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Abstract

Graphlet analysis is a useful tool for describing local network topology around indi-
vidual nodes or edges. A node or an edge can be described by a vector containing the
counts of different kinds of graphlets (small induced subgraphs) in which it appears, or
the “roles” (orbits) it has within these graphlets. We implemented an R package with
functions for fast computation of such counts on sparse graphs. Instead of enumerating
all induced graphlets, our algorithm is based on the derived relations between the counts,
which decreases the time complexity by an order of magnitude in comparison with past
approaches.
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1. Introduction

Analysis of networks plays a prominent role in many areas of science and business, from genetic
and protein networks in bioinformatics to social networks in mining user data. Describing the
roles of individual nodes and edges, clustering them, and predicting their future development
requires observing their locally defined properties. One of the methods — used particularly in
bioinformatics — is based on counting graphlets and graphlet orbits.

Graphlets are small connected simple graphs (Przulj, Corneil, and Jurisica 2004). There
are 9 different graphlets with two to four nodes and 30 graphlets with up to five nodes. In
graphlet-based network analysis, we examine induced graphlets within the network: For each
node, we count the number of times the node touches an induced graphlet of each kind, which
gives a 9- or 30-dimensional vector description of the local topology surrounding the observed
node. One of the vector components represents, for instance, the number of times the node
is included in an induced star on five nodes.

Furthermore, we can group nodes of each graphlet into orbits (Przulj 2007) with respect to
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(b) Edge orbits.

Figure 1: Graphlets with 2-5 nodes with enumeration of orbits. Node colors and line shapes,
which are chosen arbitrarily, correspond to orbits within each graphlet. Node orbits are
enumerated as in Przulj (2007); edge orbit numbers are enumerated by increasing orbits of
the corresponding node pairs.
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the graphlet automorphisms (Figure 1(a)). Orbits define the “roles” of the nodes within the
graphlet. For instance, in a star on five nodes (G11), one node represents the center and
the remaining four nodes are the leaves; the nodes of the star thus form two different orbits
(numbered 23 and 22, respectively). Instead of counting only the number of appearances of
induced stars that touch an observed node in the network, we can count how many times the
node represents the center of such star (i.e., the node is connected to four nodes that are not
connected to each other) and how many times it has the role of a leaf (i.e., it is connected to a
node that is connected to another three nodes that are disconnected from each other and from
the observed node). This gives a finer description of the node’s vicinity with a 15-dimensional
vector for four-node graphlets and a 73-dimensional vector for five node graphlets.

Similar can be done for edges (Solava, Michaels, and Milenkovi¢ 2012): There are 68 edge
orbits for graphlets with 3-5 nodes, which allow for a characterization of an edge with a
68-dimensional vector (Figure 1(b)).

Figure 2 gives an illustration for a small network. Figure 2(a) shows the network, and Fig-
ures 2(b), 2(c) and 2(d) show all four-node subgraphs that include node C'; node C' appears in
orbits 5, 7 and 11. Table 2(e) shows all orbit counts for node C, including those belonging to
two- and tree-node subgraphs. Table 2(f) shows the orbit counts for all nodes and orbits. The
vector (row) corresponding to node C' is quite different from others (e.g., counts for orbits 2,
7, 11), which indicates its special place in the graph. Signatures of A and B, on the other
hand, are the same since the two nodes map to each other in an automorphism of the graph.!

The straightforward computation of orbit counts by enumeration takes O(nd*~1) time, where
n is the number of nodes (typically thousands or tens of thousands), d is the maximal node
degree (usually up to one hundred), and k is the graphlet size (4 or 5). We have recently
presented a combinatorial approach for counting orbits of nodes (Hocevar and Demsar 2013)
in time that is, for practical purposes, proportional to nd*~2. Using this technique, the
common-size networks from proteomics can be analyzed in a reasonable time of a few hours
on a common desktop computer. In this paper, we provide the first complete description
of the algorithm, including its novel extension to counting edge orbits (Section 2), and then
document the corresponding R package together with two usage examples (Section 3).

The notation used throughout the paper is summarized in Table 1.

2. Combinatorial approach to orbit counting

Let G = (V,E) be a simple graph with n vertices (V) and e edges (F). We assume that
the graph is sparse (e = O(n)). We will denote graphlets as G; and node orbits as O;. We
follow the enumeration by Przulj (2007) (see Figure 1(a)), in which the orbit numbers are
assigned somewhat arbitrarily but with the constraint that the indices of orbits belonging to
the graphlets with fewer edges are smaller than those belonging to the graphlets with more
edges. We will use E; to denote edge orbits, which we enumerate as shown in Figure 1(b).
Here we decided to ignore the pre-existing enumeration by Solava et al. (2012) and define a
more consistent one in which the edge orbits are ordered by the orbits of the corresponding
nodes.

The task is to count the number of times a node = appears in each orbit O;, or the number

In general, two nodes will have the same signature for k node graphlets if their local neighborhood of up
to k — 1 edges is the same.
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k1: XII:

a) Example network. b) Subgraphs with node C' in orbit 5.
¢) Subgraphs with node C' in orbit 7. (d) Subgraphs with node C in orbit 11.

Orbit Count

0 4 The count of orbit 0 equals the degree of the node.
1 1 The terminal node of a path on three nodes ({C, E, F'}).
2 5 The middle node of a path on three nodes

({A,C, DY, {A,C,E}, {B,C,D}, {B,C,E}, {D,C,E}).

3 1 Triangle ({4, B,C}).

5 3 The inner node of a path on four nodes (Fig. b).

7 2 The central node of a 3-edge star (Fig. c).

11 2 The central node of the L3 lollipop graph (Fig. d).

(e) Non-zero orbit counts for node C.
Obit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A 22011010002 0 0 0 O
B 22 01 1010002 0 0 0 O0
¢ 41510302000 2 0 0 O
D 13 001 0 2 0010 0O 0 0 O
E 23 1 00 3 2 001 0 O 0 0 0
F 1100 3 0 0 0 0O OO O O O O

(f) Orbit counts for all nodes.

Figure 2: Illustration of orbit counts for a simple network.

of times an edge e appears in orbit E;. We will denote the two numbers by o;(z) and e;(x);
where possible, we will omit x and write only o; and e;. The algorithm computes the counts
for all graph nodes (or edges). Computation for just a few nodes can be done faster using a
brute force approach (exhaustive enumeration).

Past approaches — such as that in GraphCrunch (Milenkovié¢, Lai, and Przulj 2008) and RAGE
(rapid graphlet enumerator; Marcus and Shavitt 2012) — are based on exhaustive enumeration
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G = (V,E) The observed graph with nodes V' and edges F.
n  Number of nodes in the graph.
e Number of edges.
d Maximal node degree.
k  Graphlet size.
O; Node orbit 1.
oi(z) (or 0;) The number of times that node x appears in orbit O;;

we use 0; to reduce the clutter where possible.
E; Edge orbit .

e;(x) (or e;) The number of times that node x appears in orbit Ej.
N(x1,22,...x;) The set of common neighbors of nodes z1, xa, ..., z;.
c(xy,x2,...x;) The number of common neighbors of nodes x1, 2, ..., ;.
G[{z1,z2,...2;}] A subgraph of G on nodes z1, za, ..., ;.

