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Abstract

Rchoice is a package in R for estimating models with individual heterogeneity for both
cross-sectional and panel (longitudinal) data. In particular, the package allows binary,
ordinal and count response, as well as continuous and discrete covariates. Individual
heterogeneity is modeled by allowing the parameter associated with each observed variable
(e.g., its coeflicient) to vary randomly across individuals according to some pre-specified
distribution. Simulated maximum likelihood method is implemented for the estimation
of the moments of the distributions. In addition, functions for plotting the conditional
individual-specific coefficients and their confidence interval are provided. This article is a
general description of Rchoice and all functionalities are illustrated using real databases.

Keywords: discrete choice models, random parameters, simulated maximum likelihood, R,
individual-specific estimates.

1. Introduction

Discrete choice models or qualitative choice models are intended to describe, explain and
predict choices between two or more discrete alternatives, such as buying a car or not, choosing
between heating systems, or choosing among different occupations among other applications
(Train 2009). One of the main feature of these models is that the choice made by each
individual can be derived under the assumption of utility-maximization behavior.! Essentially,
the decision maker chooses the alternative that has the higher satisfaction utility given a set
of attributes of the person, the attributes of the alternatives, plus a random term intended
to capture the factors that affect utility but are not included. For example, the utility that

! As explained by Train (2009), this derivation assures that the model is consistent with utility maximization,
but it does not preclude the model from being consistent with other forms of behaviors.
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individual ¢ obtains from alternative j = 1,...,J can be written as U;; = V;; + ¢;;, where
Vij is the deterministic part of the utility that depends upon observable characteristics and
€;; is the random part. Individual i chooses the alternative j if U;; > Uy, for all k # j.
Once the distribution of ¢;; and the nature of the observable output decision are specified, a
probabilistic model can be used in order to estimate the parameters of the behavioral process
and the probability of choosing some alternative. This formulation known as the random
utility model (RUM) has been the standard approach in order to derived the conditional
logit Model (McFadden 1974). However, it can also be applied to describe the relation of
explanatory variables and the decision when the observed output is binary, ordered or count
data. For these types of dependent variables, the traditional binary logit/probit model,
ordered probit/logit, and Poisson model for count data can been applied. For a general
overview of these models see for example Long (1997) and Winkelmann and Boes (2006).

One important modeling shortcoming of these methods is the inherent assumption of a fixed
and unique coefficient for all individuals in the sample, which might not be realistic given that
individuals are intrinsically heterogeneous. As an example, consider the effect of the number
of young children on scientists’ productivity measured as the number of published articles.
Since having more kids may imply fewer hours available to work, we would expect, on average,
a negative correlation between the number of children and the level of publications. This
negative relationship is global, but it neglects the fact that for some scientists having more
kids might imply having a more organized life-style and hence increase their productivity (see
for example Krapf et al. 2014). Thus, the negative coefficient might hide significant individual
heterogeneity resulting in misleading inferences for a subgroup of individuals with a positive
coefficient. Similarly, we might assume that the effect is negative for all scientists, but the
magnitude of the detrimental effect might vary across the sample. In this case, there exists
individual heterogeneity but only in the negative domain of the coefficient. Finally, we might
also find that the coefficient is zero (not significant). In such case, we would conclude that
having young children is not important for productivity. Nonetheless, this may be due to
the fact that heterogeneity among scientists in the sample cancels out positive and negative
effects. Under these circumstances a model that allows for individual heterogeneity may be
more appropriate.

Thanks to the emergence of more powerful computers and the development of simulation-
based models, much of the recent progress in regression models with limited dependent vari-
ables has focused on more realistic behavioral models that allow individual heterogeneity
in the parameters. The modeling strategy to accommodate such heterogeneity is assuming
that coefficients vary randomly across individuals according to some continuous distribution,
denoted by ¢(0). Since the distribution is unknown and must be specified a priori by the
researcher, this type of individual heterogeneity is usually labeled as ‘unobserved heterogene-
ity’ in the literature. All the information of the unobserved heterogeneity is capture by the
parameters of the distribution 6, which usually represent the mean and variance of the co-
efficient. The goal is to estimate those parameters in order to get a profile of individual
heterogeneity.

Although the random parameter approach has been widely applied to the Multinomial logit
model (Train 2009; Hensher and Greene 2003), there are just a few applications for ordinal
(Falco et al. 2015; Greene and Hensher 2010b) and count models (Gourieroux et al. 1984;
Greene 2007; Anastasopoulos and Mannering 2009). The scarcity of applications to models
other than the multinomial logit appears to be driven by the lack of statistical software that
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enables to estimate random parameter models for binary, ordinal, and count response. To
my knowledge, only the commercial programs LIMDEP (Greene 2015a) and NLOGIT (Greene
2015b) are able to estimate those types of models in a concise and flexible manner. The
Rchoice (Sarrias 2016) package for R (R Core Team 2016) is intended to make these estimation
methods available to the general public and practitioners in a friendly and flexible way.

The aim of this paper is to present the functionalities of Rchoice for estimating ordered, count
and binary choice models with random parameters. Its current version 0.3-1 allows estimating
cross-sectional and panel (longitudinal) data models and includes also new functionalities
to obtain the standard errors of the variance-covariance matrix of the random parameters.
All models in Rchoice are estimated using simulated maximum likelihood (SML), which is
very flexible for estimating models with a large number of random parameters (Train 2009).
An additional characteristic of Rchoice is the ability to retrieve the individual conditional
estimates of either the random parameters or compensating variations.

Rchoice is also intended to complement other related packages in R. For example, there exist
several packages to estimate binary, count and ordered models with fixed parameters. The
glm function (R Core Team 2016) allows to estimate different kind of discrete choice models
such as Poisson and binary models. The function probit from the micEcon (Henningsen
2014) package allows to estimate probit model. Moreover, the function polr from the pack-
age MASS (Venables and Ripley 2002) allows to estimate ordered probit and logit models.
The advantage of Rchoice is that allows more flexibility in the optimization routines, which
might improve the convergence speed. Furthermore, Rchoice offers an alternative approach
to fitting random effects models in the context of panel data to those already programmed in
pglm (Croissant 2013b) and Ime4 (Doran et al. 2007). Regarding random parameter models,
mlogit (Croissant 2013a), RSGHB (Dumont and Keller 2015) and gmnl (Sarrias and Daziano
2015) allow estimating models with individual heterogeneity in the context of multinomial
logit model in a very similar fashion to Rchoice. Other packages such as FlexMix (Griin and
Leisch 2008) and PReMiuM (Liverani et al. 2015) allow to estimate models with individ-
ual heterogeneity by assuming that ¢g(0) is discrete or a mixture of distributions. All these
packages available in R cover almost all possibilities of estimating discrete choice models with
random parameters or individual heterogeneity. The Rchoice is available from the Compre-
hensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=Rchoice.

This paper is organized as follows. Section 2 briefly explains the methodology for models
with random parameters. Section 3 gives a general description of the functions in Rchoice.
Section 4 shows how Rchoice handles the random coefficients. All functionalities of Rchoice
using real databases are presented in Section 5. Section 6 explains some computational issues
that may arise when estimating random parameter models using SML. Finally, Section 7
concludes.

