Journal of Statistical Software

October 2016, Volume 74, Issue 4. doi: 10.18637/jss.v074.i04

R Package clickstream: Analyzing Clickstream Data
with Markov Chains

Michael Scholz

University of Passau

Abstract

Clickstream analysis is a useful tool for investigating consumer behavior, market re-
search and software testing. I present the clickstream package which provides functionality
for reading, clustering, analyzing and writing clickstreams in R. The package allows for a
modeling of lists of clickstreams as zero-, first- and higher-order Markov chains. I illus-
trate the application of clickstream for a list of representative clickstreams from an online
store.

Keywords: clickstream, Markov chain, R.

1. Introduction

Online retailers analyze their visitors to improve their stores, marketing strategies and product
offers. A lot of information such as customer reviews, purchase histories, demographic char-
acteristics or the sequence of clicks in an online store is available for such a type of analysis. R
supports online retailers in preparing, analyzing and visualizing most of this information. For
example, package tm (Feinerer and Hornik 2008) provides functionality for preparing textual
customer reviews such that their sentiment can be detected in a next step using support
vector machines with package 1071 (Meyer, Dimitriadou, Hornik, Weingessel, and Leisch
2015). Sequences of clicks, so called clickstreams, can either be analyzed by mining sequen-
tial patterns with algorithms such as Apriori or PrefixSpan (Pitman and Zanker 2010; Pei,
Han, Mortazavi-Asl, Wang, Pinto, Chen, Dayal, and Hsu 2004) or with probabilistic models
such as Markov chains (Montgomery, Li, Srinivasan, and Liechty 2004). Whereas sequential
pattern mining is supported by arules (Hahsler, Griin, and Hornik 2005) and arulesSequences
(Buchta and Hahsler 2016), packages for modeling clickstreams with Markov chains are miss-
ing so far. The package markovchain (Spedicato, Kang, and Yalamanchi 2016) only allows
modeling zero- or first-order Markov chains and is furthermore limited to one stream of clicks.

http://dx.doi.org/10.18637/jss.v074.i04

2 clickstream: Analyzing Clickstream Data in R

Online stores collect and analyze collections of clickstreams, though.

This paper introduces the R package clickstream (Scholz 2016), a package for importing,
analyzing and exporting clickstreams which is available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=clickstream. In contrast to
other sequential data sets, clickstreams are collections of data sequences with different sizes.
Two subsequent clicks might furthermore represent the same state. Consider for example the
following extract of user sessions from an online store:

Session 1: P1 P2 P1 P3 P4 Defer

Session 2: P3 P4 P1 P3 Defer

Session 3: P5 P1 P6 P7 P6 P7 P8 P7 Buy

Session 4: P9 P2 P11 P12 P11 P13 P11 Buy
Session 5: P4 P6 P11 P6 P1 P3 Defer

Session 6: P3 P13 P12 P4 P12 P1 P4 P1 P3 Defer
Session 7: P10 P5 P10 P8 P8 P5 P1 P7 Buy
Session 8: P9 P2 P1 P9 P3 P1 Defer

Session 9: P5 P8 P5 P7 P4 P1 P6 P4 Defer

Each click on one out of 13 possible product pages in the online store is represented by the
letter P and the product page identifier (1-13) while the final click represents a users decision
that is either to defer the purchase (Defer) or to buy a product (Buy). Defer and Buy are here
absorbing states. clickstream is suitable to handle clickstreams with and without absorbing
states. Analyzing collections of clickstreams with R is challenging, as (i) R does not directly
support importing data sets with varying row length, (ii) packages such as markovchain
(Spedicato et al. 2016) only support analyzing a single sequence of data (not collections of
sequences), and (iii) there is no package available for R which provides functions for reading,
writing, clustering and analyzing clickstreams, yet.

The clickstream package provides a flexible basic infrastructure for importing, exporting and
analyzing sets of clickstreams as recorded by most online stores. More precisely, the pack-
age provides functionality for clustering clickstreams, visualizing clickstreams and predicting
future clicks for a given session.

The remainder of this paper is structured as follows. Section 2 introduces the operations
for reading, writing and generating collections of clickstreams. Section 3 presents functions
for analyzing clickstreams and presents the estimation method implemented in clickstream
for fitting higher-order Markov chains with a moderate number of parameters. Section 4
demonstrates the usage of clickstream on an example of large simulated clickstream data. Al-
ternative approaches to modeling clickstreams with higher-order Markov chains are discussed
in Section 5. The paper concludes in Section 6 with a discussion of possible extensions of
clickstream.