Symbol = denotes graph isomorphism.

Table 1: Notation used in the paper.

of induced subgraphs.? Their theoretical and empirical complexity of enumerating graphlets
of size k is O(nd*~1), where d is the maximal node degree in the graph. Our approach builds
on the work of Kloks, Kratsch, and Miiller (2000), who constructed a system of equations for
counting induced subgraphs with four-nodes, and Kowaluk, Lingas, and Lundell (2011), who
generalized it for larger subgraphs. We use a similar principle to count orbits; besides, our
approach scales better for sparse graphs. In comparison with enumeration-based algorithms,
the combinatorial approach decreases the practical time complexity by the factor of d by
directly enumerating only the graphlets of size k — 1 and using them to compute the counts
for graphlets of size k.

2.1. Node orbits

We shall demonstrate the basic idea with an example.

Let x be a node in the graph G. o45(x) represents the number of times x appears in orbit
Oys, that is, the number of ways in which G19 can be embedded in G so that = is in orbit
Oy45. To reduce the clutter, we shall omit x and denote this by o45. Counts o056, 02 and ogs
are defined similarly. We will show that the following relation holds for any z:

045 + 3056 + 2062 + 2065 = Z (c(v,t) —1), (1)
u,v,t: G[{z,u,v,t}| =Gy
v<t A v,t¢€N(x)

where u, v and t are triplets of nodes that fulfill certain conditions (details are explained
below) and c¢(v,t) is the number of common neighbors of v and ¢. The left-hand side of the
equation is a linear combination of orbit counts that we wish to compute and the right-hand
side is a statistics that is easy to obtain.

Equation 1 can be constructed as follows.? Let the subgraph on some nodes x, u, v and ¢
be isomorphic to Gg with x in Og (Figure 3(a)). Now we observe the possible extensions of

2Recent versions of GraphCrunch also already include a part of our approach described here.
3This description is intended to present the reasoning behind the relations, while the actual construction
was slightly different in order to obtain a useful system of equations. Details are given in Section 2.3.
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Figure 3: Derivation of the relation between o455, 056, 062 and og5. Solid lines belong to graphlet
G, dashed lines represent the required edges (as described in Section 2.3) and dotted lines
represent additional edges whose presence or absence determines the orbit of the node =x.
Gray lines represent edges to other nodes of G.

G[{x,u,v,t}] with a node w € V that is attached to v and ¢t. For each such w € N(v,t), the
subgraph on x,u,v,t, w is isomorphic

to Gho, if w is not connected to = and u (Fig. 3(b)), or

to Glas, if w is connected to u, but not to = (Fig. 3(c)), or

to Gas, if w is connected to z, but not to u (Fig. 3(d)), or

to Gag, if w is connected to = and u (Fig. 3(e)).
This puts z in orbits Oy4s, Osg, Ogo or Ogs, respectively. Therefore,
05 + 056 + 0y + 05 = [N (v, 1) = 1 = c(v, ) — 1, (2)

where o} represent orbit counts considering only these particular nodes (and annotations) u,
v, t, and all common neighbors of v and ¢, N(v,t). The term —1 is needed since one of the
members of N(v,t) is also wu.

Equation 1 relates the total orbit counts o45, 056, 02 and ogs for a fixed node x. We construct
it by summing the right-hand side of (2), c¢(v,t) — 1, over all triplets {u,v,t} C V such that
G{z,u,v,t}] =2 Gy and v,t ¢ N(z) (to put = in Og within this subgraph) and with v < ¢
under some arbitrary ordering of nodes, that is,

> (c(v,t) = 1). (3)
u,,t: G[{z,u,v,t}]=Gg
v<t A v,tgN(z)

Despite the condition v < ¢, some subgraphs are counted multiple times.

o Each subgraph with z in Os¢ (G[{z,u,v,t,w}|] = Ga3, Figure 3(c)) is counted thrice:
The nodes x and u are fixed while v, t and w are exchanging their roles in three possible
permutations (the condition v < ¢ prohibits the other three out of the six possible
permutations).
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o If x belongs to Og2 (Gl{z,u,v,t,w}] = Gos, Figure 3(d)), the subgraph on quintuplet
{z,u,v,t,w} is counted twice, with exchanged roles of v and w; the nodes v and t are
fixed due to v < t.

o The configuration in which x is in Ogs (G[{z,u,v,t,w}] = Gag, Figure 3(e)) is similar
to that of Ogs.

o The configuration for = in O45 (G[{z,u,v,t,w}] = Gig, Figure 3(b)) is unique: For
quintuplet {z,u,v,t,w} in z € Oys, the conditions v < t and v,t ¢ N(z) allow for only
one possible annotation of the nodes.

After accounting for these multiple counts of the same orbit when summing (2) over all
applicable triplets u, v, t (as in (3)), we get Equation 1. To evaluate such equations we
need to pre-compute values ¢(v,t) and sum them over four-node induced subgraphs of the
network. Both of these steps require an enumeration of all four-node induced subgraphs,
which is the bottleneck of the method. Because every enumerated four-node subgraph will
contribute to the sum on the right side of one or more equations, we can optimize the code and
avoid explicitly checking the summation conditions in the equations because they are already
included in the enumeration process (see the code snippet in Section 2.4 for illustration).

Certain relations involve more complicated symmetries, for instance

0374 2068 + 2064 + 2063 + 4062 + 053 + 051 + 4049 = Z (c(u) -2+ C('U) — 2) . (4)
u,v,t: G[{z,u,v,t}]=Gs
u<v A u,vEN(x)

The sum runs over all induced subgraphs in G that put node = in orbit Og in G5. Nodes u and
v are its neighbors and t is the node opposite of x in GG5. We obtain the same graphlet if we
attach a new node w either to u or to v, and there are ¢(u) — 2 and ¢(v) — 2 such possibilities.
There are also three optional edges (to z, y and u or v), which decide the orbit of = in the
extended graphlet; the resulting orbit can be Os7, Ogs, Oga, Og3, Og2, Os3, Os1 or Oyg.

2.2. Edge orbits

Relations for edge orbits are derived in the same way. For instance, let (x,y) represent an
edge of a square (graphlet G5). Let us label the remaining two nodes with u € N(x)\{y} and
v € N(y)\{z} (Figure 4(a)). Extending this pattern with a node w that spans over the edge
(u,v) leads to three possible graphlets and hence three different edge orbits of the edge (x,y)
(Figure 4 (b—d)).

