goodness-of-fit statistics:
maximum log-likelihood: -9267.48
AIC: 18600.96
BIC: 18739.98
Score test statistic for CI assumption: 30.667 (p-value=0)

Maximum Likelihood Estimates:

Fixed effects in the class-membership model:
(the class of reference is the last class)
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coef Se Wald p-value
intercept class1 0.89729 0.20360 4.407 0.00001
intercept class2 0.24518 0.24919 0.984 0.32518
intercept class3 -1.19317 0.35708 -3.341 0.00083

Parameters in the proportional hazard model:

coef Se Wald p-value
event1 +/-sqrt(Weibull1) class 1 0.10121 0.00039 259.466 0.00000
event1 +/-sqrt(Weibull2) class 1 7.04817 0.82050 8.590 0.00000
event1 +/-sqrt(Weibull1) class 2 0.10567 0.00037 284.423 0.00000
event1 +/-sqrt(Weibull2) class 2 6.91442 0.50276 13.753 0.00000
event1 +/-sqrt(Weibull1) class 3 0.11421 0.00080 142.606 0.00000
event1 +/-sqrt(Weibull2) class 3 5.57068 0.73739 7.555 0.00000
event1 +/-sqrt(Weibull1) class 4 0.10955 0.00039 278.049 0.00000
event1 +/-sqrt(Weibull2) class 4 6.39438 0.42368 15.092 0.00000
CEP -0.66581 0.26350 -2.527 0.01151
male 0.43642 0.29473 1.481 0.13867

Fixed effects in the longitudinal model:

coef Se Wald
intercept class1 65.30225 3.38062 19.317
intercept class2 57.39464 5.26865 10.894
intercept class3 83.22500 9.26143 8.986
intercept class4 65.50576 4.93682 13.269
poly(age65, degree = 2, raw = TRUE)1 class1 4.62181 3.73950 1.236
poly(age65, degree = 2, raw = TRUE)1 class2 19.31410 6.05887 3.188
poly(age65, degree = 2, raw = TRUE)1 class3 -64.10563 16.27356 -3.939
poly(age65, degree = 2, raw = TRUE)1 class4 15.15505 6.72560 2.253
poly(age65, degree = 2, raw = TRUE)2 class1 -3.25830 1.08352 -3.007
poly(age65, degree = 2, raw = TRUE)2 class2 -11.44706 1.80143 -6.354
poly(age65, degree = 2, raw = TRUE)2 class3 16.81947 6.30089 2.669
poly(age65, degree = 2, raw = TRUE)2 class4 -16.26249 2.15066 -7.562
CEP 12.80547 1.20942 10.588

p-value
intercept class1 0.00000
intercept class2 0.00000
intercept class3 0.00000
intercept class4 0.00000
poly(age65, degree = 2, raw = TRUE)1 class1 0.21648
poly(age65, degree = 2, raw = TRUE)1 class2 0.00143
poly(age65, degree = 2, raw = TRUE)1 class3 0.00008
poly(age65, degree = 2, raw = TRUE)1 class4 0.02424
poly(age65, degree = 2, raw = TRUE)2 class1 0.00264
poly(age65, degree = 2, raw = TRUE)2 class2 0.00000
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poly(age65, degree = 2, raw = TRUE)2 class3 0.00760
poly(age65, degree = 2, raw = TRUE)2 class4 0.00000
CEP 0.00000

Variance-covariance matrix of the random-effects:
intercept

intercept 235.93031
poly(age65, degree = 2, raw = TRUE)1 -251.67613
poly(age65, degree = 2, raw = TRUE)2 74.24158

poly(age65, degree = 2, raw = TRUE)1
intercept
poly(age65, degree = 2, raw = TRUE)1 439.6308
poly(age65, degree = 2, raw = TRUE)2 -139.0736

poly(age65, degree = 2, raw = TRUE)2
intercept
poly(age65, degree = 2, raw = TRUE)1
poly(age65, degree = 2, raw = TRUE)2 45.49113