2. Clickstreams

A clickstream is a sequence of click events for exactly one session with an online store user.
The clickstreams of different sessions typically differ in type and number of click events.
Each click event is of type character. The clickstreams for a particular session can then be
modeled as a vector, whereas a collection of clickstreams can be modeled as a list in R. The
package clickstream provides an S3 class for storing lists of vectors of click events.

https://CRAN.R-project.org/package=clickstream

Journal of Statistical Software 3

Package clickstream provides functions to generate clickstreams in three ways. First, they
can be manually generated by creating a new instance of the S3 class ‘Clickstreams’ We
can create the list of clickstreams presented in Section 1 with the following code:

R> cls <- list(Sessioni = c("P1", "P2", "P1", "P3", "P4", "Defer"),

Session2 = c("P3", "P4", "P1", "P3", "Defer"),

Session3 = c("P5", "P1", "PG", "P7", "P6", "P7", “pgh, up7n, Buy"),

Sessiond = c("P9", "P2", "P11", "P12", "P1{", "P13", "P1i", "Buy"),

Session5 = c("P4", "P6", "P11", "P6", "P1", "P3", "Defer"),

Session6 = c("P3", "P13", "P12", "P4", "P12", "Pi",k “p4n, npin, np3n,
"Defer"),

Session7 = c("P10", "P5", "P10", "P8", "Pg", "P5", “pi", “p7" “Byuy"),

Sessions C(/IPQ", "P2”’ "Pl II’ "P9", ”P3"’ IIP1 "’ IlDefer"),

Session9 = c("P5", "Pg", "P5", "P7", "P4", "P1" "PG", "P4", "Defer"))

R> class(cls) <- "Clickstreams"

+ + + + + + + + +

Second, the function randomClickstreams can be called to randomly generate an object of
class ‘Clickstreams’ This function requires five arguments — a vector of possible states, a
vector of start probabilities, a first-order Markov chain transition matrix, the mean length of
clickstreams and the number of clickstreams. We can generate 100 clickstreams with average
length of 10, two possible states (P1 and P2), start probability of 0.5 for both states and
transition probabilities of Pj; = {P1 — P1 = 0.2,P1 - P2 =0.8,P2 - P1 =04,P2 —
P2 = 0.6} as follows:

R> cls <- randomClickstreams(states = c("P1", "p2"),

+ startProbabilities = c(0.5, 0.5),

+ transitionMatrix = matrix(c(0.2, 0.8, 0.4, 0.6), nrow = 2),
+ meanLength = 10, n = 100)

And third, we can generate a ‘Clickstreams’ object by reading a list of clickstreams from
a file. The function readClickstreams () expects a comma-separated file in which each line
corresponds to exactly one clickstream. The first entry of each line can optionally be used
as session name. If clickstreams were generated without session names a unique numeric
identifier is used instead. The file sample.csv contains the clickstreams of the example in
Section 1 as

Sessionl1,P1,P2,P1,P3,P4,Defer
Session2,P3,P4,P1,P3,Defer
Session3,P5,P1,P6,P7,P6,P7,P8,P7,Buy
Session4,P9,P2,P11,P12,P11,P13,P11,Buy
Sessionb5,P4,P6,P11,P6,P1,P3,Defer
Session6,P3,P13,P12,P4,P12,P1,P4,P1,P3,Defer
Session7,P10,P5,P10,P8,P8,P5,P1,P7,Buy
Session8,P9,P2,P1,P9,P3,P1,Defer
Session9,P5,P8,P5,P7,P4,P1,P6,P4,Defer

and is imported via

4 clickstream: Analyzing Clickstream Data in R

R> cls <- readClickstreams(file = "sample.csv", sep = ",", header = TRUE)
R> cls

The corresponding output is
Clickstreams

Sessionl: P1 P2 P1 P3 P4 Defer

Session2: P3 P4 P1 P3 Defer

Session3: P5 P1 P6 P7 P6 P7 P8 P7 Buy
Session4: P9 P2 P11 P12 P11 P13 P11 Buy
Sessionb: P4 P6 P11 P6 P1 P3 Defer

Session6: P3 P13 P12 P4 P12 P1 P4 P1 P3 Defer
Session7: P10 P5 P10 P8 P8 P5 P1 P7 Buy
Session8: P9 P2 P1 P9 P3 P1 Defer

Session9: P5 P8 P5 P7 P4 P1 P6 P4 Defer

The function summary() provides the basic information for a ‘Clickstreams’ object.

R> summary(cls)

Observations: 9

Click Frequencies:
Buy Defer P1 P10 P11 P12 P13 P2 P3 P4 P5 P6 P7 P8 P9
3 6 11 2 4 3 2 3 7 7 5 5 5 4 3

clickstream provides a function for exporting a ‘Clickstreams’ object to file. As for reading
clickstreams from a file, we need to specify the file name, the separator and a Boolean flag
indicating if the clickstreams will have a session name. We additionally must define the name
of the ‘Clickstreams’ object we want to store and we can optionally specify whether the
click events will be quoted. A ‘Clickstreams’ object cls can be written to a file by calling

R> writeClickstreams(cls, "sample.csv", header = TRUE, sep = ",")

