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Abstract

SNPMClust is an R package for genotype clustering and calling with Illumina microar-
rays. It was originally developed for studies using the GoldenGate custom genotyping
platform but can be used with other Illumina platforms, including Infinium BeadChip.
The algorithm first rescales the fluorescent signal intensity data, adds empirically derived
pseudo-data to minor allele genotype clusters, then uses the package mclust for bivariate
Gaussian model fitting. We compared the accuracy and sensitivity of SNPMClust to that
of GenCall, Illumina’s proprietary algorithm, on a data set of 94 whole-genome amplified
buccal (cheek swab) DNA samples. These samples were genotyped on a custom panel
which included 1064 SNPs for which the true genotype was known with high confidence.
SNPMClust produced uniformly lower false call rates over a wide range of overall call
rates.
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1. Introduction

Genotyping microarrays produce measurements of fluorescent signal intensity corresponding
to the alleles of each probed single nucleotide polymorphism (SNP). The fluorescence data are
used to infer (“call") genotypes for each subject at each SNP (Figure 1A). Inaccuracy or bias
in genotype calling can both decrease the power to detect true genetic associations and yield
spurious statistical associations, potentially inflating type I and type II error (Pompanon,
Bonin, Bellemain, and Taberlet 2005). Typically, a genotype calling algorithm does not only
yield a best call for each subject and SNP but also gives some quantitative measure of the
relative certainty associated with each call. This allows an investigator to tune the inevitable
trade-off between genotyping sensitivity (a low rate of no-calls) and specificity (a low rate of
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genotyping errors) according to the requirements of a specific genetic study.
In this code snippet we describe SNPMClust (Erickson and Callaway 2013), an R (R Core
Team 2016) package for genotype clustering and calling with Illumina microarrays. It builds
on mclust (Fraley, Raftery, and Scrucca 2013; Fraley and Raftery 2002; Fraley, Raftery, Mur-
phy, and Scrucca 2012), an R package for normal mixture modeling. SNPMClust (pronounced
snip-em-clust) has been used in multiple studies at the Arkansas Center for Birth Defects Re-
search and Prevention on the Illumina GoldenGate custom genotyping platform (Chowdhury
et al. 2012; Hobbs et al. 2014; Li et al. 2014a,b; Tang et al. 2014, 2015) and is available
through the Comprehensive R Archive Network at https://CRAN.R-project.org/package=
SNPMClust. After describing the package, we compare the performance of SNPMClust to
that of GenCall, Illumina’s proprietary algorithm (Illumina Inc. 2005), on a data set of 94
buccal (cheek swab) DNA samples which had undergone whole-genome amplification (WGA)
before genotyping on a custom SNP panel using the GoldenGate platform, at 1064 SNPs for
which the true genotype was known with high confidence.

2. Description
The four panels of Figure 1 illustrate SNPMClust. First, panel A shows a fluorescent intensity
plot for a typical SNP in the standard coordinates displayed by GenomeStudio, which is the
data analysis software provided with Illumina microarrays. Each point represents a different
subject and is labeled by its genotype as determined by GenCall, the native genotype calling
algorithm (Illumina Inc. 2005). Under GenCall’s default settings, every subject is assigned a
genotype AA, AB, or BB.
To run SNPMClust, the fluorescent intensity, genotype, and diagnostic data in GenomeStudio
must be exported to a tab- or comma-delimited text file and imported to R as a data frame.
For each SNP and subject in the data, the following variables are used by SNPMClust:

• X.Raw and Y.Raw, the raw fluorescent intensity values corresponding to the A and B
alleles, respectively,

• X and Y, subject-normalized transformations of X.Raw and Y.Raw,

• Theta, equal to (2/π) arctan(Y/X), a measure of relative allele intensity which varies
from 0 to 1,

• R, equal to X + Y, a measure of overall signal intensity,

• GType, the genotype call generated by GenCall, and

• Score, the genotype quality score which varies from 0 (worst) to 1 (best).

The function prepdata converts data exported from GenomeStudio into the correct format
and scaling for SNPMClust. Specific to each subject, the normalized vectors X and Y are
linear transformations of X.Raw and Y.Raw, but with the lowest values of X and Y collapsed to
zero. For these collapsed values, prepdata extrapolates positive normalized values by fitting
a least-squares line to the non-collapsed normalized vs. raw data, making the normalized log-
ratio of B to A allele intensity, log(Y/X), well-defined. As shown in Figure 1B, the normalized
log-ratios are, within genotype clusters, much less skewed and heteroskedastic than Theta.

https://CRAN.R-project.org/package=SNPMClust
https://CRAN.R-project.org/package=SNPMClust
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Figure 1: Illustrative example of SNPMClust. Panel A shows the intensity plot in Genome-
Studio’s default scaling (Theta and R) for the SNP rs2302109 and the buccal data described
in Section 3. Color coding indicates GenCall genotype assignments under default settings.
Panel B shows the same intensity data but in SNPMClust’s transformed scaling (normalized
log ratio and R-transformed). In Panel C, pseudo-data are indicated by red X’s and clustering
results are shown with 50th-percentile ellipses. The SNPMClust genotype calls are shown in
panel D, and four no-calls (black X’s) are data for which the uncertainty score exceeds the
default threshold of 0.01.

