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Abstract

The R add-on package FDboost is a flexible toolbox for the estimation of functional
regression models by model-based boosting. It provides the possibility to fit regression
models for scalar and functional response with effects of scalar as well as functional co-
variates, i.e., scalar-on-function, function-on-scalar and function-on-function regression
models. In addition to mean regression, quantile regression models as well as generalized
additive models for location scale and shape can be fitted with FDboost. Furthermore,
boosting can be used in high-dimensional data settings with more covariates than ob-
servations. We provide a hands-on tutorial on model fitting and tuning, including the
visualization of results. The methods for scalar-on-function regression are illustrated
with spectrometric data of fossil fuels and those for functional response regression with a
data set including bioelectrical signals for emotional episodes.

Keywords: functional data analysis, function-on-function regression, function-on-scalar regres-
sion, gradient boosting, model-based boosting, scalar-on-function regression.

1. Introduction
With the progress of technology today, we have the ability to observe more and more data
of a functional nature, such as curves, trajectories or images (Ramsay and Silverman 2005).
Functional data can be found in many scientific fields like demography, biology, medicine,
meteorology and economics (see, e.g., Ullah and Finch 2013). In practice, the functions
are observed on finite grids. In this paper, we deal with one-dimensional functional data
that are observed over a real valued interval. Examples for such data are growth curves over
time, acoustic signals, temperature curves and spectrometric measurements in a certain range
of wavelengths. Regression models are a versatile tool for data analysis and various models
have been proposed for regression with functional variables; see Morris (2015) and Greven and
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Scheipl (2017) for recent reviews of functional regression models. One can distinguish between
three different types of functional regression models: scalar-on-function regression, a regres-
sion with scalar response and functional covariates, function-on-scalar regression referring
to models with functional response and scalar covariates and function-on-function regression,
which is used when both response and covariates are functional. Models for scalar-on-function
regression are sometimes also called signal regression.
Greven and Scheipl (2017) lay out a generic framework for functional regression models in-
cluding the three mentioned model types. Many types of covariate effects are discussed
including linear and non-linear effects of scalar covariates as well as linear effects of func-
tional covariates and interaction terms. They describe that estimation can be based on a
mixed models framework (Scheipl, Staicu, and Greven 2015; Scheipl, Gertheiss, and Greven
2016) or on component-wise gradient boosting (Brockhaus, Scheipl, Hothorn, and Greven
2015; Brockhaus, Melcher, Leisch, and Greven 2017; Brockhaus, Fuest, Mayr, and Greven
2018; Rügamer, Brockhaus, Gentsch, Scherer, and Greven 2018). In this paper, we de-
scribe the latter approach and provide a hands-on tutorial for its implementation in R (R
Core Team 2020) in the comprehensive R package FDboost (Brockhaus, Rügamer, and
Stöcker 2020) which is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=FDboost.
Boosting estimates the model by iteratively combining simple models and can be seen as a
method that conducts gradient descent (Bühlmann and Hothorn 2007). Boosting is capable
of estimating models in high-dimensional data settings and implicitly does variable selection.
The modeled features of the conditional response distribution can be chosen quite flexibly
by minimizing different loss functions. The framework includes linear models (LMs), gen-
eralized linear models (GLMs) as well as quantile and expectile regression. Furthermore,
generalized additive models for location, scale and shape (GAMLSS; Rigby and Stasinopou-
los 2005) can be fitted (Mayr, Fenske, Hofner, Kneib, and Schmid 2012). GAMLSS model
all distribution parameters of the conditional response distribution simultaneously depending
on potentially different covariates. Brockhaus et al. (2018) discuss GAMLSS with scalar re-
sponse and functional covariates. Stöcker, Brockhaus, Schaffer, von Bronk, Opitz, and Greven
(2018) introduce GAMLSS for functional response. Due to variable selection and shrinkage of
the coefficient estimates, no classical inference concepts are available for the boosted models.
However, it is possible to quantify uncertainty by bootstrap (Efron 1979) and stability selec-
tion (Meinshausen and Bühlmann 2010). The main advantages of the boosting approach are
the possibility to fit models in high-dimensional data settings with variable selection and to
estimate not only mean regression models but also GAMLSS and quantile regression models.
The main disadvantage is the lack of formal inference.
Other frameworks for flexible regression models with functional response exist. Morris and
Carroll (2006) and Meyer, Coull, Versace, Cinciripini, and Morris (2015) use a basis trans-
formations approach and Bayesian inference to model functional variables. Usually, loss-less
transformations like a wavelet transformation are used. See Morris (2017) for a detailed
comparison of the two frameworks.
In this tutorial, we present the R package FDboost (Brockhaus et al. 2020), which is de-
signed to fit a great variety of functional regression models by boosting. FDboost builds on
the R package mboost (Hothorn, Bühlmann, Kneib, Schmid, and Hofner 2020) for statisti-
cal model-based boosting. Thus, in the back-end we rely on a well-tested implementation.
FDboost provides a comprehensive implementation of the most important methods for boost-
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ing functional regression models. In particular, the package can be used to conveniently fit
models with functional response. For effects of scalar covariates on functional responses, we
provide base learners with suitable identifiability constraints. In addition, base learners that
model effects of functional covariates are implemented. The package also contains functions
for model tuning and for visualizing results.
As a case study for scalar-on-function regression, we use a data set on fossil fuels, which was
analyzed in Fuchs, Scheipl, and Greven (2015) and Brockhaus et al. (2015) and is part of the
FDboost package. In this application, the heat value of fossil fuels should be predicted based
on spectral data. As a case study for function-on-scalar and function-on-function regression,
we use the emotion components data set, which is analyzed in Rügamer et al. (2018) in the
context of factor-specific historical effect estimation and which is provided in an aggregated
version in FDboost. Note that we use both data sets as a running example to illustrate
the capabilities of the package. We give a more complex example with a stronger focus on
answering the underlying research question in Appendix E.
The remainder of the paper is structured as follows. We shortly review the generic functional
regression model (Section 2) for scalar and for functional response. Then the boosting al-
gorithm used for model fitting is introduced in Section 3. In Section 4, we give details on
the infrastructure of the package FDboost. Scalar-on-function regression with FDboost is
described in Section 5. Regression models for functional response with scalar and/or func-
tional covariates are described in Section 6. We present possible covariate effects as well as
discuss model tuning and show how to extract and display results. In Section 7, we discuss
regression models that model other characteristics of the response distribution than the mean,
in particular median regression and GAMLSS. In Section 8, we shortly comment on stabil-
ity selection in combination with boosting. In Section 9 we comment on the computational
burden of fitting models with FDboost. We conclude with a discussion in Section 10. The
paper is structured such that the sections on functional response can be skipped if one is only
interested in scalar-on-function regression.

2. Functional regression models

In Section 2.1 we first introduce a generic model for scalar response with functional and scalar
covariates. Afterwards, we deal with models with functional response in Section 2.2.

2.1. Scalar response and functional covariates

Let the random variable Y be the scalar response with realization y ∈ R. The covariate set
X can include both scalar and functional variables. We denote a generic scalar covariate by
Z and a generic functional covariate by X(s), with s ∈ S = [S1, S2] and S1 < S2, S1, S2 ∈
R. We assume that we observe i = 1, . . . , N data pairs (yi,xi), where xi comprises the
realizations zi of scalar covariates as well as the realizations xi(s) of Xi(s). In practice, xi(s) is
observed on a grid of evaluation points s1, . . . , sR, such that each curve is observed as a vector
(xi(s1), . . . , xi(sR))>. While different functional covariates may be observed on different grid
points over different intervals, which is supported by FDboost as also the following example
will show, we do no introduce additional indices here for ease of notation.
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Covariate(s) Type of effect hj(x)

Functional covariate x(s) Linear functional effect
∫
S x(s)β(s) ds

Scalar and functional covariate, z and x(s) Linear interaction z
∫
S x(s)β(s) ds

Smooth interaction
∫
S x(s)β(z, s) ds

Table 1: Overview of possible covariate effects of functional covariates, including interaction
effects with scalar covariates.

We model the expectation of the response by an additive regression model

E(Yi|Xi = xi) = h(xi) =
J∑
j=1

hj(xi), (1)

where h(xi) is the additive predictor containing the additive effects hj(xi). Each effect hj(xi)
can depend on one or more covariates in xi. Possible effects include linear, non-linear and
interaction effects of scalar covariates as well as linear effects of functional covariates. More-
over, group-specific effects and interaction effects between scalar and functional variables are
possible. To give an idea of possible effects hj(x), Table 1 lists effects of functional covariates
that are currently implemented in FDboost. A scalar-on-function model with only one
functional covariate would be E(Yi|Xi = xi) = β0 +

∫
S xi(s)β(s) ds, see Section 5 for concrete

examples of scalar-on-function models for the fossil fuel data set.
The effects hj(xi) are linearized using a basis representation:

hj(xi) = bj(xi)>θj , j = 1, . . . , J, (2)

with basis vector bj(xi) ∈ RKj and coefficient vector θj ∈ RKj that has to be estimated.
The N × Kj design matrix for the jth effect consists of rows bj(xi)> for all observations
i = 1, . . . , N . A ridge-type penalty term λjθ

>
j Pjθj is used for regularization, where Pj is a

suitable penalty matrix for bj and λj is a non-negative smoothing parameter. The smoothing
parameter controls the degrees of freedom of the effect.
Consider, for example, a linear effect of a functional covariate

∫
S xi(s)β(s) ds. Using θj =

(θj1, . . . , θjKj )>, this effect is computed as

∫
S
xi(s)β(s) ds ≈

∫
S
xi(s)

Kj∑
k=1

φk(s)θjk︸ ︷︷ ︸
≈β(s)

ds

≈
R∑
r=1

(
∆(sr)xi(sr)

Kj∑
k=1

φk(sr)θjk
)

=
Kj∑
k=1

( R∑
r=1

∆(sr)xi(sr)φk(sr)︸ ︷︷ ︸
entries in bj(xi)

θjk
)

= bj(xi)>θj ,
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where first, the smooth effect β(s) is expanded in basis functions, second, the integration is
approximated by a weighted sum and, third, the terms are rearranged such that they fit into
the scheme bj(xi)>θj . The basis bj(xi) is thus computed as

bj(xi)> =
[
R∑
r=1

∆(sr)xi(sr)φ1(sr) · · ·
R∑
r=1

∆(sr)xi(sr)φKj (sr)
]

≈
[∫
S
xi(s)φ1(s) ds · · ·

∫
S
xi(s)φKj (s) ds

]
,

(3)

with spline functions φk, k = 1, . . . ,Kj , for the expansion of the smooth effect β(s) in s di-
rection and integration weights ∆(sr) for numerical computation of the integral. The penalty
matrix Pj is chosen such that it is suitable to regularize the splines φk. In the current imple-
mentation only P-splines are readily available to estimate smooth effects. To set up a P-spline
basis (Eilers and Marx 1996) for the smooth effect, φk in Equation 3 are B-splines and the
penalty Pj is a squared difference matrix.

Case study: Heat value of fossil fuels

The aim of this application is to predict the heat value y of fossil fuels using spectral data
(Fuchs et al. 2015, Siemens AG). For N = 129 samples, the data set contains the heat value,
the percentage of humidity zh2o and two spectral measurements, which can be thought of as
functional variables xNIR(sNIR) observed over SNIR = [250.4, 876.8] and xUV(sUV) observed over
SUV = [800.4, 2761.0]. One spectrum is ultraviolet-visible (UVVIS), the other a near infrared
spectrum (NIR). For both spectra, the observation points are not equidistant. The data set
is contained in the R package FDboost.

R> library("FDboost")
R> data("fuelSubset", package = "FDboost")
R> str(fuelSubset)

List of 7
$ heatan : num [1:129] 26.8 27.5 23.8 18.2 17.5 ...
$ h2o : num [1:129] 2.3 3 2 1.85 2.39 ...
$ nir.lambda : num [1:231] 800 803 805 808 810 ...
$ NIR : num [1:129, 1:231] 0.2818 0.2916 -0.0042 -0.034 -0.1804 ...
$ uvvis.lambda: num [1:134] 250 256 261 267 273 ...
$ UVVIS : num [1:129, 1:134] 0.145 -1.584 -0.814 -1.311 -1.373 ...
$ h2o.fit : num [1:129] 2.58 3.43 1.83 2.03 3.07 ...

Figure 1 shows the two spectral measurements colored according to the heat value. Predictive
models for the heat values, discussed in the next sections, will include scalar-on-function terms
to accommodate the spectral covariates.