3. Analyzing clickstreams

3.1. Markov chains

A Markov chain is a stochastic process X (™ that takes state m,, from a finite set M at each
time n. If the state in n only depends on the recent k states, we call X (™) a Markov chain of
order k. The probability to be in any of the m states in the next step is hence independent
of the present state in a zero-order Markov chain. Time homogeneous Markov chains, where
the transition probability is independent of time n, can be described by transition matrices,
where ch) describes the probability to obtain a transition from state ¢ at time n — k to state

Journal of Statistical Software 5

7 at time n. Each probability PZ-(;C) corresponds to a parameter to be estimated. Higher-order

Markov chains are thus characterized by (m—1)m* model parameters. The major challenge of
using higher-order Markov chains for analyzing clickstream data is the number of parameters
that exponentially increases with the order of the Markov chain. Users of an online store
typically decide to visit one of several possible websites not only based on the website they
are currently visiting. Usually, a user considering a product page might either add the product
to the shopping cart, view product reviews, follow a product recommendation, or search for
another product. Moe (2003) proposes that the probability for a transition to either of
the possible next states depends on the mode (browsing, searching, or buying) the user is
currently in. This mode can be identified when considering the recent k states (websites) of
a user rather than only the last state (website). Higher-order Markov chains are hence more
promising when analyzing clickstream data.

3.2. Fitting a Markov chain model

Raftery (1985) has proposed a model for higher-order Markov chains that can be estimated
with one additional parameter for each order k. His model is based on the idea that the
distribution of state probabilities X can be approximated as weighted sum of the last k
transition probabilities:

k
X(n+k+1) — Z)\iQX(n+k+1_i) (1)
i=1
s.t.
=1, A >0 Vi (2)
i=1

Q is a m x m transition probability matrix and \; denotes the weight for each lag ¢ in the
model. Ching, Huang, Ng, and Siu (2013) introduced a more general form of Raftery’s model
by defining lag-specific transition probability matrices Q;:

k
XD = §7 QX (kL) (3)
i=1
with the same constraints as defined in Equation 2.

Q); is a non-negative m x m matrix with column sums equal to one. This generalized model
has k + km? parameters. We can estimate Ql by observing the transition probability from
n — i to n. State probabilities are estimated from the sequence X (™. We are now able to
derive the following optimization problem from Equation 3 to estimate the lag parameters A:

min
A

subject to the constraints defined in Equation 2.

k
Y NQiX —XH} (4)
=1

The function fitMarkovChain() estimates the parameters of a Markov chain model of order
k for a given ‘Clickstreams’ object by solving Equation 4 either as a linear problem or as
a quadratic problem. Optimization parameters such as the used optimizer are specified as
a list of control parameters in function fitMarkovChain(). A Markov chain is fitted for an
object cls via

6 clickstream: Analyzing Clickstream Data in R

R> mc <- fitMarkovChain(clickstreamList = cls, order = 2,
+ control = list(optimizer = "quadratic"))
R> mc

The corresponding output shows the transition probability matrices Q; and the lag parameters
\; for each of the two specified lags (i.e., k = 2)*.

Higher-Order Markov Chain (order=2)

Transition Probabilities:

Lag: 1
lambda: 0.22

Buy Defer P1 P10 P11 P12 P13 P2 P3 P4 P5 P6 P7 P8 P9
Buy 0 0 0.000 0.0 0.25 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.4 0.00 0.00
Defer O 0 0.091 0.0 0.00 0.00 0.0 0.00 0.43 0.29 0.0 0.0 0.0 0.00 0.00
P1 0 0 0.000 0.0 0.00 0.33 0.0 0.67 0.14 0.43 0.4 0.2 0.0 0.00 0.00
P10 0 0 0.000 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.2 0.0 0.0 0.00 0.00
P11 0 0 0.000 0.0 0.00 0.33 0.5 0.33 0.00 0.00 0.0 0.2 0.0 0.00 0.00
P12 0 0 0.000 0.0 0.25 0.00 0.5 0.00 0.00 0.14 0.0 0.0 0.0 0.00 0.00
P13 0 0 0.000 0.0 0.25 0.00 0.0 0.00 0.14 0.00 0.0 0.0 0.0 0.00 0.00
P2 0 0 0.091 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.67
P3 0 0 0.364 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.33
P4 0 0 0.091 0.0 0.00 0.33 0.0 0.00 0.29 0.00 0.0 0.2 0.2 0.00 0.00
P5 0 0 0.000 0.5 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.50 0.00
P6 0 0 0.182 0.0 0.25 0.00 0.0 0.00 0.00 0.14 0.0 0.0 0.2 0.00 0.00
pP7 0 0 0.091 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.2 0.4 0.0 0.25 0.00
P8 0 0 0.000 0.5 0.00 0.00 0.0 0.00 0.00 0.00 0.2 0.0 0.2 0.25 0.00
P9 0 0 0.091 0.0 0.00 0.00 0.0 0.00 0.00 0.00 0.0 0.0 0.0 0.00 0.00
Lag: 2
lambda: 0.78