Orbit Fsg arises when w is adjacent to either x or y, while the other two orbits, F43 and FEjg3
can only arise in one way. Hence the relation between the orbits is

e43 + 2e56 + €63 = > c(u,v). (5)
u,v: G’[{Ly,u,v}}%G%
(z,y)€EE N ueN(z) N vEN(y)

2.3. System of equations

We constructed the equations similar to those above to relate each orbit with orbits from
graphlets with a larger number of edges. Complete lists of equations are provided in the
appendices.
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w R
u % u_ / \\\ v
5 43
x Y X y
(a) Gs (b) G (¢) Gas with (z,w) and (y,w) (d) Gas

Figure 4: Derivation of the relation between ey3, e5 and egz. Solid lines belong to graphlet
G5, dashed lines represent the required edges (since w is defined to span over the edge (u,v))
and dotted lines represent additional edges whose presence or absence determines the orbit
of the edge (z,y). Gray lines represent edges to other nodes of G.

For instance, Equation 1 was constructed specifically to relate o45 with higher orbits. The
actual construction of the equation goes in the opposite direction from that presented in the
introductory example. We started with the graphlet G19, to which the orbit O45 belongs and
picked one of the nodes (labeled w in the above case). We assumed that w is adjacent to v and
t, and examined the graphlets in which w may be also adjacent to w and/or x. This ensures
that the equation that is set up with Oy5 in mind relates O45 with orbits with higher indices
since these graphlets have more edges than GG19. As a consequence, the resulting system of
equations is triangular, and thus independent and easy to solve by going backwards from the
higher orbits (starting with O14 or O72, which belong to complete graphs) towards lower orbits.

We impose several constraints on selection of w. Node w cannot coincide with x, or with x
or y when computing orbits of edge (x,y). We further require that removal of w does not
break the remaining nodes into disconnected subgraphs. Node w must have at most k — 2
neighbors; when it does have k — 2 neighbors, they must be connected. This allows for more
time- and space-efficient computations of orbits, as described in Section 2.4. FExistence of
such nodes for each orbit of four- and five-node graphlets can be proven by exhaustive search,
with exception of G5, which is handled as a special case.

All equations have the following general form:

a10i, + a20;, + ... + a;0;, = Z (e(S1) +¢(S2) +...+¢(Su)+CO), (6)
S:G[S|~G;
z€S A cond(S)

where cond(S) is a set of conditions that constrain the embedding of G[S] into G and assign
labels to nodes. For instance, in Equation 1, condition v,t ¢ N(z) assigns the labels v and ¢
to the nodes in orbit O19 and v < t ensures that the same quadruplet of nodes is not counted
twice.

The sum runs over subgraphs G[S] isomorphic to some graphlet G; on k — 1 nodes, that
is, over some three-node graphlet when computing the orbits in four-node graphlets, or over
some four-node graphlet when computing orbits in five-node graphlets. The subgraph must
include x, and the conditions in the sum put x into some fixed orbit. Additional conditions
may impose ordering on the remaining nodes of the graphlet to decrease the number of
symmetries.
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The terms in the sum are the number of common neighbors of some subsets of nodes in the
subgraph (S C S). The number of such terms is between 1 and 3. The size of Sj is also
between 1-3, that is, the terms refer to node degrees and to the number of common neighbors
of pairs and triplets of nodes. The criteria for the choice of node w, which are described
above, ensure that these terms can be efficiently computed using some pre-computed data as
described in the following section.

The left-hand side is a fixed linear combination of orbits to which the node x evolves after
extending G; with another node connected to one of subsets Si. The coefficients reflect the
symmetries in the graphlets with regard to node assignments.

We prepared a system of 10 equations that relate the 11 node orbits of four-node graphlets, and
a system of 57 equations that relate the 58 node orbits of the five-node graphlets. Likewise,
we have constructed 9 equations that relate the 10 edge orbits for four-node graphlets and 55
equations for 56 edge orbits on five-node graphlets. By selecting different nodes w, we have
empirically verified that it is impossible to construct a full-rank system using our approach
and the constraints we put on w.

Due to the rank’s deficiency, one of the orbits must be enumerated directly. The most suitable
candidates are the orbits belonging to complete graphlets (O14 and O79 for nodes, and Ej9
and Fgg for edges). First, this allows for a straightforward computation of the orbits since
the system is triangular so that lower orbits are computed from the higher. Second, since
we assume that the graphs are sparse, we can efficiently compute these orbits by using an
enumeration method similar to the Bron-Kerbosch maximal clique enumeration algorithm
(Bron and Kerbosch 1973).

2.4. Algorithm

The algorithm consists of pre-computation of some data, followed by computation of orbit
counts for each node or edge.

1. Pre-computation:

e Count the complete graphlets touched by each node or edge.

e Count the common neighbors of each pair and each connected triplet of vertices.
2. For each node or edge:

e Compute the right-hand sides by enumeration of £ — 1 node graphs using the pre-
computed data above.

e Solve the system of linear equations.

Our implementation of the algorithm represents the graph with adjacency and incidence lists,
which are appropriate for sparse graphs. If the graph has less than 30000 nodes, we also
construct an adjacency matrix. The matrix, which uses 1 bit per edge and takes at most
around 100 MB, allows us to check for existence of edges between any given pair of nodes in
constant time. Without it, the time complexity of the look-up for an edge between two nodes
is proportional to the logarithm of the number of neighbors of one of the nodes.

In the following, we will describe each step in more detail.
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. Pre-computation:

o For each node, count the number of complete graphlets in which the node or edge
participates. We build cliques of size k from cliques of size £ — 1 by maintaining
a set of candidate nodes that are adjacent to all nodes in the smaller clique. This
procedure is similar to the Bron-Kerbosch algorithm with the difference that we
are not interested in maximal cliques but in all cliques of a given size.

Although the theoretical upper bound of the time complexity of this step is O(ed*2),
where d is the maximal node degree, the actual contribution of this step to the total
running time is negligible since complete subgraphs (cliques) in sparse networks
are rare.

e Compute and store the number of common neighbors for each pair of adjacent
vertices. This takes O(ed) time and O(e) space. For computing the orbits in five-
node graphlet, we also compute the number of paths of length 2 between each pair
of nodes for which such a path exists, and the number of common neighbors for
all triplets of connected nodes. This takes O(ed?) time and O(ed) space.

. For each node or edge:

e Compute the right-hand sides of the system of the linear equations. Its general
form is shown in Equation 6. For four-node graphlets, the sums run over three-
node paths or triangles in which the node appears. For five-node graphlets, they
run over four-node graphlets that the node touches.