coef Se
Residual standard error 9.94241 0.19331

The summary of a ‘Jointlcmm’ object is very similar to the summaries of ‘hlme’ or ‘lcmm’
objects (depending on whether a link function was assumed in Jointlcmm). The main dif-
ference is that in addition to estimates of the multinomial model and of the mixed model,
estimates from the survival model are also given. The summary also provides the statistic of
a score test for the conditional independence assumption (see Jacqmin-Gadda, Proust-Lima,
Taylor, and Commenges 2010; Proust-Lima et al. 2014 for more details). Note here that the
conditional independence assumption between the longitudinal and survival processes given
the latent classes is rejected although the statistic of the test was much lower with four classes
than with three or two.
Post-fit functions plot and predictY (along with its plot functionality) described in Sec-
tion 6.2 are also available for ‘Jointlcmm’ objects. plot provides longitudinal residuals (with
option which = "residuals") and the comparison between observed and predicted longi-
tudinal data (with option which = "fit") as shown below with subject-specific predictions
(and in Figure 7):

R> plot(mj4b, which = "fit", var.time = "age65", marg = FALSE,
+ break.times = 10, bty = "l", ylab = "normMMSE",
+ xlab = "Age in decades from 65 years")

Class-specific predicted longitudinal trajectories can be computed with predictY for a given
covariate profile, and can be plotted with plot. The baseline survival and baseline risks
functions can be plotted with function plot and options which = "survival" and which
= "hazard". Here is the code for the predicted mean longitudinal trajectories and baseline
survival functions in each class of the four-class joint model:



Journal of Statistical Software 47

● ● ●
● ●

●
●

●

●

0.5 1.0 1.5 2.0 2.5 3.0

0
20

40
60

80

Weighted subject−specific predictions

Age in decades from 65 years

no
rm

M
M

S
E

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

class 1 :
class 2 :
class 3 :
class 4 :

pred
pred
pred
pred

obs
obs
obs
obs

CI (obs)
CI (obs)
CI (obs)
CI (obs)

Figure 7: Weighted observations and weighted mean of subject-specific predictions from the
joint model with four latent classes.

R> datnew <- data.frame(age65 = seq(0, 3, length = 100))
R> datnew$male <- 0
R> datnew$CEP <- 0
R> par(mfrow = c(1, 2))
R> mj4b.pred <- predictY(mj4b, newdata = datnew, var.time = "age65")
R> plot(mj4b.pred, bty = "l", ylim = c(0, 80), legend.loc = "bottomleft",
+ ylab = "normMMSE", xlab = "age in decades from 65 years", lwd = 2)
R> plot(mj4b, which = "survival", lwd = 2, legend.loc = FALSE, bty = "l",
+ xlab = "age in years", ylab = "dementia-free probability")

Class-specific risk functions and cumulative risk functions are also provided in the output
value predSurv.
As for other objects in package lcmm, the classification can be summarized with function
postprob:

R> postprob(mj4b)

Posterior classification based on longitudinal and time-to-event data:
class1 class2 class3 class4

N 345.00 69.00 15.00 70.00
% 69.14 13.83 3.01 14.03

Posterior classification table:
--> mean of posterior probabilities in each class

prob1 prob2 prob3 prob4
class1 0.7188 0.1902 0.0093 0.0817
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Figure 8: Marginal predicted trajectories of normMMSE and associated survival curves in each
of the four latent classes for a woman with low educational level.

class2 0.1155 0.8224 0.0000 0.0621
class3 0.0355 0.0254 0.8873 0.0518
class4 0.0565 0.1137 0.0319 0.7978

Posterior probabilities above a threshold (%):
class1 class2 class3 class4

prob>0.7 49.28 71.01 86.67 67.14
prob>0.8 40.87 65.22 86.67 54.29
prob>0.9 31.30 59.42 73.33 52.86

Posterior classification based only on longitudinal data:
class1 class2 class3 class4