There is also right-skewness in R, although not obviously so for this particular SNP. The
function prepdata applies a Box-Cox transformation to R, with the parameter λ selected by
maximizing the profile likelihood (Venables and Ripley 2010) conditional on the normalized
log-ratio. The resulting vector is called R-transformed, and Figures 1B, C, and D plot the
intensity data rescaled in both dimensions.
The output from prepdata is used as input to the function SNPMClust. For SNPs with
low minor allele frequency (MAF), there might not be enough subjects with minor allele
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genotypes for these clusters to be identified by mclust; this is especially true with lower
sample sizes. When this happens, the maximum likelihood solution will use two or even three
clusters to model the homozygous major cluster, implicitly defining data from the minor
genotypes as outliers. To account for SNPs with low MAF, therefore, SNPMClust appends
the heterozygous and homozygous minor data with randomly generated pseudo-data whose
sample size, location, and variances can either be manually set or, under default settings,
automatically selected based on the GenCall genotype calls and intensity data (Figure 1C,
red X’s). The number of pseudo-data points for each minor allele genotype is set to one-fifth
of the overall sample size but can be changed via the argument priorfrac. SNPs with very
low MAF are subject to overfitting and should be used with caution.
Three genotype clusters, corresponding to the genotypes AA, AB, and BB, are defined by
three bivariate Gaussian distributions. SNPMClust uses the package mclust to compute cluster
locations and covariances by finding a maximum likelihood solution over the set of all data
points. The maximum likelihood solution for the three genotype clusters (shown as ovals
in Figure 1C) are computed with mclust under two possible covariance models: EEE and
EEV. Under EEE, all genotype clusters must share the same covariance matrix, while under
EEV, genotype clusters must share the same volume and shape but are allowed to vary in
orientation. The final covariance model is chosen based on the Bayesian information criterion
(BIC; Schwartz 1978).
Once genotype clusters are specified, the individual likelihood for each point is evaluated under
each of the three genotype distributions, and the provisional genotype assignment is based
on which model yields the highest likelihood. In addition, mclust computes the classification
uncertainty for each point, defined as one minus the probability of the most likely genotype
(assuming equal genotype probability a priori). The default setting for SNPMClust is to assign
a no-call to any point with uncertainty greater than 0.01, and the cut-off can be changed
via the argument uncertcut. In Figure 1D, four points falling between cluster centers have
uncertainty > 0.01 and are assigned a no-call, indicated by a black X. The plots in Figures 1C
and D can be produced by calling SNPMClust with the argument showplots = TRUE.
Uncertainty is computed conditional on the genotype clusters and therefore does not account
for clustering error. One measure of the overall quality of a SNP’s clustering is the median (or
any other quantile) uncertainty. Setting the argument qcutoff to a positive value establishes
a lower limit to uncertainty scores for the SNP in question, equal to the specified quantile.
This is equivalent to requiring a minimum call rate of qcutoff for each SNP, and setting
the entire SNP to no-calls if that call rate is not reached. As shown below, using a quantile-
based uncertainty threshold can substantially improve genotyping accuracy. The function
SNPMClust returns a list which includes the genotype calls and uncertainty scores for each
subject, as well as the SNP-specific call rate under the arguments uncertcutoff and qcutoff.

3. Performance comparison

The Arkansas Center for Birth Defects Research and Prevention is a participating center in the
National Birth Defects Prevention Study (NBDPS, Yoon et al. 2001). As part of an ongoing
study of the etiology of non-syndromic congenital heart defects, the Center commissioned a
panel of 1536 SNPs in 62 genes in the homocysteine, folate, and transsulfuration pathways
using the Illumina GoldenGate custom genotyping platform, as described by Chowdhury
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et al. (2012). The DNA samples used in this study were derived from subject-collected mail-
in buccal samples (i.e., cheek swabs) and were subsequently amplified using whole-genome
amplification (WGA) because of the relatively low DNA yield and aliquot requirements of
the NBDPS. We found that the quality of genotype clustering varied substantially from SNP
to SNP, which we attribute to the in silico design of the SNP panel based on data from
phases I and II of the HapMap project (International HapMap Consortium 2003), without
the subsequent quality checks that would be applied to a standard commercial SNP panel.

A subset of Arkansas residents who completed the NBDPS was also recruited for a different
study at Arkansas Children’s Hospital Research Institute (Hobbs, Cleves, Melnyk, Zhao, and
James 2005) and provided both blood and buccal samples. Ninety-six Arkansas NBDPS
female participants, for whom both types of samples were available, comprised a pilot study
to validate the use of WGA-buccal DNA on the custom genotyping platform. Out of the
96 blood/buccal pairs of DNA samples which were genotyped, 94 pairs exhibited high call
rates from both sources of DNA and, furthermore, high concordance with each other. The
blood samples, which had not undergone WGA, did indeed yield better overall genotyping
performance than the WGA-buccal samples, which has been observed elsewhere (Cunningham
et al. 2008). For example, the mean GenTrain score, which is Illumina’s SNP-wide measure of
genotype clustering quality, was 0.786 for blood samples compared with 0.728 for WGA-buccal
(p < 0.001).