Buy Defer P1 P10 P11 P12 P13 P2 P3 P4 P5 P6 P7 P8 P9
Buy 0 00.10.00.000.00 0.5 0.00 0.00 0.0 0.0 0.0 0.00 0.25 0.00
Defer O 00.30.00.000.000.00.000.500.00.00.20.000.000.00
P1 0 0 0.20.00.33 0.000.00.000.256 0.20.00.00.330.250.67
P10 0 00.00.50.00 0.00 0.0 0.00 0.00 0.0 0.0 0.0 0.00 0.00 0.00
P11 0 0 0.0 0.0 0.67 0.00 0.0 0.00 0.00 0.2 0.0 0.0 0.00 0.00 0.33
P12 0 00.00.00.000.33 0.00.330.250.00.00.00.000.000.00
P13 0 00.00.00.000.33 0.00.000.000.00.00.00.000.000.00
P2 0 0 0.00.00.000.00 0.0 0.00 0.00 0.00.00.00.000.000.00
P3 0 00.10.00.000.00 0.0 0.33 0.000.40.00.20.000.000.00
P4 0 0 0.20.00.00 0.330.50.000.000.00.20.00.000.000.00
P5 0 00.00.00.00 0.00 0.0 0.00 0.00 0.0 0.2 0.0 0.00 0.25 0.00
P6 0 0 0.0 0.0 0.00 0.00 0.0 0.00 0.00 0.2 0.2 0.4 0.00 0.00 0.00
P7 0 00.10.00.00 0.00 0.0 0.00 0.00 0.0 0.2 0.0 0.67 0.25 0.00

!Note that the number of digits was set to 2 for this output.

Journal of Statistical Software

o

P8 0
P9 0

o O
o O
o o
o O
o w
oS O
58
o O
28
o O
o o
o O
5 8
o O
28
o O
o o
o O
o N
o O
o N
o O
58
o O
28
o O
o o
o

Start Probabilities:

P1 P10 P3 P4 PS5 P9
0.11 0.11 0.22 0.11 0.22 0.22

End Probabilities:

Buy Defer
0.33 0.67

Start (end) probabilities are shown for the states the corresponding clickstreams started
(ended) with. We can, for example, see that 22% of our clickstreams started with a click on
product 3 (P3) and 33% of the sessions ended with a purchase (Buy).

The result of function fitMarkovChain () is an instance of the S4 class ‘MarkovChain’ Objects
of class ‘MarkovChain’ consist of the following slots:

states: A vector of all states.

e order: The order k of the Markov chain.

e transitions: A list of k transition matrices.

e lambda: A vector of k lag parameters \.

o logLikelihood: Log-likelihood of the fitted Markov chain model.

e observations: Number of observations used to fit the Markov chain model.
e start: Probability of each state to be the first state of a clickstream.

o end: Probability of each state to be the last state of a clickstream.

e transientStates: A vector of transient states.

e absorbingStates: A vector of absorbing states.

e absorbingProbabilities: Probability of each absorbing state that a clickstream ends
with that state.

fitMarkovChain() computes the log-likelihood of a ‘MarkovChain’ object based on the m xm
transition frequency matrices F;:

k
F;
i=1 v

Based on this log-likelihood the method summary() returns Akaike’s information criterion
(AIC) and Bayes’ information criterion (BIC) to compare two fitted ‘MarkovChain’ objects.

8 clickstream: Analyzing Clickstream Data in R

02 04 029 043

025

033 05
025
05025

Figure 1: The plot illustrates the transitions between clicks with lag k = 2.

R> summary (mc)

Higher-Order Markov Chain (order=2) with 15 states.
The Markov Chain has absorbing states.

Observations: 70
LogLikelihood: -66.1378
AIC: 196.2756

BIC: 268.2274

clickstream uses igraph (Csardi and Nepusz 2006) to plot a transition matrix of lag k as a
directed graph (see Figure 1). A simple bar chart is plotted for zero-order Markov chains
showing the frequencies of the possible states.

R> plot(mc, order = 2)

3.3. Clustering clickstreams

When exploring clickstream data, we will observe that a large number of similar clickstreams
rarely exists. This is due to the complexity of most websites and the amount of paths that a
user can follow to come to a particular website. Huang, Ng, Ching, Ng, and Cheung (2001)
propose to use clustering algorithms to cluster a list of clickstreams. clickstream offers the
function clusterClickstreams() for clustering clickstreams based on a transition matrix of

Journal of Statistical Software 9

order k with the k-means algorithm. This function has 3 parameters — a list of clickstreams,
the order k£ for which a transition matrix is computed and used as basis for clustering, and
the number of cluster centers. Since clusterClickstreams() directly calls kmeans() from
package stats, it allows specifying further parameters such as the maximal number of iterations
or the algorithm used to compute the clusters. We can cluster a ‘Clickstreams’ object cls
based on its first-order transition matrix into 3 groups via

R> clusters <- clusterClickstreams(clickstreamList = cls, order = 1,
+ centers = 3)
R> clusters

