
JSS Journal of Statistical Software
November 2021, Volume 100, Issue 3. doi: 10.18637/jss.v100.i03

Sequential Monte Carlo Methods in the nimble and
nimbleSMC R Packages

Nicholas Michaud
University of California,

Berkeley

Perry de Valpine
University of California,

Berkeley

Daniel Turek
Williams College

Christopher J. Paciorek
University of California,

Berkeley

Dao Nguyen
University of Mississippi

Abstract

nimble is an R package for constructing algorithms and conducting inference on hi-
erarchical models. The nimble package provides a unique combination of flexible model
specification and the ability to program model-generic algorithms. Specifically, the pack-
age allows users to code models in the BUGS language, and it allows users to write
algorithms that can be applied to any appropriate model. In this paper, we introduce the
nimbleSMC R package. nimbleSMC contains algorithms for state-space model analysis
using sequential Monte Carlo (SMC) techniques that are built using nimble. We first
provide an overview of state-space models and commonly-used SMC algorithms. We then
describe how to build a state-space model in nimble and conduct inference using exist-
ing SMC algorithms within nimbleSMC. SMC algorithms within nimbleSMC currently
include the bootstrap filter, auxiliary particle filter, ensemble Kalman filter, IF2 method
of iterated filtering, and a particle Markov chain Monte Carlo (MCMC) sampler. These
algorithms can be run in R or compiled into C++ for more efficient execution. Examples
of applying SMC algorithms to linear autoregressive models and a stochastic volatility
model are provided. Finally, we give an overview of how model-generic algorithms are
coded within nimble by providing code for a simple SMC algorithm. This illustrates how
users can easily extend nimble’s SMC methods in high-level code.

Keywords: particle filtering, sequential Monte Carlo, auxiliary particle filter, IF2 iterated
filtering, ensemble Kalman filter, particle MCMC, R, nimbleSMC, nimble.

https://doi.org/10.18637/jss.v100.i03
https://orcid.org/0000-0002-9497-1283
https://orcid.org/0000-0002-8329-6796
https://orcid.org/0000-0002-1453-1908
https://orcid.org/0000-0001-5317-968X
https://orcid.org/0000-0003-2215-613X


2 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

1. Introduction
State-space models provide a framework for analyzing time-series data, where observations
are assumed to be noisy measurements of unobserved latent states that evolve over time
(Durbin and Koopman 2012). State-space models have been used in such diverse fields as
population ecology (Knape and de Valpine 2012), epidemiology (Andersson and Britton 2000),
economics (Fernández-Villaverde and Rubio-Ramírez 2007), and meteorology (Wikle, Milliff,
Herbei, and Leeds 2013). With the broad applicability of state-space models has come a
variety of methods for conducting inference. One common goal is to determine the filtering
distribution of the model, that is, the distribution of the most recent latent states given data.
A second goal lies in estimating the likelihood of the model by integrating over the latent state
dimensions, which can in turn be used to obtain maximum likelihood or Bayesian estimates
of top-level parameters. State-space models are also frequently used for forecasting and for
estimating the smoothing distribution, which is the distribution of all previous latent states
given the data.
For linear, Gaussian state-space models, the Kalman filter gives an exact solution to the above
problems. However, for more general state-space models, analytical solutions are usually
unavailable. Modifications such as the extended Kalman filter (Anderson and Moore 1979),
which uses linearization to approximate the filtering distribution, have been applied to non-
linear, non-Gaussian models but can yield inaccurate results. More recently, it has become
common to use a set of flexible computational algorithms known as sequential Monte Carlo
(SMC) methods (Doucet, de Freitas, and Gordon 2001).
SMC methods, or variations thereof, are attractive as they provide a general framework for
conducting inference on any state-space model. SMC algorithms estimate the filtering dis-
tribution using sequential importance sampling (SIR, Doucet et al. 2001), although different
versions differ in their details. Generally speaking, SMC algorithms proceed by tracking a set
of particles through time, where each particle represents a sample from the filtering distri-
bution of the latent state. When a new data point is received, the particles are updated via
SIR to represent the filtering distribution given the most current data. In this manner, SMC
methods can be used to perform “on-line” inference. “On-line” inference is inference on filter-
ing and forecasting distributions that can be updated iteratively as more data are received,
without the need to re-process previously-received data. In contrast, “off-line” methods such
as MCMC must be re-run with the entire set of data each time a new data point is obtained.
SMC methods are nevertheless also of interest in “off-line” problems when MCMC or other
approaches present difficulties.
A variety of SMC methods currently exist, including the bootstrap filter (Gordon, Salmond,
and Smith 1993), auxiliary particle filter (Pitt and Shephard 1999), Liu-West filter (Liu and
West 2001), Storvik filter (Storvik 2002), particle learning algorithm (Carvalho, Johannes,
Lopes, and Polson 2010), ensemble Kalman filter (Evensen 2003), and others. In addition,
algorithms such as particle MCMC (PMCMC, Andrieu, Doucet, and Holenstein 2010) have
been developed that place SMC methods within a broader MCMC framework. SMC algo-
rithms are also a foundation for maximum likelihood estimation such as by the IF2 version
of iterated filtering (Ionides, Nguyen, Atchadé, Stoev, and King 2015). SMC algorithms have
also been used to conduct approximate Bayesian computation (Del Moral, Doucet, and Jasra
2012).
The generality of SMC methods makes them well-suited for implementation within the nim-



Journal of Statistical Software 3

bleSMC and nimble (de Valpine, Turek, Paciorek, Anderson-Bergman, Lang, and Bodik 2017)
software packages for R (R Core Team 2021). Package nimble (de Valpine et al. 2021) is avail-
able from the Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/
package=nimble. nimble adopts and extends a dialect of the hierarchical modeling language
used by WinBUGS, OpenBUGS, and JAGS (Lunn, Thomas, Best, and Spiegelhalter 2000;
Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012; Plummer 2003). These models can
then be analyzed using nimble’s library of model-generic algorithms. Additionally, nimble
provides a programming system embedded in R for users to write their own model-generic
algorithms. These algorithms can be run in R or compiled via automatically generated C++
(Stroustrup 2013) for more efficient execution.
nimbleSMC is an R package built using nimble’s programming system that implements SMC
algorithms. Package nimbleSMC (Michaud, de Valpine, Paciorek, and Turek 2020) is avail-
able from CRAN at https://CRAN.R-project.org/package=nimbleSMC. In this paper, nim-
bleSMC’s SMC algorithms are described in detail. Because they are all written in nimble’s
algorithm programming system, they can be readily inspected and modified by users, much
the way many base R functions are written in R. nimble also has a variety of MCMC algo-
rithms for more general Bayesian inference, as well as an MCEM (Monte Carlo expectation-
maximization) algorithm.
In Section 2, we provide a more detailed comparison between nimble, nimbleSMC, and other
packages that can be used for state-space and more general hierarchical modeling. In Sec-
tion 3, we introduce state-space models and the idea of filtering distributions. We then
describe a variety of algorithms that can be used for inference on filtering distributions.
In Section 4, we provide examples of writing state-space models within nimble. Section 5
demonstrates inference for a linear autoregressive state-space model with fixed parameters.
Section 6 gives examples of inference on top-level parameters using PMCMC for a stochastic
volatility model and using IF2 for a linear random-walk state-space model. In both cases, the
examples enable verification of correct behavior as well as exploration of sensitivity to key
tuning parameters of each method. In Section 7, we demonstrate nimble’s programmability
by coding an SMC algorithm within nimble’s algorithm programming system.

2. Comparison to other software packages

nimbleSMC can be used to conduct inference on hierarchical models via built-in SMC meth-
ods. Additionally, nimble can conduct inference via MCMC methods and other applicable
built-in algorithms such as ascent-based Monte Carlo expectation-maximization (Caffo, Jank,
and Jones 2005). nimble can also be used as a tool that allows users to write functions in
an R-like domain-specific language for model-generic algorithms, which we refer to as its al-
gorithm programming system. These can then be compiled and run in C++ for increased
speed. In Section 7 we demonstrate creating a user-defined SMC algorithm written in nimble’s
algorithm programming system.
nimbleSMC offers a suite of sequential Monte Carlo algorithms that can be applied to state-
space models written in the BUGS language (Lunn et al. 2012). Biips, which has an R interface
rbiips (Todeschini, Caron, Fuentes, Legrand, and Del Moral 2014), similarly allows inference
via SMC to be performed on BUGS models. Compared to nimbleSMC, Biips acts as a “black-
box” tool for SMC inference that automatically chooses an SMC algorithm for a given BUGS

https://CRAN.R-project.org/package=nimble
https://CRAN.R-project.org/package=nimble
https://CRAN.R-project.org/package=nimbleSMC


4 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

model. nimbleSMC allows users to choose and customize the SMC method they would like
to use. Other current software packages that implement SMC algorithms include the pomp
R package (King, Nguyen, and Ionides 2016), the LibBi software (Murray 2015) with interface
to R via the rbi package (Jacob and Funk 2021), and the vSMC C++ template library (Zhou
2015). Of these, both pomp and LibBi offer algorithms not found in nimbleSMC, with
pomp allowing for approximate Bayesian computation (Toni, Welch, Strelkowa, Ipsen, and
Stumpf 2009), and LibBi providing an SMC2 algorithm (Chopin, Jacob, and Papaspiliopoulos
2013). nimble, on the other hand, allows users to write their own SMC algorithms using
nimble’s algorithm programming system. Additionally, state-space models in nimble can
benefit from nimble’s other algorithms. For example, state-space models created in nimble
can be compared to each other using nimble’s WAIC or cross-validation metrics.
For linear, Gaussian state-space models, SMC algorithms are unnecessary, as exact inference
can be conducted via the Kalman filter (Kalman 1960). R packages that implement the
Kalman filter include dlm (Petris 2010) and dse (Gilbert 2020). The KFAS R package (Helske
2017) allows for variations of Kalman filter inference to be conducted on models with non-
Gaussian observation equations. See Petris and Petrone (2011) and Tusell (2011) for a detailed
comparison of these packages.
The TMB R package enables maximum likelihood estimation of state-space models via Laplace
approximation (Kristensen, Nielsen, Berg, Skaug, and Bell 2016), using the CppAD C++ pack-
age to enable automatic differentiation of likelihood functions (Bell 2005). To conduct in-
ference in TMB, a user must write a C++ function that returns the log-likelihood of the
state-space model. In contrast, nimble currently does not support Laplace approximation,
although maximum likelihood estimation for state-space models can be achieved through the
IF2 algorithm described in Section 3.5.
nimble also allows MCMC algorithms to be be flexibly composed and controlled by users. The
ability to try such different methods on the same models is distinct from other packages, such
as WinBUGS and OpenBUGS (Lunn et al. 2000, 2012), JAGS (Plummer 2003), and Stan
(Carpenter et al. 2017). It means, for example, that particle MCMC algorithms in nimble
can harness nimble’s MCMC implementations.

3. Sequential Monte Carlo methods for state-space models

3.1. State-space models

State-space models, also known as hidden Markov models, are used to model time-series data
or any sequential data. The vector of data at each time t, labeled Yt, is assumed to be related
to a latent, unobserved state Xt through an observation distribution Yt ∼ gt(yt | xt, θ). Here,
θ is a vector of top-level parameters that are assumed not to change with time. Xt depends on
Xt−1 through a transition distribution Xt ∼ ft(xt | xt−1, θ). Frequently, the observation and
transition distributions remain constant over all time points, in which case the t subscripts on
ft and gt are dropped. (Below, we drop the subscripts to simplify notation, but neither the
algorithms nor nimbleSMC’s implementations require the distributions to remain constant.)
State-space models have the following Markov property: f(xt | x1:t−1, θ) = f(xt | xt−1, θ),
where x1:t−1 = (x1, . . . , xt−1). Note that we assume no observation exists for t = 0, and that
x0 comes from a known prior distribution f(x0 | θ).



Journal of Statistical Software 5

One goal is to determine the distribution p(xt | y1:t, θ), known as the filtering distribution
for Xt. Consider a situation where new data are received sequentially in time, and data are
currently available up to time t− 1, that is, y1:t−1 are known. Upon receiving yt, the filtering
distribution p(xt | y1:t, θ) provides information about the latent state at the most recent
time point, given all data. Similarly, the smoothing distribution p(x1:t | y1:t, θ) provides
information about latent states from all time points given the most recent data. The forecast
distribution p(xt+τ | y1:t, θ) for τ > 0 is also frequently of interest. Another common goal is
to calculate the likelihood p(y1:t | θ). This likelihood can in turn be used to obtain maximum
likelihood estimates of θ, or in an MCMC framework to obtain samples from the posterior
p(θ | y1:t).

SMC methods, at each time t, keep track ofM weighted samples
{
x

(m)
t

}M
m=1

from the filtering

distribution p(xt | y1:t, θ), along with associated weights
{
π

(m)
t

}M
m=1

. These samples are
known as “particles”. When a new data point yt+1 is considered, a combination of propagating
particles forward, re-weighting and/or re-sampling them is done to obtain an updated sample
p(xt+1 | y1:t+1, θ) with updated weights

{
π

(m)
t+1

}M
m=1

. The steps involved also provide an
approximation of p(yt+1 | y1:t, θ). The methods differ in how the propagation, re-weighting
and/or re-sampling are done.
As compared to MCMCmethods, SMC methods generally perform well at generating samples,
given fixed θ, from the filtering, smoothing, and forecasting distributions, and at estimating
model likelihoods. SMC methods are also able to perform “on-line” inference. On the other
hand, SMC methods alone do not provide an easy way to achieve inference on top-level pa-
rameters. Recently, algorithms such as PMCMC (described in Section 3.6) and IF2 (described
in Section 3.5) have been proposed that use SMC methods in conjunction with MCMC and
maximum likelihood algorithms, respectively, to achieve top-level parameter inference.
MCMC algorithms can also be used to draw samples from the filtering, smoothing, or fore-
casting distributions, as well as samples of top-level parameters conditioned on the current
data. However, MCMC algorithms can encounter difficulty in producing valid proposals for
x1:t due to the often-high degree of correlation among the latent states at each time point. At-
tempts have been made at creating proposal distributions that account for these correlations,
as in Pooley, Bishop, and Marion (2015) and Newman, Fernández, Thomas, and Buckland
(2009), but applying generic MCMC algorithms to state-space models does not always work
efficiently.