2. Methodology

2.1. Models with random parameters

In order to develop and motivate the idea behind random parameter models, consider the
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following latent process

yft:XiTtﬁz‘-i-Ez‘t, t=1,....nyt=1,...)T;
Bi ~ 9(Bil6),

where y, is a latent (unobserved) process for individual 7 in period ¢, x;; is a vector of
covariates, and €; is the error term. Note that the conditional probability density function
(PDF) of the latent process f(y;|xit, 3;) is determined once the nature of the observed y;; and
the population PDF of ¢; is known: if y;; is binary and e€;; is distributed as normal, then the
latent process becomes the traditional probit model; if y;; is an ordered categorical variable
and €; is logistically distributed, then the traditional ordered logit model arises. Formally,
the PDF for binary, ordered, and Poisson model are, respectively

)] [ ram)]
Wi B0) = Y Tl [y = x}80) = Pk = 18] @
o7 €XP [— exp (Xth ,31)} exp (szt @‘)yit

(1)

For the binary and ordered models, F'(-) represents the cumulative distribution function
(CDF) of the error term, which F(e) = ®(e) for probit and F(e) = A(e) for logit.? For the
ordered model, ; represents the threshold for alternative j = 1,...,J—1, such that kg = —o0
and Ky = +o0.

In the structural model given by Equation 1, we allow the vector coefficient 3; to be different
for each individual in the population. In other words, the marginal effect on the latent
dependent variable is individual-specific. Nevertheless, we do not know how these parameters
vary across individuals. All we know is that they vary according to the population PDF
9(3i]0), where 0 represents the moments of the distribution such as the mean and the variance,
which must be estimated. A fully parametric model arises once g(/3;|@) and the distribution
of € are specified. In Section 4 I detail the distributions allowed by Rchoice.

For simplicity in notation, assume that the coefficient vector is independent normal dis-
tributed, so that S ~ N (B, a,%) for the k-th element in 3;. Note that each coefficient can be
written as Bg; = Bk + orw;, where w; ~ N(0, 1), or in vector form as 3; = 3+ Lw;, where L is
a diagonal matrix that contains the standard deviation parameters, o;. All the information
about the individual heterogeneity for each individual attribute is captured by the standard
deviation parameter oj. If o = 0, then the model is reduced to the fixed parameter model,
but if it is indeed significant then it would reveal that the relationship between z; and v
is heterogeneous and focusing just on the central tendency S; alone would veil useful infor-
mation. It is useful to note that the random effect model is a special case in which only the
constant is random (see Section 5.3).

2.2. Extensions: observed heterogeneity and correlation

One important and straightforward extension of the random parameter model is to allow
the coefficients to be correlated. In this case, L is a lower triangular matrix (also known
as the Cholesky matrix), which produces the covariance matrix of the random parameters,
LL" = ¥. Furthermore, observed heterogeneity can be also accommodated by allowing the

2For the logit model A(e) = exp(e)/ [1 + exp(e)].
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parameter heterogeneity to be partly systematic in terms of observed variables. This type
of model is also known as a hierarchical model (Greene and Hensher 2010a). Formally, the
parameter vector can be written as

B; = B + Is; + Lw;, (3)

where IT is a matrix of parameters, s; is a vector of covariates that do not vary across time,
and w ~ N(0,I). Then, the mean of the parameters is E(3;) = 8 + IIs; + LE(w) = B + Is;
and its covariance is VAR(3;) = E(Lw(wL)") = LE(ww")LT = LILT = LLT = %.

As an illustration of the formulation above, suppose that we are interested in modeling some
latent process, which is explained by two variables. The parameters associated with each
observed variable, 51; and Bs;, are not fixed, but rather they vary across individuals and are
correlated. Furthermore, suppose that the means of the random parameters depend upon
some observed individual socio-economic variables: S;, B; and C;. Then, the parameters can
be written as:

Br; = B1+m1Si +meB; + 730 + 511w
Bo; = P2+ m1Si + moB; + w2 3C; + s21w1,; + S20w2 5

or in vector form:

S.
Bri\ _ (B T, T2 T3 ; siu 0 w1,
= + B; | + .
B2, B2 T2l 22 23]\ o 821 S22 ) \ w2
7
Since the mean of the random parameter is a function of observed variables, this specification
relaxes the assumption of homogeneity across individuals in terms of the means. The unob-

served part accounts for all other individual-specific factors that cannot be captured for the
observed variables. Note that the variance-covariance matrix of the random parameters is:

2
_erT_ [(s11 O s11 s21\ [ ST 511521
Y=LL' = = 9 5 |,
S21 S22 0 s2 521511 851 + 83
and the conditional mean vector is E(3;|s;) = B+1IIs;, which varies across individuals because

of s;. Illustrations with real data for the model with correlated random parameters and with
observed heterogeneity are presented in Section 5.2 and Section 5.4, respectively.

2.3. Estimation

In this section, I explain the simulated maximum likelihood (SML) procedure used by Rchoice
to estimate models with random parameters. For a more complete treatment of SML see for
example Gourieroux and Monfort (1997); Lee (1992); Hajivassiliou and Ruud (1994) or Train
(2009).

Let yi = {vi1,Yi2, - - ., yiT; } be the sequence of choices made by individual i. Assuming that
individuals are independent across time, the joint PDF, given 3;, can be written as

T;
YZ|X17BZ H yzt|xlt7/62 (4)
t=1
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where f(y|xit, 3) is given in 2 for each model. Since G; is unobserved, we need to integrate it
out of the joint density. The unconditional PDF will be the weighted average of the conditional
probability 4 evaluated over all possible values of 3, which depends on the parameters of the
distribution of 3;:

Pi0) = | P(yiIX:. B)g(B)dB. (5)

The probability in 5 has no close-form solution, that is, it is difficult to integrate out the
random parameter and hence it is difficult to perform maximum likelihood (ML) estimation.
However, ML estimation may still be possible if we instead use a good approximation ISZ(O)
of P;(0) to form a likelihood function.

But, how can we obtain f’i(G)? A good approximation can be obtained by Monte Carlo
integration. This procedure provides an alternative to deterministic numerical integration.
Here we can ‘simulate’ the integration using random draws from the distribution g(3;).® For
a given value of the parameters @, a value of 3; is drawn from its distribution. Using this
draw of 3;, P;(0) from Equation 5 is calculated. This process is repeated for many draws, and
the average over the draws is the simulated probability. Formally, the simulated probability
for individual i is

R
Pi(6) = & > P(yiXi. By, (6)
r=1

where ﬁ(yi]Xi, Bir) is the simulated probability for individual ¢ in period ¢ evaluated at the
r-th draw of 3;, and R is the total number of draws. Given independence over i, the SML
estimator is the value @ that maximizes:

N
Osvir = arg max Zlog IBZ(B)

0c® P
Lee (1992) and Hajivassiliou and Ruud (1994) show that under regularity conditions, the
SML estimator is consistent and asymptotically normal. When the number of draws, R, rises
faster than the square root of the number of observations, the estimator is asymptotically
equivalent to the maximum likelihood estimator.
Rchoice uses maxLik package (Henningsen and Toomet 2011) to perform ML and SML es-
timation procedures. All models with random parameters are estimated using SML, while
models with fixed parameters are estimated by ML. Furthermore, Rchoice uses analytical
gradients and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (the default) to it-
eratively solve the SML. For further details about the computation of SML see Section 6.