[[1]1]

Clickstreams

Sessionl: P1 P2 P1 P3 P4 Defer
Session4: P9 P2 P11 P12 P11 P13 P11 Buy
Session8: P9 P2 P1 P9 P3 P1 Defer

[[2]1]

Clickstreams

Session2: P3 P4 P1 P3 Defer
Sessionb: P4 P6 P11 P6 P1 P3 Defer
Session6: P3 P13 P12 P4 P12 P1 P4 P1 P3 Defer

[[3]1]

Clickstreams

Session3: P5 P1 P6 P7 P6 P7 P8 P7 Buy
Session7: P10 P5 P10 P8 P8 P5 P1 P7 Buy
Session9: P5 P8 P5 P7 P4 P1 P6 P4 Defer

The result is a list consisting of 3 ‘Clickstreams’ objects. We can now fit a ‘MarkovChain’ ob-
ject for each ‘Clickstreams’ object or write these objects to file with writeClickstreams().

3.4. Predicting clicks

Clickstream analysis is often used to predict either the next click or the final click (state) of
a consumer. A consumer’s next click depends on the k previous clicks in a k-order Markov
chain. The probability distribution X (™ of the click at n is:

k
X0 = 300 Qux (6)
=1

Data analysts often are interested in those clicks just before a final decision (buy or defer).
Each clickstream hence has an absorbing state which is either "Buy" or "Defer". If we know

10 clickstream: Analyzing Clickstream Data in R

the probability B that our clickstreams will be absorbed in any of the possible absorbing
states, we can use this information to more accurately predict the next click.

k
X0~ Y AQuX¢ G
=1

clickstream predicts the next click for a given ‘Pattern’ object. A ‘Pattern’ object is
a (part) of a clickstream described by a sequence of clicks and optionally a probability of
occurrence and a vector of absorbing probabilities. The next click is predicted with Equation 6
if no absorbing states exist or the ‘Pattern’ object is specified without absorbing probabilities
and with Equation 7 otherwise. To predict the next click of a given ‘Pattern’ object based
on a given MarkovChain-object, we can use the predict () function as follows:

R> pattern <- new("Pattern", sequence = c("P9", "P2"))
R> resultPattern <- predict(mc, startPattern = pattern, dist = 1)
R> resultPattern

Sequence: P1

Probability: 0.6666667

Absorbing Probabilities:
None

1 0

If a user starts with the clickstream P9 P2, the user will most likely click on P1 next. We
can also predict the next n clicks by varying the parameter dist. Equation 6 or 7 is then
iteratively applied.

R> pattern <- new("Pattern", sequence = c("P9", "P2"),

+ absorbingProbabilities = data.frame(Buy = 0.333, Defer = 0.667))
R> resultPattern <- predict(mc, startPattern = pattern, dist = 2)

R> resultPattern

The defined ‘Pattern’ object corresponds to a user who has recently viewed products P9 and
P2 and now a probability of 33.3% to buy a product. The prediction for the next two clicks
is shown in the following output:

Sequence: P1 P3
Probability: 0.2618064
Absorbing Probabilities:
Buy Defer
1 0.05818405 0.9418159

Our user has a purchasing probability of 5.83% after 2 further clicks and we expect that she
will visit product P3 in two clicks and finally defers the purchase. However, the probability
that she really continues visiting products P1 P3 is only 26.17%.

Online stores often have evidence on how many of the visitors convert to a buyer or how many
times a particular user has been only visiting the online store and how often she has bought a
product. This information can be used to formulate initial absorbing probabilities for a user.
If for example a user has been logged in and finally bought a product in 50% of her log ins,
we can compute absorbing probabilities for a stream of clicks as follows:

Journal of Statistical Software

R> absorbingProbabilities <- c¢(0.5, 0.5)
R> sequence <- c("P9", "P2")
R> for (s in sequence) {

+ absorbingProbabilities <- absorbingProbabilities *

+ data.matrix(subset (mc@absorbingProbabilities, state == s,
+ select = c("Buy", "Defer")))

+ F

R> absorbingProbabilities <- absorbingProbabilities /

+ sum(absorbingProbabilities)

R> absorbingProbabilities

Buy Defer
15 0.2262178 0.7737822

The output shows that our user has a probability of 22.62% to finally buy a product after
she has visited products P9 and P2.