Right-hand sides of equations that sum over the same graphlet can be computed
simultaneously. The following code chunk illustrates the computation of the right-
hand sides of equations for orbits 13, 16 and 20 for an edge (z,y),

e13 + 2e99 + 2e98 + €31 + eq0 + 2e44 + 2€54 = Z (C(CL) + C(b) — 2),
(,l,b: G[{ﬁ,y,a,b}}gGg,
a€N(z) N bEN(y)

2e16 + 2e20 + 2e22 + €31 + 2e40 + €44 + 2€54 = > (c(z) +cly) — 4),
aab: G[{x,y,a,b}}EGg
a€N(z) N bEN(y)

€20 T €40 + €54 = Z c(x,y).
ab: G[{z,y,a,b}|=G3
a€N(xz) A bEN(y)

The code for computation of the right-hand sides is as follows.

for (int nx = 0; nx < degl[x]; nx++) {

int const &a = adj[x][nx];

if (a ==y || adjacent(y, a))
continue;

for (int ny = 0; ny < deglyl; ny++) {
int comnst &b = adjly][ny];
if (b == x || adjacent(x,b) || adjacent(a,b))

continue;

EORBIT(3)++;
f_13 += (deglal - 1) + (deglb] - 1);
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f_16 += (deglx] - 2) + (deglyl - 2);
f_20 += trilxy];
}
}

Here, deg[x] and deg[y] are degrees of nodes = and y, and adj [x] and adj[y] are
arrays with indices of their neighbors. Function adjacent (u, t) checks whether
nodes u and t are adjacent (with a time complexity O(1) or O(logd), depending
on whether we construct an adjacency matrix or not) and tri[xy] is the number
of triangles spanning over the edge between x and y. Variables f_13, f_16 and
f_20 contain the right-hand sides of equations for O3, O16 and Oa.

The if-clauses check that the edge belongs to F3 and impose additional constraints
as needed. The computation is sped up by using the pre-computed data from the
first two steps. In the above case, the right-hand sides of equations for orbits 13, 16
and 20 are (c(a) —1)+(c(b)—1), (¢(x) —2)+(c(y) —2) and ¢(x, y), respectively. The
former two are trivial to compute from the graph, and the latter is pre-computed
in the second step above.

Note that the orbits for £ — 1-node graphlets (as the orbit 3, above) are computed
directly.

The time complexity of this step is O(ed*™3).

e Solve the system of equations to obtain orbit counts. Since the system is triangular
and the coefficients are fixed, this does not require decomposing or inverting a
matrix; the orbits are computed in order, from the higher towards the lower indices,
starting with the orbit belonging to the complete graphlet, as for instance, in the
following code snippet from the computation of edge orbits.

EORBIT(67) = C5[e]l;

EORBIT(66) = (f_66 - 6 * EORBIT(67)) / 2;

EORBIT(65) = (f_65 - 6 * EORBIT(67));

EORBIT(64) = (f_64 - 2 * EORBIT(66));

EORBIT(63) = (f_63 - 2 * EORBIT(65)) / 2;

EORBIT(62) = (f_62 - 2 * EORBIT(66) - 3 * EORBIT(67));
EORBIT(61) = (f_61 - 2 * EORBIT(65) - 4 * EORBIT(66)

- 12 * EORBIT(67));
EORBIT(60) = (f_60 - 1 * EORBIT(65) - 3 * EORBIT(67));

The system of equations is also rather sparse, with each equation having at most
(but usually much less than) eight variables. These nice properties — sparse tri-
angular shape — do not make the algorithm faster since the coefficients are fixed.
Even a more general matrix could be inverted in advance and hard-coded into the
program. The advantage of triangularity, besides the interpretability of the pro-
gram, is the numerical accuracy since the entire computation stays in the realm of
whole numbers.*

The system is solved once for each node (or edge), so the time complexity is O(n)
(O(e) for edge-orbits).

4The implementation of the R package uses 64-bit integers internally, but returns a matrix of double
precision numbers since some orbit counts for larger graphs do not fit into 32-bit integers used in R.
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The total time complexity for all four steps is O(ed*~2 + ed"*=3 4 ed*=3 + n) for nodes and
O(ed"2 4 ed"—3 + ed"=3 +e) for edges. The theoretical complexity is thus O(ed*~2), which is
the same as for direct enumeration algorithms. Since large networks are typically sparse, the
actual contribution of the first term, which comes from enumerating the cliques with k£ nodes,
is negligible in practice. Empirical measurements indeed show that the time complexity
is proportional to ed*~3, that is, O(ed) for four-node graphlets and O(ed?) for five-node
graphlets.

3. The orca package

Package orca (orbit counter) is written mostly in C++-, with coercion and wrapper functions in
R. The package requires R version 2.15 or higher. The package is available from the Compre-
hensive R Archive Network (CRAN) at https://CRAN.R-project.org/package=orca (Hoce-
var and Demsar 2016). Due to using the C4++ standard 11, which is not available on all plat-
forms, CRAN only hosts the package for R 3.1. Packages for R 2.15 and binaries for OS X and
MS Windows are available on the supplement page (http://www.biolab.si/supp/Rorca/).

3.1. Functions

The package provides four functions: count4 and count5 count the node orbits of graphlets
on up to four and up to five nodes, and ecount4 and ecount5 count the edge orbits. All
functions accept a single argument, a graph stored in

 a graph object from the graph package (Gentleman, Whalen, Huber, and Falcon 2016);

e an e X 2 edge matrix in which each row contains a pair of nodes given by one-based
integer indices; or

e a data frame in the same format.

Functions return a numeric matrix with rows corresponding to graph nodes or edges, and the
columns corresponding to orbits, with column 1 corresponding to orbit 0, column 2 to orbit
1 and so forth.’

We will show the package usage on the Karate club network (Zachary 1977), which is included
in the package. The network is visualized in Figure 5.

R> library("orca")

R> data("karate", package = "orca")
R> dim(karate)

[1]1 78 2

R> max(karate)

[1] 34

5In the paper we adhere to the traditional numbering of orbits, which starts with 0, to avoid confusion. In
practice, the numbering seldom matters since we typically observe the differences between orbit signatures of
nodes and edges, in which we consider the whole vectors and not individual orbits.
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Figure 5: Karate club network.

The network has 78 edges (the number of rows of the matrix) and 34 nodes (the maximal
node index in the matrix).

R> orbits <- count4(karate)
R> dim(orbits)

[1] 34 15

The result of count4, which counts node orbits for graphlets with up to four nodes, has 34
rows (the number of nodes) and 15 columns (the number of orbits).

The first four orbits correspond to three-node graphlets. Here are the orbit counts of four-node
graphlets for the first four nodes.

R> orbits[1:4, 5:15]

04 05 06 07 08 09 010 011 o012 013 014

[1,] 81 197 13 352 10 6 34 171 2 30 7
[2,] 73 56 33 32 6 8 80 27 2 18 7
[3,] 72 179 84 54 20 17 75 51 6 8 7
[4,] 49 11 56 1 0 5 81 5 4 7 7

Note that for such small networks a visualization reveals more than orbit counts. Orbit counts
become useful on large networks, which are difficult to plot out.

3.2. Usage example on the Wikipedia for Schools network

Thiel and Berthold (2012) argue that in exploring networks we are not necessarily interested
in nodes that are closely positioned to the query node (spatial similarity), but also in nodes
that have a similar neighborhood structure (structural similarity). They proposed activation
spreading signature as a topological description of the local neighborhood of graph vertices
and demonstrate its use on the Wikipedia for Schools network. We conducted a similar
experiment by using orbit counts instead of activation spreading for the signature.