3. An overview of Rchoice package
After installation, Rchoice is loaded by typing:
R> library("Rchoice")

The main function in the package is Rchoice, which enables us to estimate the models. The
arguments for this function are the following:

3 Another numerical approximation is Gauss-Hermite quadrature. However, it has been documented that
for models with more than 3 random parameters SML performs better (Train 2009).
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Model Function

Poisson family = poisson

Binary probit family = binomial ("probit")
Binary logit family = binomial("logit")
Ordered probit | family = ordinal ("probit")
Ordered logit | family = ordinal("logit")

Table 1: Models estimated by Rchoice and the corresponding family function.

R> args(Rchoice)

function (formula, data, subset, weights, na.action, family,
start = NULL, ranp = NULL, R = 40, haltons = NA, seed = 10,
correlation = FALSE, panel = FALSE, index = NULL, mvar = NULL,
print.init = FALSE, init.ran = 0.1, gradient = TRUE, ...)

NULL

The formula argument is a symbolic description of the model to be estimated and consists of
two parts. The first one is reserved for standard variables with fixed and random parameters.
The second part is reserved for variables that enter the mean of the random parameters (s;
from Equation 3). The usage of the second part is further explained in Section 5.4. The
models are specified by the argument family. The models estimated by Rchoice and the
corresponding family function are presented in Table 1.

The family for binary and Poisson models comes from stats package (R Core Team 2016),
while those for ordered models are included in Rchoice.

The main arguments for the control of the random parameters are ranp, R, haltons, seed,
correlation and mvar. The argument ranp is a vector that specifies the distribution of the
random parameters. The distributions allowed by Rchoice are presented in Section 4 and
illustrated in Section 5.2. R specifies the number of draws used for the simulation of the
probabilities. haltons indicates the type of draws used in the simulation procedure and it
is further explained in Section 4. The argument seed sets the seed for the pseudo-random
draws, being 10 the default. If correlation = TRUE, the correlated random parameter model
presented in Section 2.2 is estimated. For an example see Section 5.2. Finally, the argument
mvar is a named list that indicates how the variables that modify the mean of the random
parameters enter in each random parameter. This feature is illustrated in Section 5.4.

The main arguments for panel or longitudinal data bases are panel and index. If panel =
TRUE, then the panel structure of the data is taken into account. index is a string variable
indicating the ‘id’ for individuals in the data. Models with panel structure are presented in
Section 5.3.

Finally, the arguments print.init, init.ran and gradient are intended to control the op-
timization procedure. If print.init = TRUE, then the initial values for the optimization
procedure are printed. The argument init.ran sets the initial values for the standard devi-
ation of the random parameters, oy, Vk. Numerical instead of analytical gradients are used
in the optimization of either ML or SML if gradient = FALSE. Other arguments that con-
trol the optimization can be passed to maxLik package. A more detail discussion of these
arguments are presented in Section 6.
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4. Drawing from densities

As mentioned in Section 2.1, the distribution of the random parameters g(3;) can take any
shape, but it must be chosen a priori by the researcher. This is a critical step in applied work.
As stated by Hensher and Greene (2003), “distributions are essentially arbitrary approxi-
mations to the real behavioral profile. The researcher chooses a specific distribution because
he has a sense that the “empirical truth” is somewhere in their domain”. Therefore, some
prior theoretical knowledge about the expected domain of the coefficients may lead to a more
appropriate choice of the distributions. The distributions allowed by Rchoice are the fol-
lowing: normal, triangular, uniform, log-normal, truncated normal and Johnson S;. These
distributions are explained in further detail below.

Another important issue is that good performance of SML requires a very large number of
draws. The main drawback to this approach is that with large samples and complex models,
the maximization of SML can be very time consuming. Researchers have gained speed with
no degradation in simulation performance through the use of smaller number of Halton draws
(Bhat 2001; Train 2000).* The Halton sequence is constructed based on a deterministic
method that uses prime numbers as its base (see Train 2009, for further details). The idea is
that, instead of taking independent random draws, simulation can potentially be improved by
selecting evaluation points more systematically and with better coverage (Sandor and Train
2004). Figure 1 shows two sequences of 1,000 Halton draws (Panel A) and two sequences of
1,000 pseudo-random draws (Panel B). The Halton draws are based on prime numbers 2 and
3. It can be observed that the Halton draws have better coverage of the unit square than the
pseudo-random draws. This characteristic of the Halton sequence ensures a better coverage
of the multidimensional area of integration and reduces the computation time of the SML.

Rchoice handles Halton or pseudo-random draws in the following way. Suppose that there
are K random parameters. Then, the K elements of w;, are drawn as follows. We begin with
a K random vector w;,, that is:

4There is no consensus about the number of draws that has to be used in applied work. Bhat (2001)’s
Monte Carlo analysis found that the precision of the estimated parameters was smaller using 100 Halton draws
than 1000 pseudo-random number in the context of mixed logit. However, as suggested by Hensher and Greene
(2003), the best approach is to estimate models over a range of draws (e.g., 25, 50, 100, 250, 1000, 2000 draws)
and analyze the stability and precision of the parameters. In general, and depending in the application, the
results should stabilize after about 500 draws.

A: Halton Draws B: Pseudo—Random Draws

00 02 04 06 08 10
00 02 04 06 08 10

Figure 1: Halton vs pseudo-random draws.
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Figure 2: Distributions for random coefficients.
o K independent draws from the standard uniform (0, 1) distribution or,

¢ K independent draws from the m-th Halton sequence, where m is the m-th prime
number in the sequence of K prime numbers.

An important attribute of the Halton values is that they are also distributed in the (0, 1)
interval as shown in Figure 1. Then, the primitive draw (pseudo or Halton draws) is then
transformed to the distribution specified by the user as follows:

o upi ~ U(0,1): primitive draw from Halton or pseudo-random number generator.
* Wgir = (I)fl(uk’”) ~ N(O, 1).

Using these two primitive draws, Rchoice creates the random parameters as follows:



10

Rchoice: Discrete Choice Models with Random Parameters in R

. Normal distribution:

Brir = Br+ OkWkir
Wi ir ™~ N(O,l)

where S and oy, are estimated. Then, By ; ~ N (B, 0%). Since the domain of the normal
distribution is (—oo, +00), assuming a given coefficient to follow a normal distribution
is equivalent to making an a priori assumption that there is a proportion of individuals
with a positive coefficient and another proportion with negative ones (see Panel A of
Figure 2). For example, the proportion of positive coefficients can be computed as
®(f1,/51). The main disadvantage of the normal distribution is that it has infinite tails,
which may result in some individuals having implausible extreme coefficients. If this is
the case, the triangular or uniform distribution may be more appropriate.