3.2. Filtering algorithms

In Section 3.3 and Section 3.4, two types of SMC methods (the bootstrap filter and auxiliary
particle filter) are described, each of which can be used to generate samples from the filtering
distribution p(xt | y1:t, θ) or the smoothing distribution p(x1:t | y1:t, θ), and to obtain likeli-
hood estimates. In Section 3.5, we describe the IF2 algorithm, which uses SMC algorithms
to produce maximum-likelihood estimates of θ. In Section 3.6, a PMCMC algorithm is de-
tailed that uses SMC methods to estimate likelihoods within a Metropolis-Hastings MCMC
sampling scheme for θ.
The Ensemble Kalman filter, or EnKF (Evensen 2003), can also be used to estimate the
filtering distribution. Similar to other SMC techniques, the EnKF approximates the filtering



6 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

distribution via a collection of particles that are propagated forwards in time. However,
whereas other SMC methods use importance sampling to select particles at each time point,
the EnKF instead shifts particles towards the filtering distribution using an approximation
to the Kalman gain matrix. The EnKF is described in Section 3.7.
The algorithm summaries provided in this paper are not intended to be a comprehensive
overview of the current state of filtering methods. Several papers describe the landscape
of filtering algorithms and related inference methods for state-space models, including Aru-
lampalam, Maskell, Gordon, and Clapp (2002), Doucet and Johansen (2011), and Kantas,
Doucet, Singh, Maciejowski, and Chopin (2015).
Note that in the following discussions of the bootstrap, auxiliary particle and ensemble
Kalman filters, θ is treated as fixed, so we have omitted it to reduce notational overhead.

3.3. Bootstrap filter

The bootstrap filter of Gordon et al. (1993) uses importance sampling to sequentially generate
samples from p(xt | y1:t) and approximate p(yt | y1:t−1) at each time t. The bootstrap filter
first propagates each particle from time t − 1 forward according to a proposal distribution
x̃

(m)
t ∼ q(xt | x(m)

t−1, yt). Importance weights π(m)
t are then calculated for each particle. In

the basic version of the algorithm, the propagated particles are resampled according to these
weights at each step. This results in an equally weighted sample

{
x

(m)
t

}M
m=1

from p(xt | y1:t).
(See below for extensions that do not resample at each step.)

nimbleSMC uses a simple choice for q(· | ·), namely the forward simulation density, f(x(m)
t |

x
(m)
t−1). With this choice, Step 8 simplifies to w(m)

t = g(yt | x̃(m)
t )π(m)

t−1 . Then one does not need
to calculate f(x̃(m)

t | x(m)
t−1), which is important because these methods are sometimes used

when it is feasible to simulate forward in time but not actually calculate the forward density.
Note that resampling (Steps 14–16 in Algorithm 1) creates an equally weighted sample from
the target distribution of latent states at time t. Additionally, an estimate of the likelihood
p(y1:T ) can be obtained by p̃(y1:T ) =

∏T
t=1 p̃(yt|1:t−1), where p̃(yt|1:t−1) is given in Line 18 of

the algorithm.
The resampling step of Algorithm 1 is performed to reduce particle degeneracy. Particle
degeneracy is a common problem in filtering algorithms, where a small number of particles
have most of the weight placed on them, leaving most particles with low weights (Doucet,
Godsill, and Andrieu 2000). Particle degeneracy corresponds to high Monte Carlo variance of
approximations made using the filtered particles. It causes the filter to spend computational
effort in propagating and weighting particles that contribute little to our knowledge of the
target distribution. Resampling ensures that mostly highly-weighted particles will be prop-
agated forwards, increasing algorithm efficiency by providing a better estimate of the target
distribution and likelihood.
However, resampling particles at each time point can also lead to a loss of particle “di-
versity” (Doucet et al. 2000), as many of the resampled particles at each time point will
have the same value. Thus it has been proposed (Smith, Doucet, de Freitas, and Gordon
2001) that resampling should take place only if particle degeneracy becomes too significant.
An estimate of particle degeneracy is the effective sample size, calculated at each time t as
ESS = 1/

∑M
m=1

(
π

(m)
t

)2
. Smith et al. (2001) recommend that resampling should be con-



Journal of Statistical Software 7

Algorithm 1 Bootstrap filter.
1: for m in 1 : M do
2: Generate x(m)

0 ∼ f(x0)
3: Set π(m)

0 = 1
M

4: end for
5: for t in 1 : T do
6: for m in 1 : M do
7: Generate x̃(m)

t ∼ q(xt | x(m)
t−1, yt)

8: Calculate unnormalized weight w(m)
t = f(x̃(m)

t |x(m)
t−1)g(yt|x̃(m)

t )
q(x̃(m)

t |x(m)
t−1,yt)

π
(m)
t−1

9: end for
10: for m in 1 : M do
11: Normalize w(m)

t as π(m)
t = w

(m)
t∑M

i=1 w
(i)
t

.
12: end for
13: for m in 1 : M do
14: Sample an index jm from the set 1,. . . ,M with probabilities {π(m)

t }Mm=1.
15: Set x(m)

t = x̃
(jm)
t .

16: Set π(m)
t = 1

M
17: end for
18: Calculate p̃(yt|1:t−1) = 1

M

∑M
m=1w

(m)
t

19: end for

ducted only if the effective sample size becomes too low, indicating many particles with low
weights. As a criterion for when a resampling step should take place, a threshold τ is chosen
with 0 ≤ τ ≤ 1, such that the algorithm will resample particles whenever ESS

M < τ . Note that
choosing τ = 0 will mean that the resampling step is never performed, and choosing τ = 1 will
ensure that sampling is performed at each time point. To perform the above algorithm with-
out resampling, simply remove Steps 14–16. If the resampling step is not performed, the set{
x̃

(m)
t , π

(m)
t

}M
m=1

will constitute an unequally weighted sample from the target distribution.

Various methods for resampling particles have been employed, including systematic resam-
pling, stratified resampling, residual resampling, and multinomial resampling (Doucet and
Johansen 2011). Generally, systematic resampling, stratified resampling, and residual resam-
pling have been found to perform similarly, and to outperform multinomial resampling due
to its higher variance (Douc and Cappe 2005). nimbleSMC allows users to choose from any
of these four methods. Systematic resampling is used by default.

Additionally, the above filter can be used to produce samples from the smoothing distribution
p(x1:t | y1:t) using methods described in Doucet and Johansen (2011). nimbleSMC currently
uses the naive approach of storing the ancestors of the set of particles at time t. Specifically,
using the notation of Andrieu et al. (2010), nimbleSMC’s smoothing method keeps track of

the set x(m)
1:T =

(
x

(B(m)
1 )

1 , x
(B(m)

2 )
2 , . . . , x

(B(m)
T )

T

)
form = 1, . . . ,M , where B(m)

t is the index of the
ancestor particle at time t that gave rise to particle m at time T . We note that this approach
to estimating the smoothing distribution can produce poor estimates of p(xt | y1:T , θ) when T
is much greater than t, as the number of unique ancestors at time t will decrease as T increases.



8 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

More accurate methods for estimating the smoothing distribution, such as forward-backward
smoothing, can be found in Kantas et al. (2015).
Though the bootstrap filtering algorithm was first put forth in 1993, it remains commonly used
in a wide variety of applications, such as inferring the distribution of radii of planets (Silburt,
Gaidos, and Wu 2015) and estimating neurological activity (Croce, Zappasodi, Merla, and
Chiarelli 2017). Yang and Eisenstein (2013) use a bootstrap filter to help to normalize text
obtained from social media. Oladyshkin, Class, and Nowak (2013) employ a bootstrap filter
to model CO2 storage in geological formations.

3.4. Auxiliary particle filter
The auxiliary particle filter algorithm (APF) of Pitt and Shephard (1999) uses importance
sampling similarly to the bootstrap filter but includes an additional “look-ahead step”. At each
time t, the APF calculates first-stage weights w(m)

t|t−1 for particles from time t−1. These weights
are calculated using a rough estimate of the likelihood of the current data given each particle
from the previous time point, labeled p̂(yt | x(m)

t−1). Particles with high first-stage weights
correspond to values of the latent state at time t− 1 that are likely to generate the observed
data at time t. To estimate p̂(yt | x(m)

t−1), Pitt and Shephard (1999) recommend choosing an
auxiliary variable x̃(m)

t|t−1 and then setting p̂(yt | x(m)
t−1) = p(yt | x̃(m)

t|t−1). Possible methods for
choosing x̃(m)

t|t−1 include simulating a value from f(xt | x(m)
t−1), or taking x̃(m)

t|t−1 = E(xt | x(m)
t−1).

The first-stage weights are used to sample M particles from time t − 1, labeled x̃
(m)
t−1 for

m = 1, . . . ,M . The sampled particles are then propagated forwards by a proposal distribu-
tion q(x(m)

t | x̃(m)
t−1, yt) and reweighted using second-stage weights w(m)

t , providing a weighted
sample from p(xt | y1:t). The APF as shown in Pitt and Shephard (1999) optionally includes
a second resampling step using the second-stage weights. However, the algorithm using a sin-
gle resampling step has been shown to be more efficient (Carpenter, Clifford, and Fearnhead
1999).
nimbleSMC again uses the basic choice f(xt | x̃(m)

t−1) for q(· | ·), which simplifies the weight in
Step 18 to w(m)

t = g(yt | x(m)
t )/p̂(yt | x(m)

t−1). In a manner similar to the bootstrap filter, the
APF can be used to obtain an estimate of the likelihood p(y1:T ) as p̃(y1:T ) =

∏T
t=1 p̃(yt|1:t−1),

where p̃(yt|1:t−1) is given in Line 23 of the APF algorithm. nimbleSMC provides the two
choices for generating the first stage weights (Steps 7–9) described above: either via forward
simulation of the latent state or, when available for the specific model, via the predicted latent
state mean from each particle at time t− 1.
Similar to the bootstrap filter, the auxiliary particle filter was developed some time ago, but
still sees frequent use. Recently, APF algorithms have been applied to problems in fields such
as pedestrian navigation (Yu, El-Sheimy, Lan, and Liu 2017) and battery life prediction (Liu,
Wang, and Ma 2011).

3.5. IF2 algorithm
Unlike the bootstrap and auxiliary particle filters, the IF2 algorithm (Ionides et al. 2015) is de-
signed for maximum likelihood estimation. The IF2 algorithm is a variant of the basic form of
iterated filtering, proposed by Ionides, Bretó, and King (2006) and Ionides, Bhadra, Atchadé,
and King (2011). The original iterated filtering algorithm was found to have favorable per-



Journal of Statistical Software 9

Algorithm 2 Auxiliary particle filter.
1: for m in 1 : M do
2: Generate x(m)

0 ∼ f(x0)
3: Set π(m)

0 = 1
M

4: end for
5: for t in 1 : T do
6: for m in 1 : M do
7: Generate x̃(m)

t|t−1 from either x̃(m)
t|t−1 ∼ f(xt | x(m)

t−1) or x̃(m)
t|t−1 = E(xt | x(m)

t−1)
8: Calculate p̂(yt | x(m)

t−1) = p(yt | x̃(m)
t|t−1)

9: Calculate unnormalized weight w(m)
t|t−1 = π

(m)
t−1 p̂(yt | x

(m)
t−1)

10: end for
11: for m in 1 : M do
12: Normalize w(m)

t|t−1 as π(m)
t|t−1 =

w
(m)
t|t−1∑M

i=1 w
(i)
t|t−1

13: end for
14: for m in 1 : M do
15: Sample an index jm from the set 1,. . . ,M with probabilities {π(m)

t|t−1}
M
m=1.

16: Set x̃(m)
t−1 = x

(jk)
t−1

17: Generate x(m)
t ∼ q(xt | x̃(m)

t−1, yt)

18: Calculate unnormalized weight w(m)
t = f(x(m)

t |x̃(m)
t−1)g(yt|x(m)

t )
p̂(yt|x(m)

t−1)q(x(m)
t |x̃(m)

t−1,yt)
19: end for
20: for m in 1 : M do
21: Normalize w(m)

t as π(m)
t = w

(m)
t∑M

i=1 w
(i)
t

22: end for
23: Calculate p̃(yt|1:t−1) =

(
1
M

∑M
m=1w

(m)
t

) (∑M
m=1w

(m)
t|t−1

)
24: end for

formance and theoretical properties as compared to the Liu-West method of estimating the
posterior distribution p(θ | y1:T ) (Liu and West 2001). The innovation of Ionides et al. (2006)
is to perturb θ by random walk noise and to use particle filter (SMC) likelihood estimates to
approximate derivatives of the log-likelihood function in order to produce maximum likelihood
estimates.
Ionides et al. (2015) modified the theory developed by Ionides et al. (2006) by using an iterated
Bayes maximum a posteriori (MAP) estimate in place of gradient estimates of the perturbed
parameters θ to optimize the MLE. Iterating in this way has some benefits:

1. A theoretical foundation for this method can be obtained by convergence of the iterated
Bayes map.

2. Methods that are not based on local polynomial approximations to the likelihood surface
can be advantageous when the likelihood surface has nonlinear ridges.

3. Computational expense is reduced by removing the need for the computationally de-
manding gradient of the log-likelihood.