2.2. Functional response

We denote the functional response by Y (t), where t is the evaluation point at which the
function is observed. We assume that t ∈ T , where T is a real-valued interval [T1, T2], for
example a time-interval. All response curves can be observed on one common grid or on
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Figure 1: Spectral data of fossil fuels. Coloring of the spectral data depicts the corresponding
heat value.

curve-specific grids. For responses observed on one common grid, we write yi(tg) for the
observations, with tg ∈ {t1, . . . , tG} denoting the grid of evaluation points. For curve-specific
evaluation points, the observations are denoted by yi(tig), with tig ∈ {ti1, . . . , tiGi}. As above,
the covariate set X can contain both scalar and functional variables.
As in model (1), we model the conditional expectation of the response. In this case, the
expectation is modeled for each point t ∈ T :

E(Yi(t)|Xi = xi) = h(xi, t) =
J∑
j=1

hj(xi, t). (4)

As the response Yi(t) is a function of t, the linear predictor h(xi, t) as well as the additive
effects hj(xi, t) are functions of t. Each effect hj(xi, t) can depend on one or more covariates
in xi as well as on t. To give an idea of possible effects hj(xi, t), Table 2 lists some effects
that are currently implemented. A function-on-function model with only one functional
covariate would be E(Yi|Xi = xi) = β0(t) +

∫
S xi(s)β(s, t) ds. In Section 6, we give several

examples for concrete models with functional response.
All effects mentioned in Table 2 are varying over t but can also be modeled as constant
in t. The upper part of the table contains linear, smooth and interaction effects for scalar
covariates. The middle part of the table gives possible effects of functional covariates and
interaction effects between scalar and functional covariates. The lower part of the table in
addition shows some group-specific effects.
In practice, all effects hj(xi, tig) are linearized using a basis representation (Brockhaus et al.
2017):

hj(xi, tig) = bjY (xi, tig)>θj , j = 1, . . . , J, (5)

where the basis vector bjY (xi, tig) ∈ RKjY depends on covariates xi and the observation-point
of the response tig. The corresponding coefficient vector θj ∈ RKjY has to be estimated. The
design matrix for the jth effect consists of rows bjY (xi, tig)> for all observations i = 1, . . . , N
and all time points tig, g = 1, . . . , Gi.
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Covariate(s) Type of effect hj(x, t)

(None) Smooth intercept β0(t)
Scalar covariate z Linear effect zβ(t)

Smooth effect f(z, t)
Two scalars z1, z2 Linear interaction z1z2β(t)

Functional varying coefficient z1f(z2, t)
Smooth interaction f(z1, z2, t)

Functional covariate x(s) Linear functional effect
∫
S x(s)β(s, t) ds

Scalar z and functional x(s) Linear interaction z
∫
S x(s)β(s, t) ds

Smooth interaction
∫
S x(s)β(z, s, t) ds

Functional covariate x(s), Concurrent effect x(t)β(t)
with S = T = [T1, T2] Historical effect

∫ t
T1
x(s)β(s, t) ds

Lag effect, with lag δ > 0
∫ t
t−δ x(s)β(s, t) ds

Lead effect, with lead δ > 0
∫ t−δ
T1

x(s)β(s, t) ds
Effect with t-specific integration
limits [l(t), u(t)]

∫ u(t)
l(t) x(s)β(s, t) ds

Grouping variable g Group-specific smooth intercepts βg(t)
Grouping variable g and scalar z Group-specific linear effects zβg(t)
Curve indicator i Curve-specific smooth residuals ei(t)

Table 2: Overview of some possible covariate effects that can be represented within the
framework of functional regression.

In the following, we will use a modularization of the basis into a first part depending on
covariates and a second part that only depends on t. This modular structure reduces the
problem of specifying the basis bjY (xi, tig) to that of creating two suitable marginal bases.
For many effects, the marginal bases are easy to define as they are known from regression
with scalar response.
First, we focus on responses observed on one common grid (t1, . . . , tG)> which does not depend
on i. In this case, we represent the effects using the Kronecker product ⊗ of two marginal
bases (Brockhaus et al. 2015)

hj(xi, tg) =
(
bj(xi)> ⊗ bY (tg)>

)
θj , (6)

where the marginal basis vector bj(xi) ∈ RKj , i = 1, . . . , N , depends on covariates in xi and
the marginal basis vector bY (tg) ∈ RKY , g = 1, . . . , G, depends on the grid point tg. The
NG×KjKY design matrix is computed as the Kronecker product of the two marginal design
matrices, which have dimensions N × Kj and G × KY . If the effect can be represented as
in Equation 6 it fits into the framework of linear array models (Currie, Durban, and Eilers
2006). The representation as array model has computational advantages, saving time and
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memory. Brockhaus et al. (2015) discuss array models in the context of functional regression.
Note that the representation in Equation 6 is only possible for responses observed on one
common grid, as otherwise bY (tig) depends on the curve-specific grid points tig. In this
case, the marginal bases are combined by the row-wise tensor product (Scheipl et al. 2015;
Brockhaus et al. 2017). This is a rather technical detail and is thoroughly explained in
Brockhaus et al. (2017), also for the case where the basis for the covariates depends on tig
such as for historical effects.
We regularize the effects by a ridge-type penalty term θ>j PjY θj . The penalty matrix for the
composed basis can be constructed as (Wood 2017, Section 4.1.8)

PjY = λj(Pj ⊗ IKY
) + λY (IKj ⊗ PY ), (7)

where Pj = [pj,κ,ς ]κ,ς∈{1,...,Ks} is a suitable penalty for bj and PY is a suitable penalty for
bY . The non-negative smoothing parameters λj and λY determine the degree of smoothing in
each direction. To illustrate the resulting penalty matrix, we explicitly compute the Kronecker
products in Equation 7:

PjY = λj

 pj,1,1 · IKy · · · pj,1,Ks · IKy

... . . . ...
pj,Ks,1 · IKy · · · pj,Ks,Ks · IKy

+ λY


PY 0

. . .
0 PY

0 0 pY KtKt

 .

This shows the block structure of the penalty matrix and how the two marginal penalty
matrices are combined. The anisotropic penalty in Equation 7 can be simplified in the case
of an isotropic penalty depending on only one smoothing parameter λj ≥ 0:

PjY = λj(Pj ⊗ IKY
+ IKj ⊗ PY ). (8)

In this simplified case only one instead of two smoothing parameters has to be estimated. If
Pj = 0 in Equation 8, this results in a penalty that only penalizes the marginal basis in t
direction:

PjY = λj(IKj ⊗ PY ). (9)

Consider, for example, a linear effect of a functional covariate
∫
S xi(s)β(s, t) ds. The basis

vector bj(xi) and the penalty Pj are the same as in Equation 3. For the basis in t direction,
we use a spline representation

bY (tg)> = [φ1(tg) · · · φKY
(tg)] (10)

with spline functions φk, k = 1, . . . ,KY and the penalty matrix PY has to be chosen such
that it is suitable for the chosen spline basis. Using P-splines again, φk are B-splines and PY
is a squared difference matrix (Eilers and Marx 1996). The complete basis is

bj(xi)> ⊗ bY (tg)> =
[∫
S
xi(s)φ1(s) ds · · ·

∫
S
xi(s)φKj (s) ds

]
⊗
[
φ1(tg) · · · φKY

(tg)
]
.

This choice expands β(s, t) in a tensor-product spline basis and approximates the integral
using numerical integration.



Journal of Statistical Software 9

For this effect, the penalty matrix from Equation 7 ensures smoothness of β(s, t) in s and in
t direction.

Case study: Emotion components data with EEG and EMG
The emotion components data set is based on a study of Gentsch, Grandjean, and Scherer
(2014), in which brain activity (EEG) as well as facial muscle activity (EMG) was simul-
taneously recorded during a computerized game. As the facial muscle activity should be
traceable to the brain activity for a certain game situation, Rügamer et al. (2018) analyzed
the synchronization of EEG and EMG signal using function-on-function regression models
with factor-specific historical effects. During the gambling rounds, three binary game condi-
tions were varied, resulting in a total of 8 different study settings:

• the goal conduciveness (game_outcome) corresponding to the monetary outcome (gain
or loss) at the end of each game round,

• the power setting, which determined whether the player was able or not able to change
the final outcome in her favor (high or low, respectively) and,

• the control setting, which was manipulated to change the participant’s subjective
feeling about her ability to cope with the game outcome. The player was told to
frequently have high power in rounds with high control and have frequently low power
in low control situations.

We focus on the EMG of the frontalis muscle, which is used to raise the eyebrow. The EMG
signal is a functional response Y (t), with t ∈ T = [0, 1560] ms, which is measured at a
frequency of 256 Hz resulting in 384 equidistant observed time points given by the vector t.
The experimental conditions are scalar covariates. The EEG signal xEEG(s) is observed over
the same time interval as the EMG signal. We use the EEG signal from the Fz electrode,
which is in the center front of the head.
In the following, we consider an aggregated version of the data, in which the EEG and EMG
signals are aggregated per subject and game condition. One participant is excluded, yielding
N = 23 subjects.

R> data("emotion", package = "FDboost")
R> str(emotion)

List of 8
$ power : Factor w/ 2 levels "high","low": 1 1 2 2 1 1 2 2 1 1 ...
$ game_outcome: Factor w/ 2 levels "gain","loss": 1 2 1 2 1 2 1 2 1 2 ...
$ control : Factor w/ 2 levels "high","low": 1 1 1 1 2 2 2 2 1 1 ...
$ subject : Factor w/ 23 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 ...
$ EEG : num [1:184, 1:384] -0.14 0.303 -0.715 0.7 0.11 ...
$ EMG : num [1:184, 1:384] -2.56 -4.06 -1.15 4.11 8.09 ...
$ s : int [1:384] 1 2 3 4 5 6 7 8 9 10 ...
$ t : int [1:384] 1 2 3 4 5 6 7 8 9 10 ...

In order to fit simple and meaningful models for function-on-function regression, we define a
subset of the data that contains only the observations for a certain game condition. We use
the game condition with high control, gain and low power:
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Figure 2: EEG signal (Fz electrode) and EMG signal (frontalis muscle) for each of the 23
participants (line colors) and the chosen game condition.

R> subset <- with(emotion, control == "high" & game_outcome == "gain" &
+ power == "low")
R> emotionHGL <- list()
R> emotionHGL$subject <- emotion$subject[subset]
R> emotionHGL$EMG <- emotion$EMG[subset, ]
R> emotionHGL$EEG <- emotion$EEG[subset, ]
R> emotionHGL$s <- emotionHGL$t <- emotion$t

In Figure 2 the EEG and EMG signal is depicted for each of the 23 participants and the 384
observation points.

3. Estimation by gradient boosting
Initially, boosting was proposed as a technique to iteratively improve the predictive perfor-
mance of simple models or base learners (Ridgeway 1999). Boosting was soon recognized as
a model fitting technique for statistical applications. Based on the idea of Friedman (2001),
Bühlmann and Hothorn (2007) proposed the model-based boosting framework, which allows
for a component-wise fitting of additive terms in the linear predictor and can handle complex
additive effects. Many boosting algorithms, which are purely used for prediction, fit a rather
simple model using all covariates. In contrast, in model-based boosting it is possible to define
the effects of each covariate separately in different base learners. By iteratively selecting only
one base learner at a time, model-based boosting performs variable selection as base learners
that are never selected for the model update are excluded from the model. This framework
is implemented in the mboost package. In contrast to other implementations of gradient
boosting, such as gbm (Greenwell, Boehmke, Cunningham, and GBM Developers 2019), the
focus of model-based boosting lies in estimating an interpretable additive structure rather
than aiming at optimal predictive performance.
Component-wise gradient boosting minimizes the expected loss (risk) via gradient descent
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in a stepwise procedure. In each boosting step, each base learner is fitted separately to the
negative gradient and only the best fitting base learner is selected for the model update;
hence the term “component-wise”. To fit a model for the expectation, like the models in
Equations 1 and 4, the squared error loss (L2 loss) is minimized. In this case, the negative
gradient corresponds to the residuals.
Resulting estimation and prediction performance of boosting depends on different tuning
parameters, namely the number of boosting iterations mstop, the step-length ν, and the speci-
fication of the base learners, e.g., whether a continuous covariate has a linear or smooth effect
and the set-up of spline functions and penalties for smooth effects. We will give guidance on
the choice of these parameters in the following by briefly describing the functionality of the
algorithm.
The most important tuning parameter of boosting is the number of boosting iterations, as
the algorithm is usually stopped before convergence. This so-called early stopping leads to
regularized effect estimates and therefore yields more stable predictions. Since some of the
base learners are never selected in the course of all iterations, boosting also performs variable
selection. The optimal stopping iteration can be determined by methods like cross-validation,
sub-sampling or bootstrap. For each fold, the empirical out-of-bag risk is computed and the
stopping iteration that yields the lowest empirical risk is chosen. As resampling must be
conducted on the level of independent observations, this is done on the level of curves for
functional response.
In order to avoid overshooting the minimum of the loss function in each iteration, only a small
step in the chosen direction is made. The length of the update is determined by the step-
length ν. Some boosting frameworks adapt the choice of the step-length in each iteration.
Bühlmann and Hothorn (2007) show that the estimation performance is barely affected by
setting ν to a fixed and sufficiently small value for all iterations. They there propose to
use a fixed step-length in the range 0.01 to 0.1. The appropriate size of the step-length
depends on the loss that is minimized. In practice, the default value ν = 0.1 works well
for most applications when the model is specified using the L2 loss. A smaller step-length
than 0.01 is sometimes needed for loss functions, which result in discontinuous gradients,
such as the check-function for quantile regression (Fenske, Kneib, and Hothorn 2011) or for
loss functions, which can result in infinite pseudo-residuals (gradients), such as the Poisson
likelihood loss. Since base-learner-specific tuning parameters are fixed for all iterations, the
model fit is determined by the number of iterations for a given step-length.
By representing all base learners as linear effects of covariates (if necessary, by using a basis
representation for non-linear effects), base learners also define the covariate effects in the sense
of additive regression models and can be associated with a specific hat matrix as well as a
certain number of degrees of freedom.
The degrees of freedom for each base learner and other base-learner-specific tuning parameters
have an influence on the prediction and estimation performance. The degrees of freedom df j
for each base learner j = 1, . . . , J – not to be confused with the effective degrees of freedom for
each model term in the final model – determine the flexibility of each base learner prior to the
model fit. In the model-based boosting framework each base learner is fitted to the pseudo-
residuals using a (penalized) least squares fit with fixed smoothing parameter λj , which is
determined via the pre-specified degrees of freedom. Whereas defining a fixed smoothness
for each model term prior to the model fit might seem restrictive at first sight, the final
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smoothness of each model term is in fact determined through the number of iterations in
which the respective base learner is chosen. The effective degrees of freedom for each smooth
component after the model fit are accumulated over the iterations where the model term is
selected and typically differ from the initially specified df j . The model fit can thus adapt even
to relatively complex functions by repeatedly selecting and updating a particular model term
(cf. Brockhaus et al. 2015). Determining the smoothness through the number of iterations
works well in practice and allows for a closed-form solution of the penalized least squares fit
in each update. As boosting chooses base learners in a greedy manner, selection in each step
is biased towards more flexible base learners with higher degrees of freedom, if base learners
exhibit different degrees of freedom. This is due to the fact that these base learners more
likely yield larger improvements of the fit in each iteration (see Hofner, Hothorn, Kneib, and
Schmid 2011, for details). For parameter estimation quality, it is essential to facilitate a fair
base learner selection in each step (Hofner et al. 2011). It is recommended to set df j to an
equal and rather small number for all base learners j = 1, . . . , J (Kneib, Hothorn, and Tutz
2009; Hofner et al. 2011). In the case of scalar-on-function regression, fulfilling this constraint
is not straightforward as functional covariates must usually be incorporated with more than
one degree of freedom whereas scalar linear effects are restricted to have one degree of freedom.
In order to maintain a fair base learner selection, more complex effects can be orthogonalized
such that they represent deviations from less complex effects. For example, a smooth effect
can be centered around its linear effect, thereby allowing both terms to have one degree of
freedom. In Section 4.3 as well as in Appendix E different examples demonstrate how to
facilitate a fair selection in this respect.
Due to the nature of the algorithm, other base-learner-specific tuning parameters are also
defined prior to the model fit and kept fixed over the iterations. The number of knots is
of primary interest for functional or smooth predictors and should be chosen considering a
trade-off between computing time and flexibility of each base learner. Per default, 10 knots
are used, which can be rather large for some applications, but allows for a large flexibility of
the estimated effects. The number of knots can be decreased if computing time is a concern.
Moreover, due to the smoothness penalty, with the default penalizing deviations from linearity
for smooth functions, users need not to be concerned about overfitting when increasing the
number of knots.