. Triangular distribution:

Brir = Br+ OxVkir

Vkir ~ L(tgg < 0.5) (, [2uy i — 1) + 1(tg i > 0.5) [1 — /201 - uk,ir)]

where 1(-) is an indicator function that takes the value 1 when the statement in brackets
is true and 0 when is false; and S and oy are the parameters estimated. The PDF of
this distribution looks like a triangle, and its main advantage is that it has a definite
upper and lower limits resulting in shorter tails than the normal distribution. See for
example panel B of Figure 2.

. Uniform distribution:

5k,ir = Bk + Uk(2 X Uk ir — 1)
Ui ~ U(0,1)

where S5 and o, are estimated. In this case, the parameter for each individual is equally
likely to take on any value in some interval (see panel C of Figure 2). Note also that the
uniform distribution with bounds 0 and 1 is very suitable when there exists individual
heterogeneity in a dummy variable. For this case, the restriction S = o = 1/2 can be
applied.

. Log-Normal distribution:

Brir = exp (B + orwiir)
Wgir N(Oa 1)

where §j and o are estimated. Then, 3;; ~ log N(Bk,a,%). The support of the log-
normal distribution is (0,400), therefore the coefficient is allowed to have individual
heterogeneity in the positive domain only (see panel D of Figure 2). If the some co-
efficient is expected a priori to be negative for all the individuals, one can create the
negative of the variable and then include this new variable in the estimation. This
allows the coefficient to be negative without imposing a sign change in the estimation
procedure (Train 2009).
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5. Truncated (at 0) normal distribution:

_ Bt okwrgy i Prar >0
ﬂk,i’r - .
0 otherwise
wk,ir ~ N(O, 1)

where 8) and oy are estimated. Then, B; ~ N(Bk,02) with the share below zero
massed at zero. This distribution is useful when the researcher has a priori belief that
for some individuals the marginal latent effect of the variable is null. See panel F of
Figure 2.

6. Johnson’s S distribution:

~exp (Br + opwp i)
Bk,ir -

1+ exp (Br + opwr,ir)
Wi~ N(O, 1)

where (B and o) are estimated. This distribution gives coefficients between 0 and 1,
which is also very suitable for dummy variables. If the researcher needs the coefficient
to be between 0 and d, then the variable can be multiplied by d before estimation. The
main advantage of the Johnson S; is that it can be shaped like log-normal distribution,
but with thinner tails below the bound. See panel E of Figure 2.

Rchoice allows to the user to specify both types of random draws by the argument haltons:
pseudo-random draws (haltons = NULL) and Halton draws (haltons = NA) as default. For
the Halton draws, the default is to use the first K prime numbers starting with 3. Within each
series, the first 100 draws are discarded, as the first draws tend to be highly correlated across
different draws. The user can also change the prime number and the number of elements
dropped for each series. For example, if K = 2, and the user wants to use prime numbers 5
and 31 along with dropping the first 10 draws, he could specify haltons = list("prime" =
c(5, 31), "drop" = c(10, 10)).

5. Applications using Rchoice

In this section I present some of the capabilities of Rchoice. Section 5.1 shows how to estimate
Poisson, binary and ordered response models with fixed parameters. Examples of how to esti-
mate models with random parameters are presented in Section 5.2. Section 5.3 explains how
to estimate models with random parameters with panel or longitudinal data. In Section 5.4,
models with both observed and unobserved heterogeneity are estimated. Finally, Section 5.5
shows how the conditional estimates for each individual can be plotted.

5.1. Standard models

In this section, I show the capabilities of Rchoice to estimate Poisson, binary and ordered
regression models without random parameters. The main objective of this section is to show
how Rchoice can interact with other packages in R.

To show how to estimate Poisson regression models using Rchoice, I will use data on scientific
productivity (Long 1990, 1997). We load the data using

11
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R> data("Articles")
R> head(Articles, 3)

art fem mar kid5 phd ment
1 0 o0 1 0 2.52 7
2 0 1 © 0 2.05 6
3 0 1 0 0 3.75 6

To see more information about the data, one can use:
R> help(Articles)

The work by Long (1990) suggests that gender, marital status, number of young children,
prestige of the graduate program, and the number of articles written by a scientist’s mentor
could affect a scientist’s level of publication. To see this, we estimate a Poisson regression
model and use the Rchoice function specifying family = poisson:

R> poisson.fixed <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
+ data = Articles, family = poisson)
R> summary (poisson.fixed)

Model: poisson
Model estimated on: Mon Sep 07 15:16:54 2015

Call:
Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, method = "nr")

The estimation took: Oh:0m:O0s
Coefficients:

Estimate Std. Error z-value Pr(>|z|)
constant 0.304617 0.102982 2.958 0.0031 **

fem -0.224594 0.054614 -4.112 3.92e-05 **x*

mar 0.1556243 0.061375 2.529 0.0114 =*

kidb -0.184883 0.040127 -4.607 4.08e-06 x**x*

phd 0.012823 0.026397 0.486 0.6271

ment 0.0255643 0.002006 12.733 < 2e-16 xxx

Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by Newton-Raphson maximisation
Log Likelihood: -1651

Number of observations: 915

Number of iterations: 7

Exit of MLE: gradient close to zero
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The output shows that the log-likelihood function is estimated using the Newton-Raphson
algorithm in 7 iterations. In terms of interpretation, we can say that, being a female scientist
decreases the expected number of articles by a factor of 0.8 (= exp(—0.225)), holding all other
variables constant. Or equivalently, being a female scientist decreases the expected number
of articles by 20% (= 100 [exp(—0.225) — 1]), holding all other variables constant. Prestige of
the PhD department is not important for productivity.

Another capability of Rchoice is its interaction with other packages in R. For example, we
can compute the robust standard error by using the package sandwich (Zeileis 2006):

R> library("sandwich")
R> library("lmtest")
R> coeftest(poisson.fixed, vcov = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)

constant 0.3046168 0.1465197 2.0790 0.0378958 *

fem -0.2245942 0.0716622 -3.1341 0.0017793 *x*

mar 0.1552434 0.0819292 1.8948 0.0584297 .

kidb -0.1848827 0.0559633 -3.3036 0.0009917 *x*x

phd 0.0128226 0.0419642 0.3056 0.7600096

ment 0.0255427 0.0038178 6.6905 3.884e-11 **x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

To get the same robust standard errors as Stata (StataCorp. 2011), we need to make a small-
sample correction:

R> vcov.stata <- vcovHC(poisson.fixed, type = "HCO") *
+ n0bs (poisson.fixed) / (nObs(poisson.fixed) - 1)
R> coeftest(poisson.fixed, vcov = vcov.stata)

t test of coefficients:

Estimate Std. Error t value Pr(>|tl)
constant 0.3046168 0.1465999 2.0779 0.038001 =*

fem -0.2245942 0.0717014 -3.1324 0.001790 =*x*

mar 0.1552434 0.0819740 1.8938 0.058567 .

kidb -0.1848827 0.0559939 -3.3018 0.000998 *x*x*

phd 0.0128226 0.0419871 0.3054 0.760137

ment 0.0255427 0.0038198 6.6868 3.977e-11 **x

Signif. codes: O '*xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 " ' 1

where the correction is n/(n — 1).