While the original purpose of these paired samples was to validate the use of WGA-buccal
DNA, they also gave us the opportunity to compare the performance of SNPMClust and
GenCall. First, a set of reference genotypes was produced solely using the 94 blood DNA
samples. To prevent biasing results toward either method, reference genotype calls were
required (1) to have concordant calls from each algorithm, (2) to have very good quality
scores under both algorithms, and (3) to have 100% call rates for each SNP included in the
reference set. The GenCall score cutoff was 0.5, resulting in 8993 no-calls (6.2%), while the
SNPMClust uncertainty cut-off was 10−7, resulting in 7855 no-calls (5.4%). The reference set
consisted of 1064 SNPs with 100% concordant call rates under both of these stringent quality
score cutoffs.

Genotypes were independently generated from the 94 WGA-buccal samples using both algo-
rithms and were compared to the reference genotypes, with discordant calls considered false
calls. By sorting the SNPMClust and GenCall genotype calls by their respective quality score,
a cumulative tally of the number of overall calls and number of false calls was taken, and the
false call rate is plotted against overall call rate in Figure 2 (thick black lines). As expected,
the false call rate increases with the overall call rate for both algorithms. The SNPMClust
curve begins at an overall call rate of 66% because this percentage of genotype calls had the
lowest possible uncertainty score (< 2.2 × 10−16). At call rates below 97%, the SNPMClust
curve is uniformly lower than the GenCall curve, with both curves rising sharply above 97%.

The performance of SNPMClust improves noticeably under a quantile-based uncertainty
threshold. Performance improvements for GenCall due to quantile thresholding, on the other
hand, are moderate because the GenCall quality score is already calibrated to a SNP-specific
measure of genotyping quality (the GenTrain score). The 95% bootstrap confidence interval
for SNPMClust under median thresholding, shown in Figure 2, was generated by sampling
with replacement from the 1064 SNPs. Over much of the range, all four GenCall curves lie
above the SNPMClust confidence interval.
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Figure 2: SNPMClust and GenCall false call rate vs. overall call rate under four different
quantile cutoffs. Data are the buccal cell genotypes for 94 subjects and 1064 SNPs. As
overall call rate increases (by choosing a more lenient threshold), the rate of false calls also
increases. For SNPMClust, applying a SNP-specific uncertainty quantile cutoff uniformly
improves performance for Q = 0.50 (median) and Q = 0.70, but not uniformly for Q =
0.90. Performance improvement for GenCall from quantile thresholding is moderate because
the GenCall score is already calibrated to GenTrain, which is a SNP-specific measure of
genotyping quality. The 95% confidence interval of SNPMClust (with median cutoff) is
generated by bootstrapping the 1064 SNPs.

4. Discussion
In the above example, SNPMClust exhibits uniformly better accuracy than GenCall across
a wide range of overall call rates. This shows that SNPMClust produces a useful metric of
genotyping quality for studies in which the quality of intensity clustering is variable.
We note some limitations. SNPMClust was specifically developed to analyze noisy intensity
data in which genotyping quality varies substantially from SNP to SNP. We did not compare
the performance of SNPMClust to any of the several third-party algorithms currently avail-
able, such as CRLMM (Ritchie, Carvalho, Hetrick, Tavare, and Irizarry 2009), Illuminus (Teo
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et al. 2007), or GenoSNP (Giannoulatou, Yau, Colella, Ragoussis, and Holmes 2008). The
package assumes that data are produced from Illumina genotyping microarrays, but could be
extended to other sources of data by revising the function prepdata.
SNPMClust does not currently incorporate any between-SNP or between-subject information.
We envision two extensions that could potentially make the package more robust. First,
intensity data across the ensemble of SNPs could be used to specify empirical Bayes priors on
cluster locations and variances, using the function priorControl as described in Appendix
A.4 of Fraley et al. (2012). This could be especially helpful for SNPs with low minor allele
frequencies. Second, patterns of linkage disequilibrium and/or familial relationships could
be used to help resolve ambiguous genotype calls. Such information could be incorporated
quite naturally because the function Mclust produces a matrix of all genotype probabilities
(assuming equal genotype probability a priori).
Nevertheless, we have shown in our empirical example that SNPMClust significantly outper-
formed GenCall over a wide range of genotyping sensitivities. The accuracy of SNPMClust
improved substantially under quantile thresholding. Through a combination of uncertainty
score and quantile thresholding, an investigator can fine-tune trade-offs between sensitivity
and specificity. SNPMClust can be used either as the primary genotyping algorithm or as an
additional diagnostic for evaluating genotype quality.
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