We downloaded the 2013 edition of Wikipedia for Schools (SOS Children 2013) and extracted
the network of internal links.® We computed the orbits for four-node graphlets and found

5The network is available for download at http://www.biolab.si/supp/Rorca/.
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the nearest neighbors (in terms of Euclidean distances between orbit counts) using FNN
(Beygelzimer, Kakadet, Langford, Arya, Mount, and Li 2013) for a few nodes.

R> library("orca")
R> library("FNN")
R> nodes <- scan("schools-wiki-nodes.txt", what = "", sep = "\n")
R> edges <- read.table("schools-wiki-edges.txt")
R> orbits <- count4(edges)
R> nn <- get.knn(orbits, k = 10)
R> neighbors <- nn$nn.index
R> distances <- nn$nn.dist
R> check <- c("Canada", "Germany", "Isaac Newton", "Albert Einstein",
+ "Mahatma Gandhi'", "Mahabharata")
R> node_indices <- match(check, nodes)
R> for (i in 1:length(check)) {
cat("\n\n", check[i], ": ", sep = "")
s <- mapply(function(x, y) sprintf("J)s (}i)", x, y),
nodes [neighbors[node_indices[i], 11,
round (distances[node_indices[i], ] / 1000))
cat(s, sep = ", ")

}

+ + + + + +

Computation of orbits for 4-node graphlets takes 6.1 seconds on a desktop computer. In
comparison, GraphCrunch as currently the fastest pure enumeration approach’ takes 13.8
minutes. Computation of 5-node orbits takes 115 minutes; GraphCrunch needs 249 hours.
This represents a speed-up by a factor of about 130.

After the nodes are described by orbit counts, we find the ten most similar nodes (as defined
by Euclidean distance, for the sake of simplicity) to several selected nodes. Results, together
with distances divided by 1000, are as follows.

Canada: Japan (3548), Italy (4224), Russia (6962), Africa (15546),
Spain (15963), London (18186), Australia (18356), Latin (19360),
China (20146), 19th century (26147)

Germany: India (3384), World War II (7343), China (16753), Australia (18652),
London (19340), Italy (32870), Europe (35056), Canada (36875), Japan (40001),
Russia (43656)

Isaac Newton: Temperature (252), Church of England (297), Jupiter (420),
University of Cambridge (432), Planet (441), Science (518),
Albert Einstein (519), Evolution (545), Elephant (548), Insect (597)

Albert Einstein: Science (165), Climate change (249), Charles Darwin (267),
Jupiter (332), Celsius (366), United Kingdom of Great Britain and Ireland
(415), Church of England (435), United States Congress (452),

"Newer versions of GraphCrunch also already include some parts of the algorithm described here.
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Black Sea (471), Civilization (501)

Mahatma Gandhi: 0il refinery (97), Friedrich Engels (98), 0il shale (100),
Impressionism (103), Rugby league (103), Tropic of Cancer (111),

Reggae (111), Non-governmental organization (125),

John Maynard Keynes (128), John Stuart Mill (135)

Mahabharata: Feather (38), Shiva (38), Guitar (62), John Vanbrugh (66),
Fever (66), Introduction to evolution (68), Henry IV of England (69),
Microscope (69), René Descartes (71), 1754 (72)

The results for Canada and Germany are impressive. The two nodes have similar orbit
counts — and thus a similar role in the local network topology — as nodes Japan, Italy, Russia
and other nodes representing countries, cities and regions. This would indicate that it is
possible to recognize the nodes corresponding to countries based on the local network structure
represented by orbit counts.

The node orbits — and thus the structure of the network around them — for Isaac Newton
and Albert Einstein are also similar to those of other nodes related to physics. The inclusion
of World War II in the nodes similar to Germany, and the Church of England with Isaac
Newton may, however, be just an instance of the Texas sharpshooter phenomenon. Results
for Mahatma Gandhi and Mahabharata are considerably less satisfactory as these two nodes
are connected to unrelated nodes.

Exploring why the topology around the nodes is similar in one case and not in another is
beyond the scope of this paper.® While this example provides an alternative take at the
problem explored by Thiel and Berthold (2012), graphlet analysis is most often used in
bioinformatics, where orbit counts are assumed to reflect the roles of genes or proteins in
the observed networks. An interested reader may find further examples in the cited works of
Przulj and Milenkovié.

4. Conclusion

We presented a new package orca for computing the graphlet orbit counts for nodes and edges.
This paper provides the first complete description of the underlying algorithm, which runs
much faster than the previous approaches; a more detailed comparison is available in Hoc¢evar
and Demsar (2013). The novel contribution of the paper is also the generalization of the
method to counting the orbits for edges. The package is available on the CRAN repository
under the GPL-3 license.
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A. Equations for node-orbit counts in 4-graphlets

Let p(u,v) denote the number of paths on three nodes that start at node u, continue with
v and end with some node ¢, which is not connected to u. We can compute p(u,v) as
p(“a U) = deg(v) -1- c(u,v).

012 + 3014 = > cly,z) —1
Y21 y<z,G[{z,y,2}|=Go
2013 + 6014 = Z (C(xu y) - 1) + (C(l‘, Z) - 1)
y,2: y<z,G[{z,y,2}|=G
010 + 2013 = Z p(y,2) + p(z,9)
y,2: y<z,G[{z,y,2}|=G>
2011 + 2013 = > p(y,x) + p(z, )
Y21 y<z,G[{z,y,2}|=G>
607 + 2011 = Z (p(f%x) - 1) + (p(z7$) - 1)
y,2: y<z,y,2€ N (z),G[{z,y,2}|2G1
05 + 208 = > p(z,y) + p(, 2)
Y,z y<z,y,z6N(m),G[{x,y7z}]%Gl
206 + 209 = p(x,y) —1
y,2: 2,2EN (y),G[{z,y,2}]=G1
209 + 2019 = C(y7 Z)
y,2: 2,2EN (y),G[{,y,2}]=G1
04 + 208 = p(y,2)
Y,z ,2EN (y),G[{z,y,2}]=G1
208 + 2012 = c(x,z) —1

y,2: 2,2E€N (y),G{z,y,2}]=G1

B. Equations for edge-orbit counts in 4-graphlets

2e10 + 2611 = Z (c(z,y) — 1)
z: G{z,y,2}|=G2
69+4€11 = Z (C(%,Z) +C(y,2’) _2)

z: G[{z,y,2}| =G>
es + eg + 4deig + 4de11 =

(]

(c(x) +c(y) —4)

z: G{z,y,2} =G>

er +eg +2eq = > (c(z) —2)
z: G{z,y,2}=G2
2e6 +eg = Z c(y, z) + Z c(x, z)
z: zEN (y)ANG[{z,y,2}|=G1 z: zEN (2)AG[{z,y,2}|=G1
2e5 + eg = Z (c(z,2) — 1)+ Z (c(y,2) = 1)

z: zEN(y)AG[{z,y,2}|=G1 z: zEN(2) NG[{z,y,z}|=2G1
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2e4 + 2e6 + €3 + €9 = Z (C(y) -2)+ Z (C(:L’) —-2)
z: 2zEN (y)AG[{z,y,2}]=CG1 z: zEN(2)AG[{z,y,2}|=G1

2e3 + 2e5 +eg + eg = Z (C(l’) — 1) + Z (C(y) - 1)
z: zEN (y)ANG[{z,y,2}|=G1 z: zEN (2)AG[{z,y,2}|=G1

€9 + 2e5 + 2e6 + eg = Z (c(z) = 1)

z: zEN (y)UN (2)AG[{z,y,2}=G1

C. Equations for node-orbit counts in 5-graphlets

Conditions, F;, define the order of nodes and put x in orbit O;; e.g., in Pi3 node x is in orbit
O13.