Rchoice also interacts with the 1inearHypothesis and deltaMethod functions from car (Fox
and Weisberg 2011) and the 1rtest and waldtest functions from the Imtest package (Zeileis

13
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and Hothorn 2002). For example, we can test the nonlinear hypothesis that the ratio between
the phd and ment coefficient is zero®, Hy : phd/ment = 0, by:

R> library("car")
R> deltaMethod(poisson.fixed, "phd/ment")

Estimate SE
phd/ment 0.5020048 1.043031

The main argument to estimate other models is family (see Table 1). This provides a conve-
nient way to specify the details of the models used by Rchoice. For probit models, the user
should specify family = binomial("probit"), and for logit family = binomial("logit").
In the following example, I use the Workmroz data base to estimate a binary probit model,
where the dependent variable 1fp equals 1 if wife is in the paid labor force, and 0 otherwise.

R> data("Workmroz")

R> oprobit <- Rchoice(1fp ~ k5 + k618 + age + wc + hc + lwg + linc,
+ data = Workmroz, family = binomial ("probit"))

R> summary (oprobit)

Model: binomial
Model estimated on: Mon Sep 07 15:16:54 2015

Call:
Rchoice(formula = 1fp ~ k5 + k618 + age + wc + hc + lwg + linc,
data = Workmroz, family = binomial("probit"), method = "nr")

Frequencies of categories:
y
0 1
0.4322 0.5678
The estimation took: Oh:Om:O0Os

Coefficients:
Estimate Std. Error z-value Pr(>|zl|)

constant 2.781983 0.441876 6.296 3.06e-10 **x*
k5 -0.880688 0.113436 -7.764 8.22e-15 **x
k618 -0.038656  0.040454 -0.956 0.339304

age -0.037701 0.007612 -4.953 7.31e-07 **x
we 0.481150 0.135271  3.557 0.000375 *xx*
hc 0.077440 0.124733 0.621 0.534700

lwg 0.371645 0.087605 4.242 2.21e-05 *xx*
linc -0.451494  0.100748 -4.481 7.42e-06 **x

5This ratio can be thought as a compensating variation between both variables. See for example Section 5.5
for further details of compensating variation with individual heterogeneity.
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Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by Newton-Raphson maximisation
Log Likelihood: -451.9

Number of observations: 752

Number of iterations: 4

Exit of MLE: gradient close to zero

Ordered probit and logit models are estimated in the same way. In this case we use the Health
database and create the logarithm of household income. The dependent variable, newhsat, is
a categorical variable that indicates the self reported health assessment of individuals recorded
with values 0, 1, ..., 4.5

R> data("Health")

R> Health$linc <- log(Health$hhinc)

R> ologit <- Rchoice(newhsat ~ age + educ + married + hhkids + linc,
+ data = head(Health, 2000), family = ordinal("logit"))

R> summary(ologit)

Model: ordinal
Model estimated on: Mon Sep 07 15:16:54 2015

Call:
Rchoice(formula = newhsat ~ age + educ + married + hhkids + linc,
data = head(Health, 2000), family = ordinal("logit"), method = "bfgs")

Frequencies of categories:
y

0 1 2 3 4
0.0600 0.2675 0.4545 0.1010 0.1170
The estimation took: Oh:0m:0s

Coefficients:
Estimate Std. Error z-value Pr(>|zl)

kappa.1 2.094209 0.090487 23.144 < 2e-16 *x*x
kappa.2 4.198067 0.105952 39.623 < 2e-16 **x*
kappa.3  4.961227 0.115706 42.878 < 2e-16 **x*
constant 2.170194 0.778474 2.788 0.00531 *x*
age -0.030637 0.004517 -6.782 1.19e-11 *x*x*
educ 0.065848 0.018456 3.568 0.00036 *xxx*
married -0.336312 0.110278 -3.050 0.00229 *x*
hhkids 0.220423 0.099485 2.216 0.02672 *

linc 0.176496  0.098799 1.786 0.07403 .

6See help(Health).
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Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -2663

Number of observations: 2000

Number of iterations: 67

Exit of MLE: successful convergence

5.2. Random parameters models with cross-sectional data

The main advantage of Rchoice over other packages is that it allows estimating models with
random parameters. In this section, I show how to estimate those kinds of models for count
data using cross-sectional data. For binary and ordered models the syntax is the same pro-
vided that the family argument is correctly specified.

Continuing with the previous Poisson model, now I will assume that the effect of kid5, phd
and ment are not fixed, but rather heterogeneous across the population. Specifically, I will
assume that the coefficients for those variables are independent normally distributed, that is,
I will not allow correlation among them. In particular,

Brias,ir = DPrids + OkidsWikids,ir
Bend,ir = Bphd + OphdWphd,ir
Bment,ir = Buent + OmentWnent,ir

where wy, ;» ~ N(0,1). Then, the Poisson model with random parameter is estimated using
the following syntax:

R> poisson.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,
+ data = Articles, family = poisson,
+ ranp = c(kid5 = "n", phd = "n", ment = "n"))

It is important to discuss the arguments for the Rchoice function. First, the argument ranp
indicates which variables are random in the formula and their distributions. In this case,
I have specified that all of them are normal distributed using "n". The shorthand for the
remaining distributions that can be used are:”

e Log-Normal = "1n",

Truncated Normal = "cn",

Uniform = "u",

Triangular = "t",

Johnson’s S, = "sb".

The number of draws are not specified. Therefore, Rchoice will set R = 40 as default. The
user can change this by changing the R argument. The type of draws are Halton draws
as default, but if users want pseudo-random draws they can specify haltons = NULL (see
Section 4).

"These shorthands are the same as those used by mlogit and gmnl packages.
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R> summary(poisson.ran)

Model: poisson
Model estimated on: Mon Sep 07 15:17:19 2015

Call:

Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),
method = "bfgs", iterlim = 2000)

The estimation took: Oh:0m:25s

Coefficients:
Estimate Std. Error z-value Pr(>|z|)

constant 0.225583 0.132500 1.703 0.08866 .
fem -0.218498 0.070558 -3.097 0.00196 x*x*
mar 0.156431 0.079121 1.977 0.04803 =*
mean.kidb -0.197775 0.063472 -3.116 0.00183 *x*
mean.phd -0.029942 0.037217 -0.805 0.42109
mean.ment 0.031110 0.003814  8.158 4.44e-16 **x*
sd.kidb 0.285310 0.089104 3.202 0.00136 *x*
sd.phd 0.165405 0.016585 9.973 < 2e-16 *xxx
sd.ment 0.015876  0.003535 4.491 7.11e-06 *xx

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -1574

Number of observations: 915

Number of iterations: 81

Exit of MLE: successful convergence

Simulation based on 40 Halton draws

It is important to check the exit of the estimation. In our example, the output informs
us that the convergence was achieved successfully. The results also show that the standard
deviations of the coefficients are highly significant, indicating that parameters do indeed vary
in the population. Since the parameters are normally distributed, we can also say that:

R> pnorm(coef (poisson.ran) ["mean.kid5"]/coef (poisson.ran) ["sd.kid5"])

mean.kid5
0.2440946

24% of the individuals have a positive coefficient for kid5. In other words, for about 76% of
PhD students, having children less than 6 years old reduces their productivity. Note also that
the mean coefficient for phd is 0 (not significant). This is due to the fact that the unobserved
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heterogeneity among scientists in the sample cancel out positive and negative effects. These
observations are not possible with a Poisson regression with fixed parameters.