Functional response

To adapt boosting for a functional response, we compute the loss at each point t and integrate
it over the domain of the response T (Brockhaus et al. 2015).
For the L2 loss the optimization problem for functional response aims at minimizing

N∑
i=1

∫ [
yi(t)− h(xi, t)

]2
dt, (11)

which is approximated by numerical integration. To obtain identifiable models, suitable
identifiability constraints for the base learners are necessary and implemented. FDboost also
contains base learners that model the effects of functional covariates. For a discussion of both
points, please see Brockhaus et al. (2015).
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4. The package FDboost
Fitting functional regression models via boosting is implemented in the R package FDboost.
The package uses the fitting algorithm and other infrastructure from the R package mboost
(Hothorn et al. 2020). All base learners and distribution families that are implemented in
mboost can be used within FDboost. Many naming conventions and methods in FDboost
are implemented in analogy to mboost. A tutorial for mboost can be found in Hofner, Mayr,
Robinzonov, and Schmid (2014). We will mention all features of mboost that are important
when working with FDboost in the following.

4.1. Main fitting function and its arguments

The main fitting function to estimate functional regression models, like the models in Equa-
tions 1 and 4, is called FDboost(). The interface of FDboost() is as follows:1

FDboost(formula, timeformula, id = NULL, numInt = "equal", data,
offset = NULL, ...)

First, we focus on the arguments that are necessary for regression models both with scalar
and with functional response. formula specifies the base learners for the covariate effects
bj and timeformula specifies bY , which is the basis along t. Per default, this basis bY
is the same for all effects j = 1, . . . , J . To specify different base learners along t, it is
necessary to set up the Kronecker product of two base learners explicitly in formula. For
a detailed explanation, we refer to Appendix C. The data is provided in the data argument
as a ‘data.frame’ or a named ‘list’. The data object has to contain the response, all
covariates and the evaluation points of functional variables. Prior to the model fit, an offset
is subtracted from the response to center it. This corresponds to initializing the fit with
this offset, e.g., an overall average, and leads to faster convergence and better stability of the
boosting algorithm. For mean regression, the default offset = NULL implies that the offset is
the smoothed pointwise mean of the response over time without taking into account covariates.
This offset is part of the intercept and corresponds to an initial estimate that is then updated.
In the dots argument, ..., further arguments passed to mboost() and mboost_fit() can be
specified. The most important argument is family determining the loss- and link-function
for the model fit. The default is family = Gaussian(), which minimizes the squared error
loss and uses the identity as link function. Thus, per default a mean regression model for
continuous response is fitted. For the duality of loss-function and the family argument, we
refer to Section 7. Further important arguments are control, which determines the number
of boosting iterations and the step-length ν of the boosting algorithm specified by nu. The
argument control must be supplied as a call to the function boost_control(). For example,
control = boost_control(mstop = 100, nu = 0.1) implies 100 boosting iterations and
step-length ν = 0.1, which also corresponds to the default settings. Note that while 100
iterations are the default chosen to avoid a computationally expensive default, this might not
be sufficient and should be chosen appropriately for the given application.
FDboost allows for (tensor product) spline or functional principle component bases, but user-
specified base learners allow for possible extensions (see, e.g., Hofner et al. 2014). Although

1Note that for the presentation of functions we restrict ourselves to the most important function arguments.
For the full list of arguments, we refer to the corresponding help pages.
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the package only provides base learners with ridge- or L2-type penalization, model selection
as facilitated by an L1-penalty is achieved by early stopping of the algorithm. Dependent
functions can be modeled by including regularized cluster-specific functional intercepts or
smooth temporal / spatial effects.

4.2. Specification for scalar response

For scalar response, we set timeformula = NULL as no expansion of the effects in t direction
is necessary. formula specifies the base learners for the covariates effects bj as in Equa-
tion 2. The arguments id and numInt are only needed for functional responses. For scalar
response, offset = NULL results in a default offset, as, for example, the overall mean for
mean regression or the overall median for median regression.

4.3. Arguments needed for functional response

For functional response, the set-up of the covariate effects generally follows Equation 6 by
separating the effects into two marginal parts. The marginal effects bj , j = 1, . . . , J , are repre-
sented in the formula as y ~ b_1 + b_2 + ...+ b_J. The marginal effect bY is represented
in the timeformula, which has the form ~ b_Y. The base learners for the marginal effects also
contain suitable penalty matrices. Internally, the base learners specified in formula are com-
bined with the base learner specified in timeformula as in Equation 6 and a suitable penalty
matrix is constructed according to Equation 8. Per default, the response is expected to be
a matrix. In this case id = NULL. The matrix representation is not possible for a response
which is observed on curve-specific grids. In this case the response is provided as vector in
long format and id specifies which position in the vector is attributed to which curve; see
Section 6 for details. The argument numInt provides the numerical integration scheme for
computing the integral of the loss over T in Equation 11. Per default, numInt = "equal",
and thus all integration weights are set to one; for numInt = "Riemann" Riemann sums are
used. For functional response, offset = NULL induces a smooth offset varying over t. The
offset is estimated by adaptive splines using R package mgcv (Wood 2011). The argument
offset_control = o_control() allows to control the smoothness of the estimated offset by
changing the dimension of its basis representation. It is important that the offset is not too
wiggly as an overfitted offset will lead to an overfitted intercept in the model. It is less prob-
lematic if the offset is underfitting the given data as the intercept in the model can be updated
by the corresponding base learner to account for potential structure in the data. A visual
inspection of the estimated offset can thus be helpful to determine the amount of smoothness
for the given data. Alternatively, a suitable value for k_min can be found by comparing the
performance of models with different offset specification on a validation data set or based on
their out-of-bag risk. For offset = "scalar", a scalar offset is computed. For functional
response, this corresponds to an offset that is constant along t. Instead of fitting the offset
within FDboost, it is also possible to provide the offset as a vector via the argument offset.
For more details and the full list of arguments, see the manual of FDboost().

5. Scalar response and functional covariates
In this section, we give details on models with scalar response and functional covariates like
the model in Equation 1. Such models are called scalar-on-function regression models. As
case study the data on fossil fuels is used.
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Additive predictor h(x) = ∑
j hj(x) Call

β0 +
∫
S x(s)β1(s) ds y ~ 1 + bsignal(x, s = s)

y ~ 1 + bfpc(x, s = s)

β0 + zβ1 +
∫
S x(s)β2(s) ds y ~ 1 + bolsc(z) + bsignal(x, s = s)

+z
∫
S x(s)β3(s) ds + bsignal(x, s = s) %X% bolsc(z)

Table 3: Additive predictors for scalar-on-function regression models.

5.1. Potential covariate effects: Base learners

In order to fit a scalar-on-function model as in Equation 1, the timeformula is set to NULL
and potential covariate effects hj(xi) are specified in the formula argument. The effects
of scalar covariates can be linear or non-linear. A linear effect zβ for the covariate z is
obtained using the base learner bols(z), which is also suitable for factor variables, in which
case dummy variables are constructed for each factor level (Hofner et al. 2014). Per default,
bols() contains an intercept. If the specified degrees of freedom are less than the number of
columns in the design matrix, bols() penalizes the linear effect by a ridge penalty with the
identity matrix as penalty matrix. The base learner brandom() for factor variables sets up
an effect, which is centered around zero and is penalized by a ridge penalty, having similar
properties to a random effect, but no underlying distributional assumption. It is not possible
to estimate random effects in the classical sense such that they are estimated using variance
parameters. See the web appendix of Kneib et al. (2009) for a discussion on brandom().
The ridge penalized effects, however, have a similar interpretation as random effects as a
quadratic penalty is mathematically equivalent to a Gaussian prior. Note that this also
allows for other types of random effects such as cluster-specific random effect functions. A
non-linear effect expanded by P-splines is obtained by the base learner bbs(). Within bbs(),
the argument knots determines the number of knots of the P-spline basis, degree specifies
the degree of the spline basis and differences the order of the differences in the penalty
matrix. Per default, cubic B-splines on 20 knots with a second order difference penalty are
used. Those settings imply rather smooth effects. In order to capture more irregular features
in functional observations such as spikes or drops, it is recommended to increase the number
of knots and/or only use first-order differences in the penalty matrix. Using no penalty at
all (by setting lambda = 0) also facilitates to recover features in even more spiky data, but
may be difficult in terms of unbiased base learner selection (see, e.g., Section 6.4). Note
that increasing the number of knots will increase the run-time and memory consumption (see
Section 9 for more details on computational burden). For more details on base learners with
scalar covariates, we refer to Hofner et al. (2014).
Potential base learners for functional covariates can be seen in Table 3. In this table exem-
plary linear predictors are listed in the left column. In the right column, the corresponding
call to formula is given. Because of the scalar response, the call to timeformula is set to
NULL. For simplicity, only one possible parameterization which leads to simple interpretations
and one corresponding model call are shown, although FDboost allows to specify several
parameterizations.
For a linear effect of a functional covariate

∫
S x(s)β1(s) ds, two base learners exist that use
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different basis expansions. Assuming β1(s) to be smooth, bsignal() uses a P-spline represen-
tation for the expansion of β1(s). In this case, the observations x(s) are used directly without
any basis representation. Assuming that the main modes of variation in the functional co-
variate are the important directions for the coefficient function β1(s), a representation with
functional principal components is suitable (Ramsay and Silverman 2005). In the base learner
bfpc(), the coefficient function β1(s) and the functional covariate x(s) are both represented
by an expansion in the estimated functional principal components of x(s). As penalty ma-
trix, the identity matrix is used. In Appendix B, technical details on the representation of
functional effects are given.
The specification of a model with an interaction term between a scalar and a functional
covariate is given at the end of Table 3. The interaction term is centered around the main
effect of the functional covariate using bolsc for the scalar covariate (as is the linear effect of
the scalar covariate around the intercept). Thus, the main effect of the functional covariate
has to be included in the model. For more details on interaction effects, we refer to Brockhaus
et al. (2015) and Rügamer et al. (2018). The interaction is formed using the operator %X%
that builds the row-wise tensor product of the two marginal bases, see Appendix C.
As explained in Section 3, all base learners in a model should have equal and rather low
degrees of freedom. The number of degrees of freedom that can be given to a base learner is
restricted. On the one hand, the maximum number is bounded by the number of columns of
the design matrix (more precisely by the rank of the design matrix). On the other hand, for
rank-deficient penalties, the minimum number of degrees of freedom is given by the rank of
the null space of the penalty matrix.
The interface of bsignal() is as follows:

bsignal(x, s, knots = 10, degree = 3, differences = 1, df = 4,
lambda = NULL, check.ident = FALSE)

The arguments x and s specify the name of the functional covariate and the name of its
argument. knots gives the number of inner knots for the P-spline basis, degree the degree of
the B-splines and differences the order of the differences that are used for the penalty. Thus,
per default, 14 cubic P-splines with first order difference penalty are used. The argument df
specifies the number of degrees of freedom for the effect and lambda the smoothing parameter.
Only one of those two arguments can be supplied. If check.ident = TRUE identifiability
checks proposed by Scheipl and Greven (2016) for functional linear effects are additionally
performed.
The interface of bfpc() is:

bfpc(x, s, df = 4, lambda = NULL, pve = 0.99, npc = NULL)

The arguments x, s, df and lambda have the same meaning as in bsignal(). The two other
arguments allow to control how many functional principal components are used as basis. Per
default the number of functional principal components is chosen such that the proportion
of the explained variance is 99%. This proportion can be changed using the argument pve
(proportion variance explained). Alternatively, the number of components can be set to a
specific value using npc (number principal components).
The interface of bolsc() is very similar to that of bols(), which is laid out in detail in
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Hofner et al. (2014). In contrast to bols(), bolsc() centers the design matrix such that the
resulting linear effect is centered around zero. More details on bolsc() are given in Section 6.

bolsc(..., df = NULL, lambda = 0, K = NULL)

In the dots argument, ..., one or more covariates can be specified. For factor variables
bolsc() sets up a design matrix in dummy-coding. The arguments df and lambda have the
same meaning as above. If lambda > 0 or df < the number of columns of the design matrix
a ridge penalty is applied. Per default, K = NULL, the penalty matrix is the identity matrix.
Setting the argument K to another matrix allows for customized penalty matrices.