4. Example with simulated data

In this section, I will demonstrate the usage of clickstream in a simulated data example. The
example models clickstreams for 100,000 user sessions that represent clicks on either one of 7
products or on one of the two final states "Buy" and "Defer". The clickstreams are generated
with the following R code:

R> set.seed(123)
R> cls <- randomClickstreams(

+ states = c("P1", "P2", "P3", "P4", "P5", "P", "P7", "Defer", "Buy"),
+ startProbabilities = ¢(0.2, 0.25, 0.1, 0.15, 0.1, 0.1, 0.1, 0, 0),
+ transitionMatrix = matrix(

+ c(0.01, 0.09, 0.05, 0.21, 0.12, 0.17, 0.11, 0.2, 0.04,

+ 0.1, 0, 0.29, 0.06, 0.11, 0.13, 0.21, 0.1, 0,

+ 0.07, 0.16, 0.03, 0.25, 0.23, 0.08, 0.03, 0.12, 0.03,

+ 0.16, 0.14, 0.07, 0, 0.05, 0.22, 0.19, 0.1, 0.07,

+ 0.24, 0.27, 0.17, 0.13, 0, 0.03, 0.09, 0.06, 0.01,

+ 0.11, 0.18, 0.04, 0.15, 0.26, 0, 0.1, 0.11, 0.05,

+ 0.21, 0.07, 0.08, 0.2, 0.14, 0.18, 0.02, 0.08, 0.02,

+ o, o, 0o, 0, 0, 0, 0, 0, O,

+ o, o, 0, 0, 0, 0, 0, O, 0), nrow = 9),

+ meanLength = 50, n = 100000)

We will get a first impression on the simulated clickstreams by calling the summary () function
as follows:

R> summary(cls)

The output shows that 100,000 observations are available and most of them do not end with
a purchase.

12 clickstream: Analyzing Clickstream Data in R

Observations: 100000

Click Frequencies:
Buy Defer P1 P2 P3 P4 P5 P6 P7
22087 77813 108767 113760 86334 111054 97129 93397 89521

The next step in a clickstream analysis might be modeling the clickstreams with Markov
chains of different orders and select that order that produces the highest fit to the data. We
can implement a simple procedure for determining the "best" order for a Markov chain model
as follows:

R> maxOrder <- &
R> result <- data.frame()
R> for (k in 1:maxOrder) {

+ mc <- fitMarkovChain(clickstreamList = cls, order = k)

+ result <- rbind(result, c(k, summary(mc)$aic, summary(mc)$bic))
+ F

R> names(result) <- c("Order", "AIC", "BIC")

R> result

The maximal order max0Order is the minimal length more than 50% of the clickstreams have,
which is 5 in this example. The output indicates that a Markov chain with order k = 2 fits
the data better than any Markov chain with a lower order.

Order AIC BIC
1 2685427 2685543
2 2684008 2684240
3 2684028 2684376
4 2684048 2684512
5 2684068 2684648

g W N

We now can fit a Markov chain with order & = 2 or cluster the clickstreams and model the
clickstreams of each cluster with a separate Markov chain. The following code clusters the
‘Clickstreams’ object cls into 5 clusters based on the transition matrix for lag k = 1:

R> clusters <- clusterClickstreams(clickstreamList = cls, order = 1,
+ centers = 5)

Calling the summary() function on the first cluster reveals that this cluster consists of 9664
clickstreams.

R> summary (clusters$clusters[[1]])
Observations: 9664
Click Frequencies:

Buy Defer P1 P2 P3 P4 P5 Pé pP7
2084 7576 19569 11750 7185 11980 9282 9081 15060

Journal of Statistical Software 13

A comparison of the information criteria (i.e., AIC and BIC) of Markov chain models with
several orders indicates that the first cluster should be modeled with a Markov chain of order
k = 2, which is done by the following code:

R> mc <- fitMarkovChain(clickstreamList = clusters$clusters[[1]], order = 2)
R> summary (mc)

Higher-Order Markov Chain (order=2) with 9 states.
The Markov Chain has absorbing states.

Observations: 93567
LogLikelihood: -145850.6
AIC: 291741.2

BIC: 291930.1

Approximately 22% of the sessions in the first cluster end with a purchase and 78% end
with a choice deferral. This information can be used as prior distribution for the absorbing
probabilities B when predicting the next clicks for a new user session. The next clicks of a
user who has recently viewed products P1 P4 P6 are predicted as follows:

R> pattern <- new("Pattern", sequence = c("P1", "P4", "P6"),

+ absorbingProbabilities = data.frame(Buy = 0.22, Defer = 0.78))
R> resultPattern <- predict(mc, startPattern = pattern, dist = 2)
R> resultPattern

The corresponding output shows that our user most likely will next click on P2 and thereafter
on P7. Her purchase probability reduces to 2.5% after these two additional clicks.

Sequence: P2 P7
Probability: 0.06835761
Absorbing Probabilities:
Buy Defer
1 0.02508478 0.9749152

Based on all clickstreams, we expect that our user will most likely continue her journey by
visiting products P5 and P2 next. The more heterogeneous the clickstreams in a fitted Markov
chain model, the lower is the probability that a current session indeed will be continued with
the predicted clicks. Clustering clickstreams is thus of utmost importance especially in case
of high clickstream heterogeneity.

5. Alternative approaches

There are several alternative approaches to model clickstreams. Omne possible approach is
representing clickstreams by state frequencies instead of transition probabilities. The function
frequencies extracts an incidence data frame from a ‘Clickstreams’ object that contains
the number of occurrence of each state in each clickstream.