10 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

The IF2 algorithm proceeds by running a modified particle filter for I iterations. As in the
Liu-West filter, parameters θ are also represented by particles that are weighted and resampled
along with their associated latent states. The perturbations to the parameters are generated
at each time step of each particle filter iteration. The perturbations follow a schedule of
decreasing magnitude to yield convergence to the maximum likelihood parameters. In what
follows, our notation differs somewhat from that of Ionides et al. (2015) to be both more
specific and more consistent with the other algorithms described here.
For iteration i, let ht(θ | Σi) for t = 1, . . . , T be a sequence of user-chosen densities that
represent perturbations of θ. Indexing the density by t (the particle filter time index) and its
parameters by i (the IF2 iteration index) is how Ionides et al. (2015) present the method, but
the associated implementation in pomp (King et al. 2016) uses a scheme where the h(·) does
not change – it is a normal distribution – but rather its parameters change in both t and i.
Hence from here on we write this as h(θ | Σi,t) for clarity. Formally, this can be viewed as a
special case of ht(θ | Σi). Choice of h and Σi,t is described below.

IF2 iteration i begins with a parameter swarm
{
θ

(m)
i,0

}M
m=1

where θ(m)
i,0 ∼ h(θ | θ(m)

i−1,T ,Σi,0). A
bootstrap particle filter is then run, with a key modification: at each time step t, before simu-
lating, weighting and resampling, we perturb parameters by drawing θ̃(m)

i,t ∼ h(θ | θ(m)
i,t−1,Σi,t).

These parameter values are then included in weighting and resampling along with their cor-
responding latent state values.
Once again, for the choice for forward proposals, q(· | ·) in Step 12, nimbleSMC uses the basic
choice of simulating from the model’s latent state dynamics, x̃(m)

t ∼ f(xt | x(m)
t−1, θ̃

(m)
i,t ). The

weight in Step 13 then simplifies to w(m)
t = g(yt | x̃(m)

t , θ̃
(m)
i,t ).

After the I-th iteration, the parameter samples
{
θ

(m)
I,T

}M
m=1

are averaged to produce an es-
timate of the MLE of θ. In the IF2 algorithm, by analogy with simulated annealing, it has
been shown that, with an appropriate schedule for decreasing perturbation magnitudes, in the
limit as the perturbations h(θ | Σi,t) go to zero variance with mean θ as i→∞, the algorithm
should reach the maximum likelihood solution. Algorithm 3 presents the IF2 algorithm as it
is implemented in nimbleSMC.
nimbleSMC’s implementation of IF2, and specifically the schedule of decreasing (or cooling)
perturbation magnitudes, follows that of pomp (King et al. 2016). h(θ | θ(m)

i,t−1,Σi,t) is a
product of independent normals, i.e., a multivariate normal with mean θ

(m)
i,t−1 and diagonal

covariance matrix Σi,t. The d-th diagonal element of Σi,t is c2
i,tσ

2
d, where ci,t = α

t−1+(i−1)T
50T .

The user must provide a choice of σd for each dimension θd of θ as well as the parameter α
that determines the cooling schedule for all dimensions together. The formula for ci,t implies
that after 50 IF2 iterations (i = 51, t = 0), the perturbation standard deviation for parameter
θd will be α times the original perturbation standard deviation, σd.
The initial set of parameter particles is important for IF2’s performance. To generate these,
the user must provide the mean, θinit, and standard deviations, i.e., a vector of square roots
of diagonal elements of Σinit. Note that the time step “T” for the initial particles θ(m)

0,T is
artificial so that generation of θ(m)

1,0 from h(θ | θ(m)
i−1,T ) conforms to notation suitable for later

iterations.
IF2 has been used for estimating parameters of stochastic differential equation models of



Journal of Statistical Software 11

Algorithm 3 IF2.
1: for m in 1 : M do
2: Generate θ(m)

0,T ∼ h(θ | θinit,Σinit)
3: end for
4: for i in 1 : I do
5: for m in 1 : M do
6: Generate θ(m)

i,0 ∼ h(θ | θ(m)
i−1,T ,Σi,0)

7: Generate x(m)
0 ∼ f(x0 | θ(m)

i,0 )
8: end for
9: for t in 1 : T do

10: for m in 1 : M do
11: Generate θ̃(m)

i,t ∼ h(θ | θ(m)
i,t−1,Σi,t)

12: Generate x̃(m)
t ∼ q(xt | x(m)

t−1, yt, θ̃
(m)
i,t )

13: Calculate unnormalized weight w(m)
t = f(x̃(m)

t |x(m)
t−1,θ̃

(m)
i,t )g(yt|x̃(m)

t ,θ̃
(m)
i,t )

q(x̃(m)
t |x(m)

t−1,yt,θ̃
(m)
i,t )

14: end for
15: for m in 1 : M do
16: Normalize w(m)

t as π(m)
t = w

(m)
t∑M

i=1 w
(i)
t

17: end for
18: for m in 1 : M do
19: Sample an index jm from the set 1,. . . ,M with probabilities {π(m)

t }Mm=1.
20: Set x(m)

t = x̃
(jm)
t and θ(m)

i,t = θ̃
(jm)
i,t

21: end for
22: end for
23: end for
24: Return θ̄ = 1

M

∑M
m=1 θ

(m)
I,T

disease dynamics (King, Domenech de Cellès, Magpantay, and Rohani 2015; Martinez-Bakker,
King, and Rohani 2015; Azman, Luquero, Ciglenecki, Grais, Sack, and Lessler 2015).

3.6. Particle MCMC methods

Particle MCMC methods (PMCMC, Andrieu et al. 2010) allow joint sampling from the pos-
terior distribution of the states and the top-level parameters. PMCMC takes advantage of the
ability of certain particle filters to provide unbiased estimates of the (marginal) likelihood,
that is, p̃(y1:T | θ) ≈

∫
X p(y1:T | x1:T , θ)p(x1:T | θ)dx1:T . For example, the bootstrap filter and

auxiliary filter (Pitt 2002) can both be used to provide unbiased estimates of the marginal
likelihood, as detailed in Sections 3.3 and 3.4. Building upon the framework of Andrieu and
Roberts (2009), Andrieu et al. (2010) showed that using this approximation when calculating
a Metropolis-Hastings acceptance ratio yields an “exact approximate” algorithm. Although
it seems to rely on an approximation, formally it samples from an auxiliary space of all states
and indices sampled during the SMC run. The marginal distribution of this enhanced space
matches the desired target distribution, so it samples from exactly the correct target distri-
bution based upon approximate likelihood calculations. See Dahlin and Schön (2019) for a
gentle introduction. Below, we detail the particle marginal Metropolis Hastings (PMMH)



12 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Algorithm 4 PMMH algorithm.
1: Choose an initial value θ(0)

2: Run a particle filter to obtain the marginal likelihood estimate p̃(0) = p̃(y1:T | θ(0)).
3: After the last time step of the particle filter, draw x

(0)
1:T ∼ p(x1:T | y1:T , θ

0) by sampling a
particle with its full state history.

4: for i in 1 : I do
5: Generate θ∗ ∼ q(θ | θ(i−1))
6: Run a particle filter to obtain the marginal likelihood estimate p̃(y1:T | θ∗).
7: After the last time step of the particle filter, draw x∗1:T ∼ p(x1:T | y1:T , θ

∗) by sampling
a particle with its full state history.

8: Compute a∗ = 1 ∧ p̃(y1:T |θ∗)p(θ∗)
p̃(i−1)p(θ(i−1))

q(θ(i−1)|θ∗)
q(θ∗|θ(i−1))

9: Generate r ∼ unif(0, 1)
10: if a∗ > r then
11: Set θ(i) = θ∗, x(i)

1:T = x∗1:T , and p̃(i) = p̃(y1:T | θ∗)
12: else
13: Set θ(i) = θ(i−1), x(i)

1:T = x
(i−1)
1:T , and p̃(i) = p̃(i−1).

14: end if
15: end for

algorithm, one of three algorithms provided in Andrieu et al. (2010). The PMMH algorithm
is available as a sampler to be used in nimble’s general MCMC framework.
At each iteration i, the PMMH algorithm first proposes a value θ∗ for the model parameters
θ from a proposal distribution q(θ∗ | θ(i−1)). Using this proposed value for θ, a particle filter
is then run, which provides an estimate p̃(y1:T | θ∗) of the likelihood given the proposed
parameters. This marginal likelihood estimate is used to calculate the Metropolis-Hastings
acceptance probability for θ∗. By default, the algorithm saves the chain of θ samples. If latent
states are needed, an index j is sampled from {1, . . . ,M} using the final particle filter weights
{π(m)

T }Mm=1 in PMMH iteration i, and the latent states x(i)
1:T for the i-th PMMH iteration are

set to the j-th latent state sequence, x(j)
1:T , from the i-th run of the particle filter. Importantly,

one does not need to record all states and indices used in the particle filter run, but one does
need to retain p̃(y1:T | θ∗) if θ∗ is accepted. If the latent states, x1:T , are not needed as part
of the PMMH output, the steps to track and record them can simply be skipped.
PMCMC methods have been adopted in a wide variety of fields since their introduction.
Examples of research conducted using PMCMC include hydrology models (Vrugt, Ter Braak,
Diks, and Schoups 2013) and epidemiological models that incorporate genealogy (Rasmussen,
Volz, and Koelle 2014).
Like all MCMC algorithms, PMCMC methods can suffer from poor mixing. In particular for
PMCMCmethods, such mixing problems can arise as a result of high variance of the likelihood
estimates. For example, an erroneously high likelihood estimate from the particle filter can
make it difficult for subsequent proposals to be accepted even for nearby parameters. These
problems were studied theoretically by Sherlock, Thiery, Roberts, and Rosenthal (2015) and
Doucet, Pitt, Deligiannidis, and Kohn (2015) and are illustrated in the simulation exercise
below. Additionally, since high variances for the estimated likelihood occur especially for
areas of low posterior density (Murray, Jones, and Parslow 2013), it is important to provide



Journal of Statistical Software 13

reasonable initial values for the parameters, θ. One idea for obtaining reasonable initial values,
similar to an idea from Bernton, Jacob, Gerber, and Robert (2017), is to use maximum a
posteriori (MAP) estimates, if available, as starting values for PMCMC.

3.7. Ensemble Kalman filter

In Section 3.2, the Kalman filter was mentioned as providing an analytic solution to the
filtering problem when working with a linear, Gaussian state-space model. When using a
model with non-linear transition equations or observation equations, however, the Kalman
filter is no longer applicable. One approximation to the filtering problem for Gaussian state-
space models with non-linear transition or observation equations is the ensemble Kalman
filter (EnKF), which uses a particle representation of the latent states at each time point.
Although the EnKF uses particles to represent filtering distributions, as do the particle filters
described in Sections 3.3 and 3.4, it updates the latent state particles using a fundamentally
different approach than those methods. Whereas bootstrap and auxiliary particle filters
update particles via a re-weighting and re-sampling framework, the EnKF first propagates
particles forward using the transition equation, and then shifts particles towards the filtering
distribution using an approximation to the Kalman gain matrix from the original Kalman
Filter (Mandel 2009).
The EnKF assumes the following forms for the transition and observation equations:

xt = M(xt−1) + wt (1)
yt = D(xt) + vt (2)

where wt and vt are independent, normally distributed error terms with covariance matricesQt
and Rt respectively. At time t−1, assume that we have a sample {x(m)

t−1}Mm=1 of particles from
p(xt−1 | y1:t−1). Each particle is propagated forward according to Equation 1, with random
draws for wt, giving x̃(m)

t . In addition, the mean observation from each x̃
(m)
t is calculated

as ỹ(m)
t = D(x̃(m)

t ). The idea behind the EnKF is to use these samples to approximate the
covariance between latent states and observations, as well as the covariance among observation
dimensions, at time t. From these, one can approximate the Kalman gain matrix, G̃t, and
apply a simulated version of the Kalman update step as follows:

x
(m)
t = x̃

(m)
t + G̃t(yt + v

(m)
t − ỹ(m)

t ),

where v(m)
t ∼ N(0, Rt) are simulated observation errors. The x(m)

t values form a sample of
the approximated filtering distribution at time t, i.e., p(xt | y1:t).
The covariance between latent states and observations is calculated as the covariance between
ext = (x̃(1)

t − ¯̃xt, . . . , x̃(M)
t − ¯̃xt) and eyt = (ỹ(1)

t − ¯̃yt, . . . , ỹ(M)
t − ¯̃yt)). This, along with a similarly

approximated covariance of observations, is used to construct the approximate Kalman gain
matrix G̃t. A more detailed overview of the EnKF, and how it relates to the Kalman Filter,
can be found in Gillijns, Mendoza, Chandrasekar, De Moor, Bernstein, and Ridley (2006)
and Katzfuss, Stroud, and Wikle (2016).
Note that the multiplication of et terms in Steps 11 and 12 are matrix multiplications.
We remark that although the EnKF assumes normally distributed error terms for Equations 1
and 2, the filter has been shown to be robust to each of those assumptions (Katzfuss et al.



14 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Algorithm 5 Ensemble Kalman filter.
1: for m in 1 : M do
2: Generate x(m)

0 ∼ f(x0)
3: end for
4: for t in 1 : T do
5: for m in 1 : M do
6: Generate x̃(m)

t ∼ f(xt | x(m)
t−1)

7: Calculate ỹ(m)
t = D(x̃(m)

t )
8: end for
9: Calculate ext = (x̃(1)

t − ¯̃xt, . . . , x̃(M)
t − ¯̃xt)

10: Calculate eyt = (ỹ(1)
t − ¯̃yt, . . . , ỹ(M)

t − ¯̃yt)
11: Calculate P̃ xyt = 1

M−1e
x
t (eyt )

′

12: Calculate P̃ yyt = 1
M−1e

y
t (e

y
t )
′ +Rt

13: Calculate G̃t = P̃ xyt (P̃ yyt )−1

14: for m in 1 : M do
15: Generate v(m)

t ∼ N(0, Rt)
16: Calculate x(m)

t = x̃
(m)
t + G̃t(yt + v

(m)
t − ỹ(m)

t )
17: end for
18: end for

2016). Also, although newer variations of the EnKF exist that may perform better for some
models, such as the Ensemble Adjusted Kalman Filter (Anderson 2001), we have provided only
a basic version the EnKF algorithm in nimbleSMC. Users are welcome to modify this basic
EnKF if a different version is desired - see Section 7 for an overview of creating and modifying
particle filters in nimble. Recently, the EnKF has been used extensively for atmospheric data
modeling (Houtekamer and Zhang 2016), as well as for problems in petroleum modeling
(Heidari, Gervais, Ravalec, and Wackernagel 2013) and geophysics (Bocher, Fournier, and
Coltice 2018).