Case study (continued): Fossil fuel data

For the heat values Yi, i = 1, . . . , 129, we fit the model

E(Y |x) = β0 + f(zh2o) +
∫
SNIR

xNIR(sNIR)βNIR(sNIR) dsNIR +
∫
SUV

xUV(sUV)βUV(sUV) dsUV, (12)

with water content zh2o and centered spectral curves xNIR and xUV, which are observed over
the wavelengths sNIR ∈ SNIR and sUV ∈ SUV. We center the NIR and the UVVIS measurement
per wavelength such that ∑N

i=1 xNIR,i(sNIR) = 0 ∀sNIR and analogously for UVVIS. Thus, the
functional effects have mean zero, ∑N

i=1
∫
SNIR

xNIR,i(sNIR)β(sNIR) dsNIR = 0 and analogously for
UVVIS. This does not affect the interpretation of βNIR(sNIR) and βUV(sUV), it only changes the
interpretation of the intercept of the regression model. If all effects are centered, the intercept
can be interpreted as overall mean and the other effects as deviations from the overall mean.
Note that the functional covariates have to be supplied as <number of curves> by <number
of evaluation points> matrices. The non-linear effect of the scalar variable H2O is specified
using the bbs() base learner. For the linear functional effect of NIR and UVVIS, we use the
base learner bsignal(). The degrees of freedom are set to 4 for each base learner. For the
functional effects, we use a P-spline basis with 20 inner knots. Because of the scalar response
timeformula = NULL.

R> fuelSubset$UVVIS <- scale(fuelSubset$UVVIS, scale = FALSE)
R> fuelSubset$NIR <- scale(fuelSubset$NIR, scale = FALSE)
R> sof <- FDboost(heatan ~ bbs(h2o, df = 4) +
+ bsignal(UVVIS, s = uvvis.lambda, knots = 20, df = 4) +
+ bsignal(NIR, s = nir.lambda, knots = 20, df = 4),
+ timeformula = NULL, data = fuelSubset)

5.2. Model tuning and early stopping

Boosting iteratively selects base learners to update the additive predictor. Fixing the base
learners and the step-length, the model complexity is controlled by the number of boosting
iterations. With more boosting iterations the model becomes more complex (Bühlmann and
Yu 2003). The step-length ν is chosen sufficiently small in the interval (0, 1], usually as ν = 0.1,
which is also the default. For smaller step-length, more boosting iterations are required and
vice versa (Friedman 2001). Note that the default number of boosting iterations is 100. This
is arbitrary and in most cases not adequate. The number of boosting iterations and the
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step-length of the algorithm can be specified in the argument control. This argument must
be supplied as a call to boost_control(). For example, control = boost_control(mstop
= 50, nu = 0.2) implies 50 boosting iterations and step-length ν = 0.2.
The most important tuning parameter is the number of boosting iterations. For regression
with scalar response, the cvrisk() method for ‘FDboost’ objects can be used to determine
the optimal stopping iteration. This function directly calls the cvrisk() method for ‘mboost’
objects from the mboost package, which performs an empirical risk estimation using a specified
resampling method. The interface of the cvrisk() method for ‘FDboost’ objects is:

cvrisk(object,
folds = cvLong(id = object$id, weights = model.weights(object)),
grid = 1:mstop(object))

In the argument object, the fitted model object is specified. grid defines the grid on which
the optimal stopping iteration is searched. Per default the grid from 1 to the current stopping
iteration of the model object is used as search grid. But it is also possible to specify a larger
grid, e.g., 1:5000. The argument folds expects an integer weight matrix with dimension
N × k (<number of observations> times <number of folds>). Depending on the range of
values in the weight matrix, different types of resampling are performed. For example, if the
weights sum to N for each column but also have values larger than one, the resampling scheme
corresponds to bootstrap while a k-fold cross-validation is employed by using an incidence
matrix, for which the rows sum to k − 1. If not manually specified, mboost and FDboost
provide convenience functions – cv() and cvLong() – that construct such matrices on the
basis of the given model object. The function cvLong() is suited for functional response and
treats scalar response as the special case with one observation per curve. For scalar response,
the function cv() from package mboost can be used, which has a simpler interface.

cv(weights, type = c("bootstrap", "kfold", "subsampling"),
B = ifelse(type == "kfold", 10, 25))

The argument weights is used to specify the weights of the original model, which can be
extracted using model.weights(object). Usually all model weights are one. Via argument
type the resampling scheme is defined: "bootstrap" for non-parametric bootstrap, "kfold"
for cross-validation and "subsampling" for resampling half of all observations for each fold.
The number of folds is defined by B. Per default, 10 folds are used for cross-validation and 25
folds for bootstrap as well as for subsampling.
The function cvLong() is especially suited for functional response and has the additional
argument id, which is used to specify which observations belong to the same response curve.
For scalar response, id = 1:N.

Case study (continued): Fossil fuel data

To tune the scalar-on-function regression model (12), we search the optimal stopping iteration
by 10-fold bootstrapping. First, the bootstrap folds are created using the function cv().
Second, for each bootstrap fold, the out-of-bag risk is computed for models with 1 to 1000
boosting iterations using the cvrisk function. The choice of the grid is independent of the
number of boosting iterations of the fitted model object.
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Figure 3: Bootstrapped out-of-bag risk for the model of the fossil fuels. For each fold, the
out-of-bag risk is displayed as a gray line. The mean out-of-bag risk is visualized by a black
line. The optimal number of boosting iterations is marked by a dashed vertical line.

R> set.seed(123)
R> folds_sof <- cv(weights = model.weights(sof), type = "bootstrap", B = 10)
R> cvm_sof <- cvrisk(sof, folds = folds_sof, grid = 1:1000)

The object cvm_sof contains the out-of-bag risk of each fold for all 1000 iterations.

5.3. Methods to extract and visualize results from the resampling object

For a ‘cvrisk’ object as created by cvrisk(), the method mstop() extracts the estimated
optimal number of boosting iterations, which corresponds to the number of boosting iterations
yielding the minimal mean out-of-bag risk. plot() generates a plot of the estimated out-of-
bag risk per stopping iteration in each fold. In addition, the mean out-of-bag risk per stopping
iteration is displayed. The estimated optimal stopping iteration is marked by a dashed vertical
line. In such a plot, the convergence behavior can be graphically examined.

Case study (continued): Fossil fuel data

We generate a plot that displays for each fold the estimated out-of-bag risk per stopping
iteration for each fold; see Figure 3.

R> plot(cvm_sof, ylim = c(2, 15))

For small numbers of boosting iterations, the out-of-bag risk declines sharply with a growing
number of boosting iterations. With more and more iterations the model gets more complex
and the out-of-bag risk starts to slowly increase. The dashed vertical line marks the estimated
optimal stopping iteration of 511, which can be accessed using the function mstop():

R> mstop(cvm_sof)

[1] 511
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5.4. Methods to extract and display results from the model object

Fitted ‘FDboost’ objects inherit methods from class ‘mboost’. Thus, all methods available for
‘mboost’ objects can also be applied to models fitted by FDboost(). The design and penalty
matrices that are constructed by the base learners can be extracted using the extract() func-
tion. For example, extract(object, which = 1) returns the design matrix of the first base
learner and extract(object, which = 1, what = "penalty") the corresponding penalty
matrix. The number of boosting iterations for an ‘FDboost’ object can be changed afterwards
using the subset operator; e.g., object[50] sets the number of boosting iterations for object
to 50. Note that the subset operator directly changes object, and hence no assignment is
necessary.
One can access the estimated coefficients by the coef() function. The function takes a
fitted object produced by FDboost() and returns estimated coefficient functions such as
β̂(s), β̂(s, t), ĝ(x) or other estimated effects. For smooth effects, coef() returns the smooth
estimated effects evaluated on a regular grid. The resolution of the grid can be specified by
the arguments n1, n2 and n3 for 1-, 2- and 3-dimensional smooth terms, respectively, which
define the number of equidistantly spaced grid points over the range of the covariate. The
resulting object is a list containing an element for the offset and a named list with one entry
for each further model term. The value of the offset for each observation can be accessed with
coef(object)$offset$value. List entries for model terms in coef(object)$smterms are,
in turn, lists with different entries, in particular, including $x ($y, $z) representing unique
grid-points used to evaluate the coefficient function and $value representing a vector, matrix
or list of matrices with the coefficient values. The estimated spline-coefficients θ̂j of smooth
effects can be obtained by object$coef(), which is equal to setting the argument raw to
TRUE in the coef function.
The estimated effects can be graphically displayed by the plot() function. The coefficient
plots can be customized by various arguments. For example, coefficient surfaces can be
displayed as image plots, setting pers = FALSE, or as perspective plots, setting pers = TRUE.
To plot only some of the base learners, the argument which can be used. For instance,
plot(object, which = c(1, 3)) plots the estimated effects of the first and the third base
learner. The fitted values and predictions for new data can be obtained by the methods
fitted() and predict(), respectively.

Case study (continued): Fossil fuel data

To better understand the penalization used in the sof model, we can exemplarily extract the
marginal penalty matrix for UVVIS as follows:

R> marg_pen <- extract(sof, "penalty", which = 2)
R> marg_pen[[1]][1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 1 -1 0 0 0
[2,] -1 2 -1 0 0
[3,] 0 -1 2 -1 0
[4,] 0 0 -1 2 -1
[5,] 0 0 0 -1 2
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Figure 4: Coefficient estimates of the model for the heat value of the fossil fuels with optimal
number of boosting iterations. The smooth effect of the water content (left), the linear effect
of the UVVIS spectrum (center) and the NIR spectrum (right) are displayed.

In order to continue working with the optimal model, we set the number of boosting iterations
to the estimated optimal value.

R> sof <- sof[mstop(cvm_sof)]

We can access estimated coefficients using coef(), e.g., by extracting the estimated coefficient
function β̂NIR(sNIR) contained in $value evaluated at grid points $x.

R> coef_sof <- coef(sof)
R> str(coef_sof$smterms$`bsignal(NIR)`)

To display the estimated effects, plot() can be called on the fitted ‘FDboost’ object. Per
default, plot() only displays effects of base learners that were selected at least once. See
Figure 4 for the resulting plots.

R> par(mfrow = c(1, 3))
R> plot(sof, ask = FALSE, ylab = "")

The mean heat value is estimated to be higher for higher water content and lower for lower
water content (see Figure 4 left). High values of the UVVIS spectrum at a wavelength of
around 500 and 850 nm are associated with higher heat values. Higher values of the UVVIS
spectrum at wavelength around 300 and 750 nm are associated with lower heat values (see
Figure 4 middle). The effect of the NIR spectrum can be interpreted analogously.

5.5. Bootstrapped coefficient estimates

In order to get a measure for the uncertainty associated with the estimated coefficient func-
tions, one can employ nested bootstrap. The optimal number of boosting iterations in each
bootstrap fold, in turn, is estimated by an inner resampling procedure. The bootstrapped
coefficients are shrunken towards zero as boosting shrinks coefficients towards zero due to
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early stopping. Thus, the resulting bootstrap “confidence” interval is biased towards zero
but still captures the variability of the coefficient estimates. While they do not have proper
coverage properties due to shrinkage bias, these bootstrap intervals capture all the sources
of uncertainty (induced by the resampling, the model selection as well as the actual uncer-
tainty of coefficients). They may be used to check, e.g., for the existence of certain effects by
examining whether the resulting intervals contain the value zero, which was found to work
well in Rügamer et al. (2018). Having no formal inference procedure clearly is a limitation
of the model-based boosting framework in general and users who want to formally test pre-
specified hypotheses are referred to alternative software packages such as refund (Goldsmith
et al. 2019) for cases where these are applicable and the particular strengths of model-based
boosting (high-dimensional data and models, model selection, general loss-functions) are not
needed. In FDboost the function bootstrapCI() can be used to conveniently compute boot-
strapped coefficients:

bootstrapCI(object, B_outer = 100, B_inner = 25, ...)

The argument object is the fitted model object. The maximal number of boosting iterations
for each bootstrap fold is the number of boosting iterations of the model object. Per default
bootstrap is used with B_outer = 100 outer folds and B_inner = 25 inner folds. The dots
argument, ..., can be used to pass further arguments to applyFolds(), which is used for the
outer bootstrap. In particular, setting the argument mc.cores to an integer greater 1 will run
the outer bootstrap in parallel on the number of cores that are specified via mc.cores (this
does not work under Windows, as the parallelization is based on the function mclapply()).
As for the resampling scheme, which determines the number of iterations, the bootstrap which
is done to quantify uncertainty of coefficient estimates should be conducted on the level of
independent observations. This is particularly relevant for functional responses, where both
resampling procedures should be done on the level of curves. Additional dependence in the
data, such as observations sampled from clusters or in a longitudinal fashion, should also
be taken into account for scalar-on-function models. To this end, observations should be
sampled on the levels of clusters, subjects, or in nested designs, by a nested sampling for each
of the levels. This yields a limitation of our method in cases, in which observations cannot
be separated into independent units (e.g., for spatially correlated observations with a strong
dependence among all observations). However, customized solutions such as a block-wise
bootstrap (cf. Brockhaus et al. 2018) for time-series data can be employed as in the scalar
case.

Case study (continued): Fossil fuel data

We recompute the model on 100 bootstrap samples to compute bootstrapped coefficient
estimates. In each bootstrap fold the optimal number of boosting iterations is estimated
by an inner bootstrap with 10 folds. In contrast to other methods and analytic inference
concepts, employing bootstrap for coefficient uncertainty is much more time consuming but
can be easily parallelized. See the help page of bootstrapCI() for example code. The
resulting estimated coefficients can be seen in Figure 5.

R> set.seed(123)
R> sof_bootstrapCI <- bootstrapCI(sof[100], B_outer = 5, B_inner = 3,
+ mc.cores = 1)
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Figure 5: Bootstrapped coefficient estimates of the model for the heat value of the fossil
fuels. The coefficient estimates in the bootstrap samples for the smooth effect of the water
content (left), the linear effect of the UVVIS spectrum (middle) and the NIR spectrum (right)
are displayed. The pointwise 5% and 95% quantiles are marked with dashed red lines. The
pointwise 50% quantile is marked by a black line.

R> par(mfrow = c(1, 3))
R> plot(sof_bootstrapCI, ask = FALSE, commonRange = FALSE, ylab = "")

6. Functional response
In this section, we explain how to fit models with functional response like model (4). Mod-
els with scalar and functional covariates are treated, thus covering function-on-scalar and
function-on-function regression models.