( )=u<v<tAG[{z,u,vt} =

( ) = v<t/\(vt)¢E/\G[{muvt}]

( )=u<vA(z,t)¢ ENG[{z,u,v,t}] =

( )= u<v/\uv§éN()/\G[{x,u,v,t}]:

( )=x,u ¢ N(t) ANGl{z,u,v,t}] = Gg

(z,u,v,t) =v <tAwv,t ¢ N(x)AG[{z,u,v,t}] =G

( )=u<vAu,v€ N(x)ANG{z,u,v,t}] =G5

( J=u<v<tAu,v,t € N(z)ANG{z,u,v,t}] =Gy
( y=v<tAxzwv,teNu)AG{z,uuvt}] =G

( )=u,v € N(z) At e Nw)AG{z,u,v,t}] = Gs

( )=x,v€ N(u) At € N(v)ANG{z,u,v,t}] = G

Equations:

2071 + 12073 = Z (c(z,u,v) — 1) + (e(x,u, t) — 1) + (c(x,v,t) — 1)

w,v,t: Pra(x,u,v,t)

070 + 4079 = Z c(u,v,t) — 1

u,v,t: Pra(x,u,v,t)

4069 + 2071 = Z c(z,v,t) —1

u,w,t: Pr3(z,u,v,t)

068 + 2071 = Z c(u,v,t) — 1

u,v,t: Pr3(z,u,v,t)
067 + 12075 + 407y = 3 (c(z,u) = 2) + (c(z,v) = 2) + (c(z,t) — 2)
u,v,t: Pra(x,u,v,t)
066 + 12079 + 2071 + 30709 = Z (c(u,v) = 2) + (c(u, t) —2) + (c(v,t) —2)
w,v,t: Pra(z,u,v,t)
2065 + 3070 = Z c(u, v, 1)

u,v,t: Pro(z,u,v,t)

064 + 2071 + 4ogg + 068 = > c(v,t) — 2

w,v,t: Pr3(x,u,v,t)
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063 + 3070 + 2068 = Z clx,t) —2

w,v,t: Pro(z,u,v,t)

2062 + 068 = > c(u,v,t)

w,v,t: Ps(x,u,v,t)

2061 + 4o71 + 8ogg + 2067 = Z (c(z,v) = 1) + (e(z, 1) — 1)

u,v,t: P13(x,u,v,t)
060 + 4o71 + 2068 + 2067 = > (e(uv) = 1) +

u,v,t: Pr3(z,u,v,t)

059 + 6079 + 2068 + 40g5 = Z (c(u,t) — 1) +

u,,t: Pro(z,u,v,t)

(c(u,t) = 1)
(c(v,t) = 1)

058 + 4072 + 2071 + 07 = Z c(z) —3

w,v,t: Pra(z,u,v,t)

057 + 12072 + 4071 + 3070 + 067 + 2066 = > (c(u) = 3) + (c(v) = 3) + (c(t) — 3)

w,v,t: Pra(x,u,v,t)
3056 + 2065 = Z c(u,v,t)
u,v,t: Py (z,u,0,t)
3055 + 2071 + 2067 = Z C(I, u) —

u,v,t: Pr3(z,u,v,t)

2054 + 3070 + 0gg + 2065 = Z c(u, U)

w,v,t: Pro(z,u,v,t)

2

-2

053 + 2068 + 2064 + 2063 = Z c(r,u) + c(z,v)

u,v,t: Pg(z,u,v,t)

2052 + 2066 + 2064 + 059 = > c(u, )

wu,v,t: Pro(z,u,v,t)

-1

051 + 2068 + 2063 + 4ogo = Z c(u,t) + c(t,v)

w,v,t: Pg(x,u,v,t)

3050 + 068 + 2063 = > c(w,t) —2

u,v,t: Pg(z,u,v,t)

2049 + 068 + 064 + 2062 = Z c(u,v) —2

u,w,t: Py(z,u,v,t)

048 + 4071 + 8069 + 2068 + 2067 + 2064 + 2061 + 060 = Z

(c(v) = 2) + (e(t) = 2)

w,v,t: Pr3(z,u,v,t)

047 + 3070 + 2068 + 066 + 063 + 060 = >

u,v,t: Pro(x,u,v,t)

046 + 3070 + 2068 + 2065 + 063 + 059 = >

c(x)—2

c(t) — 2

w,v,t: Pro(z,u,v,t)

045 + 2065 + 2062 + 3056 = Z c(v,t)

u,v,t: Po(z,u,v,t)

4044 + 067 + 2061 = Z c(w, )

w,v,t: Pr1(z,u,v,t)

-1

2043 + 2066 + 060 + 059 = Z C(’U, t)

u,v,t: Pro(z,u,v,t)