14 clickstream: Analyzing Clickstream Data in R

R> frequencyDF <- frequencies(cls)

The output is a data frame with columns representing the states and rows representing the
clickstreams (i.e., user sessions).

Buy Defer P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13
Sessionl 0 i1 21 1 1 0 0 O O O 0 0 0
Session?2
Session3
Sessiond
Sessionb
Session6
Session7
Session8
Session9

O O OO ~» O
~ P, O Fr,r P, O O -
P NP, NP, O~ -
O, OO O OO
O L ONBEPr O ON
N O O NEKF O O -
N ONOO O - O
B O O ONON O
B O Fr O O O W o
R ON OO OB O
ON O OO+ OO
O O N OO O O O
O O O O rr WO o
O O O N O B+ OO
O OO, OFr OO O

Based on this incidence data frame, we can, for example, fit regression models to predict
the final state (i.e., "Buy" or "Defer')?. This approach has the major drawback that the
sequential structure of clickstreams is disregarded. This comes with the advantage of a higher
performance when predicting new sessions’ next or final clicks.

A second alternative to modeling clickstreams with higher-order Markov chains is representing
them as sequential patterns. Packages arules (Hahsler et al. 2005) and arulesSequences
(Buchta and Hahsler 2016) provide several functions for mining sequential patterns and for
finding those click patterns having a particular minimum support (i.e., occur in minimum
number of user sessions). Most of these functions require an object of type ‘transactions’ as
input. A ‘Clickstreams’ object can be transformed to a ‘transactions’ object by calling:

R> trans <- as.transactions(cls)

Extracting all click patterns with a particular minimum support is then possible with the
Apriori (Agrawal, Imielinski, and Swami 1993), the eclat (Zaki, Parthasarathy, Ogihara, and
Li 1997) or the ¢cSPADE algorithm (Zaki 2001). The following code returns all pattern
sequences having a minimum support of 0.4.

R> library("arulesSequences")

R> sequences <- as(cspade(trans, parameter = list(support = 0.4)),
+ "data.frame")

R> sequences

The corresponding output shows that 11 pattern sequences are supported by at least 40% of
the clickstreams in cls.

sequence support

1 <{Defer}> 0.6666667
2 <{P1}> 0.8888889
3 <{P3}> 0.5555556

2Note that the number of sessions is typically much larger than the number of states in real data sets.

Journal of Statistical Software

4 <{P4}> 0.5555556
5 <{P1},{P3}> 0.5555556
6 <{P4},{P1}> 0.4444444
7 <{P1},{Defer}> 0.6666667
8 <{P3},{Defer}> 0.5555556
9 <{P4},{Defer}> 0.5555556
10 <{P4},{P1},{Defer}> 0.4444444
11 <{P1},{P3},{Defer}> 0.5555556

Predicting the next click for a given pattern sequence S'is possible by searching for the pattern
sequence with the highest support that starts with .S. arules provides the function support
with which the support for a given set of pattern sequences is calculated.

6. Conclusion and outlook

I introduced a new R package for analyzing clickstreams with Markov chains. The package
provides methods and functions for reading and writing lists of clickstreams, fitting click-
streams to Markov chains, clustering clickstreams and predicting the next click(s) of a given
user. clickstream supports researchers as well as online store providers in getting insights into
online consumer behavior as well as possible usability flaws (e.g., identify click patterns that
always end with choice deferral) in their online store. clickstream furthermore provides func-
tionality to convert lists of clickstreams into other formats such as an incidence data frame
or a ‘transactions’ object and thus makes the application of other analysis techniques such
as regressions or sequential pattern mining as easy as possible.

Although tailored to improve clickstream analysis, data analysts might also benefit from
clickstream when modeling consumers visiting behavior in offline stores, patient routing in
hospital emergency rooms, demand based on a finite set of sales categories for products or
any other categorical data sequences. A click can be represented as any state of a categorical
variable. Clickstreams in this general sense are interpretable as a sequence of states of a
categorical variable over time.

The clickstream package is subject to some limitations that provide an avenue for future
extensions. Web servers typically log clicks with a time stamp. The duration between two
subsequent clicks is capable of being integrated as additional information to more accurately
predict the next click of a user (Montgomery et al. 2004). In future it is intended to use time
stamps as additional data in clustering clickstreams and predicting the next clicks of a user.

I described the clicks of online users by the product they are considering in a particular online
store. A click can, however, also be described by other criteria such as the average customer
rating, the product category or the price of the current product. I will thus extend clickstream
to use multiple criteria to describe the clicks.

The current version of clickstream allows to define a prior distribution for the absorbing states
when predicting the next click for a user session. In the next version, I will implement the
possibility to specify Dirichlet distribution priors on the transitions in a Markov chain.

15

16 clickstream: Analyzing Clickstream Data in R

Acknowledgments

I would like to thank Joachim Schnurbus for some meaningful comments to improve the
readability of this article.