6.1. Specification of functional response

If a functional variable is observed on one common grid, its observations can be represented by
a matrix. In FDboost, such functional variables have to be supplied as <number of curves>
by <number of evaluation points> matrices. That is, a functional response yi(tg), with
i = 1, . . . , N curves and g = 1, . . . , G evaluation points, is stored in an N × G matrix with
cases in rows and evaluation points in columns. This corresponds to a data representation in
wide format. The t variable must be given as vector (t1, . . . , tG)>.
For the functional response, curve-specific observation grids are possible, i.e., the ith response
curve is observed at evaluation points (tig, . . . , tiGi)> specific for each curve i. In this case,
three pieces of information must be supplied: the values of the response, the evaluation
points and the curve to which each of the observations belongs. The response is supplied
as the vector (y1(t11), . . . , yN (tNGN

))>. This vector has length n = ∑N
i=1Gi. The t variable

contains all evaluation points (t11, . . . , tNGN
)>. The argument id contains the information on

which observation corresponds to which response curve. The argument id must be supplied
as a right-sided formula id = ~ idvariable.
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Case study (continued): Emotion components data

In the following, we give an example for a model fit with a functional response. In the first
model fit, the response is stored in the matrix EMG, in the second in the vector EMG_long. We
fit an intercept model by defining the formula as y ~ 1 and the timeformula as ~ bbs(t).

R> fos_intercept <- FDboost(EMG ~ 1, timeformula = ~ bbs(t, df = 6),
+ data = emotionHGL)

The corresponding mathematical formula is

E(YEMG(t)) = β0(t),

i.e., we simply estimate the mean curve β0(t) of the functional EMG signal. Recall that
the intercept in the model β0(t) is estimated as the sum of the offset and the intercept base
learner. Per default (offset = NULL) the model is fitted using a smooth offset. For the given
application the resulting intercept is almost equal to the offset, as the effect of the intercept
base learner is almost zero. To get a less smooth offset, one could specify offset_control =
o_control(k_min = 30), which increases the basis dimension in the estimation of the offset.
A smoother offset can be achieved by setting offset_control = o_control(k_min = 10).
The argument k_min is the dimension of the basis that is used for estimating the offset and
defaults to 20. See Figure 6 for a comparison of the estimated intercepts depending on the
smoothness of the offset.

R> fos_intercept_wiggly <- FDboost(EMG ~ 1, timeformula = ~ bbs(t, df = 6),
+ data = emotionHGL, offset_control = o_control(k_min = 30))
R> fos_intercept_smooth <- FDboost(EMG ~ 1, timeformula = ~ bbs(t, df = 6),
+ data = emotionHGL, offset_control = o_control(k_min = 10))
R> par(mfrow = c(1, 3))
R> plot(fos_intercept_smooth, ask = FALSE)
R> plot(fos_intercept, ask = FALSE)
R> plot(fos_intercept_wiggly, ask = FALSE)

To fit a model with response in long format, we first have to convert the data into the
corresponding format. We therefore construct a data set data_emotion_long that contains
the response in long format. Usually, the long format specification is only necessary for
responses that are observed on curve-specific grids. We here provide this version for illustrative
purposes, but in this example the following model specification is equivalent to the previous
model fit fos_intercept.

R> emotion_long <- emotionHGL
R> emotion_long$EMG_long <- as.vector(emotion_long$EMG)
R> emotion_long$time_long <- rep(emotionHGL$t, each = nrow(emotionHGL$EMG))
R> emotion_long$curveid <- rep(1:nrow(emotionHGL$EMG), ncol(emotionHGL$EMG))
R> fos_intercept_long <- FDboost(EMG_long ~ 1,
+ timeformula = ~ bbs(time_long, df = 3), id = ~ curveid,
+ data = emotion_long)
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Figure 6: Estimated intercepts for different offset specifications. From left to right we use a
basis representation with 10, 20 or 30 splines for estimating the offset.

6.2. Effects in the formula that are combined with the timeformula

Many covariate effects can be represented by the Kronecker product of two marginal bases
as in Equation 6. The response and the bases in covariate direction bj(x) are specified in
formula as Y ~ b_1 + ...+ b_J. The base learner for the expansion along t is specified in
timeformula as ~ b_Y. Each base learner in formula is combined with the base-leaner in
timeformula using the operator %O%. This operator implements the Kronecker product of
two basis vectors as in Equation 6. Consider, for example, formula = Y ~ b_1 + b_2. If,
b_1 is defined by bols(z) with covariate z and a scalar response is given, using timeformula
= NULL specifies a model with linear effect zβ. In the case of a functional response, we usually
want the effect zβ to vary for each time point t ∈ T of the response, i.e., zβ(t). This can
be done by defining timeformula = ~ b_Y, where the base learner b_Y defines the form of
variation in t direction. Assuming a linear effect in t, b_Y is set to bols(t). The combination
of timeformula and formula yields Y ~ b_1 %O% b_Y + b_2 %O% b_Y. For the particular
example, b_1 %O% b_Y is equal to bols(z) %O% bols(t) yielding zβ(t).
If marginal base learners are specified with a penalty, the Kronecker product of the two basis
vectors is defined with an isotropic penalty matrix as in Equation 8. If the effect should only
be penalized in t direction, the operator %A0% can be used as it sets up the penalty as in
Equation 9. If formula contains base learners that are composed of two base learners by %O%
or %A0%, those effects are not expanded with timeformula, allowing for model specifications
with different effects in t direction. This can be used, for example, to model some effects
linearly and others non-linearly in t or to construct effects using %A0%. For further details on
these operators and their use, we refer to Appendix C.
We start with base learners for the timeformula. Theoretically, it is possible to use any base
learner which models the effect of a continuous variable. Usually, the effects are assumed to be
smooth along t. In this case, the base learner bbs() can be used, which represents the smooth
effect by P-splines (Schmid and Hothorn 2008a). Thus, bbs() uses a B-spline representation
for the design matrix and a squared difference matrix as penalty matrix. Using the bbs()
base-leaner in the timeformula corresponds to using a marginal basis bY as described in
Equation 10.
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Additive predictor h(x, t) = ∑
j hj(x, t) Call

β0(t) y ~ 1

β0(t) + z1β1(t) y ~ 1 + bolsc(z1)

β0(t) + f1(z1, t) y ~ 1 + bbsc(z1)

β0(t) + z1β1(t) + z2β2(t) + z1z2β3(t) y ~ 1 + bolsc(z1) + bolsc(z2) +

bols(z1) %Xc% bols(z2)

β0(t) + z1β1(t) + f2(z2, t) + z1f3(z2, t) y ~ 1 + bolsc(z1) + bbsc(z2) +

bols(z1) %Xc% bbs(z2)

β0(t) + f1(z1, t) + f2(z2, t) + f3(z1, z2, t) y ~ 1 + bbsc(z1) + bbsc(z2) +

bbs(z1) %Xc% bbs(z2)

β0(t) +
∫
S x(s)β1(s, t) ds y ~ 1 + bsignal(x, s = s)

y ~ 1 + bfpc(x, s = s)

β0(t) + zβ1(t) +
∫
S x(s)β2(s, t) ds y ~ 1 + bolsc(z) + bsignal(x, s = s) +

+z
∫
S x(s)β3(s, t) ds bsignal(x, s = s) %X% bolsc(z)

Table 4: Additive predictors that can be represented within the array framework.

Base learners that can be used in formula are listed in Table 4. In this table, a selection of
additive predictors that can be represented within the array framework are listed in the left
column. In the right column, the corresponding formula is given. The timeformula is set
to ~ bbs(t) to model all effects as smooth effects in t. Thus, the specified effects in formula
are combined with timeformula using the Kronecker product.
For offset = NULL, the model contains a smooth offset β∗0(t). The smooth offset is computed
prior to the model fit as smoothed population minimizer of the loss. For mean regression, the
smooth offset is the smoothed mean over t. The specification offset = "scalar" yields a
constant offset β∗0 . The resulting intercept in the final model is the sum of the offset and the
smooth intercept β̃0(t) specified in the formula as 1, i.e., β0(t) = β∗0(t) + β̃0(t).
The upper part of Table 4 gives examples for linear predictors with scalar covariates. A linear
effect of a scalar covariate is specified using the base learner bolsc(). This base learner works
for continuous and for factor variables. A smooth effect of a continuous covariate is obtained
by using the base learner bbsc(). The base learners bolsc() and bbsc() are similar to the
base learners bols() and bbs() from the mboost package, but enforce pointwise sum-to-
zero constraints to ensure identifiability for models with functional response (the suffix ‘c’
refers to ‘constrained’). Since, for example, the effect f1(z1, t) contains a smooth intercept
as special case, the model would not be identifiable without constraints, see Appendix A for
more details. We use the constraint ∑N

i=1 hj(xi, t) = 0 for all t, which centers each effect for
each point t (Scheipl et al. 2015). This implies that effects varying over t can be interpreted
as deviations from the smooth intercept and that the intercept can be interpreted as global
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mean if all effects are centered in this way. It is possible to check whether all covariate effects
sum to zero for all points t by setting check0 = TRUE in the FDboost() call. To specify
interaction effects of two scalar covariates, the base learners for each of the covariates are
combined using the operator %Xc% that applies the sum-to-zero constraint to the interaction
effect.
The lower part of Table 4 gives examples for linear predictors with functional covariates. In
analogy to models with scalar response, the linear effect

∫
S x(s)β(s, t) ds can be fitted by

bsignal() or bfpc() and the interaction effect is formed using the operator %X% (see the
explanations for Table 3).

Case study (continued): Emotion components data

For the emotion components data with the EMG signal as functional response, YEMG(t),
t ∈ [0, 1560] ms, we fit models with scalar and functional covariate effects in the following.

Function-on-scalar regression

We specify a model for the conditional expectation of the EMG signal using a random intercept
curve for each subject and a linear effect for the study setting power:

E(YEMG(t)|x) = β0(t) +
23∑
k=1

I(xsubject = k)βsubject,k(t) + xpowerβpower(t), (13)

with subject having values 1 to 23 for the participants of the study, and xpower taking values
{−1, 1} for low and high power. Both covariate effects in the model are specified by using a
centered base learner. The linear effect of the factor variable subject and the effect of power
are both specified using the bolsc() base learner. Therefore, the effects sum up to zero
for each time point t over all observations i = 1, . . . , N = 184, i.e., ∑N

i=1
∑23
k=1 I(xsubject,i =

k)βsubject,k(t) = 0 for all t.

R> fos_random_power <- FDboost(EMG ~ 1 + bolsc(subject, df = 2) +
+ bolsc(power, df = 1) %A0% bbs(t, df = 6),
+ timeformula = ~ bbs(t, df = 3), data = emotion)

As described in Section 3, it is important that all base learners have the same number of
degrees of freedom. In this model the degrees of freedom for each base learner are 2·3 = 6. By
specifying the bolsc-base learner with df = 2 for subject, the subject effect is estimated with
a ridge penalty similar to a random effect, whereas the power effect is estimated unpenalized
due to the use of the %A0%-operator. If the effects are assumed to have more (spiky) features
over time, the smoothness of the effect curves can be decreased by increasing the number of
knots, decreasing the order of differences in the penalty or decreasing the degree of the B-
spline basis in the bbs-base learners. Another way to change the smoothness is to increase the
degrees of freedom, df. For models with more than one base learner this, however, requires
also changing the degrees of freedom for other base learners to facilitate unbiased base learner
selection as explained in Section 3.
Analogously, a model with response in long format as in fos_intercept_long could be
specified by changing the formula to the formula of fos_random_power.
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Function-on-function regression
For the data subset for one specific game condition, we use the effect of the EEG signal to
model the EMG signal:

E(YEMG(t)|x) = β0(t) +
∫
S
xEEG(s)βEEG(s, t) ds. (14)

In this model each time point of the covariate xEEG(s) potentially influences each time point of
the response YEMG(t). We center the EEG signal per time point such that ∑N

i=1 xEEG,i(s) = 0
for each s to center its effect per time point.

R> emotionHGL$EEG <- scale(emotionHGL$EEG, scale = FALSE)
R> fof_signal <- FDboost(EMG ~ 1 + bsignal(EEG, s = s, df = 2),
+ timeformula = ~ bbs(t, df = 3), data = emotionHGL)

We will show and interpret plots of the estimated coefficients later on. If the brain activity
(measured via the EEG) triggers the muscle activity (measured via the EMG), it is reasonable
to assume that EMG signals are only influenced by past EEG signals. Such a relationship
can be represented using a historical effect

∫ t
T1
x(s)β(s, t) ds, which will be discussed in the

next paragraph.