4. Creating and manipulating models in nimble
The workflow of modeling and conducting inference in nimble is somewhat unique as com-
pared to other statistical modeling software. Thus, before demonstrating nimbleSMC’s SMC
features, we will first show in this section how to create and work with nimble’s model ob-
jects. Section 5 describes nimbleSMC’s SMC methods for latent state inference in state-space
models. Section 6 describes nimbleSMC’s SMC methods for top-level parameter inference. A
supplement to the paper includes a full R script of all code shown below.
The nimble package uses the BUGS language to specify hierarchical statistical models. We
will not describe the BUGS language here – interested readers can find a brief overview in
the nimble user manual (nimble Development Team 2020), or a more detailed guide in Lunn
et al. (2012). Unlike other packages that use dialects of the BUGS language (WinBUGS and
JAGS), nimble creates model objects, via the nimbleModel function, which can be queried
and manipulated by the user. To introduce nimble’s modeling framework, we will use a linear
Gaussian state-space model in which all parameters are fixed.



Journal of Statistical Software 15

Let yt be the observed data at time t, let xt be the latent state at time t, and suppose we
have 10 times. The model is:

x0 ∼ N(0, 1)
xt ∼ N(0.8xt−1, 1) for t = 1, . . . , 10
yt ∼ N(xt, 0.5) for t = 1, . . . , 10

where N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. Although this
example model is relatively simple, it will serve to demonstrate the process of building and
working with BUGS models in nimble.
Code written in the BUGS language is entered via the nimbleCode function. For example,
BUGS code for the linear Gaussian model is entered like this:

R> library("nimble")
R> exampleCode <- nimbleCode({
+ x0 ~ dnorm(0, var = 1)
+ x[1] ~ dnorm(0.8 * x0, var = 1)
+ y[1] ~ dnorm(x[1], var = 0.5)
+ for (t in 2:10) {
+ x[t] ~ dnorm(0.8 * x[t - 1], var = 1)
+ y[t] ~ dnorm(x[t], var = 0.5)
+ }
+ })

Each line of BUGS code declares one or more nodes in the model. For example, this model
has the nodes x0, x[1], . . ., x[10], y[1], . . ., y[10].
Once the model code has been written, a model object in R can be created using the
nimbleModel function. Data and initial values can optionally be provided at this step. For
example:

R> simulatedData <- c(-0.9, 1.6, 0.6, 1.3, 1.5, 0.3, -0.8, -1.3, 0.5, 1.1)
R> exampleModel <- nimbleModel(code = exampleCode,
+ data = list(y = simulatedData), inits = list(x0 = 0))

The exampleModel object is an R reference class object. exampleModel has a field for each
of the variables in our BUGS model. For example, we can look at the value of the y[3] node
by calling

R> exampleModel$y[3]

[1] 0.6

Additionally, exampleModel provides simulate and calculate methods. The simulate
method takes a vector of node names as an argument, simulates values for these nodes con-
ditioned upon the values of other nodes in the model that are parents of the nodes being
simulated, and stores the simulated values in the corresponding model variables. The follow-
ing code simulates values for x0, x[1], . . ., x[10]. We note that x[1] is simulated conditional



16 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

upon the current value of x0, x[2] is simulated conditional upon the simulated value of x[1],
and so on. Note that the call to the getNodeNames method, using includeData = FALSE, will
return the names of all non-data nodes in our model in an order that is valid for calculation
or simulation.

R> exampleModel$simulate(nodes =
+ exampleModel$getNodeNames(includeData = FALSE))
R> exampleModel$x

[1] -0.31751972 -1.08964439 0.72356529 0.90836000 -0.09378038
[6] 0.41240475 1.06824850 1.43038015 0.83891574 2.18291376

The calculate method takes a vector of node names as an argument, and returns the summed
log probability of all of the given stochastic nodes. The following line demonstrates calculating∑10
t=1 log(g(yt | xt)).

R> exampleModel$calculate(nodes = "y")

[1] -28.25143

nimble model objects contain additional methods that can provide details about the model
and allow for more fine-grained manipulation. These are described in Chapter 6 of the nimble
user manual (nimble Development Team 2020).
Although models and algorithms in nimble and nimbleSMC can run entirely within R, they
are generally compiled into C++ for greatly increased efficiency. Compilation is achieved
through the compileNimble function, which takes as arguments one or more model objects
(or objects created by calls to nimbleFunction, described in Section 7). compileNimble
generates model-specific C++, compiles and loads the result, and returns a version of the
model object with the same fields and methods, but where the methods are now executed in
compiled C++ instead of R.

R> C_exampleModel <- compileNimble(exampleModel)

compileNimble can also be used to compile algorithms in nimble, which will use compiled
versions of the model.
Generally, analysis in nimble and nimbleSMC will start with writing model code and creating
a model object. If available, initial values and data values should be provided to the model. A
user then has a choice of inference methods: in addition to the SMC methods documented in
this paper, nimble has a flexible MCMC system for posterior inference, an MCEM algorithm,
and cross-validation methods. A user may also wish to write their own method using nimble’s
programming system. Once an algorithm has been chosen, the user can compile both the
model and the algorithm to C++ using the compileNimble function. Finally, the user can
run the algorithm and analyze the results.
In Section 5, we introduce nimbleSMC’s bootstrap filter, auxiliary filter, and ensemble Kalman
filter by applying them to the state-space model created above.



Journal of Statistical Software 17

5. Filtering given fixed parameters
Now that we have built a model object for the example model, we can use algorithms from
nimbleSMC. These algorithms are all written as nimbleFunctions using nimble’s program-
ming system embedded in R. We begin by demonstrating the use of the bootstrap filter
(Section 3.3) to estimate the filtering distribution p(xt | y1:t).

R> exampleBootstrapFilter <- buildBootstrapFilter(exampleModel, nodes = "x",
+ control = list(saveAll = TRUE, thresh = 0.9))

The buildBootstrapFilter function builds a bootstrap filter for the model given in the
first argument. The nodes argument gives the name (or names) of the latent states to be
filtered. Importantly, the latent states must have the same dimension at each time point.
The algorithm parameters, packaged in the control list, include saveAll (should filtered state
estimates be saved from all time points, or from just the last one) and thresh (a threshold for
resampling, labeled τ in Section 3.4). Additional arguments to the control list can be found
by calling help(buildBootstrapFilter). One control list parameter of note is smoothing,
which defaults to FALSE. If smoothing = TRUE, the particles returned from the algorithm will
be samples from the smoothing distribution p(x1:T | y1:T ). Along with similar functions that
appear below, buildBootstrapFilter is actually a nimbleFunction, meaning it is written
in nimble’s algorithm programming system.
The bootstrap filter in nimbleSMC sets the proposal distribution q(xt | x(m)

t−1, yt) to be the
transition equation f(xt | xt−1, θ). A user wishing to use a different proposal distribution
would need to copy and modify buildBootstrapFilter (see Section 7).
After the bootstrap filter has been built, it can be run in R by calling the run method of the
filter, taking the number of particles to use as an argument, and returning an estimate of the
log-likelihood of the data.

R> exampleBootstrapFilter$run(100)

[1] -15.16996

Running an algorithm uncompiled allows for easy testing and debugging of algorithm logic
using, for example, R’s browser() and trace() functions. Once an algorithm has been
successfully constructed in R, it can be compiled into C++ for efficient execution. Below, we
compile the bootstrap filter algorithm using the compileNimble function, as seen in Section 4,
and run the compiled filter using 10,000 particles. Note that the model must be compiled
before or in the same step as the algorithm. The exampleModel here was compiled in Section 4.

R> CexampleBootstrapFilter <- compileNimble(exampleBootstrapFilter,
+ project = exampleModel)
R> CexampleBootstrapFilter$run(10000)
R> bootstrapFilterSamples <- as.matrix(CexampleBootstrapFilter$mvEWSamples)

The bootstrap filter, like most particle filters in nimbleSMC, saves two arrays with samples
from the filtering distribution. One array, named mvEWSamples, contains equally weighted
samples from the filtering distribution. The second array, mvWSamples, contains non-equally



18 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

weighted samples from the filtering distribution along with log weights for each sample. These
arrays can be easily converted to R matrices via the as.matrix function as shown above.
Next, we demonstrate nimbleSMC’s auxiliary particle filter algorithm (Section 3.4). The
auxiliary particle filter is constructed by the buildAuxiliaryFilter function. Users can
choose between two lookahead functions: one that uses a simulation from the transition
equation x̃(m)

t|t−1 ∼ f(xt | x(m)
t−1), and one that uses the expected value of the transition equation

x̃
(m)
t|t−1 = E(xt | x(m)

t−1), via the lookahead control list argument. The expected value lookahead
function can only be used for state-space models with normal or multivariate normal transition
equations.

R> exampleAuxiliaryFilter <- buildAuxiliaryFilter(exampleModel, nodes = "x",
+ control = list(saveAll = TRUE, lookahead = "mean"))
R> CexampleAuxiliaryFilter <- compileNimble(exampleAuxiliaryFilter,
+ project = exampleModel, resetFunctions = TRUE)
R> CexampleAuxiliaryFilter$run(10000)
R> auxiliaryFilterSamples <- as.matrix(CexampleAuxiliaryFilter$mvEWSamples)

The resetFunctions = TRUE option is helpful when compiling a second algorithm for a
model. See the nimble user manual for more details.
The final method we demonstrate for models with fixed parameters is the ensemble Kalman
filter, which can be built via a call to buildEnsembleKF. Note that the ensemble Kalman filter,
as described in Section 3.7, does not produce weights with its particle estimates. Thus there
is only one output array, named mvSamples. Additionally, we note that the ensemble Kalman
filter in nimbleSMC will only work with Gaussian noise in the process and observations,
although the mean state dynamics or observations can be non-linear.

R> exampleEnsembleKF <- buildEnsembleKF(exampleModel, nodes = "x",
+ control = list(saveAll = TRUE))
R> CexampleEnsembleKF <- compileNimble(exampleEnsembleKF,
+ project = exampleModel, resetFunctions = TRUE)
R> CexampleEnsembleKF$run(10000)
R> EnKFSamples <- as.matrix(CexampleEnsembleKF$mvSamples)

Since our example model has normal transition and observation equations, the filtering distri-
bution can also be calculated exactly using the Kalman filter (Kalman 1960). Below, we use
the dlm package (Petris 2010) to apply a Kalman filter to our model and compare the exact
filtering distribution provided by the Kalman filter to the approximate filtering distributions
given by the bootstrap filter, auxiliary particle filter, and EnKF. Note that the quantiles in
Figure 1 align almost exactly for all filters.

6. Inference on models with unknown parameters
The example model in the previous section had no unknown parameters – an uncommon
scenario with real data. We next demonstrate nimbleSMC’s PMCMC and IF2 algorithms,
which can be used to estimate the unknown top-level parameters in a Bayesian and frequentist
framework, respectively. For PMCMC, we use a stochastic volatility example following pack-
age stochvol (Kastner 2016; Hosszejni and Kastner 2021). For IF2, we use a linear random



Journal of Statistical Software 19

2 4 6 8 10

−
2

−
1

0
1

2
3

4

Time

Kalman quantiles
Bootstrap quantiles
Auxiliary quantiles
EnKF quantiles

Figure 1: 2.5%, 50% and 97.5% quantiles of the filtering distribution for the Kalman filter
and nimble’s particle filters.

walk model of Nile river flows with a single changepoint, following the use of this example
by Durbin and Koopman (2012) and in packages dlm (Petris 2010) and FKF (Luethi, Erb,
Otziger, McDonald, and Smith 2021). For both methods, we present some computational
experiments illustrating the roles of some tuning parameters: proposal scale for PMCMC,
cooling parameter for IF2, and number of particles for both. While IF2 can handle nonlinear
and/or non-Gaussian models, use of the linear, Gaussian example facilitates our computa-
tional experiment by allowing easy calculation of the correct likelihood. Both examples are
also chosen to facilitate verification of correct results, by comparison to stochvol’s own MCMC
for our PMCMC example, and by exact maximum likelihood estimation for our IF2 example.

6.1. Particle marginal Metropolis-Hastings

nimbleSMC’s PMCMC uses the particle marginal Metropolis-Hastings (PMMH) method.
This can take advantage of nimble’s existing MCMC framework, in which the user can assign
different samplers to different nodes in a model. For a full description of nimble’s MCMC
design, see Chapter 7 of the nimble user manual (nimble Development Team 2020). The
PMMH sampler in nimbleSMC uses a normal proposal distribution, and can sample either
scalar parameters (using the RW_PF sampler) or vectors of parameters (using the RW_PF_block
sampler). Multiple such samplers can also be combined. Before setting up PMMH, we
introduce the stochastic volatility example.

Stochastic volatility example

Stochastic volatility models are widely used for time-series of the log returns of financial assets
such as stocks. The main idea is to model volatility (standard deviation of log returns) as
an unobserved autoregressive process. Our example is drawn from the R package stochvol,



20 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

described in detail in Kastner (2016). Pitt and Shephard (1999) use a related auxiliary particle
filter example. We reparameterize relative to the stochvol example as noted below.
Let rt be the exchange rate at time t, and define yt as the daily log return, that is, yt =
(log(rt)− log(rt−1)) for t = 2, . . . , T . The stochastic volatility model is:

xt ∼ N(φxt−1, σ
2).

yt ∼ N(0, (β exp(xt/2))2)

In this model, β can be interpreted as the constant volatility, while xt is the latent, evolving
log of volatility squared. For the distribution of the initial state, we use the stationary
distribution:

x1 ∼ N(0, σ2/(1− φ2)).