Suppose that now we want to test whether Hy = oxigs = Opha = Oment = 0. This can be done
by using the function waldtest or lrtest from package lmtest:

R> waldtest(poisson.fixed, poisson.ran)
Wald test

Model 1: art ~ fem + mar + kid5 + phd + ment

Model 2: art ~ fem + mar + kid5 + phd + ment
Res.Df Df Chisq Pr(>Chisq)

1 909

2 906 3 280.14 < 2.2e-16 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 " ' 1
R> lrtest(poisson.fixed, poisson.ran)
Likelihood ratio test

Model 1: art ~ fem + mar + kid5 + phd + ment

Model 2: art ~ fem + mar + kid5 + phd + ment
#Df LogLik Df Chisq Pr(>Chisq)

1 6 -1651.1

2 9 -1574.2 3 1563.78 < 2.2e-16 **x*

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 " ' 1

Both tests reject the null hypothesis. We can also specify different distribution of the param-
eters by using the S3 method update:

R> poisson.ran2 <- update(poisson.ran,
+ ranp = c(kid5 = "u", phd = "t" , ment = "cn"))

Both models poisson.ran and poisson.ran2 can be compared using mtable from memisc
(Elff 2016) package:

R> library("memisc")
R> Ttable <- mtable("model 1"= poisson.ran, "model 2" = poisson.ran2,
+ summary.stats = c("N", "Log-likelihood", "BIC", "AIC"))

R> Ttable

Calls:

model 1: Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),

method = "bfgs", iterlim = 2000)
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model 2: Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kidbs = "u", phd = "t", ment = "cn"),
method = "bfgs", iterlim = 2000)

model 1 model 2

constant 0.226 0.254
(0.132) (0.132)
fem -0.218*%x -0.216%*
(0.071) (0.069)
mar 0.156%* 0.149
(0.079) (0.076)
mean.kidb -0.198%x —-0.221%%%
(0.063) (0.064)
mean.phd -0.030 -0.104x*
(0.037) (0.041)
mean.ment 0.031%x*x 0.028%*x*
(0.004) (0.003)
sd.kid5 0.285%x* 0.508%*x*
(0.089) (0.123)
sd.phd 0.165%%x  0.226%**
(0.017)  (0.025)
sd.ment 0.016%x*  0.022%%x*

(0.004) (0.003)

N 915 915

Log-likelihood -1574.166 -1575.816
BIC 3209.702 3213.003
AIC 3166.332 3169.632

The previous model specifies the coefficients to be independently distributed while one would
expect correlation. For example, the effect of the prestige of PhD department could be
positive correlated with the number of publications by mentor. Now, I estimate the model
poisson.ran, but assuming that the random parameters are correlated: 3; ~ N(3,X) for a
general matrix 3. The main argument for this model is correlation = TRUE:

R> poissonc.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment,

+ data = Articles, ranp = c(kid5 = "n", phd = "n", ment = "n"),
+ family = poisson, correlation = TRUE)

R> summary(poissonc.ran)

Model: poisson
Model estimated on: Mon Sep 07 15:18:49 2015

Call:

Rchoice(formula = art ~ fem + mar + kid5 + phd + ment, data = Articles,
family = poisson, ranp = c(kid5 = "n", phd = "n", ment = "n"),
correlation = TRUE, method = "bfgs", iterlim = 2000)
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The estimation took: Oh:0m:57s

Coefficients:

Estimate Std. Error z-value Pr(>|zl|)
constant 0.235301 0.131432 1.790 0.073409 .
fem -0.228057 0.070992 -3.212 0.001316 *x*
mar 0.150374 0.079625 1.889 0.058954 .
mean.kidb -0.229971 0.063024 -3.649 0.000263 **x*
mean . phd -0.032431 0.037128 -0.874 0.382384
mean.ment 0.033804 0.003751 9.012 < 2e-16 *x*x
sd.kidb.kidb 0.279620 0.091789 3.046 0.002317 x*x*
sd.kid5.phd  0.084343 0.055691 1.514 0.129908
sd.kidb.ment -0.025400 0.005943 -4.274 1.92e-05 **x*
sd.phd.phd -0.143787 0.028258 -5.088 3.61e-07 **x*
sd.phd.ment -0.002123 0.007752 -0.274 0.784153
sd.ment.ment 0.011351 0.007372 1.540 0.123616
Signif. codes: O 'xxx' 0.001 'x%' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -1571

Number of observations: 915

Number of iterations: 211

Exit of MLE: successful convergence

Simulation based on 40 Halton draws

The output prints the mean of the random parameters along with the lower-triangular
Cholesky factor L. We can extract the variance-covariance matrix, X, and the correlation
matrix of the random parameters using S3 method vcov in the following way:

R> vcov(poissonc.ran, what = "ranp", type = "cov")

kidb phd ment
kid5 0.07818737 0.023583914 -0.0071022904
phd 0.02358391 0.027788312 -0.0018369769
ment -0.00710229 -0.001836977 0.0007785002

R> vcov(poissonc.ran, what = "ranp", type = "cor")

kidb phd ment
kid5 1.0000000 0.5059604 -0.910334
phd  0.5059604 1.0000000 -0.394951
ment -0.9103340 -0.3949510 1.000000

The argument what indicates which covariance matrix has to be extracted. The default is
coefficient, and the vcov behaves as usual. If what = "ranp" the covariance matrix of
the random parameters is returned as default. The argument type indicates what matrix
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of the random parameters should be returned. Among other things, the output shows that
ment is negatively related with phd and kid5. Specifically, we can see that the correlation
between phd and ment is around -0.4. We can also test whether the variances of the random
parameters are significant using Delta Method. To do so, we can use the se = TRUE argument
in the veov function, which is a wrapper of deltamethod function from msm (Jackson 2011)

package:

R> vcov(poissonc.ran, what = "ranp", type = "cov", se = TRUE)
Elements of the variance-covariance matrix

Estimate Std. Error z-value Pr(>|z]|)
v.kid5.kid5 0.07818737 0.05133227 1.5232 0.127718
v.kid5.phd 0.02358391 0.01152073 2.0471 0.040650 x*
v.kid5.ment -0.00710229 0.00245237 -2.8961 0.003778 x**
v.phd.phd 0.02778831 0.00896418 3.0999 0.001936 x*x*
v.phd.ment -0.00183698 0.00186657 -0.9841 0.325044
v.ment.ment 0.00077850 0.00032116 2.4240 0.015349 x
Signif. codes: O 'x*xx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Note that the covariance between ment and phd even though is negative is not significant. To
get the standard errors of the standard deviations for the random parameters, we might use:

R> vcov(poissonc.ran, what = "ranp", type = "sd", se = TRUE)

Standard deviations of the random parameters

Estimate Std. Error
kid5 0.2796201 0.0917893
phd 0.1666983 0.0268875
ment 0.0279016 0.0057552

z-value Pr(>lzl|)
3.0463 0.002317 *x
6.1999 5.652e-10 ***
4.8481 1.247e-06 **x

k%' 0.001 "#*' 0.01 'x' 0.05 '.