6.3. Effects in the formula in both covariate and t direction
If the covariate varies with t, the effect cannot be separated into a marginal basis depending on
the covariate and a marginal basis depending only on t. In this case the effects are represented
as in Equation 5. Examples for such effects are historical and concurrent functional effects,
as discussed in Brockhaus et al. (2017). In Table 5 we give an overview of possible additive
predictors containing such effects.
The concurrent effect β(t)x(t) is only meaningful if the functional response and the functional
covariate are observed over the same domain. Models with concurrent effects can be seen as
varying-coefficient models (Hastie and Tibshirani 1993), where the effect varies over t. The
base learner bconcurrent() expands the smooth concurrent effect β(t) in P-splines. The
historical effect

∫ t
T1
x(s)β(s, t) ds uses only covariate information up to the current observation

point of the response. The base learner bhist() expands the coefficient surface β(s, t) in s
and in t direction using P-splines to fit the historical effect. In Appendix B, details on the
representation of functional effects are given.
The interface of bhist() is:

bhist(x, s, time, limits = "s<=t", knots = 10, degree = 3, differences = 1,
df = 4, lambda = NULL, check.ident = FALSE)

Most arguments of bhist() are analogous to those of bsignal(). bhist() has the additional
argument time to specify the observation points of the response. Via the argument limits
in bhist() the user can specify integration limits depending on t. Per default a historical
effect with limits s ≤ t is used. Other integration limits can be specified by using a function
with arguments s and t, which returns TRUE for combinations of s and t that lie within
the integration interval and FALSE otherwise. In the following, we give three examples for
functions that can be used for limits resulting in a classical historical effect, a lag effect or
a lead effect, respectively:
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Additive predictor h(x, t) = ∑
j hj(x, t) Call

β0(t) + x(t)β(t) y ~ 1 + bconcurrent(x, s = s, time = t)

β0(t) +
∫ t
T1
x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t)

β0(t) +
∫ t
t−δ x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t,

limits = limitsLag)

β0(t) +
∫ t−δ
T1

x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t,

limits = limitsLead)∫ u(t)
l(t) x(s)β(s, t) ds y ~ 1 + bhist(x, s = s, time = t,

limits = mylimits)

β0(t) + zβ1(t) +
∫ t
T1
x(s)β2(s, t) ds+ y ~ 1 + bolsc(z) + bhist(x, s = s,

z
∫ t
T1
x(s)β3(s, t) ds time = t) + bhistx(x) %X% bolsc(z)

Table 5: Additive predictors that contain effects that cannot be separated into an effect in
covariate direction and an effect in t direction. These effects in formula are not expanded
by timeformula. We give examples for general limit functions mylimits in this section. In
bhistx(), the variable x has to be of class ‘hmatrix’, please see the help page of bhistx()
for details.

R> limitsHist <- function(s, t) {
+ s <= t
+ }
R> limitsLag <- function(s, t, delta = 5) {
+ s >= t - delta & s <= t
+ }
R> limitsLead <- function(s, t, delta = 5) {
+ s <= t - delta
+ }

The base learner bhistx() is especially suited to form interaction effects such as factor-
specific historical effects (Rügamer et al. 2018), as bhist() cannot be used in combination
with the row-wise tensor product operator %X% to form interaction effects. bhistx() requires
the data to be supplied as an object of type ‘hmatrix’; see the help page of bhistx() for its
set-up.

Case study (continued): Emotion components data
Again, we use the subset of the data for one specific game condition. We start with a simple
function-on-function regression model by specifying a concurrent effect of the EEG signal on
the EMG signal:

E(YEMG(t)|x) = β0(t) + xEEG(t)β(t).
A concurrent effect is obtained by the base learner bconcurrent(), which is not expanded
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by the base learner in timeformula. In this model, timeformula is only used to expand the
smooth intercept.

R> fof_concurrent <- FDboost(EMG ~ 1 +
+ bconcurrent(EEG, s = s, time = t, df = 6),
+ timeformula = ~ bbs(t, df = 6), data = emotionHGL,
+ control = boost_control(mstop = 300))

Assuming that the activity in the muscle can be completely traced back to previous activity
in the brain, a more appropriate model seems to be a historical model including a historical
effect

E(YEMG(t)|x) = β0(t) +
∫ u(t)

l(t)
xEEG(s)βEEG(s, t) ds. (15)

From a neuro-anatomy perspective, the signal from the brain requires time to reach the
muscle. We therefore set l(t) = 0 and u(t) = t − 3, which is in line with Rügamer et al.
(2018).

R> fof_historical <- FDboost(EMG ~ 1 + bhist(EEG, s = s, time = t,
+ limits = function(s, t) s <= t - 3, df = 6),
+ timeformula = ~ bbs(t, df = 6), data = emotionHGL,
+ control = boost_control(mstop = 300))

More complex historical models are discussed in Rügamer et al. (2018). In particular, a
model containing random effects for the participants, effects for the game conditions and
game condition- as well as subject-specific historical effects of the EEG signal.
It is also possible to combine effects listed in Tables 4 and 5 to form more complex models. In
particular, base learners with and without array structure can be combined within one model.
As in the component-wise boosting procedure each base learner is evaluated separately, the
array structure of the Kronecker product base learners can still be exploited in such hybrid
models.

6.4. Model tuning and early stopping
For a fair selection of base learners, additional care is needed for functional responses as only
some of the base learners in the formula are expanded by the base learner in timeformula.
In particular, all base learners listed in Table 4 are expanded by timeformula, whereas
base learners given in Table 5 are not expanded by timeformula. For the row-wise tensor
product and the Kronecker product of two base learners, the degrees of freedom for the
combined base learner is computed as product of the two marginally specified degrees of
freedom. For instance, formula = y ~ bbsc(z, df = 3) + bhist(x, s = s, df = 12)
and timeformula = ~ bbs(t, df = 4) implies 3 · 4 = 12 degrees of freedom for the first
combined base learner and 12 degrees of freedom for the second base learner. The call
extract(object, "df") displays the degrees of freedom for each base learner in an ‘FDboost’
object. For other tuning options such as the number of iterations and the specification of the
step-length see Section 5.
To find the optimal number of boosting iterations for a model fit with functional response,
FDboost provides two resampling functions. Depending on the specified model, some pa-
rameters are computed from the data prior to the model fit: By default a smooth functional
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offset β∗0(t) is computed (offset = NULL in FDboost()) and for linear and smooth effects of
scalar variables, defined by bolsc() and bbsc(), transformation matrices for the sum-to-zero
constraints are computed. The cvrisk() method for ‘FDboost’ objects uses the smooth func-
tional offset and the transformation matrices from the original model fit in all folds. Thus,
these parameters are treated as fixed and the uncertainty induced by their estimation is not
considered in the resampling. On the other hand, applyFolds() recomputes the whole model
in each fold. The two resampling methods are equal if no smooth offset is used and if the
model does not contain any base learner with a sum-to-zero constraint (i.e., neither bolsc()
nor bbsc()). In general, we recommend to use the function applyFolds() to determine the
optimal number of boosting iterations for a model with functional response. The interface of
applyFolds() is:

applyFolds(object, folds = cv(rep(1, length(unique(object$id))),
type = "bootstrap"), grid = 1:mstop(object))

The interface is in analogy to the interface of cvrisk(). In the argument object, the fitted
model object is specified. grid defines the grid on which the optimal stopping iteration is
searched. Via the argument folds the resampling folds are defined by suitable weights. The
function applyFolds() expects resampling weights that are defined on the level of curves,
i = 1, . . . , N . That means that the folds must contain weights wi, i = 1, . . . , N , which can be
done easily using the function cv().

6.5. Methods to extract and display results

Methods to extract and visualize results are the same irrespective of scalar or functional
response. Thus, we refer to the corresponding paragraphs at the end of Section 5.

Case study (continued): Emotion components data

Exemplarily, the penalty matrix for the historical effect can be extracted as follows:

R> kron_pen <- extract(fof_historical, "penalty")
R> as.matrix(kron_pen[[1]][1:5, 1:5])

This is equal to the kronecker sum of two marginal B-spline penalties with isotropic penal-
ization (as defined by Equation 7 with λj = λY ):

R> margPen <- extract(with(emotionHGL,
+ bbs(s, knots = 10, differences = 1)), "penalty")
R> (kronecker(margPen, diag(ncol(margPen))) +
+ kronecker(diag(ncol(margPen)), margPen))[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 2 -1 0 0 0
[2,] -1 3 -1 0 0
[3,] 0 -1 3 -1 0
[4,] 0 0 -1 3 -1
[5,] 0 0 0 -1 3
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As for scalar response, the plot-function can be used to access the estimated effects in
a function-on-function regression. In the following, we compare the three basic types of
functional covariate effects, which can be used in conjunction with a functional response. We
first determine the optimal number of stopping iterations for all three presented models.

R> set.seed(123)
R> folds_bs <- cv(weights = rep(1, fof_signal$ydim[1]),
+ type = "kfold", B = 5)
R> cvm_concurrent <- applyFolds(fof_concurrent, folds = folds_bs,
+ grid = 1:300)
R> ms_conc <- mstop(cvm_concurrent)
R> fof_concurrent <- fof_concurrent[ms_conc]
R> cvm_signal <- applyFolds(fof_signal, folds = folds_bs, grid = 1:300)
R> ms_signal <- mstop(cvm_signal)
R> fof_signal <- fof_signal[ms_signal]
R> cvm_historical <- applyFolds(fof_historical, folds = folds_bs,
+ grid = 1:300)
R> ms_hist <- mstop(cvm_historical)
R> fof_historical <- fof_historical[ms_hist]

Then, we plot the estimated effects into one figure:

R> par(mfrow = c(1, 3))
R> plot(fof_concurrent, which = 2, main = "Concurrent EEG effect")
R> plot(fof_signal, which = 2, main = "Signal EEG effect",
+ n1 = 80, n2 = 80, zlim = c(-0.02, 0.025),
+ col = hcl.colors(20, "YlGnBu"))
R> plot(fof_historical, which = 2, main = "Historical EEG effect",
+ n1 = 80, n2 = 80, zlim = c(-0.02, 0.025),
+ col = hcl.colors(20, "YlGnBu"))

The concurrent effect corresponds to the diagonal of the other two surfaces in Figure 7 and
assumes that off-diagonal time points have no association. Due to the temporal lag between
EEG and EMG discussed for model (15), there is no meaningful interpretation for this model
and the effect is only shown for demonstrative purposes. The historical effect corresponds to
the assumption that the upper triangle in the signal EEG effects should be zero, as future
brain activity should not influence the present muscle activity. The results in Figure 7 (right
panel) can be interpreted in the same manner as results of a scalar-on-function regression
when keeping a certain time point t fixed. For the time point t = 350 of the EMG signal, for
example, time points s = 0 to s ≈ 150 of the EEG signal do not show an effect, but for s > 150
the estimated effect on the expected EMG signal is positive. For a detailed description of
the interpretation of historical effect surfaces as shown in Figure 7, we refer to the online
appendix of Rügamer et al. (2018).
Careful interpretation has to take into account that this data set has a rather small signal-
to-noise ratio due to the oscillating nature of both signals. In such cases, it is recommended
to check the uncertainty of estimated effects via bootstrap, e.g., by using the bootstrapCI()
function as exemplarily shown in Figure 8. As the 5%-quantile surface exhibits exclusively
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Figure 7: Visualization of estimated concurrent EEG effect (left panel), signal EEG effect
(center panel) and historical EEG effect (right panel).
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Figure 8: Visualization of three bootstrap quantiles for the historical EEG effect based on
100 bootstrap samples and a 10-fold cross-validation to optimize the stopping iteration for
each bootstrap sample.

negative coefficients and the 95%-quantile surface exclusively positive coefficients in this case,
the bootstrap surface suggests that the historical EEG may have no effect on the EMG-signal
in the given model.

R> fof_historical_bci <- bootstrapCI(fof_historical, mc.cores = 2,
+ B_inner = 10, type_inner = "kfold")
R> par(mfrow = c(1, 3))
R> plot(fof_historical_bci, which = 2, ask = FALSE, pers = FALSE,
+ col = hcl.colors(20, "YlGnBu"), probs = c(0.05, 0.5, 0.95))
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7. Functional regression models beyond the mean
Using boosting for model estimation it is possible to optimize other loss functions than the
squared error loss. This allows to fit, e.g., generalized linear models (GLMs) and quantile
regression models (Koenker 2005). It is also possible to fit models for several parameters
of the conditional response distribution in the framework of generalized additive models for
location, scale and shape (GAMLSS; Rigby and Stasinopoulos 2005).
For the estimation of these more general models, a suitable loss function in accordance with
the modeled characteristic of the response distribution is defined and optimized. The absolute
error loss (L1 loss), for instance, implies median regression, and minimizing the L2 loss yields
mean regression.
In FDboost(), the regression type is specified by the family argument. The family argument
expects an object of class ‘Family’, which implements the respective loss function with its
corresponding negative gradient and link function. The default is family = Gaussian()
which yields L2-boosting (Bühlmann and Yu 2003). This means that the mean squared
error loss is minimized, which is equivalent to maximizing the log-likelihood of the normal
distribution. Table 6 lists some loss functions currently implemented in mboost, which can
be directly used in FDboost (see Hofner et al. 2014, for more families). Hofner et al. (2014)
also give an example on how to implement new families via the function Family(). See also
the help page ?Family for more details on all families.
For a continuous response, several model types are available (Bühlmann and Hothorn 2007):
L2-boosting yields mean regression; a more robust alternative is median regression, which

Response type Regression type Loss Call

Continuous Mean regression L2 loss Gaussian()

Median regression L1 loss Laplace()

Quantile regression Check function QuantReg()

Expectile regression Asymmetric L2 ExpectReg()

Robust regression Huber loss Huber()

Non-negative Gamma regression −lgamma GammaReg()

Binary Logistic regression −lBernoulli Binomial()

AdaBoost classification Exponential loss AdaExp()

Count Poisson model −lPoisson Poisson()

Neg. binomial model −lneg. binomial NBinomial()

Scalar ordinal Proportional odds model −lproportional odds model ProppOdds()

Scalar categorical Multinomial model −lmultinomial Multinomial()

Scalar survival time Cox model −lcox CoxPH()

Table 6: Overview of some families that are implemented in mboost. −lF denotes the negative
log-likelihood of the distribution or model F .
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optimizes the absolute error loss; the Huber loss is a combination of L1 and L2 loss (Huber
1964); quantile regression can be used to model a certain quantile of the conditional response
distribution (Fenske et al. 2011); and expectile regression for modeling an expectile (Newey
and Powell 1987; Sobotka and Kneib 2012). For a non-negative continuous response, models
assuming the gamma distribution can be useful. A binary response can be modeled in a GLM
framework with a logit model or by minimizing the exponential loss, which corresponds to the
first boosting algorithm “AdaBoost” (Friedman 2001; Bühlmann and Hothorn 2007). Count
data can be modeled assuming a Poisson or negative binomial distribution (Schmid, Potapov,
Pfahlberg, and Hothorn 2010).
For functional response, we compute the loss pointwise and integrate over the domain of the
response.
The following models can only be applied for scalar and not for functional response. For
ordinal response, a proportional odds model can be used (Schmid, Hothorn, Maloney, Weller,
and Potapov 2011). For categorical response, the multinomial logit model is available. For
survival models, boosting Cox proportional hazard models and accelerated failure time models
have been introduced by Schmid and Hothorn (2008b).