Prior distributions are placed on the parameters β, φ, and σ as follows, using the same choices
as the stochvol vignette, specifically:

φ∗ ∼ B(20, 1.1),
φ = 2φ∗ − 1,

Ω ∼ rsesΩe−re
Ω

Γ(s) , s = 0.5, r = 5,

σ2 = exp(Ω),
µ ∼ N(−10, 1),
β = exp(µ/2),

where the density function given for Ω is such that exp(Ω) follows a gamma distribution with
shape s and rate r.
A normal prior is placed on µ = 2 log β. This is moderately informative, based on knowledge of
typical mean volatility. The choice of −10 for the mean would be different if we used volatility
on a percent scale (100×yt instead of yt). An informative beta prior is placed on φ∗ = (φ+1)/2.
According to stochvol, informative priors are common because the data are only weakly
informative for φ, yet there is domain knowledge of typical values. Finally, a moderately-
informative gamma prior is placed on σ2, as done in stochvol, but we parameterize that prior in
terms of Ω = log σ2. The latter choice is made because it facilitates better mixing when block-
sampling all three parameters. In order to define Ω to follow a distribution corresponding
to a gamma on σ2, we use nimble’s extensibility for writing new distributions. While these
choices for priors are somewhat arbitrary, sticking to the choices of the stochvol vignette while
reparameterizing provides an illustration of the usefulness of nimble’s extensibility.
Code for the stochastic volatility model is:

R> stochVCode <- nimbleCode({
+ x[1] ~ dnorm(0, sd = sigma / sqrt(1 - phi * phi))
+ y[1] ~ dnorm(0, sd = beta * exp(0.5 * x[1]))
+ for (t in 2:T) {
+ x[t] ~ dnorm(phi * x[t - 1], sd = sigma)
+ y[t] ~ dnorm(0, sd = beta * exp(0.5 * x[t]))
+ }



Journal of Statistical Software 21

+ phi <- 2 * phiStar - 1
+ phiStar ~ dbeta(20, 1.1)
+ logsigma2 ~ dgammalog(shape = 0.5, rate = 1 / (2 * 0.1))
+ sigma <- exp(0.5 * logsigma2)
+ mu ~ dnorm(-10, sd = 1)
+ beta <- exp(0.5 * mu)
+ })

Note that dgammalog is the opposite of a log-gamma distribution. That is, exp(Ω) (rather
than log(Ω)) follows a gamma distribution. Code for the density and random simulation
functions for dgammalog is:

R> dgammalog <- nimbleFunction(
+ run = function(x = double(), shape = double(), rate = double(),
+ log = integer(0, default = 0)) {
+ logProb <- shape * log(rate) + shape * x - rate * exp(x) - lgamma(shape)
+ if (log) return(logProb)
+ else return(exp(logProb))
+ returnType(double())
+ }
+ )
R> rgammalog <- nimbleFunction(
+ run = function(n = integer(), shape = double(), rate = double()) {
+ xg <- rgamma(1, shape = shape, rate = rate)
+ return(log(xg))
+ returnType(double())
+ }
+ )

We use as data exchange rates for the Euro (EUR) quoted in US Dollars (USD) starting after
January 1st, 2010, and continuing until the end of the time-series, 582 days after that. This
data set can be found in stochvol (Kastner 2016), along with the function logret to calculate
log returns.

R> library("stochvol")
R> data("exrates", package = "stochvol")
R> y <- logret(exrates$USD[exrates$date > "2010-01-01"], demean = TRUE)
R> T <- length(y)

We next create and compile a nimbleModel object for the above BUGS code, using as starting
values µ = −10, φ∗ = 0.99, and log σ2 = −5.52, and providing T as a constant.

R> stochVolModel <- nimbleModel(code = stochVCode,
+ constants = list(T = T), data = list(y = y),
+ inits = list(mu = -10, phiStar = 0.99, logsigma2 = log(0.004)))
R> CstochVolModel <- compileNimble(stochVolModel)



22 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Building and running PMMH

To implement the PMMH algorithm, we first set up an MCMC configuration for our stochastic
volatility model using the configureMCMC function. We use the monitors argument to set
the list of nodes for which we want nimble to return posterior samples.
The PMMH sampler can be added to the MCMC configuration with a call to the addSampler
method. Additional options to customize the sampler can be specified within the control
list.

R> stochVolMCMCConf <- configureMCMC(stochVolModel, nodes = NULL,
+ monitors = c("mu", "beta", "phiStar", "phi", "logsigma2", "sigma"))
R> auxpf <- buildAuxiliaryFilter(stochVolModel, "x",
+ control = list(saveAll = FALSE, smoothing = FALSE, initModel = FALSE))
R> h <- 1
R> propSD <- h * c(0.089, 0.039, 1.45)
R> m <- 100
R> stochVolMCMCConf$addSampler(target = c("mu", "phiStar", "logsigma2"),
+ type = "RW_PF_block", control = list(propCov = diag(propSD^2),
+ pf = auxpf, adaptive = FALSE, pfNparticles = m, latents = "x"))

In the last step above, we add a block random walk sampler with a multivariate normal
proposal distribution by specifying type = "RW_PF_block". This sampler is used to obtain
posterior samples of the target parameters: mu, phiStar, and logsigma2. Although these are
the parameters with priors, we give results below for the transformed parameters of interest,
namely µ, φ, and σ. In this example, we chose to build the auxiliary particle filter first
and provide it as a control argument to the sampler. Doing it this way can allow multiple
samplers to share the same particle filter. If there is only one sampler (as here), one can
alternatively use pf = "auxiliary" to have the sampler itself create the particle filter.
Once the PMMH sampler is added to the MCMC configuration, the algorithm can be built us-
ing the buildMCMC function and then compiled. Posterior samples are stored in cMCMC$mvSamples.
Below we demonstrate running nimbleSMC’s PMMH algorithm for 50,000 iterations.

R> stochVolMCMC <- buildMCMC(stochVolMCMCConf)
R> cMCMC <- compileNimble(stochVolMCMC, project = stochVolModel,
+ resetFunctions = TRUE)
R> cMCMC$run(50000)
R> samples <- as.matrix(cMCMC$mvSamples)

Figure 2 shows traceplots of 10,000 iterations from this MCMC (right panel, M = 100). For
comparisons below, traceplots with fewer particles (left panel, M = 25) are shown. These
display more pronounced “stickiness”, where the MCMC gets stuck for many subsequent
iterations because the likelihood was overestimated when accepting a proposal in a given
iteration, as discussed in Section 6.2 In harder applications, larger numbers of particles will
typically be needed.
As mentioned in Section 5, nimbleSMC offers two choices for the lookahead function of
the auxiliary particle filter, which can be specified for use in a PMMH sampler via the
pfLookahead control list argument or specified when building the particle filter directly.



Journal of Statistical Software 23

M = 25 M = 100

m
u

phi
sigm

a

10000 12500 15000 17500 20000 10000 12500 15000 17500 20000

−10.2

−10.1

−10.0

−9.9

−9.8

−9.7

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

iteration

sa
m

pl
e

Figure 2: Traceplots of PMCMC with M = 25 (left) or 100 (right) particles in each run of
the particle filter. 10,000 of 50,000 iterations are shown.

However, there may be cases where another choice of lookahead function is desired, or even
where a user would like to use a filtering algorithm other than the bootstrap and auxiliary fil-
ters. To accommodate these scenarios, nimbleSMC allows for user-defined filtering algorithms
within its PMCMC sampler. Thus a user could, for example, modify nimbleSMC’s auxiliary
particle filter code to have a customized lookahead function and use this modified sampler to
produce likelihood estimates in PMCMC. More information on creating user-defined filtering
algorithms can be found in Section 7, and information on using such algorithms in PMCMC
can be found in Section 8.1.2 of nimble’s User Manual (nimble Development Team 2020).
Pitt and Shephard (1999) show that a filter that uses a good look-ahead method will tend to
have a lower mean squared error than either the bootstrap or other auxiliary particle filters.
Such an adapted filter would be a prime candidate for a user-defined filter in nimbleSMC’s
particle MCMC samplers.
Similarly, nimbleSMC’s RW_PF and RW_PF_block samplers use normal proposal distributions,
but nimble provides a a straightforward system for writing new samplers. See Section 13.5 of
the user manual for information on user-defined MCMC samplers.



24 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

6.2. Tuning PMCMC

Next we illustrate tuning considerations for PMMH, which has aspects distinct from other
MCMC methods. An intuitive interpretation of PMMH is that it uses SMC to approximate
the likelihood in the Metropolis-Hastings acceptance probability. However, its theoretical
justification is actually different. PMMH is valid because the entire set of simulated states
and indices (during resampling) represent auxiliary variables in a complicated enhanced space
for the MCMC. The marginal distribution of the variables of interest matches the target
distribution, which justifies sampling in the enhanced space. This is discussed in Andrieu
and Roberts (2009), Andrieu et al. (2010), Doucet et al. (2015), Sherlock et al. (2015), and
Dahlin and Schön (2019).

This insight leads to what might be surprising performance considerations. From the intuitive
interpretation, one might be tempted to increase the number of SMC particles in order to make
the approximation in the acceptance probability more accurate. However, the justification
of the method is valid even for small numbers of SMC particles, leading to the label “exact
approximation” (Andrieu et al. 2010). The risk with a small number of particles is not that
the algorithm will be formally invalid but rather that it will get stuck due to high variance
in the SMC likelihood approximation. If a single run of the SMC yields an extremely large
likelihood by chance, it will typically be accepted, after which many proposals may be rejected
because the acceptance ratio will be low. Increasing SMC sample size decreases the variance of
likelihood approximations, which reduces the chance of getting stuck. However, computational
cost scales approximately linearly with SMC sample size, so it may be better to use fewer SMC
samples and be able to run more iterations. Theory about these considerations is developed
by Sherlock et al. (2015) and Doucet et al. (2015). In summary, whereas sample size is chosen
for accuracy of the likelihood and state approximations in vanilla SMC, it is chosen to balance
mixing and computational cost when the SMC is used in PMMH.

To illustrate these tradeoffs, we ran a set of computational experiments (Figure 3). We
compared different values of SMC sample size, M , and scale of the multivariate normal
random-walk proposals, h (see below). Values of M were 25, 50, . . . , 125. Values of h were
0.5, 0.75, . . . , 1.5. For each case (values of M and h), results were compared using effective
sample size (ESS) and efficiency, defined as ESS per computation time (in seconds). Efficiency
is the number of effectively independent samples generated per second. To estimate ESS, we
used the overlapping batch means (obm) method of package mcmcse (Flegal, Hughes, Vats,
and Dai 2021), with a batch size of 500. While this is larger than necessary in most cases,
there are some cases where the autocorrelation can be non-zero for lags of several hundred
iterations, so the choice of 500 is conservative. Ten replicates of each case were run. Figure 3
shows mean +/− one standard error for ESS and efficiency for each case.

Proposals were multivariate normal with mean equal to the current values of (µ, φ∗,Ω) and
diagonal covariance matrix with standard deviations (0.89h, 0.39h, 1.45h). These standard
deviations are initial estimates (from a preliminary PMCMC run) of the posterior standard
deviations multiplied by h. This scheme provides a simply way to explore the role of proposal
scale by using a single variable, h. One could also experiment with using univariate proposals,
which typically allow larger moves in one direction at a time but would require more SMC
evaluations. The setup of the present experiments provided a pragmatic way to gain insight
on the impacts of proposal scale and SMC sample size on MCMC efficiency and to illustrate
the tradeoffs involved.



Journal of Statistical Software 25

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

mu phi sigma
E

ffe
ct

iv
e 

sa
m

pl
e 

si
ze

E
ffi

ci
en

cy

25 50 75 100 125 25 50 75 100 125 25 50 75 100 125

500

1000

1500

2000

0.25

0.50

0.75

1.00

1.25

Number of particles, M

h

●

●

●

●

●

0.5

0.75

1

1.25

1.5

Figure 3: PMCMC effective sample size (ESS) and efficiency (ESS / computation time) for the
stochastic volatility example for different numbers of particles (M) and proposal scales (h).

While the results illustrate that estimates of ESS are noisy, clear patterns nevertheless emerge.
Increasing the number of particles improves mixing (ESS, Figure 3, top row) but is often not
worth its computational cost (Figure 3, bottom row). A doubling in the number of particles
will roughly double the computation time, so it must at least double ESS to be worth the
cost, and generally this is not the case in this example. However, small numbers of particles
demonstrate a pattern of “stickiness” that may not be satisfactory (Figure 2, left panel).
Therefore, a good choice would be use to sufficient particles to avoid excessive stickiness
while not imposing too great a computational cost.

In typical problems, one will want to use a larger number of particles. We were surprised at
how small we could choose M in this example and still obtain good results, but this is an
example where the model fits the data reasonably. In a case where the model cannot fit the
data well, the variance in particle filter likelihood approximations will be higher, potentially
causing stickiness and calling for more particles.

6.3. IF2

The steps to create an IF2 algorithm are similar to those for PMCMC: build a model, build
the algorithm, compile both, and run. For IF2, the example is a Gaussian random-walk with
Gaussian measurement error of Nile river flows and a changepoint at a known time, following
Durbin and Koopman (2012), dlm and FKF.



