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Abstract

Spatial data relating to non-overlapping areal units are prevalent in fields such as
economics, environmental science, epidemiology and social science, and a large suite of
modeling tools have been developed for analysing these data. Many utilize conditional
autoregressive (CAR) priors to capture the spatial autocorrelation inherent in these data,
and software packages such as CARBayes and R-INLA have been developed to make
these models easily accessible to others. Such spatial data are typically available for
multiple time periods, and the development of methodology for capturing temporally
changing spatial dynamics is the focus of much current research. A sizeable proportion of
this literature has focused on extending CAR priors to the spatio-temporal domain, and
this article presents the R package CARBayesST, which is the first dedicated software
package for spatio-temporal areal unit modeling with conditional autoregressive priors.
The software package allows to fit a range of models focused on different aspects of space-
time modeling, including estimation of overall space and time trends, and the identification
of clusters of areal units that exhibit elevated values. This paper outlines the class of
models that the software package implement, before applying them to simulated and two
real examples from the fields of epidemiology and housing market analysis.

Keywords: Bayesian inference, conditional autoregressive priors, R package, spatio-temporal
areal unit modeling.

1. Introduction

Areal unit data are a type of spatial data where the observations relate to a set of K con-
tiguous but non-overlapping areal units, such as electoral wards or census tracts. Each ob-
servation relates to an entire areal unit, and thus is typically a summary measure such as
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an average, proportion, or total, for the entire unit. Examples include the total yield in
sectors in an agricultural field trial (Besag and Higdon 1999), the proportion of people who
are Catholic in lower super output areas in Northern Ireland (Lee, Minton, and Pryce 2015),
the average score on SAT college entrance exams across US states (Wall 2004), and the total
number of cases of chronic obstructive pulmonary disease from populations living in counties
in Georgia, USA (Choi and Lawson 2011). Areal unit data such as these have become increas-
ingly available in recent times, due to the creation of databases such as Scottish Statistics
(http://statistics.gov.scot/), the Health and Social Care Information Centre Indica-
tor Portal (http://www.hscic.gov.uk/indicatorportal), and cancer registries such as the
Surveillance Epidemiology and End Results program (http://seer.cancer.gov/).
These databases provide data on a set ofK areal units forN consecutive time periods, yielding
a rectangular array of K × N spatio-temporal observations. The motivations for modeling
these data are varied, and include estimating the effect of a risk factor on a response (see
Wakefield 2007 and Lee, Ferguson, and Mitchell 2009), identifying clusters of contiguous areal
units that exhibit an elevated risk of disease compared with neighboring areas (see Charras-
Garrido, Abrial, and de Goer 2012 and Anderson, Lee, and Dean 2014), and quantifying the
level of segregation in a city between two or more different groups (see Lee et al. 2015). As a
result different space-time structures have been proposed for modeling spatio-temporal data,
which depend on the underlying question(s) of interest and the goals of the analysis.
However, a common challenge when modeling these data is that of spatio-temporal autocor-
relation, namely that observations from geographically close areal units and temporally close
time periods tend to have more similar values than units and time periods that are further
apart. Temporal autocorrelation occurs because the data relate to largely the same popu-
lations in consecutive time periods, while spatial autocorrelation can arise for a number of
reasons. The first is unmeasured confounding, which occurs when a spatially patterned risk
factor for the response variable is not included in a regression model, and hence its omission
induces spatial structure into the residuals. Other causes of spatial autocorrelation include
neighborhood effects, where the behaviors of individuals in an areal unit are influenced by in-
dividuals in adjacent units, and grouping effects where groups of people with similar behaviors
choose to live close together.
Predominantly, a Bayesian approach is taken to modeling these data in the statistical commu-
nity, where the spatio-temporal structure is modeled via sets of autocorrelated random effects.
Conditional autoregressive (CAR; Besag, York, and Mollié 1991) priors and spatio-temporal
extensions thereof are typically assigned to these random effects to capture this autocorrela-
tion, which are special cases of a Gaussian Markov random field (GMRF). A range of models
have been proposed with different space-time structures, which can be used to answer dif-
ferent questions of interest about the data. For example, Knorr-Held (2000) proposed an
ANOVA style decomposition of the data into overall spatial and temporal trends and a space-
time interaction, which allows common patterns such as the region-wide average temporal
trend to be estimated. In contrast, Li, Best, Hansell, Ahmed, and Richardson (2012) de-
veloped a model for identifying areas that exhibited unusual trends that were different from
the overall region-wide trend, while Lee and Lawson (2016) presented a model for identifying
spatio-temporal clustering in the data.
An array of freely available software packages can now implement purely spatial areal unit
models, ranging from general purpose statistical modeling software such as BUGS (Lunn,
Spiegelhalter, Thomas, and Best 2009) and R-INLA (Rue, Martino, and Chopin 2009), to
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specialist spatial modeling packages in the statistical software environment R (R Core Team
2017) such as CARBayes (Lee 2013), spatcounts (Schabenberger 2009) and spdep (Bivand and
Piras 2015). Due to the flexibility of general purpose software, implementing spatial models,
in say BUGS, requires a degree of programming that is non-trivial for applied researchers.