N 344.00 71.00 16.00 68.00
% 68.94 14.23 3.21 13.63

The classification provided in the classification table is satisfactory with mean posterior prob-
ability in each class above 71% and up to 88.7%. Note that here, two posterior classifications
are provided, the main one based on all the information, and the classification based only
on the longitudinal information. The corresponding classifications along with the posterior
class-membership probabilities are provided in output values pprob and pprobY.
One objective of joint models may be the dynamic prediction of the event. Function epoce
computes the predictive ability of the models using the expected prognostic observed cross-
entropy (EPOCE) at different landmark times. When comparing different models, epoce can
be plotted to visualize the predictive abilities at different landmark times. The difference in
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the predictive abilities of the two models can also be computed with the Diffepoce function
and plotted with the associated plot function. Here is an example of the code:

R> landmark <- c(70, 72, 75, 77, 80, 82, 85, 87, 90)
R> epoce1 <- epoce(mj1, pred.times = landmark, var.time = "age65",
+ fun.time = function(x) { 10 * x + 65 })
R> epoce2 <- epoce(mj2, pred.times = landmark, var.time = "age65",
+ fun.time = function(x) { 10 * x + 65 })
R> epoce3 <- epoce(mj3b, pred.times = landmark, var.time = "age65",
+ fun.time = function(x) { 10 * x + 65 })
R> epoce4 <- epoce(mj4b, pred.times = landmark, var.time = "age65",
+ fun.time = function(x) { 10 * x + 65 })
R> diff23 <- Diffepoce(epoce2, epoce3)
R> diff34 <- Diffepoce(epoce3, epoce4)
R> par(mfrow = c(1, 2))
R> plot(epoce1, ylim = c(0.5, 1.5), main = "cross-validated EPOCE estimates",
+ bty = "l")
R> plot(epoce2, add = TRUE, col = 2, lty = 2)
R> plot(epoce3, add = TRUE, col = 3, lty = 3)
R> plot(epoce4, add = TRUE, col = 4, lty = 4)
R> legend("topright", legend = c("G=1", "G=2", "G=3", "G=4"), col = 1:4,
+ lty = 1:4, bty = "n")
R> plot(diff23, main = "Difference in EPOCE estimates", lty = c(1, 2, 2),
+ pch = 20, ylim = c(-0.05, 0.30), bty = "l")
R> plot(diff34, add = TRUE, main = "Difference in EPOCE estimates", col = 4,
+ lty = c(1, 2, 2), pch = 18)
R> legend("topleft", legend = c("G=2/G=3", "G=3/G=4", "95%TI", "95%TI"),
+ ncol = 2, col = c(1, 4, 1, 4), lty = c(1, 1, 2, 2),
+ pch = c(20, 18, 20, 18), bty = "n")

Joint models for normMMSE change and incidence of dementia give a better predictive ability,
that is lower EPOCE, than the simple survival model for dementia (with one class). Although
the four-class model provides the best goodness-of-fit in terms of BIC, the three-class model
gives roughly the same predictive accuracy as the four-class model, especially after an age of
80 years (difference in EPOCE close to 0).
Finally, individual dynamic prediction of the event can be computed using the dynpred func-
tion. For a specific subject whose data are provided in the input, the probabilities of occur-
rence of the event from landmark times indicated in landmark and at horizons indicated in
horizon are computed from the estimated model by using the longitudinal information up to
the landmark times (for G > 1). We give here an example (including the graphs in Figure 10)
for a subject from the estimation data but the exact same computation could have be done
for any individual (not included in the estimation data). We considered two landmark ages
(80 and 90) and computed the probility of dementia derived from model mj4b for horizons of
1, 3, 5, 8 and 9 years:

R> paq72 <- paquid[which(paquid$ID == 72), ]
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Figure 9: Cross-validated EPOCE (expected prognostic observed cross-entropy) estimates
for joint models with one to four classes (on the left) and difference in EPOCE estimates
between joint models with two and three latent classes or three and four classes (on the
right).