Signif. codes: O "o0.1 " "1

5.3. Random parameters models with panel data

The current version of this package also handles panel data by estimating random effect (RE)
models. Suppose that the ¢ observation y; has unconditional joint density f(y}|Xi, o, 3) and
the random effect has density a; ~ g(«;|@), where g(a;|@) does not depend on observables.
Thus, the unconditional joint density for the i-th observation is

T;
f(yi’XiuB?e):/ 11 f wiilxit, 0. B) | 9(i]0)dev;
t=1

2]

This model can be estimated using the package pglm (Croissant 2013b), which uses Gauss-
Hermite quadrature to approximate the integration in the probability. However, note that this
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model can be seen as a random parameter model where the constant is random. Therefore,
users might estimate a simple RE model with Rchoice by typing ranp = (constant = "n").

In the following example I will estimate a binary probit model with RE and random param-
eters using Unions database from the pglm package.

R> data("Unions", package = "pglm")
R> Unions$lwage <- log(Unions$wage)

The model is estimated using the following syntax:
R> union.ran <- Rchoice(union ~ age + exper + rural + lwage,
+ data = head(Unions, 2000), family = binomial("probit"),

+ ranp = c(constant = "n", lwage = "t"), R = 10, panel = TRUE,
+ index = "id", print.init = TRUE)

Starting Values:

age exper ruralyes mean.constant mean.lwage
-0.009678368 -0.017142802  0.292871899 -1.380275299  0.420245667
sd.constant sd.lwage

0.100000000 0.100000000

In this case, I assumed that 1wage is distributed as triangular, while the constant is assumed
to be normal distributed. This is the same as assuming that a; ~ N(0,02).

There are two main arguments for the panel estimation. The argument panel = TRUE in-
dicates that the data is a panel. This implies that users should indicate the variable that
corresponds to the ‘id’ of the individuals in the index argument. In the this example, the ‘id’
is given by the variable “id”.

Finally, the argument print.init = TRUE indicates that the initial values used by Rchoice
will be displayed. This argument is useful if one wants to see the magnitude of the initial
values for the parameters.

R> summary(union.ran)

Model: binomial
Model estimated on: Mon Sep 07 15:19:29 2015

Call:

Rchoice(formula = union ~ age + exper + rural + lwage, data = head(Unions,
2000), family = binomial ("probit"), ranp = c(constant = "n",
lwage = "t"), R = 10, panel = TRUE, index = "id", print.init = TRUE,
method = "bfgs", iterlim = 2000)

Frequencies of categories:
y

0 1
0.7605 0.2395
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The estimation took: Oh:0m:40s

Coefficients:

Estimate Std. Error z-value Pr(>|zl|)
age 0.05407 0.32802 0.165 0.869
exper -0.09174 0.02098 -4.372 1.23e-05 **x*
ruralyes 0.22735 0.17537  1.296 0.195
mean.constant -1.30073 0.24497 -5.310 1.10e-07 **x*
mean.lwage 0.01089 0.15419 0.071 0.944
sd.constant 1.19918 0.16110 7.444 9.79e-14 **x
sd.lwage 1.04202 0.10745 9.698 < 2e-16 *xx
Signif. codes: O 'x*xx' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Optimization of log-likelihood by BFGS maximisation
Log Likelihood: -738.6

Number of observations: 2000

Number of iterations: 77

Exit of MLE: successful convergence

Simulation based on 10 Halton draws

The results indicate that o, =1.2 and is significant. Furthermore, the finding of a significant
standard deviation yet insignificant mean for lwage attests to the existence of substantial
heterogeneity; positive and negative coefficients in the sample compensate for each other,
such that the coefficient of the mean is not significant.

As in the previous cases, an ordered probit model with RE and random parameters can be
estimated in the same way, but changing the distribution with the family argument:

R> oprobit.ran <- Rchoice(newhsat ~ age + educ + married + hhkids + linc,
+ data = head(Health, 2000), family = ordinal("probit"),

+ ranp = c(constant = "n", hhkids = "n", linc = "n"),

+  panel = TRUE, index = "id", R = 100, print.init = TRUE)

R> summary (oprobit.ran)

5.4. Random parameter model with observed heterogeneity

In this section I illustrate how to estimate a Poisson random parameter model with observed
heterogeneity. In the following example, I assume that there exists not only unobserved
heterogeneity in the coefficients for phd and ment, but also observed heterogeneity in the
mean of the coefficients. Specifically, I assume that the coefficients vary across individuals
according to:

Bxigsir = Prias T OkidsWkids,ir
Bphd,ir = Pphd + Tphd,fenf €M + OphaWphd,ir
/Bment,ir = [nent + Tment,femf €l + 7"'ment,phdphd + OmentWnent,ir

The formulation above implies that, for example, the ment’s coefficient (or the marginal effect
on latent productivity) varies by gender and phd.

23
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R> poissonH.ran <- Rchoice(art ~ fem + mar + kid5 + phd + ment/fem + phd,
+ data = Articles, ranp = c(kid5 = "n",
+ mvar = list(phd = c("fem"), ment = c("fem", "phd")),

+ family = poisson, R = 10)

Rchoice manages the variables in the hierarchical model by the formula object. Note that
the second part of the formula is reserved for all the variables that enter in the mean of the
random parameters. The argument mvar is a list that indicates how all this variables enter
in each random parameter. For example phd = c("fem") indicates that the mean of phd

coefficient varies according to fem.

R> summary(poissonH.ran)

Model: poisson

Model estimated on: Mon Sep 07 15:20:26 2015

Call:

Rchoice(formula = art ~ fem + mar + kid5 + phd + ment | fem +
phd, data = Articles, family = poisson, ranp = c(kid5 = "n",
phd = "n", ment = "n"), R = 10, mvar = list(phd = c("fem"),

ment = c("fem", "phd")), method = "bfgs", iterlim

The estimation took: Oh:
Coefficients:

Estimate Std.
constant 0.222646
fem -0.572068
mar 0.176966

mean.kid5 -0.259958
mean.phd -0.019339
mean.ment 0.048094
phd.fem 0.133917
ment.fem -0.006846
ment.phd -0.004857

O O O O O OO OO o oo

sd.kidb 0.431139
sd.phd 0.133125
sd.ment 0.014867

Signif. codes: O '*xx!'

Om:57s

Error

.181920
.217337
.075165
.061981
.056808
.009960
.068995
.007134
.002902
.085080
.015333
.003050

0.001

z-value Pr(>|z|)

.224
.632
.354
.194
.340

4.829

Uk !

.941
.960
.674
.067
.682
.874

0.01

0.22100
0.00848
0.01855
2.74e-05
0.73354
1.37e-06

phd = ",

* %k

%k %

k%

0.05226 .

0.33721

0.09415 .

4.03e-07
< 2e-16
1.09e-06

KoKk
*okok
*okok

'x' 0.06 '.