26 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Nile river flow example

Define xt to be the state of flow in year t and yt to be measured flow. The model is:

xt ∼ N(I29(t)c+ xt−1, σ
2)

yt ∼ N(xt, σ2
M )

where I29(t) is 1 when t = 29 and 0 otherwise, c is the changepoint shift in mean flow,
and σ and σM are standard deviations of the innovations and measurements, respectively.
(“Innovation” refers to process stochasticity in state-space models.) Year 29 corresponds to
1899, when the Aswan Dam apparently changed Nile flows. Package dlm implements this
changepoint with an inflated variance of state dynamics. We instead model this concept
with a shift in the mean. By use of maximum likelihood estimation, we found that the two
approaches yield similar models and maximum likelihoods (not shown). Maximum likelihood
estimates obtained using package FKF are σ̂ = 0.01, σ̂M = 127, and ĉ = −267. Thus,
the model with MLE parameters has essentially no stochasticity in the latent states. The
maximum log-likelihood is −626.4. BUGS code for this model in nimble is:

R> nileCode <- nimbleCode({
+ for (t in 1:n)
+ y[t] ~ dnorm(x[t], sd = sigmaMeasurements)
+ x[1] ~ dnorm(x0, sd = sigmaInnovations)
+ for (t in 2:n)
+ x[t] ~ dnorm((t - 1 == 28) * meanShift1899 + x[t - 1],
+ sd = sigmaInnovations)
+ logSigmaInnovations ~ dnorm(0, sd = 100)
+ logSigmaMeasurements ~ dnorm(0, sd = 100)
+ sigmaInnovations <- exp(logSigmaInnovations)
+ sigmaMeasurements <- exp(logSigmaMeasurements)
+ x0 ~ dnorm(1120, var = 100)
+ meanShift1899 ~ dnorm(0, sd = 100)
+ })

The prior distributions are not used by IF2, except possibly to obtain boundaries of valid
parameter values, but that is not the case here.
The next step is to build the model and algorithm and compile both:

R> y <- Nile
R> nileModel <- nimbleModel(nileCode, data = list(y = y),
+ constants = list(n = length(y)),
+ inits = list(logSigmaInnovations = log(sd(y)),
+ logSigmaMeasurements = log(sd(y)), meanShift1899 = -100))
R> perturbThetaSD <- c(0.1, 0.1, 5)
R> initParamSigma <- c(0.1, 0.1, 5)
R> ff <- buildIteratedFilter2(model = nileModel, nodes = "x",
+ params = c("logSigmaInnovations", "logSigmaMeasurements",
+ "meanShift1899"), baselineNode = "x0",
+ control = list(sigma = perturbThetaSD, initParamSigma = initParamSigma))



Journal of Statistical Software 27

R> cNileModel <- compileNimble(nileModel)
R> cff <- compileNimble(ff, project = nileModel)

In buildIteratedFilter2, nodes gives the vector of latent state nodes, params gives the
parameters to be optimized over, and baselineNode gives the node for the initial time point
of the latent state (which should not have any data dependent on it), if applicable. The
control list elements include sigma, the vector of initial perturbation standard deviations
(σd values in Section 3.5, in the order of params) to be multiplied by a cooling factor, and
initParamSigma, the vector of standard deviations of the initial particle swarm of parameters
(also in the order of params).

R> numParticles <- 1000
R> numPFruns <- 100
R> alpha <- 0.2
R> est <- cff$run(m = numParticles, niter = numPFruns, alpha = alpha)

Here m is the number of particles, niter is the number of iterations of the IF2 algorithm,
and alpha is the α in the equation for ci,t used to specify the cooling schedule via diagonal
elements of Σi,t.

6.4. Tuning IF2

IF2 presents a user with numerous tuning parameters. These include the number of particles,
number of particle filter runs, cooling parameter α, initial perturbation standard deviation for
each parameter, and initial standard deviation for each parameter. To explore and illustrate
how choices of these parameters can affect performance, we ran a computational experiment
with different choices for the number of particles and the cooling parameter. Specifically,
we ran the Nile flow example with alpha values of 0.1, 0.2, 0.4 and 0.6 and M (number of
particles) values of 100, 200, 500, 1000, and 2000. Initial values were log(sd(y1:T )) for both
log sigmas and −100 for the changepoint shift, c. Perturbation standard deviations were 0.1,
0.1, and 5, and standard deviations of the initial particle swarm were the same.
For each combination of α and M , we ran IF2 for a number of iterations such that there were
105 total particles simulated through the entire time-series, or 107 particle time-steps (since
the length of the data is T = 100). For example, with M = 100, we used I = 1000 iterations,
while with M = 500, we used I = 200 iterations. Since computational cost is closely related
to number of particle time steps, this arrangement means that each case was run for a similar
total computational effort. The horizontal axis in Figure 4 shows iterations but can be easily
interpreted in terms of computational cost. For example, half-way across the x-axis represents
a different number of iterations but similar computational cost for each case.
To examine the path to convergence in each case, we calculated the correct likelihood using
the Kalman Filter at each iteration of IF2. The ability to calculate the correct likelihood is
the reason for using a linear, Gaussian example.
Figure 4 reveals several useful insights about IF2. With too few particles, IF2 can move
too noisily to find the MLE before the cooling schedule effectively stops further exploration,
as seen in the M = 100 and M = 200 cases. This problem is exacerbated by smaller
choices of α (faster cooling schedule). On the other hand, choosing a larger α will incur more
computational cost by requiring more iterations to converge, as seen in the M = 500 case,



28 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

M = 1000 M = 2000

M = 100 M = 200 M = 500

0 250 500 750 1000 0 250 500 750 1000

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000

−635.0

−632.5

−630.0

−627.5

−635.0

−632.5

−630.0

−627.5

iteration

Lo
g 

lik
el

ih
oo

d alpha

0.1

0.2

0.4

0.6

Figure 4: IF2 log-likelihood vs. iteration for the Nile river flow example for different numbers
of particles (M) and cooling parameters (α).

where all values of α appear to be converging to the MLE but larger ones are doing so more
slowly. Finally, at large values ofM , further increases inM will yield little additional benefit.
What we have not explored here are choices for initial perturbation standard deviations (σd).
In general, relatively small values for these can work well because perturbations are applied
at every time step of every particle filter run.

7. Programming SMC algorithms in nimble
In this section, we show how nimbleSMC’s SMC algorithms are implemented as
nimbleFunctions, a high-level system for programming model-generic algorithms. We will
not cover every detail of programming in nimble, but rather we wish to show how algorithms
are expressed compactly in high-level code that gets compiled via C++. This will allow other
programmers to quickly adapt our functions for their own needs. For a more detailed dis-
cussion of nimbleFunction programming, see de Valpine et al. (2017) or Section IV of the
nimble user manual (nimble Development Team 2020).
We demonstrate programming in nimble by providing code for a bootstrap filtering algorithm.
Note that the code shown below is simpler than the actual implementation of the bootstrap
filter available in nimbleSMC through the buildBootstrapFilter function. However, this
demonstration code is indeed a fully functional bootstrap filter. The bootstrap filter included
in the nimbleSMC package simply has more customization options, and can handle somewhat
more complicated models, than the demonstration algorithm provided here.



Journal of Statistical Software 29

nimble programming uses two-stage evaluation defined by a nimbleFunction, which has two
different types of code: setup code and run code. When a nimbleFunction is called, the
setup code is evaluated first. setup code is written in R and is primarily used to extract
model information for later use in the run code. The purpose of extracting model information
is to specialize the algorithm to a particular model. After setup code has been run once,
the run code can be executed many times. run code is written in the nimble domain-specific
language (DSL) for hierarchical model algorithms, which allows the code to be compiled into
C++, in turn providing efficient execution of an algorithm’s computations. run code can
make use of objects created in the setup code.
The first nimbleFunction shown below, named bootstrapFilter, includes setup and run
code that manage the time-iterations of the bootstrap filter. It uses a list of other
nimbleFunctions, each of which is responsible for one time step. To set up this list, it iterates
through time and calls the nimbleFunction bootstrapStep for each time. The setup code
of bootstrapStep takes information about the latent state at time t and determines how
to use the model to conduct Steps 6 through 18 of the bootstrap filter algorithm given in
Section 3.3 in its run code. As the filtering algorithm progresses through each time point,
samples from the filtering distribution at that time will be saved in nimble modelValues
objects. modelValues objects provide generic containers for storing sets of values of model
nodes.
Below is the call to nimbleFunction that defines setup and run code for the bootstrapFilter.
The setup code takes an argument called model, which must be a nimble model object cre-
ated by a call to nimbleModel (described in Section 4). It also takes the names of the latent
states as argument latentNodes. The setup code first specializes a nimbleFunction that
will initialize the model and then obtains the names and dimensions of the latent states in the
model in time order. Two modelValues objects are created to store samples from the latent
states. The mvWSamples object will store a non-equally weighted sample, while mvEWSamples
will store an equally weighted sample. Finally, the setup code creates a list of bootstrapStep
functions (called a nimbleFunctionList). For each time point t = 1, . . . , T , the list contains
one bootstrapStep function, which will conduct one time-step of the bootstrap filter. We
note that the creation of a separate bootstrapStep function for each time t is necessary to
allow the latent state xt at each time to have arbitrary observation dependencies yt, which
may even have been declared with different model code for different times.

R> bootstrapFilter <- nimbleFunction(
+ setup = function(model, latentNodes) {
+ my_initializeModel <- initializeModel(model)
+ latentNodes <- model$expandNodeNames(latentNodes, sort = TRUE)
+ dims <- lapply(latentNodes, function(n) nimDim(model[[n]]))
+ mvWSpec <- modelValuesConf(vars = c("x", "wts"),
+ types = c("double", "double"),
+ sizes = list(x = dims[[1]], wts = 1))
+ mvWSamples <- modelValues(mvWSpec)
+ mvEWSpec <- modelValuesConf(vars = c("x"), types = c("double"),
+ sizes = list(x = dims[[1]]))
+ mvEWSamples <- modelValues(mvEWSpec)
+ bootStepFunctions <- nimbleFunctionList(bootstrapStepVirtual)
+ timePoints <- length(latentNodes)



30 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

+ for (t in 1:timePoints)
+ bootStepFunctions[[t]] <- bootstrapStep(model, mvWSamples,
+ mvEWSamples, latentNodes, t)
+ },
+ run = function(M = integer()) {
+ my_initializeModel$run()
+ resize(mvWSamples, M)
+ resize(mvEWSamples, M)
+ for (t in 1:timePoints)
+ bootStepFunctions[[t]]$run(M)
+ }
+ )

The run code for the bootstrapFilter function takes as its only argument the number of
particles (M) to use for estimation. run code requires explicit declaration of the type of any
arguments, so here M is specified as a scalar integer. In general, the type of a return object
must also be declared, although this function does not return anything so no declaration
is necessary. The run function first initializes the model (conducting Steps 2 and 3 of the
bootstrap filter algorithm), and then re-sizes the modelValues objects so that they can store
M particles. After that, the run function iterates through each time point, running the
bootstrapStep function that was defined for that time point in the setup code. To keep the
example simple, this version does not provide an estimate of the likelihood p̃(y1:T ).
Creating a nimbleFunctionList, such as the one used in the setup code above, requires
an additional piece of code that informs nimble about the input arguments and return
objects of each function in that list. Specifically, the nimbleFunctionVirtual function is
used to define the methods and their argument and return types that each element in the
nimbleFunctionList will have. Below, we specify that each element of our nimbleFunctionList
will have a run function with a single integer input and no return object.

R> bootstrapStepVirtual <- nimbleFunctionVirtual(
+ run = function(M = integer()) {}
+ )

setup and run code for the bootstrapStep function are given below. At each time point
t, the setup function gets the names and deterministic dependencies of the previous and
current latent states. The run code first declares a length M vector of integers (to store
particle indices) and a length M vector of doubles (to store particle weights). The run code
then iterates through the particles. For each particle, the code takes the value of the latent
state at t− 1 from the equally weighted modelValues object, uses that value to propagate a
value for the latent state at time t, and calculates a weight. The particles and corresponding
weights are stored in the non-equally weighted modelValues object. Finally, particles are
resampled proportional to their weights and the resampled particles are stored in the equally
weighted modelValues object.
In this algorithm particles are propagated using the proposal distribution q(xt | x(m)

t−1, yt) =
f(xt | x(m)

t−1), which simplifies the weight calculation in Step 8 of Algorithm 1. Additionally,
since resampling is performed at each time point, weights from time t−1 do not need to be used
when calculating weights at time t. This results in a weight calculation of w(m)

t = g(yt | x̃(m)
t ).



Journal of Statistical Software 31

R> bootstrapStep <- nimbleFunction(
+ contains = bootstrapStepVirtual,
+ setup = function(model, mvWSamples, mvEWSamples, latentNodes,
+ timePoint) {
+ notFirst <- timePoint != 1
+ prevNode <- latentNodes[if (notFirst) timePoint - 1 else timePoint]
+ thisNode <- latentNodes[timePoint]
+ prevDeterm <- model$getDependencies(prevNode, determOnly = TRUE)
+ thisDeterm <- model$getDependencies(thisNode, determOnly = TRUE)
+ thisData <- model$getDependencies(thisNode, dataOnly = TRUE)
+ },
+ run = function(M = integer()) {
+ ids <- integer(M, 0)
+ wts <- numeric(M, 0)
+ for (m in 1:M) {
+ if (notFirst) {
+ copy(from = mvEWSamples, to = model, nodes = "x",
+ nodesTo = prevNode, row = m)
+ model$calculate(prevDeterm)
+ }
+ model$simulate(thisNode)
+ copy(from = model, to = mvWSamples, nodes = thisNode,
+ nodesTo = "x", row = m)
+ model$calculate(thisDeterm)
+ wts[m] <- exp(model$calculate(thisData))
+ mvWSamples["wts", m][1] <<- wts[m]
+ }
+ rankSample(wts, M, ids)
+ for (m in 1:M) {
+ copy(from = mvWSamples, to = mvEWSamples, nodes = "x",
+ nodesTo = "x", row = ids[m], rowTo = m)
+ }
+ })

The calls to calculate within the above run code serve two purposes. The first two
calculate calls are used to calculate the values of any deterministic dependencies of the
latent state, as these dependencies must be recalculated any time the latent state takes on
a new value. The third call to calculate is used to calculate the log-likelihood of the data
given the current latent state value, which is then used as a particle weight. The rankSample
function fills the elements of the ids vector with the indices of the particles that have been
chosen in the resampling procedure.
Once the nimbleFunctions have been defined, we can build, compile, and run the bootstrap
filter. The code below runs the example filter on the exampleModel of Section 5 and creates
a histogram of samples from the filtering distribution of x at the last time point.