R> dynp <- dynpred(mj4b, paq72, landmark = c(80, 90), var.time = "age65",
+ horizon = c(1, 3, 5, 8, 9), fun.time = function(x) { 10 * x + 65 },
+ draws = TRUE)
R> plot(dynp, landmark = 80, ylim = c(55, 85, 0, 1), col = 1, pch = 20,
+ ylab = "normMMSE", main = "At landmark age 80", xlab = "age in years")
R> plot(dynp, landmark = 90, ylim = c(55, 85, 0, 1), col = 1, pch = 20,
+ ylab = "normMMSE", main = "At landmark age 90", xlab = "age in years")

7. Concluding remarks
The lcmm package provides a series of functions that extend the linear mixed model to
various settings including specific types of nonlinear mixed models and multivariate mixed
models, but also latent class mixed models and joint models. Although initially designed for
the analysis of cognitive data in aging cohort studies such as those available in the dataset
paquid, the functions also apply to many other settings. In particular, the latent process
mixed model is designed for the longitudinal analysis of scales that usually have asymmetric
distributions with possibly a ceiling effect, floor effect and unequal interval scaling, which was
the case for CES-D for depressive symptoms.
To our knowledge, no other programs estimate general (multivariate) latent process mixed
models or joint latent class mixed models. However, some programs exist for fitting types
of latent class mixed models. The most well-known software is Mplus (Muthén and Muthén



Journal of Statistical Software 51

●

●

●

●

●

70 75 80 85

55
60

65
70

75
80

85
At landmark age 80

age in years

no
rm

M
M

S
E

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y 

of
 e

ve
nt

●

●

●

●

● ●

●

●

●

70 75 80 85 90 95 100
55

60
65

70
75

80
85

At landmark age 90

age in years

no
rm

M
M

S
E

0
0.

2
0.

4
0.

6
0.

8
1

P
ro

ba
bi

lit
y 

of
 e

ve
nt

Figure 10: Individual dynamic prediction of dementia at landmark ages 80 and 90 years old
and for horizon times 1, 3, 5, 8 and 9 years for subject 72 from the Paquid sample.

2001) which more generally fits latent variable models from the structural equation modeling
approach. Other free programs include macros HETMIXED (Komárek and Verbeke 2002) and
HETNLMIXED (Spiessens, Verbeke, Komárek, and Fieuws 2004) in SAS (SAS Institute Inc.
2003) that are numerically limited (Proust and Jacqmin-Gadda 2005), and the free Fortran
90 program HETMIXSURV (Proust-Lima 2015; Proust-Lima et al. 2016) that might be faster
but is not user-friendly. To our knowledge, three packages can be used to fit latent class
mixed models in R (R Core Team 2017): function GLMM_MCMC (Komárek 2009) of package
mixAK (Komárek and Komárková 2014) fits latent class generalized linear mixed models
with possibly multivariate longitudinal data based on MCMC estimation; package flexmix
(Leisch 2004; Grün and Leisch 2007, 2008) also proposes the estimation of classes of mixture
models including the latent class linear mixed model with function FLXMRlmer; and mixtools
(Benaglia, Chauveau, Hunter, and Young 2009) includes a functionality to fit latent class
linear models with random effects. In Stata (StataCorp. 2015), the program GLLAMM fits some
latent class and latent variable models (Rabe-Hesketh, Skrondal, and Pickles 2004). Finally,
when one is interested in classification of trajectories, exploratory methods such as the latent
class growth analysis (Nagin 1999) are usually preferred. They have especially become very
popular in psychology (Bongers, Koot, Van der Ende, and Verhulst 2004) and more recently
in public health (Gill, Gahbauer, Han, and Allore 2010). It should be stressed that the latent
class growth analysis as implemented in SAS with PROC TRAJ (Jones, Nagin, and Roeder
2001) is a specific case of latent class mixed models in which no random effect is included. As
such, it assumes that given a specific latent class, the repeated measures of the same subject
are independent. Although of possible interest in an exploratory analysis, the assumption
that repeated measures are independent given a restricted number of latent groups is very
strict and unlikely so inference based on this approach is usually impossible.
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Further developments of lcmm will include the development of parallel computations. Indeed,
although computationally efficient code in Fortran 90 was used for the estimation procedure,
the computation may still be long and could benefit from parallel computation, as was the
case in the original Fortran 90 executable HETMIXSURV available online (Proust-Lima 2015).
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