Optimization of log-likelihood by BFGS maximisation

Log Likelihood: -1577
Number of observations:
Number of iterations: 99

Exit of MLE: successful convergence
Simulation based on 10 Halton draws

915

ment = "n"),
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The estimated parameters indicate that gender matters only for phd’s mean coefficient. More-
over, the results indicate that the prestige of the PhD reduce the effect of ment. We can test
whether the interaction variables are jointly significant by using lrtest function:

R> lrtest(poisson.ran, poissonH.ran)

Likelihood ratio test

Model 1: art ~ fem + mar + kid5 + phd + ment

Model 2: art ~ fem + mar + kid5 + phd + ment | fem + phd
#Df LogLik Df Chisq Pr(>Chisq)

1 9 -1574.2

2 12 -1576.9 3 5.4385 0.1424

5.5. Plotting conditional means

It is important to note that the estimates of the model parameters provide the unconditional
estimates of the parameter vector, but we can derive an individual-specific conditional estima-
tor (see Train 2009; Greene 2012). The estimator of the conditional mean of the distribution
of the random parameters, conditioned on the person-specific data, is:3

S R P(y:|Xi, Bi) ) 3
. £ i dat ) = — ()
B (8i|data;) ;::1 <Z§1 P(yilXi, B3:) 7

where:
Bir = B+ 1Is; + Lw;,.
Note that these are not actual estimates of 3;, but are estimates of the conditional mean of

the distribution of the random parameters (Greene et al. 2014). We can also estimate the
standard deviation of this distribution by estimating:

_ S PilXi.B) > 3
E(B?|data;) = By, "
(87 |data;) ; ( R P(yilX:, 8i) o

and then computing the square root of the estimated variance,

VE(B2|data;) — E(8;|data;)?.

With the estimates of the conditional mean and conditional variance, we can then compute
the limits of an interval that resembles a confidence interval as the mean plus and minus two
estimated standard deviation. This will construct an interval that contains at least 95 percent
of the conditional distribution of 3; (Greene 2012).

Rchoice allows plotting the histogram and kernel density of conditional means of random
parameters using the function plot. For instance, the kernel of the conditional mean of
P1uage,i for union.ran model can be obtained by typing:

R> plot(union.ran, par = "lwage", type = "density")
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Conditional Distribution for lIwage
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Figure 3: Kernel density of the individual’s conditional mean.

The graph produced using this command is visualized in Figure 3. We may also plot the
individual confidence interval for the conditional means for the first 20 individuals using:

R> plot(union.ran, par = "lwage", ind = TRUE, id = 1:20, col = "blue")

Figure 4 displays the individual conditional means and their respectively confidence interval.

The method plot for objects of class Rchoice is a wrapper of effect.Rchoice function.
This function retrieves the individual’s conditional mean of both the parameters and the
compensating variations. For example, one can get the individual’s conditional mean and
standard errors plotted in Figure 3 typing:

R> bi.wage <- effect.Rchoice(union.ran, par = "lwage", effect = "ce")

The argument effect is a string indicating what conditional mean should be computed. In
this example, we are requiring the conditional expectation of the individual coefficients effect
= "ce". effect.Rchoice returns two list. The first one with the estimated conditional means

for all the individuals, and the second one with the estimated standard errors of the conditional
means.

R> summary (bi.wage$mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.4116 -0.1460 0.0718 0.2824 0.8643 1.0530

R> summary(bi.wage$sd.est)

8Note that this simulator is also known as the posterior distribution of the individual parameters.
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Figure 4: Individual confidence interval for the conditional means.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000017 0.3440000 0.5372000 0.4526000 0.6290000 0.8440000

One might also get the individual’s conditional mean of the compensating variations using
both plot and effect.Rchoice. Compensating variation is the variation in two regressors
such that the latent variable does not change. Let x; denote the I-th elment in x; and g
the corresponding parameter, and let m index the m-th elements in both vectors x; and 3,
respectively. Now consider a change in z;; and z;,, at the same time, such that y; = 0. This
requires

Az A
0= BiAz + BimAzim = & _ P
Azim B
where [, is a random coefficient. This ratio (without the minus sign) is computed or plotted
if the argument effect = "cv" in any of the two functions. The argument par is the variable

whose coefficient goes in the numerator (5;,), and the argument wrt is a string indicated
which coefficient goes in the denominator (/3;). Note that since S;y, is random, the ratio of the
coefficient is random and its distribution follows from the joint distribution of the coefficients.

6. Computational issues

The estimated parameters in any model estimated using SML depend on at least four factors.
The first of them is the random number seed. If the random draws used in the estimation
are pseudo-random draws, instead of Halton draws, then the parameter might change if the
seed is changed. As default, Rchoice sets seed = 10. Second, the number of draws are
very important for the asymptotic properties of the SML (see Section 2.3). In the examples
provided in this document, I used just a few draws for time restrictions. However, in real

27
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applied work, researchers must use a greater number of draws, especially if pseudo-random
draws are used in the estimation. A good starting point is 500 draws (see for example Bhat
2001; Sandor and Train 2004).

Starting values are also crucial to achieve convergence, specially for the correlated random
parameter model with deterministic variation in the mean. Note that version 0.1 of Rchoice
sets the initial values at 0, while versions 0.2 and 0.3 set them at 0.1 as default. Users might
change this with the argument init.ran or setting a new vector of starting values with the
argument start.

Finally, the choice of optimization method is another important factor that influences model
convergence. As explained before, Rchoice uses the function maxLik in order to maximize
the log-likelihood function, which permits to estimate models by the Newton-Raphson (NR),
BGFS and Berndt-Hall-Hall-Hausman (BHHH) procedures. I have found that BFGS often
works best in the sense it is more likely to converge than the alternative algorithm. That
is the main reason why this algorithm is set as default. If this method does not converge,
users might re-estimate the model using another algorithm. For example, the user might
type method = "nr" for the NR method or method = "bhhh" for the BHHH method in the
Rchoice function. Rchoice uses the numerical Hessian if method = "nr" and the model is
estimated with random parameters, thus it can be very slow compared to the other methods.
It is worth mentioning that BHHH is generally faster than the other procedures, but it can
failure if the variables have very different scale. The larger the ratio between the largest
standard deviation and the smallest standard deviation, the more problems the user will
have with the estimation procedure. Given this fact, users should check the variables and
re-scale or recode them if necessary. Furthermore, it is also convenient to use the argument
print.level = 2, for example, to trace the optimization procedure in real time. For more
information about arguments for optimization type help(maxLik).

7. Conclusions

The Rchoice package contains most of the newly developed models in binary, count and or-
dered models with random parameters. The current version of Rchoice handles cross-sectional
an panel data with observed and unobserved individual heterogeneity. Allowing parameter
values to vary across the population according to some pre-specified distribution overcomes
the problem of having a fixed-representative coefficient for all individuals. The distribution
supported by Rchoice are normal, log-normal, uniform, truncated normal, triangular dis-
tribution and Johnson’s Sp. It also allows the user to choose between Halton draws and
pseudo-random numbers and correlated parameters.

The Rchoice package intends to make available those estimation methods to the general public
and practitioners in a friendly and flexible way. In future versions, I expect to add functions
that allow estimating latent class models. I also hope to include functions for marginal effects.
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