References

Agrawal R, Imielinski T, Swami A (1993). “Mining Association Rules between Sets of Items
in Large Databases.” In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD’93), pp. 207-216.

Buchta C, Hahsler M (2016). arulesSequences: Mining Frequent Sequences. R package version
0.2-16, URL https://CRAN.R-project.org/package=arulesSequences.

Ching WK, Huang X, Ng M, Siu TK (2013). Markov Chains: Models, Algorithms and
Applications. 2nd edition. Springer-Verlag.

Csardi G, Nepusz T (2006). “The igraph Software Package for Complex Network Research.”
InterJournal, Complex Systems, 1695.

Feinerer I, Hornik K (2008). “Text Mining Infrastructure in R.” Journal of Statistical Software,
25(5), 1-54. doi:10.18637/jss.v025.105.

Hahsler M, Griin B, Hornik K (2005). “arules — A Computational Environment for Mining
Association Rules and Frequent Item Sets.” Journal of Statistical Software, 14(15), 1-25.
doi:10.18637/jss.v014.1i15.

Huang J, Ng M, Ching WK, Ng J, Cheung D (2001). “A Cube Model and Cluster Analysis
for Web Access Sessions.” In R Kohavi, B Masand, M Spiliopoulou, J Srivastava (eds.),
WEBKDD 2001, Workshop on Mining Web Log Data across All Customer Touch Points,
pp- 47-58.

Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2015). e1071: Misc Functions
of the Department of Statistics (E1071), TU Wien. R package version 1.6-7, URL https:
//CRAN.R-project.org/package=e1071.

Moe W (2003). “Buying, Searching, or Browsing: Differentiating between Online Shoppers
Using In-Store Navigational Clickstream.” Journal of Consumer Psychology, 13(1-2), 29—
39. doi:10.1207/s15327663jcpl13-1&2_03.

Montgomery AL, Li S, Srinivasan K, Liechty JC (2004). “Modeling Online Browsing and
Path Analysis Using Clickstream Data.” Marketing Science, 23(4), 579-595. doi:10.
1287/mksc.1040.0073.

Pei J, Han J, Mortazavi-Asl B, Wang J, Pinto H, Chen Q, Dayal U, Hsu MC (2004). “Mining
Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.” IEEE Transactions
on Knowledge and Data Engineering, 16(11), 1424-1440. doi:10.1109/tkde.2004.77.

https://CRAN.R-project.org/package=arulesSequences
http://dx.doi.org/10.18637/jss.v025.i05
http://dx.doi.org/10.18637/jss.v014.i15
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://dx.doi.org/10.1207/s15327663jcp13-1&2_03
http://dx.doi.org/10.1287/mksc.1040.0073
http://dx.doi.org/10.1287/mksc.1040.0073
http://dx.doi.org/10.1109/tkde.2004.77

Journal of Statistical Software

Pitman A, Zanker M (2010). “Insights from Applying Sequential Pattern Mining to e-
Commerce Clickstream Data.” In IEEFE International Conference on Data Mining Work-
shops (ICDMW). doi:10.1109/ICDMW.2010.31.

Raftery A (1985). “A Model for High-Order Markov Chains.” Journal of the Royal Statistical
Society B, 47(3), 528-539.

Scholz M (2016). clickstream: An R Package for Analyzing Clickstreams. R package version
1.1.9, URL https://CRAN.R-project.org/package=clickstream.

Spedicato GA, Kang TS, Yalamanchi SB (2016). markovchain: An R Package to Easily Han-
dle Discrete Markov Chains. R package version 0.6.5.1, URL https://CRAN.R-project.
org/package=markovchain.

Zaki M (2001). “SPADE: An Efficient Algorithm for Mining Frequent Sequences.” Machine
Learning Journal, 42, 31-60. doi:10.1023/a:1007652502315.

Zaki M, Parthasarathy S, Ogihara M, Li W (1997). “New Algorithms for Fast Discovery of As-
sociation Rules.” Technical report, Computer Science Department, University of Rochester,
Rochester, NY 14627.

Affiliation:

Michael Scholz

Faculty of Business Administration and Economics
University of Passau

94032 Passau, Germany

E-mail: michael.scholz@uni-passau.de

URL: http://ecommerce.uni-passau.de/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
October 2016, Volume 74, Issue 4 Submitted: 2014-05-30

doi:10.18637/jss.v074.104 Accepted: 2015-08-24

17

http://dx.doi.org/10.1109/ICDMW.2010.31
https://CRAN.R-project.org/package=clickstream
https://CRAN.R-project.org/package=markovchain
https://CRAN.R-project.org/package=markovchain
http://dx.doi.org/10.1023/a:1007652502315
mailto:michael.scholz@uni-passau.de
http://ecommerce.uni-passau.de/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v074.i04

	Introduction
	Clickstreams
	Analyzing clickstreams
	Markov chains
	Fitting a Markov chain model
	Clustering clickstreams
	Predicting clicks

	Example with simulated data
	Alternative approaches
	Conclusion and outlook