R> myBootstrap <- bootstrapFilter(exampleModel, "x")
R> cmyBootstrap <- compileNimble(myBootstrap, project = exampleModel,
+ resetFunctions = TRUE)



32 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

F
re

qu
en

cy

−1 0 1 2 3

0
10

0
25

0

Figure 5: A histogram of the filtering distribution of x.

R> cmyBootstrap$run(1000)
R> filterSamps <- as.matrix(cmyBootstrap$mvEWSamples, "x")
R> hist(filterSamps, main = "", xlab = "")

The bootstrap filter code provided above demonstrates nimble’s ability to program model-
generic algorithms. The filter could be used to conduct filtering on any correctly specified
state-space model. In addition to the generality of the algorithm, it would be relatively
straightforward to modify the filter, changing it to an auxiliary particle filter, an IF2 algo-
rithm, or a filter type not currently included in nimbleSMC. The ease with which existing
algorithms can be modified, along with the generality with which they are written, promotes
the development of user-written filters.

8. Conclusion
This paper has described nimbleSMC’s suite of SMC algorithms, which provide straightfor-
ward methods of conducting inference on state-space models. In addition, nimble’s model-
generic programmability make it well-suited for implementing new SMC algorithms, an ex-
ample of which was given in Section 7. nimble’s flexible model specification also enables the
application of existing algorithms to more general models or new settings. For example, a
model could be written where a number of state-space models are set within a larger hierar-
chical structure. Using nimble and nimbleSMC, SMC algorithms could be used to estimate
the individual state-space models, while an MCMC algorithm could conduct inference on
higher-level parameters. nimble also provides easily accessible model comparison tools that
can be used in conjunction with its state-space modeling algorithms, which we hope will allow
users to answer previously difficult questions about their time-series data.
Additional examples of modeling and inference using nimble can be found at https://
R-nimble.org/.

Acknowledgments
This work was supported by the NSF under grants DBI-1147230 and ACI-1550488, and by
the Google Summer of Code.

References

Anderson BDO, Moore JB (1979). Optimal Filtering. Prentice-Hall.

https://R-nimble.org/
https://R-nimble.org/


Journal of Statistical Software 33

Anderson JL (2001). “An Ensemble Adjustment Kalman Filter for Data Assimilation.”
Monthly Weather Review, 129(12), 2884–2903. doi:10.1175/1520-0493(2001)129<2884:
aeakff>2.0.co;2.

Andersson H, Britton T (2000). Stochastic Epidemic Models and Their Statistical Analysis,
volume 151. Springer-Verlag. doi:10.1007/978-1-4612-1158-7.

Andrieu C, Doucet A, Holenstein R (2010). “Particle Markov Chain Monte Carlo Methods.”
Journal of the Royal Statistical Society B, 72(3), 269–342. doi:10.1111/j.1467-9868.
2009.00736.x.

Andrieu C, Roberts GO (2009). “The Pseudo-Marginal Approach for Efficient Monte Carlo
Computations.” The Annals of Statistics, 37(2), 697–725. doi:10.1214/07-aos574.

Arulampalam MS, Maskell S, Gordon N, Clapp T (2002). “A Tutorial on Particle Filters
for Online Nonlinear/Non-Gaussian Bayesian Tracking.” IEEE Transactions on Signal
Processing, 50(2), 174–188. doi:10.1109/78.978374.

Azman AS, Luquero FJ, Ciglenecki I, Grais RF, Sack DA, Lessler J (2015). “The Impact
of a One-Dose Versus Two-Dose Oral Cholera Vaccine Regimen in Outbreak Settings: A
Modeling Study.” PLOS Medicine, 12(8), 1–18. doi:10.1371/journal.pmed.1001867.

Bell BM (2005). “CppAD: A Package for C++ Algorithmic Differentiation.” URL http:
//www.coin-or.org/CppAD.

Bernton E, Jacob PE, Gerber M, Robert CP (2017). “Inference in Generative Models Using
the Wasserstein Distance.” arXiv:1701.05146v2 [stat.ME], URL https://arxiv.org/abs/
1701.05146.

Bocher M, Fournier A, Coltice N (2018). “Ensemble Kalman Filter for the Reconstruction
of the Earth’s Mantle Circulation.” Nonlinear Processes in Geophysics, 25(1), 99–123.
doi:10.5194/npg-25-99-2018.

Caffo BS, Jank W, Jones GL (2005). “Ascent-Based Monte Carlo Expectation-Maximization.”
Journal of the Royal Statistical Society B, 67(2), 235–251. doi:10.1111/j.1467-9868.
2005.00499.x.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo
J, Li P, Riddell A (2017). “Stan: A Probabilistic Programming Language.” Journal of
Statistical Software, 76(1), 1–32. ISSN 1548-7660. doi:10.18637/jss.v076.i01.

Carpenter J, Clifford P, Fearnhead P (1999). “Improved Particle Filter for Nonlinear Prob-
lems.” IEEE Proceedings-Radar, Sonar and Navigation, 146(1), 2–7. doi:10.1049/
ip-rsn:19990255.

Carvalho C, Johannes MS, Lopes HF, Polson N (2010). “Particle Learning and Smoothing.”
Statistical Science, 25(1), 88–106. doi:10.1214/10-sts325.

Chopin N, Jacob PE, Papaspiliopoulos O (2013). “SMC2: An Efficient Algorithm for Se-
quential Analysis of State Space Models.” Journal of the Royal Statistical Society B, 75(3),
397–426. doi:10.1111/j.1467-9868.2012.01046.x.

https://doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
https://doi.org/10.1175/1520-0493(2001)129<2884:aeakff>2.0.co;2
https://doi.org/10.1007/978-1-4612-1158-7
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1214/07-aos574
https://doi.org/10.1109/78.978374
https://doi.org/10.1371/journal.pmed.1001867
http://www.coin-or.org/CppAD
http://www.coin-or.org/CppAD
https://arxiv.org/abs/1701.05146
https://arxiv.org/abs/1701.05146
https://doi.org/10.5194/npg-25-99-2018
https://doi.org/10.1111/j.1467-9868.2005.00499.x
https://doi.org/10.1111/j.1467-9868.2005.00499.x
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1049/ip-rsn:19990255
https://doi.org/10.1049/ip-rsn:19990255
https://doi.org/10.1214/10-sts325
https://doi.org/10.1111/j.1467-9868.2012.01046.x


34 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Croce P, Zappasodi F, Merla A, Chiarelli AM (2017). “Exploiting Neurovascular Coupling:
A Bayesian Sequential Monte Carlo Approach Applied to Simulated EEG fNIRS Data.”
Journal of Neural Engineering, 14(4), 046029. doi:10.1088/1741-2552/aa7321.

Dahlin J, Schön TB (2019). “Getting Started with Particle Metropolis-Hastings for Inference
in Nonlinear Dynamical Models.” Journal of Statistical Software, 88(1), 1–41. doi:10.
18637/jss.v088.c02.

de Valpine P, Paciorek C, Turek D, Michaud N, Anderson-Bergman C, Obermeyer F,
Wehrhahn Cortes C, Rodríguez A, Temple Lang D, Paganin S (2021). nimble: MCMC,
Particle Filtering, and Programmable Hierarchical Modeling. R package version 0.12.1, URL
https://CRAN.R-project.org/package=nimble.

de Valpine P, Turek D, Paciorek CJ, Anderson-Bergman C, Lang DT, Bodik R (2017).
“Programming with Models: Writing Statistical Algorithms for General Model Structures
with nimble.” Journal of Computational and Graphical Statistics, 26(2), 403–413. doi:
10.1080/10618600.2016.1172487.

Del Moral P, Doucet A, Jasra A (2012). “An Adaptive Sequential Monte Carlo Method for
Approximate Bayesian Computation.” Statistics and Computing, 22(5), 1009–1020. doi:
10.1007/s11222-011-9271-y.

Douc R, Cappe O (2005). “Comparison of Resampling Schemes for Particle Filtering.” In ISPA
2005 – Proceedings of the 4th International Symposium on Image and Signal Processing and
Analysis, 2005, pp. 64–69. doi:10.1109/ispa.2005.195385.

Doucet A, de Freitas N, Gordon N (2001). “An Introduction to Sequential Monte Carlo
Methods.” In Sequential Monte Carlo Methods in Practice, pp. 3–14. Springer-Verlag.

Doucet A, Godsill S, Andrieu C (2000). “On Sequential Monte Carlo Sampling Meth-
ods for Bayesian Filtering.” Statistics and Computing, 10(3), 197–208. doi:10.1023/a:
1008935410038.

Doucet A, Johansen AM (2011). “A Tutorial on Particle Filtering and Smoothing: Fifteen
Years Later.” In The Oxford Handbook of Nonlinear Filtering, pp. 656–704. Oxford Univer-
sity Press.

Doucet A, Pitt MK, Deligiannidis G, Kohn R (2015). “Efficient Implementation of Markov
Chain Monte Carlo When Using an Unbiased Likelihood Estimator.” Biometrika, 102(2),
295–313. doi:10.1093/biomet/asu075.

Durbin J, Koopman SJ (2012). Time Series Analysis by State Space Methods. 2nd edition.
Oxford University Press, Oxford. doi:10.1093/acprof:oso/9780199641178.001.0001.

Evensen G (2003). “The Ensemble Kalman Filter: Theoretical Formulation and Practical
Implementation.” Ocean Dynamics, 53, 343–367. doi:10.1007/s10236-003-0036-9.

Fernández-Villaverde J, Rubio-Ramírez JF (2007). “Estimating Macroeconomic Models: A
Likelihood Approach.” The Review of Economic Studies, 74(4), 1059–1087. doi:10.1111/
j.1467-937x.2007.00437.x.

https://doi.org/10.1088/1741-2552/aa7321
https://doi.org/10.18637/jss.v088.c02
https://doi.org/10.18637/jss.v088.c02
https://CRAN.R-project.org/package=nimble
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1007/s11222-011-9271-y
https://doi.org/10.1109/ispa.2005.195385
https://doi.org/10.1023/a:1008935410038
https://doi.org/10.1023/a:1008935410038
https://doi.org/10.1093/biomet/asu075
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://doi.org/10.1007/s10236-003-0036-9
https://doi.org/10.1111/j.1467-937x.2007.00437.x
https://doi.org/10.1111/j.1467-937x.2007.00437.x


Journal of Statistical Software 35

Flegal JM, Hughes J, Vats D, Dai N (2021). mcmcse: Monte Carlo Standard Errors for
MCMC. R package version 1.5-0, URL https://CRAN.R-project.org/package=mcmcse.

Gilbert P (2020). dse: Dynamic Systems Estimation (Time Series Package). R package
version 2020.2-1, URL https://CRAN.R-project.org/package=dse.

Gillijns S, Mendoza OB, Chandrasekar J, De Moor B, Bernstein DS, Ridley A (2006). “What
Is the Ensemble Kalman Filter and How Well Does It Work?” In American Control
Conference, 2006. IEEE. doi:10.1109/acc.2006.1657419.

Gordon NJ, Salmond DJ, Smith AFM (1993). “Novel Approach to Nonlinear/Non-Gaussian
Bayesian State Estimation.” IEEE Proceedings F – Radar and Signal Processing, 140(2),
107–113. doi:10.1049/ip-f-2.1993.0015.

Heidari L, Gervais V, Ravalec ML, Wackernagel H (2013). “History Matching of Petroleum
Reservoir Models by the Ensemble Kalman Filter and Parameterization Methods.” Com-
puters & Geosciences, 55, 84 – 95. doi:10.1016/j.cageo.2012.06.006.

Helske J (2017). “KFAS: Exponential Family State Space Models in R.” Journal of Statistical
Software, 78(10), 1–39. doi:10.18637/jss.v078.i10.

Hosszejni D, Kastner G (2021). “Modeling Univariate and Multivariate Stochastic Volatility
in R with stochvol and factorstochvol.” Journal of Statistical Software, 100(12), 1–34.
doi:10.18637/jss.v100.i12.

Houtekamer PL, Zhang F (2016). “Review of the Ensemble Kalman Filter for Atmo-
spheric Data Assimilation.” Monthly Weather Review, 144(12), 4489–4532. doi:10.1175/
mwr-d-15-0440.1.

Ionides EL, Bhadra A, Atchadé Y, King A (2011). “Iterated Filtering.” The Annals of
Statistics, 39(3), 1776–1802. doi:10.1214/11-aos886.

Ionides EL, Bretó C, King AA (2006). “Inference for Nonlinear Dynamical Systems.” Pro-
ceedings of the National Academy of Sciences of the United States of America, 103(49),
18438–18443. doi:10.1073/pnas.0603181103.

Ionides EL, Nguyen D, Atchadé Y, Stoev S, King AA (2015). “Inference for Dynamic and
Latent Variable Models via Iterated, Perturbed Bayes Maps.” Proceedings of the National
Academy of Sciences of the United States of America, 112(3), 719–724. doi:10.1073/
pnas.1410597112.

Jacob PE, Funk S (2021). rbi: R Interface to LibBi. R package version 0.10.4, URL https:
//CRAN.R-project.org/package=rbi.

Kalman RE (1960). “A New Approach to Linear Filtering and Prediction Problems.”
Transactions of the ASME, Journal of Basic Engineering, Series D, 82, 35–45. doi:
10.1115/1.3662552.