Case study (continued): Emotion components data

So far, we fitted a model for the conditional mean of the response. As a more robust alter-
native, we consider median regression by setting family = QuantReg(tau = 0.5) which is
equal to family = Laplace(). We use the update function, to update the functional model
with the new family.

R> fof_signal_med <- update(fof_signal, family = QuantReg(tau = 0.5))

For median regression, the smooth intercept is the estimated median at each time point and
the effects are deviations from the median.
Similarly, if a certain quantile of the functional response is of interest, for example the 90%
quantile, the model can be updated as follows:

R> fof_historical_q90 <- update(fof_historical, family = QuantReg(tau = 0.9))

which is equivalent to the following initial model specification:

R> fof_historical_q90 <- FDboost(EMG ~ 1 + bhist(EEG, s = s, time = t,
+ limits = function(s, t) s <= t - 3, df = 6),
+ timeformula = ~ bbs(t, df = 3), data = emotionHGL,
+ control = boost_control(mstop = 300), family = QuantReg(tau = 0.9))

To illustrate an example for scalar-on-function regression with binary response, consider the
case, in which the goal is to predict the game_outcome in the case study for the emotions
component data using only the muscle activity measured via the EMG. Consider the model

g(P(Yi,j |xi,j)) = β0 + γj +
∫
S
xEMG,i,j(s)βEMG(s)ds+

∫
S
xEMG,i,j(s)γEMG,j(s)ds,

for observation i = 1, . . . , 8 of subject j = 1, . . . , 23, where g is the inverse of the logit function,
Yi,j ∈ {0, 1} determines the game outcome (gain and loss, respectively) for participant j in
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game i, γj is a subject effect and the EMG is modeled using a global EMG effect βEMG as well
as a subject-specific EMG effect γEMG,j . We first center the EMG-signal as it is now used as
covariate:

R> emotion$EMG <- scale(emotion$EMG, center = TRUE, scale = FALSE)

and specify the model in FDboost as follows:

R> sof_binary <- FDboost(game_outcome ~ 1 + brandom(subject, df = 4) +
+ bsignal(EMG, s = s, df = 4) + brandom(subject, df = 2) %X%
+ bsignal(EMG, s = s, df = 2), data = emotion, family = Binomial(),
+ control = boost_control(mstop = 5000), timeformula = NULL)

Note that the row-wise tensor product operator %X% in this case is used to specify a subject-
specific functional effect of the EMG-signal and the resulting degrees of freedom of this base
learner are determined as the product of the dfs of both base learners. To get a measure of
the performance of this model, we could, e.g., compute predictions and look at the confusion
matrix when simply rounding the predictions:

R> predictions <- predict(sof_binary, type = "response")
R> round_preds <- round(predictions)
R> table(round_preds, as.numeric(emotion$game_outcome))

round_preds 1 2
0 76 12
1 16 80

The combination of GAMLSS with functional variables is discussed in Brockhaus et al. (2018)
and Stöcker et al. (2018). For GAMLSS models, FDboost builds on the package gamboost-
LSS (Hofner, Mayr, Fenske, Thomas, and Schmid 2020), in which families are implemented
to fit GAMLSS. For details on the boosting algorithm to fit GAMLSS, see Mayr et al. (2012)
and Thomas, Mayr, Bischl, Schmid, Smith, and Hofner (2018). The families in gamboostLSS
need to model at least two distribution parameters. For an overview of currently implemented
response distributions for GAMLSS, we refer to Hofner, Mayr, and Schmid (2016). In FD-
boost, the function FDboostLSS() implements GAMLSS with functional data. The interface
of FDboostLSS() is:

FDboostLSS(formula, timeformula, data = list(), families = GaussianLSS(),
...)

In formula a named list of formulas is supplied. Each list entry in the formula specifies the
potential covariate effects for one of the distribution parameters. The names of the list are
the names of the distribution parameters. The argument families is used to specify the as-
sumed response distribution with its modeled distribution parameters. The default families
= GaussianLSS() yields a Gaussian location scale model. In the dots argument, ..., fur-
ther arguments passed to FDboost() can be supplied. The model object which is fitted by
FDboostLSS() is a list of ‘FDboost’ model objects. It is not possible to automatically fit a
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smooth offset within FDboostLSS(). Per default, a scalar offset value is used for each distri-
bution parameter. For functional response, it can thus be useful to center the response prior
to the model fit. All integration weights for the loss function are set to one, corresponding to
the negative log-likelihood of the observation points under a working independent assumption
(conditional on all model terms).
For model objects fitted by FDboostLSS(), methods to estimate the optimal stopping iter-
ations, as well as methods for plotting and prediction exist. For more details on boosting
GAMLSS models, we refer to Hofner et al. (2016), which is a tutorial for the package gam-
boostLSS.

Case study (continued): Fossil fuel data

We fit a Gaussian location scale model for the heat value. Such a model is obtained by setting
families = GaussianLSS(), where the expectation is modeled using the identity link and
the standard deviation by a log-link. Mean and standard deviation of the heat value are
modeled by different covariates:

Yi|xi ∼ N(µi, σ2
i ),

µi = β0 + f(zh2o,i) +
∫
SNIR

xNIR,i(sNIR)βNIR(sNIR) dsNIR +
∫
SUV

xUV,i(sUV)βUV(sUV) dsUV,

log σi = α0 + α1zh2o,i.

The mean is modeled depending on the water content as well as depending on the NIR and the
UVVIS spectrum. The standard deviation is modeled using a log-link and a linear predictor
based on the water content. The formula has to be specified as a list of two formulas with
names mu and sigma for mean and standard deviation of the normal distribution. We use the
noncyclic fitting method that is introduced by Thomas et al. (2018).

R> fuelSubset$h2o_center <- fuelSubset$h2o - mean(fuelSubset$h2o)
R> library("gamboostLSS")
R> sof_ls <- FDboostLSS(list(mu = heatan ~ bbs(h2o, df = 4) +
+ bsignal(UVVIS, uvvis.lambda, knots = 40, df = 4) +
+ bsignal(NIR, nir.lambda, knots = 40, df = 4),
+ sigma = heatan ~ 1 + bols(h2o_center, df = 2)), timeformula = NULL,
+ data = fuelSubset, families = GaussianLSS(), method = "noncyclic")
R> names(sof_ls)

[1] "mu" "sigma"

The optimal number of boosting iterations is searched on a grid of 1 to 2000 boosting it-
erations. The algorithm updates in each boosting iteration the base learner that best fits
the negative gradient. Thus, in each iteration the additive predictor for only one of the
distribution parameters is updated.

R> set.seed(123)
R> cvm_sof_ls <- cvrisk(sof_ls, folds = cv(model.weights(sof_ls[[1]]),
+ B = 5), grid = 1:2000, trace = FALSE)
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The estimated coefficients for the expectation are similar to the effects resulting from the
pure mean model. The water content has a negative effect on the standard deviation, with
higher water content being associated with lower variability.

8. Variable selection by stability selection
Variable selection can be refined using stability selection (Meinshausen and Bühlmann 2010;
Shah and Samworth 2013). Stability selection is a procedure to select influential variables
while controlling false discovery rates and maximal model complexity. For component-wise
gradient boosting, it is implemented in mboost in the function stabsel() (Hofner, Boccuto,
and Göker 2015), which can also be used for model objects fitted by FDboost(). Brockhaus
et al. (2017) compute function-on-function regression models with more functional covariates
than observations and perform variable selection by stability selection. Thomas et al. (2018)
discuss stability selection for GAMLSS estimated by boosting.

9. Computational characteristics and costs
In order to give rough estimates on how FDboost scales up with increasing number of ob-
servations N , observation points per response curve G, number of base learners J as well as
other data and run-time related set-ups, this section provides some further insights into the
algorithm and bottlenecks to bear in mind.
Estimating the run-time of FDboost is not straightforward as it depends on the number of
boosting iterations, the size of the data set, the number and complexity of base learners,
as well as the type and parallelization of resampling. Different loss-functions, i.e., different
types of regression should not change the run-time directly, but may require a smaller step-
length as explained before which in turn induces a higher number of boosting iterations. In
the following simulation study, we use the default value ν = 0.1. FDboost scales linearly in
the number of iterations, which is why we use a fixed number mstop = 50 in the following.
However, note that the initialization of the model can get computationally very expensive,
if very complex base learners are defined (see, e.g., Rügamer et al. 2018). This is due to a
singular-value decomposition of the design matrix of each base learner, which is needed to
compute the smoothing parameter corresponding to the pre-defined degrees of freedom and
which has cubic run-time in the number of columns of the design matrix. For smooth effects,
the number of columns of the design matrix of a base learner is defined by the number of
knots. For the simulation study, we use 20 knots for a historical or unrestricted functional
effect base learner for function-on-function and scalar-on-function models, respectively. This
corresponds to the number of knots used in the fuelSubset data and yields rather flexible
estimates of functions. For applications where less flexibility is needed, this simulation study
can be seen as a worst-case scenario estimate of run-times.
Furthermore, we define the number of observations to be N ∈ {10, 100, 1000}, the num-
ber of time points to be G ∈ {1, 10, 100, 1000} and the number of base learners to be
J ∈ {5, 10, 15}. For G = 1 scalar-on-function regression is performed, the other settings
correspond to function-on-function regression. Due to computational burden, we exclude set-
tings, in which N = 1000 and G = 1000 at the same time. The simulation was conducted on
a Linux server with Intel Xeon CPU E5-4620 0 with 2.20GHz, 64 cores and 512 GB RAM.
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We do not consider resampling or validation here as resampling on k-folds should approx-
imately yield a k-multiple of the original run-time if not parallelized, i.e., run-times scale
linearly in the number of folds. With parallelization the run-time can be reduced to the
run-time of a single model fit.

The results of the simulation study are visualized in the following, indicating a roughly linear
increase in run-time and total allocation of memory by the number of observations (note
that both are plotted against log10(N)), a linear increase by the number of observed time
points per curve G as well as by the number of base learners J . The mstop = 50 iterations
play a comparatively minor role in time and memory consumption after the model has been
initialized. Although the hat matrix for each base learner is available after the initialization
of the model and therefore the model iterations boil down to simple matrix multiplications,
it is noteworthy that for larger problems (in N and/or G) and/or more complex models,
these simple operations can add up and the actual model fitting then takes much longer
than the model initialization. For some models, in particular quantile regression, several
1,000s of iterations may be necessary, which then also increases computing time considerably.
In addition, if it is not possible to parallelize resampling for finding the optimal number
of stopping iterations, the run-time might be a k-multiple of this protracted process. We
therefore recommend to initially fit the model using only a few iterations m0 and then update
the model as described in Section 5.3 to some more additional iterations madd in order to
assess the approximate run-time. By observing the time tadd required to update the model
from m0 to madd iterations, an estimate for the final run-time of mstop iterations can be
easily obtained by linear extrapolation: mstop · tadd

madd−m0
+m0. Since ‘FDboost’ objects can be

updated repeatedly, the initialized model can be re-used for both the run-time assessment as
well as for the final model fit. Note that the total amount of allocated memory can only be
interpreted in relative terms for model comparisons, but does not correspond to the maximum
amount of consumed memory at one time point, which is considerably smaller.

10. Discussion

The R add-on package FDboost provides a comprehensive implementation to fit functional
regression models by gradient boosting. The implementation allows to fit regression models
with scalar or functional response depending on many covariate effects. The framework
includes mean, mean with link function, median and quantile regression models as well as
GAMLSS. Various covariate effects are implemented including linear and smooth effects of
scalar covariates, linear effects of functional covariates and interaction effects, also between
scalar and functional covariates (Rügamer et al. 2018). The linear functional effects can have
flexible integration limits, for example, to form historical or lag effects (Brockhaus et al. 2017).
Whenever possible, the effects are represented in the structure of linear array models (Currie
et al. 2006) to increase computational efficiency (Brockhaus et al. 2015). Component-wise
gradient boosting allows to fit models in high-dimensional data situations and performs data-
driven variable selection. FDboost builds on the well tested and modular implementation of
mboost (Hothorn et al. 2020). This facilitates the implementation of further base learners
in order to fit new covariate effects and that of families modeling other characteristics of the
conditional response distribution.
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A. Constraints for effects of scalar covariates
Consider a model for functional response with smooth intercept and an effect that contains
a smooth intercept as special case, E(Yi(t)) = β0(t) + hj(xi, t), and define the mean effect at
each point t as h̄j(x, t) = EX(hj(X, t)). This model can be parametrized in different ways,
e.g., as

E(Yi(t)) = β0(t) + hj(xi, t)

=
[
β0(t) + h̄j(x, t)

]
+
[
hj(xi, t)− h̄j(x, t)

]
= β̃0(t) + h̃j(x, t).

The problem arises as h̄j(x, t) (or any other smooth function in t) can be shifted between the
intercept and the covariate effect. At the level of the design matrices of these effects, this can
be explained by the fact that the columns of the design matrix BjY and the columns of the
design matrix of the functional intercept are linearly dependent. To obtain identifiable effects,
Scheipl et al. (2015) propose to center such effects hj(x, t) at each point t. The centering
is achieved by setting the pointwise expectation over the covariate effects to zero on T , i.e.,
EX(hj(X, t)) = 0 for all t, approximated by the sum-to-zero constraint ∑N

i=1 hj(xi, t) = 0
for all t. How to enforce such constraints is described in Appendix A of Brockhaus et al.
(2015). Other constraints to obtain identifiable models are possible. However, this sum-
to-zero constraint for each point t yields an intuitive interpretation: The intercept can be
interpreted as global mean and the covariate effects can be interpreted as deviations from the
smooth intercept.
The constraint is enforced by a basis transformation of the design and penalty matrix. As
shown in Brockhaus et al. (2015), it is sufficient to apply the constraint on the covariate part
of the design and the penalty matrix. Thus, it is not necessary to transform the basis in
t direction.