19
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049 + 2071 + 4ogg + 2067 + 2061 + 3055 = Z C(l‘) -3
u,v,t: Pr3(z,u,v,t)
041 + 2071 + 068 + 2067 + 060 + 3055 = Z c(u) —3
w,v,t: P13 (z,u,v,t)
040 + 6070 + 2068 + 2066 + 40g5 + 060 + 059 + 4054 = Z (c(u) —3) + (e(v) — 3)
w,v,t: Pra(z,u,v,t)
2039 + 4065 + 059 + 6056 = > (c(u,v) = 1) + (c(u, ) — 1)
u,v,t: Po(z,u,v,t)
038 + 068 + 064 + 2063 + 053 + 3050 = Z c(z) —2
u,v,t: Pg(z,u,0,t)
037 + 2068 + 2064 + 2063 + 4062 + 053 + 051 + 4049 = Z (c(u) = 2) + (c(v) — 2)
w,v,t: Py(z,u,v,t)
036 1+ 068 + 2063 + 2062 + 051 + 3050 = Z ct) —2
u,v,t: Py(z,u,v,t)
2035 + 059 + 2050 + 2045 = Z c(u, t) -1
u,,t: Py(z,u,0,t)
2034 + 059 + 2052 + 051 = > c(z,t)
u,v,t: Py(x,u,v0,t)
2033 + 067 + 2061 + 3058 + 4044 + 2042 = Z c(x) =3
wu,v,t: Pr1(z,u,v,t)
2032 + 2066 + 060 + 059 + 2057 4 2043 + 2041 + 040 = Z c(v) =3
u,v,t: Pio(z,u,v,t)
031 + 2065 + 059 + 3056 + 043 + 2039 = Z c(u) -3
u,v,t: Po(z,u,v,t)
030 + 067 + 063 + 2061 + 053 + 404q = Z c(t) =1
w,v,t: P11 (x,u,v,t)
029 + 2066 + 2064 + 060 + 059 + 053 + 2052 + 2043 = Z c(t) =1
u,v,t: Pro(x,u,v,t)
098 + 2065 + 2062 + 059 + 051 + 043 = > c(z) —1
u,,t: Py (z,u,0,t)
2097 + 059 + 051 + 2045 = Z c(v,t)
w,v,t: Py(z,u,0,t)
026 + 2067 + 2063 + 2061 + 6058 + 053 + 2047 + 2042 = (c(u) —2) + (e(v) — 2)
u,v,t: Pr1(x,u,v,t)
2095 + 2066 + 2064 + 059 + 2057 + 2052 + 048 + 040 = (c(u) —2)
u,v,t: Pro(z,u,v,t)
024 + 4065 + 4062 + 059 + 6056 + 051 + 2045 + 2039 = Z (c(v) —2) + (c(t) — 2)
u,v,t: Py(z,u,v,t)
4023 + 055 + 042 + 2033 = > c(z) =3

u,v,t: Pr(z,u,0,t)

(]

3022 + 2054 + 040 + 039 + 032 + 2031 = c(u) —3

u,v,t: Pg(z,u,v,t)
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091 + 3055 + 3050 + 2040 + 2038 + 2033 = Z (c(u) — 1) + (C(U) — 1) + (C(t) — 1)
u,v,t: Pr(z,u,0,t)
090 + 2054 + 2049 + 0409 + 037 + 039 = Z C(CC) -1
u,v,t: Pe(z,u,v,t)
019 + 4054 + 4049 + 040 + 2039 + 037 + 2035 + 2031 = > (c(v) = 1) + (e(t) — 1)
u,v,t: Ps(z,u,v,t)
2018 + 059 + 051 + 2046 + 2045 + 2036 + 2027 + 024 = > c(v) =2
w,v,t: Py(z,u,0,t)
2017 + 060 + 053 + 051 + 048 + 037 + 2034 + 2030 = Z c(u) -1
u,v,t: Ps(z,u,0,t)
016 + 059 + 2052 + 051 + 2046 + 2036 + 2034 + 029 = Z C(QZ) -1
w,v,t: Py(x,u,0,t)
015 + 059 + 2052 + 051 + 2045 + 2035 + 2034 + 2027 = > ct) -1

w,v,t: Py(x,u,0,t)

D. Equations for edge-orbit counts in 5-graphlets

Conditions, P;, define the order of nodes and put edge (x,y) in orbit E;; e.g., in P3 edge

(z,y) is in orbit Ejs.

Pii(z,y,a,b) =a <bAG[{z,y,a,b}] =

Pio(z,y,a,b) =a <bA (a, b)e_fE/\G[{x y,a,b}] =

Pyo(z,y,a,b) =a € N(x) Abe N(y) A (a,b)EE/\(J:,b)EE/\G[{:c,y,a,b}]%GW
Poy(z,y,a,b) =a € N(z)ANbe N(y) A (a,b) € EN(y,a) € EAGH{z,y,a,b}] = Gr

( )
( )
( )
( )
Pr(z,y,a,b) =a € N(x)NN(y) Abe N(a) ANG[{z,y,a,b}] =G
o(z,y,0,0) =a <bA(a,b) € ENa,be N(y)Aa,b¢ N(x) ANG[{z,y,a,b}] = Gg
(T, y,a,0) =a <bA(a,b) € EANa,be N(z)ANa,b¢ N(y) NGl{z,y,a,b}] = Gg
( )
( )
( )
( )
( ) =
( ) =

RS

Ps(z,y,a,b) =a € N(x) ANbe N(y) NG{z,y,a,b}| = G
o, y,a,b) =a<bAa,be N(y) NG[{z,y,a,b}] = Gy
Py(z,y,a,b) =a <bAa,be N(x)NG{z,y,a,b}] = G4
Ps(z,y,a,b) =a € N(x) Nbe N(y) NG{z,y,a,b}] = G

D

Py (z,y,a,b) = (a,b) € ENa € N(y) ANG[{z,y,a,b}] = Gs
Py(2,y,a,b) = (a,b) € ENa € N(z) NG[{z,y,a,b}] = G3
Equations:
2eq6 + Gegr = > (c(z,y,a) + c(x,y,b) — 2)
a,b: Pi1(z,y,a,b)
ee5 + 6667 - Z (C(:I}, a, b) + C(y7 a, b) - 2)
a,b: P11(z,y,a,b)
€64 + 2666 = Z (C(‘T7 a, b) + C(ya a, b) - 2)

a7b: PIO (:L‘,y,a,b)
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2e63 + 2€65 = Z (c(y,a,b) — 1) + Z (c(z,a,b) — 1)

ab: Pog(z,y,a,b) a,b: Poy(z,y,a,b)
e62 + 2e66 + 3eg7 = > (c(z,y) —2)
a,b: P11(z,y,a,b)
e61 1 2e65 + degs + 12e67 = Z (c(z,a) + c(z,b) + c(y,a) + c(y,b) — 8)
a,b: Pi1(z,y,a,b)
e60 + €65 + 3eer = > (c(a,b)-2)
a,b: P11(z,y,a,b)
2es9 + 2e65 = Z c(x,a,b) + Z c(y,a,b)
a,b: Pog(z,y,a,b) a,b: Poy(z,y,a,b)
€58 1 €64 + €66 = Z (c(a,b) —2)
a,b: P1o(z,y,a,b)
es7 + 2e63 + 2e64 + 2€65 = Z (c(y,a) —2) + Z (c(x,b) —2)
a,b: Py (z,y,a,b) a,b: Poy(z,y,a,b)
2e56 + 2e63 = Z (c(z,a,b) + c(y,a,b))
(L,b: Ps (%yﬂ:b)
ess + dega + 2eg4 + degg = Z (c(x,a) + c(x,b) + c(y,a) + c(y,b) — 4)
a,b: Pio(z,y,a,b)
2e54 + €61 + 2e63 + 2€65 = Z (c(y,0) —1) + Z (c(z,a) —1)
a7b: PQG(I7y7a7b) azb: Pgb(x,y,a,b)
es3 + 2es59 + 2egs + 2eg5 = Z (c(z,a) — 1)+ Z (c(y,b) — 1)
a,b: Py (z,y,a,b) a,b: Pyy(z,y,a,b)
eso + 2e59 + 2eg3 + 2eg5 = Z (c(a,b) — 1)
a,b: Pyq(z,y,a,b)V Pyy(z,y,a,b)
e51 + €61 + 2e62 + €65 + degs + begr = Z (c(z) +c(y) — 6)
a,b: Pi1(z,y,a,b)
€50 + 2e60 + €61 + 2€65 + 2e66 + Gegr = Z (c(a) +c(b) - 6)