Kantas N, Doucet A, Singh SS, Maciejowski J, Chopin N (2015). “On Particle Methods for
Parameter Estimation in State-Space Models.” Statistical Science, 30(3), 328–351. doi:
10.1214/14-sts511.

https://CRAN.R-project.org/package=mcmcse
https://CRAN.R-project.org/package=dse
https://doi.org/10.1109/acc.2006.1657419
https://doi.org/10.1049/ip-f-2.1993.0015
https://doi.org/10.1016/j.cageo.2012.06.006
https://doi.org/10.18637/jss.v078.i10
https://doi.org/10.18637/jss.v100.i12
https://doi.org/10.1175/mwr-d-15-0440.1
https://doi.org/10.1175/mwr-d-15-0440.1
https://doi.org/10.1214/11-aos886
https://doi.org/10.1073/pnas.0603181103
https://doi.org/10.1073/pnas.1410597112
https://doi.org/10.1073/pnas.1410597112
https://CRAN.R-project.org/package=rbi
https://CRAN.R-project.org/package=rbi
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.1214/14-sts511
https://doi.org/10.1214/14-sts511


36 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Kastner G (2016). “Dealing with Stochastic Volatility in Time Series Using the R Package
stochvol.” Journal of Statistical Software, 69(1), 1–30. doi:10.18637/jss.v069.i05.

Katzfuss M, Stroud JR, Wikle CK (2016). “Understanding the Ensemble Kalman Filter.”
The American Statistician, 70(4), 350–357. doi:10.1080/00031305.2016.1141709.

King A, Nguyen D, Ionides E (2016). “Statistical Inference for Partially Observed Markov
Processes via the R Package pomp.” Journal of Statistical Software, 69(1), 1–43. doi:
10.18637/jss.v069.i12.

King AA, Domenech de Cellès M, Magpantay FMG, Rohani P (2015). “Avoidable Errors
in the Modelling of Outbreaks of Emerging Pathogens, with Special Reference to Ebola.”
Proceedings of the Royal Society of London B: Biological Sciences, 282(1806). doi:10.
1098/rspb.2015.0347.

Knape J, de Valpine P (2012). “Fitting Complex Population Models by Combining Particle
Filters with Markov Chain Monte Carlo.” Ecology, 93(2), 256–263. doi:10.1890/11-0797.
1.

Kristensen K, Nielsen A, Berg C, Skaug H, Bell B (2016). “TMB: Automatic Differentiation
and Laplace Approximation.” Journal of Statistical Software, 70(5), 1–21. doi:10.18637/
jss.v070.i05.

Liu J, Wang W, Ma F (2011). “A Regularized Auxiliary Particle Filtering Approach for
System State Estimation and Battery Life Prediction.” Smart Materials and Structures,
20(7), 075021. doi:10.1088/0964-1726/20/7/075021.

Liu J, West M (2001). “Combined Parameter and State Estimation in Simulation-Based
Filtering.” In Sequential Monte Carlo Methods in Practice, pp. 197–223. Springer-Verlag.
doi:10.1007/978-1-4757-3437-9_10.

Luethi D, Erb P, Otziger S, McDonald D, Smith P (2021). FKF: Fast Kalman Filter. R pack-
age version 0.2.2, URL https://CRAN.R-project.org/package=FKF.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS Book: A Practical
Introduction to Bayesian Analysis. Texts in Statistical Science. Chapman & Hall/CRC.
doi:10.1201/b13613.

Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000). “WinBUGS – A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10(4),
325–337. doi:10.1023/a:1008929526011.

Mandel J (2009). “A Brief Tutorial on the Ensemble Kalman Filter.” arXiv:0901.3725
[physics.ao-ph], URL https://arxiv.org/abs/0901.3725.

Martinez-Bakker M, King AA, Rohani P (2015). “Unraveling the Transmission Ecology of
Polio.” PLOS Biology, 13(6), 1–21. doi:10.1371/journal.pbio.1002172.

Michaud N, de Valpine P, Paciorek C, Turek D (2020). nimbleSMC: Sequential Monte
Carlo Methods for nimble. R package version 0.10.0, URL https://CRAN.R-project.
org/package=nimbleSMC.

https://doi.org/10.18637/jss.v069.i05
https://doi.org/10.1080/00031305.2016.1141709
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.18637/jss.v069.i12
https://doi.org/10.1098/rspb.2015.0347
https://doi.org/10.1098/rspb.2015.0347
https://doi.org/10.1890/11-0797.1
https://doi.org/10.1890/11-0797.1
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.18637/jss.v070.i05
https://doi.org/10.1088/0964-1726/20/7/075021
https://doi.org/10.1007/978-1-4757-3437-9_10
https://CRAN.R-project.org/package=FKF
https://doi.org/10.1201/b13613
https://doi.org/10.1023/a:1008929526011
https://arxiv.org/abs/0901.3725
https://doi.org/10.1371/journal.pbio.1002172
https://CRAN.R-project.org/package=nimbleSMC
https://CRAN.R-project.org/package=nimbleSMC


Journal of Statistical Software 37

Murray L (2015). “Bayesian State-Space Modelling on High-Performance Hardware Using
LibBi.” Journal of Statistical Software, 67(1), 1–36. doi:10.18637/jss.v067.i10.

Murray LM, Jones EM, Parslow J (2013). “On Disturbance State-Space Models and the Par-
ticle Marginal Metropolis-Hastings Sampler.” SIAM/ASA Journal of Uncertainty Quan-
tification, 1(1), 494–521. doi:10.1137/130915376.

Newman KB, Fernández C, Thomas L, Buckland ST (2009). “Monte Carlo Inference for
State-Space Models of Wild Animal Populations.” Biometrics, 65(2), 572–583. doi:10.
1111/j.1541-0420.2008.01073.x.

nimble Development Team (2020). nimble User Manual. doi:10.5281/zenodo.4091503.

Oladyshkin S, Class H, Nowak W (2013). “Bayesian Updating via Bootstrap Filtering Com-
bined with Data-Driven Polynomial Chaos Expansions: Methodology and Application to
History Matching for Carbon Dioxide Storage in Geological Formations.” Computational
Geosciences, 17(4), 671–687. doi:10.1007/s10596-013-9350-6.

Petris G (2010). “An R Package for Dynamic Linear Models.” Journal of Statistical Software,
36(1), 1–16. doi:10.18637/jss.v036.i12.

Petris G, Petrone S (2011). “State Space Models in R.” Journal of Statistical Software, 41(4),
1–25. doi:10.18637/jss.v041.i04.

Pitt MK (2002). “Smooth Particle Filters for Likelihood Evaluation and Maximisation.”
The Warwick Economics Research Paper Series (TWERPS) 651, University of War-
wick, Department of Economics. URL http://wrap.warwick.ac.uk/1536/1/WRAP_Pitt_
twerp651.pdf.

Pitt MK, Shephard N (1999). “Filtering via Simulation: Auxiliary Particle Filters.” Journal
of the American Statistical Association, 94(446), 590–599. doi:10.1080/01621459.1999.
10474153.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Us-
ing Gibbs Sampling.” In K Hornik, F Leisch, A Zeileis (eds.), Proceedings of the 3rd
International Workshop on Distributed Statistical Computing (DSC 2003). Technische
Universität Wien, Vienna, Austria. URL https://www.R-project.org/conferences/
DSC-2003/Proceedings/Plummer.pdf.

Pooley CM, Bishop SC, Marion G (2015). “Using Model-Based Proposals for Fast Parameter
Inference on Discrete State Space, Continuous-Time Markov Processes.” Journal of The
Royal Society Interface, 12(107). doi:10.1098/rsif.2015.0225.

Rasmussen DA, Volz EM, Koelle K (2014). “Phylodynamic Inference for Structured Epi-
demiological Models.” PLOS Computational Biology, 10(4), 1–16. doi:10.1371/journal.
pcbi.1003570.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

https://doi.org/10.18637/jss.v067.i10
https://doi.org/10.1137/130915376
https://doi.org/10.1111/j.1541-0420.2008.01073.x
https://doi.org/10.1111/j.1541-0420.2008.01073.x
https://doi.org/10.5281/zenodo.4091503
https://doi.org/10.1007/s10596-013-9350-6
https://doi.org/10.18637/jss.v036.i12
https://doi.org/10.18637/jss.v041.i04
http://wrap.warwick.ac.uk/1536/1/WRAP_Pitt_twerp651.pdf
http://wrap.warwick.ac.uk/1536/1/WRAP_Pitt_twerp651.pdf
https://doi.org/10.1080/01621459.1999.10474153
https://doi.org/10.1080/01621459.1999.10474153
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://www.R-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
https://doi.org/10.1098/rsif.2015.0225
https://doi.org/10.1371/journal.pcbi.1003570
https://doi.org/10.1371/journal.pcbi.1003570
https://www.R-project.org/


38 nimble and nimbleSMC: Sequential Monte Carlo Methods in R

Sherlock C, Thiery AH, Roberts GO, Rosenthal JS (2015). “On the Efficiency of Pseudo-
Marginal Random Walk Metropolis Algorithms.” The Annals of Statistics, 43(1), 238–275.
doi:10.1214/14-aos1278.

Silburt A, Gaidos E, Wu Y (2015). “A Statistical Reconstruction of the Planet Population
around Kepler Solar-Type Stars.” The Astrophysical Journal, 799(2), 180. doi:10.1088/
0004-637x/799/2/180.

Smith A, Doucet A, de Freitas N, Gordon N (2001). Sequential Monte Carlo Methods in
Practice. Springer-Verlag, New York, NY. doi:10.1007/978-1-4757-3437-9.

Storvik G (2002). “Particle Filters for State-Space Models with the Presence of Unknown
Static Parameters.” IEEE Transactions on Signal Processing, 50(2), 281–289. doi:10.
1109/78.978383.

Stroustrup B (2013). The C++ Programming Language. 4th edition. Addison-Wesley.

Todeschini A, Caron F, Fuentes M, Legrand P, Del Moral P (2014). “Biips: Software for
Bayesian Inference with Interacting Particle Systems.” arXiv:1412.3779 [stat.CO], URL
https://arxiv.org/abs/1412.3779.

Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2009). “Approximate Bayesian Com-
putation Scheme for Parameter Inference and Model Selection in Dynamical Systems.”
Journal of The Royal Society Interface, 6(31), 187–202. doi:10.1098/rsif.2008.0172.

Tusell F (2011). “Kalman Filtering in R.” Journal of Statistical Software, 39(2), 1–27. doi:
10.18637/jss.v039.i02.

Vrugt JA, Ter Braak CJF, Diks CGH, Schoups G (2013). “Hydrologic Data Assimilation
Using Particle Markov Chain Monte Carlo Simulation: Theory, Concepts and Applications.”
Advances in Water Resources, 51, 457 – 478. doi:10.1016/j.advwatres.2012.04.002.

Wikle CK, Milliff RF, Herbei R, Leeds WB (2013). “Modern Statistical Methods in
Oceanography: A Hierarchical Perspective.” Statistical Science, 28(4), 466–486. doi:
10.1214/13-sts436.

Yang Y, Eisenstein J (2013). “A Log-Linear Model for Unsupervised Text Normalization.” In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 61–72.

Yu C, El-Sheimy N, Lan H, Liu Z (2017). “Map-Based Indoor Pedestrian Navigation Using
an Auxiliary Particle Filter.” Micromachines, 8(7). doi:10.3390/mi8070225.

Zhou Y (2015). “vSMC: Parallel Sequential Monte Carlo in C++.” Journal of Statistical
Software, 62(1), 1–49. doi:10.18637/jss.v062.i09.

https://doi.org/10.1214/14-aos1278
https://doi.org/10.1088/0004-637x/799/2/180
https://doi.org/10.1088/0004-637x/799/2/180
https://doi.org/10.1007/978-1-4757-3437-9
https://doi.org/10.1109/78.978383
https://doi.org/10.1109/78.978383
https://arxiv.org/abs/1412.3779
https://doi.org/10.1098/rsif.2008.0172
https://doi.org/10.18637/jss.v039.i02
https://doi.org/10.18637/jss.v039.i02
https://doi.org/10.1016/j.advwatres.2012.04.002
https://doi.org/10.1214/13-sts436
https://doi.org/10.1214/13-sts436
https://doi.org/10.3390/mi8070225
https://doi.org/10.18637/jss.v062.i09


Journal of Statistical Software 39

Affiliation:
Nicholas Michaud, Perry de Valpine
Department of Environmental Science, Policy, and Management
University of California, Berkeley
Berkeley, California, 94720, United States of America
E-mail: nicholas.michaud@gmail.com, pdevalpine@berkeley.edu

Daniel Turek
Department of Mathematics and Statistics
Williams College
Williamstown, Massachusetts, 01267, United States of America
E-mail: dbt1@williams.edu

Christopher J. Paciorek
Department of Statistics
University of California, Berkeley
Berkeley, California, 94720, United States of America
E-mail: paciorek@stat.berkeley.edu

Dao Nguyen
Department of Mathematics
University of Mississippi
University, Mississippi, 38677, United States of America
E-mail: dxnguyen@olemiss.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

November 2021, Volume 100, Issue 3 Submitted: 2016-08-26
doi:10.18637/jss.v100.i03 Accepted: 2020-02-26

mailto:nicholas.michaud@gmail.com
mailto:pdevalpine@berkeley.edu
mailto:dbt1@williams.edu
mailto:paciorek@stat.berkeley.edu
mailto:dxnguyen@olemiss.edu
http://www.jstatsoft.org/
http://www.foastat.org/
https://doi.org/10.18637/jss.v100.i03

	Introduction
	Comparison to other software packages
	Sequential Monte Carlo methods for state-space models
	State-space models
	Filtering algorithms
	Bootstrap filter
	Auxiliary particle filter
	IF2 algorithm
	Particle MCMC methods
	Ensemble Kalman filter

	Creating and manipulating models in nimble
	Filtering given fixed parameters
	Inference on models with unknown parameters
	Particle marginal Metropolis-Hastings
	Stochastic volatility example
	Building and running PMMH

	Tuning PMCMC
	IF2
	Nile river flow example

	Tuning IF2

	Programming SMC algorithms in nimble
	Conclusion