B. Base learners for functional covariates
The base learner bsignal() sets up a linear effect of a functional variable

∫
S xj(s)βj(s) ds ≈

bj(x)>θj using P-splines. We approximate the integral numerically as a weighted sum using
integration weights ∆(s) (Wood 2011), see Equation 3:

bj(xi)> =
[
R∑
r=1

∆(sr)xi(sr)φ1(sr) · · ·
R∑
r=1

∆(sr)xi(sr)φKj (sr)
]

≈
[∫
S
xi(s)φ1(s) ds · · ·

∫
S
xi(s)φKj (s) ds

]
,

where φk(sr), k = 1, . . . ,Kj are B-splines evaluated at sr. The corresponding penalty matrix
Pj is a squared difference matrix and thus, the smooth effect βj(s) in s is represented by
P-splines.
Using the base learner bfpc() the linear functional effect

∫
S xj(s)βj(s) ds is specified using

an FPC basis. The functional covariate xj(s) and the coefficient βj(s) are both represented
in the basis that is spanned by the functional principal components (FPCs, see, e.g., Ramsay
and Silverman 2005, Chapters 8 and 9) of xj(s). Let Xj(s) be a zero-mean stochastic process
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in the space of all square-integrable functions L2(S). Let xij(s) be the observations of the
copies Xij(s) of this process. We denote the eigenvalues of the auto-covariance of Xj(s) as
ζ1 ≥ ζ2 ≥ · · · ≥ 0 and the corresponding eigenfunctions as ek(s), k ∈ N. The eigenfunctions
{ek(s), k ∈ N} form an orthonormal basis for the L2(S). Using the Karhunen-Loève theorem,
the functional covariate can be represented as weighted sum

Xij(s) =
∞∑
k=1

Zikek(s),

where Zik are uncorrelated mean zero random variables with variance ζk and realizations
zik. In practice, the infinite sum is truncated at a certain value Kj . Representing the func-
tional covariate and the coefficient function by this truncated basis with weights θl and zik,
respectively, the effect simplifies to

∫
S
xij(s)βj(s) ds ≈

Kj∑
k,l=1

∫
S
zikek(s)el(s)θl ds =

Kj∑
k=1

zikθk,

as the eigenfunctions ek(s) are orthonormal. Thus, this approach is equivalent to using
the (estimated) first Kj FPC scores zik as linear covariates. The number of eigenfunctions is
usually chosen such that the truncated basis explains a fixed proportion of the total variability
of the covariate, for example 99% (cf. Morris 2015). This truncation achieves regularized
effects, as the effect can only lie in the space spanned by the first Kj eigenfunctions. For the
penalty matrix Pj the identity matrix is used in bfpc().
For scalar response, the base learners bsignal() and bfpc() yield the effect

∫
S xj(s)βj(s) ds.

Combining them with a smooth effect in t using bbs(), they can be used to fit effects for
function-on-function regression

∫
S xj(s)βj(s, t) ds.

The base learner bhist() allows to specify functional linear effects with integration limits
depending on t,

∫ u(t)
l(t) x(s)β(s, t) ds. Per default, a historical effects with limits [l(t), u(t)] =

[T1, t] is fitted. The integral is approximated by a numerical integration scheme (Scheipl
et al. 2015). We transform the observations of the functional covariate xj(sr) such that they
contain the integration limits and the weights for numerical integration. We define x̃j(sr, t) =
I (l(t) ≤ sr ≤ u(t)) ∆(sr)xj(sr), with indicator function I(·) and integration weights ∆(sr).
The marginal basis over the covariates x, which in this case also depends on t, is:

bjY (xi, t)> =
[
R∑
r=1

x̃j(sr, t)φ1(sr) · · ·
R∑
r=1

x̃j(sr, t)φKj (sr)
]
⊗
[
φ1(tg) · · · φKY

(tg)
]

≈
[∫ u(t)

l(t)
xi(s)φ1(s) ds · · ·

∫ u(t)

l(t)
xi(s)φKj (s) ds

]
⊗
[
φ1(tg) · · · φKY

(tg)
]
.

The isotropic penalty in Equation 8 is used with squared difference matrices as marginal
penalties to form P-splines bases for the s and t direction of β(s, t).
For a concurrent effect x(t)β(t), the base learner bconcurrent() can be used. The smooth
effect β(t) in t is expanded by P-splines.
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C. Row tensor product and Kronecker product bases
In the R package mboost (Hothorn et al. 2020), the Kronecker product of two base learners
is implemented as %O%. The row-wise tensor product of two base learners is implemented in
the operator %X%. The row-wise tensor product of two marginal design matrices, Bj ∈ Rn×Kj

and BY ∈ Rn×KY , is defined as n×KjKY matrix

Bj �BY = (Bj ⊗ 1>KY
) · (1>Kj

⊗BY ),

where · denotes entry-wise multiplication and 1K is the K-dimensional vector of ones. The
operators %X% and %O% use the Kronecker product or the row-wise tensor product to compute
the design matrix. The penalty is computed according to Equation 7. When %X% or %O% is
called with specified argument df in both marginal base learners, the degrees of freedom of
the composed effect are computed as the product of the two specified degrees of freedom.
Then, only one smoothing parameter is computed for an isotropic penalty like in Equation 8.
Consider, for example, the composed base learner bols(z1, df = df1) %O% bbs(t, df =
df2). The base learner bols() specifies a linear effect. The base learner bbs() specifies
a smooth effect represented by P-splines. Thus, the composed base learner yields the effect
z1βj(t), which is linear in z1 and smooth in t. The global degrees of freedom for the composed
base learner are computed as df j = df1 * df2. The corresponding smoothing parameter
λj is computed by Demmler-Reinsch orthogonalization (Ruppert, Wand, and Carroll 2003,
Appendix B.1.1).
For array models, FDboost() connects the effects of formula and timeformula by the op-
erator %O%, yielding b_1 %O% b_Y + ...+ b_J %O% b_Y. The operator %O% uses the array
framework of Currie et al. (2006) to efficiently implement such effects in boosting (Hothorn,
Kneib, and Bühlmann 2013). If it is not possible to use the array framework, e.g., if the
response is observed on curve-specific grids or for historical effects, the design matrix is com-
puted as row-wise tensor product basis, i.e., using the operator %X%. Within the function
FDboost() the appropriate operator is used automatically. When the marginal base learners
are supplied with specified degrees of freedom (argument df), %O% and %X% use the isotropic
penalty (8).
The anisotropic penalty (7) is obtained if the smoothing parameter is specified in both
marginal base learners; for instance, as bols(z1, lambda = lambda1) %O% bbs(t, lambda
= lambda2). However, it is hard to control the degrees of freedom in this case such that each
base learner in the model has the same number of degrees of freedom. Thus, specifying the
smoothing parameter λ in both marginal base learners is hardly applicable in practice.
In some cases, one only wants to penalize the basis in t direction. In this case, the penalty in
Equation 9 can be used. Such a penalty is obtained using the operators %A0% or %Xa0%, for the
Kronecker and the row-wise tensor product basis, respectively. When %A0% or %Xa0% are used
to form an effect with penalty (9), the number of degrees of freedom in the first base learner
has to be equal to the number of its columns. Consider, bols(z1, df = 1, intercept
= FALSE) %A0% bbs(t, df = df2), with a metric variable z1. This specification implies
bj(xi) = zi1 and Pj = 0 for the bols() base learner. The bbs() base learner sets up a design
matrix of B-spline evaluations in t and a squared difference matrix as penalty matrix.
Linking formula and timeformula in FDboost() to representation (6), the J base learners
in formula correspond to the J marginal bases bj and the base learners in timeformula
corresponds to the marginal basis bY . If it is possible to represent the effects as Kronecker
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product, the base learners are combined by %O%. Otherwise, the row-wise tensor product %X%
is used to combine the marginal bases.
Consider, for example, formula = Y ~ b_1 + b_2 + ...+ b_J, and timeformula = ~ b_Y.
For an array model, this yields Y ~ b_1 %O% b_Y + b_2 %O% b_Y + ... + b_J %O% b_Y.
If formula contains base learners that are composed of two base learners by %O% or %A0%, those
effects are not expanded with timeformula, allowing for model specifications with different
effects in t direction. For example, formula = Y ~ b_1 + b_2 %A0% b_Y0, and timeformula
= ~ b_Y, with non-linear base learner b_Y and linear base learner b_Y0, yield Y ~ b_1 %O%
b_Y + b_2 %A0% b_Y0.

D. Example code for resampling with repeated measurements

In the following, we search the optimal stopping iteration for model (13), which contains a
linear effect for the game condition power and a person-specific effect.
We search the optimal stopping iteration by a 5-fold cross-validation. The resampling is done
on the level of curves, assuming that the observations per subject are independent conditional
on the subject-specific effects. We use the function applyFolds() for the resampling.

R> set.seed(123)
R> folds_bs <- cv(weights = rep(1, fos_random_power$ydim[1]),
+ type = "kfold", B = 5)
R> cvm <- applyFolds(fos_random_power, folds = folds_bs, grid = 1:200)

The optimal stopping iteration is estimated to be 200, which is the upper limit of the searched
grid. Thus, the resampling has to be rerun with a higher maximal number of boosting
iterations.
To resample the observations on the level of independent observation units, the folds can be
set up on the level of subjects. The corresponding folds for a leave-one-subject-out cross-
validation, which are then passed to applyFolds(), could be constructed as follows:

R> set.seed(123)
R> folds_bs_long_subject <- sapply(levels(emotion$subject),
+ function(x) as.numeric(x != emotion$subject))

E. Fitting factor-specific historical models

In this section we provide code to fit a more complex and realistic model to the emotion
component data. As the EMG signal might depend on all three study settings (power,
game_outcome, control) as well as their interactions, and the influence of the EEG signal
might also be specific for each setting as well as for each subject, we assume the following
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model (cf. Rügamer et al. 2018):

E(YEMG,i,j(t)|xi,j) = β0(t) + γsubject,j(t)
+ I(xpower,i,j = 1)βpower(t)
+ I(xoutcome,i,j = 1)βoutcome(t)
+ I(xcontrol,i,j = 1)βcontrol(t)
+ I(xpower,i,j = 1, xoutcome,i,j = 1)βpower,outcome(t)
+ I(xoutcome,i,j = 1, xcontrol,i,j = 1)βoutcome,control(t)
+ I(xpower,i,j = 1, xcontrol,i,j = 1)βpower,control(t)
+ I(xpower,i,j = 1, xoutcome,i,j = 1, xcontrol,i,j = 1) ·
βpower,outcome,control,i(t)

+
∫ t−3

0
xEMG,i,j(s)βEMG(s, t)ds

+
∫ t−3

0
xEMG,i,j(s)γEMG,i(s, t)ds

+
∫ t−3

0
xEMG,i,j(s)ζEMG,j(s, t)ds+ εi,j(t)

(16)

for observation i = 1, . . . , 8 corresponding to the 8 different game conditions of subject j =
1, . . . , 23. The model was proposed in Rügamer et al. (2018), which extended historical models
by allowing for factor-specific historical effects. To our knowledge, FDboost so far is the only
software capable of fitting such effects.
To this end, we have to define the 3 two-way interactions power.outcome, outcome.control,
power.control, 1 three-way interaction gamecondition and an ‘hmatrix’ object X1h. The
object is needed for the function bhistx, which in turn allows to combine historical effects with
factor variables using the row-wise tensor product operator %X%. To construct a ‘hmatrix’
object, the time and an identifier for each curve in long format must be supplied along with
the original response. The corresponding model fit in R takes around 75 minutes to fit the
model with 5000 iterations and needs approximately a maximum of 15GB RAM at once. We
further allow for an anisotropic penalty for all factor effects that are time-dependent, which
is achieved by using the %A%-operator.
This example also demonstrates how the degrees of freedom can be defined to be equal across
all base learners (in this case df j = 20), which is explained in Appendix C.

R> N <- nrow(emotion$EEG)
R> G <- ncol(emotion$EEG)
R> emotion$id_repeated <- rep(1:N, G)
R> emotion$EEG <- scale(emotion$EEG, center = TRUE, scale = FALSE)
R> X1h <- hmatrix(time = rep(emotion$t, each = N),
+ id = emotion$id_repeated, x = emotion$EEG)
R> emotion$power.outcome <- interaction(emotion$power, emotion$game_outcome)
R> emotion$outcome.control <- interaction(emotion$game_outcome,
+ emotion$control)
R> emotion$power.control <- interaction(emotion$power, emotion$control)
R> emotion$gamecondition <- interaction(emotion$power, emotion$game_outcome,
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+ emotion$control)
R> emotion$X1h <- I(X1h)
R> mod <- FDboost(EMG ~ 1 + brandomc(subject, df = 5) %A% bbs(t, df = 4) +
+ bolsc(power, df = 2, intercept = TRUE) %A% bbs(t, df = 10) +
+ bolsc(game_outcome, df = 2, intercept = TRUE) %A% bbs(t, df = 10) +
+ bolsc(control, df = 2, intercept = TRUE) %A% bbs(t, df = 10)+
+ bolsc(power.outcome, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +
+ bolsc(outcome.control, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +
+ bolsc(power.control, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +
+ bolsc(gamecondition, intercept = TRUE, df = 2) %A% bbs(t, df = 10) +
+ bhistx(X1h, limits = function(s, t) { s < t - 3 }, df = 20, knots = 10,
+ differences = 2, standard = "length") +
+ bhistx(X1h, limits = function(s, t) { s < t - 3 }, df = 5, knots = 10,
+ differences = 2, standard = "length") %X%
+ bolsc(gamecondition, df = 4, intercept = TRUE, index = id_repeated) +
+ bhistx(X1h, limits = function(s, t) { s < t - 3 }, df = 5, knots = 10,
+ differences = 2, standard = "length") %X%
+ brandomc(subject, df = 4, index = id_repeated),
+ control = boost_control(mstop = 5000, trace = TRUE),
+ timeformula = ~ bbs(t), data = emotion)
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