a,b: P11 (z,y,a,b)
3eq9 + e59 = > c(y,a,b) + > o(x, a,b)

a,b: PGG(mvy)aﬂb) a,b: Pﬁb(zvyva‘vb)
3eas + 2e62 + €66 = > (c(z,y) —2)
a,b: Pro(z,y,a,b)
2e47 + 2e59 + €61 + 2€65 = > (c(z,b) —2) + > (c(y,a) —2)
a,b: Py (z,y,a,b) a,b: Pop(z,y,a,b)
€46 1 €57 1+ €63 = Z c(z,y)
[l,b: P5 (xvy}aﬂb)
e45 + €52 + 4esg + degy = Z (c(x,b) + c(y,b) —2)
a,b: P7(z,y,a,b)
eq4 + 2e56 + €57 + 2e63 = Z (c(z,a) + c(y, b))
a,b: Ps(z,y,a,b)
e43 + 2e56 + €63 = > cab)

a,b: Ps (wyy7a7b)
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2eq2 + 2e56 + €57 + 2e63 = > (ex,b) +c(y,a) —4)
(l,bZ P5(17y»a7b)
eq1 + ess + 2e58 + 2eg2 + 2eg4 + 2e66 = Z (c(a) + C(b) — 4)

a,b: Pyo(z,y,a,b)
€40 + 2€54 + €55 + €57 + €1 + 2e63 + 2e64+2€65 =
Yo -2+ D> (c(x)-2)
a,b: Poa(2,,a,b) a,b: Poy(z,y,a,b)
e39 + €52 + €53 + €57 + 2es9 + 2e63 + 2€64+2€65 =

Y. (e =2+ Y (c(h)-2)

a’b: P9£l("£7y»a7b) CL,bI Pgb(z,y,a,b)
es3s + 3eq9 + e56 + €59 = Z (c(a, b) - 1)
a,b: Pso(z,y,a,b)V Psp(z,y,a,b)
€37 + €53 + es9 = Z c(z,y)
a7b: PGa(I7y7a7b)vpﬁb(‘r7y7a7b)
2e36 + €52 + 2e60 = > clab)
a,b: P7(z,y,a,b)
ess + 6e4s + e55 + dego + ega + 2e66 = Z (C(CC) + c(y) — 6)

a’yb: Plﬂ(zzyaa’zb)
e34 + 2e47 + e53 + €55 + 2e59 + ep1+2€64 + 2e65 =
> (c(z)-3)+ > (ely) —3)
a,b: Py (z,y,a,b) a,b: Poy(x,y,a,b)
€33 + 2e47 + e52 + 2e54 + 2e59 + e61+2¢e63 + 2e65 =
> (e(b)-3)+ > (cla)—3)
a,b: Py (z,y,a,b) a,b: Pop(z,y,a,b)
2e32 + Beqg + e53 + 2e59 = > (c(y,a) +c(y,b) —2)+
a,b: Psg(z,y,a,b)

Z (c(z,a) + c(z,b) — 2)

a7b: PGb (x,y,a,b)

€31 + 2e42 + eqq + 2e46 + 2e56 + 2e57 + 2e63 = > (@) Fely) —4)
a7b: P5 (x7y7a7b)
esn + 2e49 + 2e43 + eqq + desg + e57 + 2e63 = Z (c(a) + C(b) — 4)
a7b: P5 (mzy7a7b)
2e29 + 2e38 + €45 + €52 = > (c(y,0) —1) + > (e(z,b) 1)
a,b: Pag(z,y,a,b) a,b: Pyp(z,y,a,b)
2e28 + 2e43 + €45 + €52 = Z c(x,b) + Z c(y,b)
a7b: PQa(I7y7a7b) azb: PQb(x7y7a7b)
€27 T €34+ eq7 = Z c(z,y)
ayb: P4a(w»yﬂ»b)\/PA‘b(fE,yva»b)
2e96 + €33 + 2e36 + €50 + €52 + 2e60 = Z (c(a) = 3)

a7b: Pr ($7y7a7b)
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ea5 + 2e32 + esr + 3eq9 + €53 + €59 = Z (c(y) —-3)+ Z (c(:r) —3)
a,b: Psg(z,y,a,b) a,b: Pey(z,y,a,b)
€24 + €39 + €45 + €52 = Z c(x,y)
a7b: PQ(Z(a"?yva?b)\/PQb(x?yva?b)
€23 + 2e36 + €45 + €52 + 2e58 + 2e60 = Z (c(b) — 1)
ab: Pr(z,y,a,b)
e22 + €37 + €44 + €53 + €56 + €59 = > (c(z) —1) + > (cy)—1)
a,b: Peq(,y,a,b) a,b: Pep(2,y,a,b)
2e21 + 2e38 + 2e43 + €52 = Z c(a,b)
(l,b: P2a(z7y1a7b)vp2b (177%(17(7)
€20 1 €40 + €54 = Z o(z,y)
a,b: P3(z,y,a,b)
€19 + €33 + 2eq1 + €45 + 2e50 + 52 + dess + dego = > (cz)+ely) —4)
(l,b: P7(x7y7a7b)
e18 + 2e39 + 2e38 + eqq + b6egg + e53 + 2e56 + 2e59 = Z (c(a) + c(b) — 4)
ayb: Pﬁa(w)y7a)b)vp6b(w)y7a)b)
3e17 + 2e25 + ea7 + €32 + €34 + €47 = Z (cly) —3) + Z (c(z) —3)
d,b! P4ﬂ($7y7a7b) G,b! P4b(x7y7a7b)
2e16 + 2e20 + 2e22 + €31 + 2e40 + €44 + 2654 = Z (c(z) +c(y) —4)
a,b: P3(z,y,a,b)
e15 + 2ea5 + 2e99 + €31 + 2e32 + €34 + 2eq42 + 2e47 = > (c(a) 4 c(b) —2)
azb: P4a(x»y7a»b)vp4b(x7y7a»b)
2e14 + e15 + 2e21 + e30 + 2e33 + e39 + 2e43 + €50 = Z (c(a) —2)
avb: PQG($1y7a1b)vp2b($1y7a’1b)
e13 + 2e22 + 2e98 + €31 + €40 + 2€44 + 2€54 = Z (c(a) + ¢(b) — 2)
ab: P3(z,y,a,b)
e12 + 2e21 + 2e98 + 2e29 + 2e38 + 243 + €45 + €52 = > (c(b) — 1)

a7b: P2a(x7y7a9b)vp2b(x7y7a9b)
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