Specialist software for spatio-temporal modeling is much less well developed, with examples for
geostatistical data including spTimer (Bakar and Sahu 2015) and spBayes (Finley, Banerjee,
and Gelfand 2015). For areal unit data the surveillance package (Meyer, Held, and Höhle
2017) models epidemic data, the plm (Croissant and Millo 2008) and splm (Millo and Piras
2012) packages model panel data, while the nlme (Pinheiro, Bates, DebRoy, Sarkar, and
R Core Team 2015) and lme4 (Bates, Mächler, Bolker, and Walker 2015) packages have
functionality to model spatial and temporal random effects structures. However, software
packages to fit a range of spatio-temporal areal unit models with CAR type autocorrelation
structures are not available. This has motivated us to develop the R package CARBayesST
(Lee, Rushworth, and Napier 2018).

Package CARBayesST can fit models with different spatio-temporal structures. This enables
the user to answer different questions about their data within a common software environment.
A number of models can be implemented, including: (i) a spatially varying linear time trends
model (similar to Bernardinelli, Clayton, Pascutto, Montomoli, Ghislandi, and Songini 1995);
(ii) a spatial and temporal main effects and interaction model (similar to Knorr-Held 2000);
(iii) a spatially autocorrelated autoregressive time series model (Rushworth, Lee, and Mitchell
2014); (iv) a model with a common temporal trend but varying spatial surfaces (similar
to Napier, Lee, Robertson, Lawson, and Pollock 2016); (v) a spatially adaptive smoothing
model for localized spatial smoothing (Rushworth, Lee, and Sarran 2017); and (vi) a spatio-
temporal clustering model (Lee and Lawson 2016). The package has the same syntax and
feel as the R package CARBayes for spatial areal unit modeling, and retains all of its easy-to-
use features. These include specifying the spatial adjacency information via a single matrix
(unlike BUGS that requires 3 separate list objects), fitting models via a one-line function call,
and compatibility with package CARBayes that allows it to share the latter’s model summary
functionality for interpreting the results. The models available in this software package can
be fitted to binomial, Gaussian (in some cases) or Poisson data, and Section 2 summarizes
the models that can be implemented. Section 3 provides an overview of the software package
and its functionality, while Section 4 presents simulation results to illustrate the correctness
of the CARBayesST implementation of one of the models. Sections 5 and 6 present two
worked examples illustrating how to use the package for epidemiological and housing market
research, while Section 7 concludes with a summary of planned future development for this
package.

2. Spatio-temporal models for areal unit data

This section outlines the class of Bayesian hierarchical models that package CARBayesST
can implement, where in all cases inference is based on Markov chain Monte Carlo (MCMC)
simulation. The first part of this section outlines the general hierarchical model that can be
fitted, while the second describes the range of space-time random effects structures that are
available.
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2.1. General Bayesian hierarchical model

The study region comprises a set of k = 1, . . . ,K non-overlapping areal units S = {S1, . . . ,
SK}, and data are recorded for each unit for t = 1, . . . , N consecutive time periods. Thus
data are available for a K ×N rectangular array with K rows (spatial units) and N columns
(time periods). The response data are denoted by Y = (Y1, . . . ,YN )K×N , where Yt =
(Y1t, . . . , YKt) denotes the K × 1 column vector of observations for all K spatial units for
time period t. Next, a vector of known offsets are denoted by O = (O1, . . . ,ON )K×N , where
similarly Ot = (O1t, . . . , OKt) denotes the K × 1 column vector of offsets for time period
t. Finally, xkt = (xkt1, . . . , xktp) is a vector of p known covariates for areal unit k and
time period t, and can include factors or continuous variables and a column of ones for the
intercept term. Note, non-linear covariate-response relationships can be included by adding
transformations (e.g., squared) or spline basis functions (e.g., using ns()) of covariates to xkt.
Package CARBayesST can fit a generalized linear mixed model to these data, whose general
form is:

Ykt|µkt ∼ f(ykt|µkt, ν2) for k = 1, . . . ,K, t = 1, . . . , N, (1)
g(µkt) = x>ktβ +Okt + ψkt,

β ∼ N(µβ,Σβ).

The vector of covariate regression parameters are denoted by β = (β1, . . . , βp), and a mul-
tivariate Gaussian prior is assumed with mean µβ and diagonal variance matrix Σβ that
can be chosen by the user. The ψkt term is a latent component for areal unit k and time
period t encompassing one or more sets of spatio-temporally autocorrelated random effects,
and the complete set are denoted by ψ = (ψ1, . . . ,ψN ), where ψt = (ψ1t, . . . , ψKt). Package
CARBayesST can fit a number of different spatio-temporal structures for ψkt, all of which are
outlined in Section 2.2 below. The package can implement Equation 1 for binomial, Gaussian
and Poisson data, and the exact specifications of each are given below:

• Binomial: Ykt ∼ Binomial(nkt, θkt) and ln(θkt/(1− θkt)) = x>ktβ +Okt + ψkt.

• Gaussian: Ykt ∼ N(µkt, ν2) and µkt = x>ktβ +Okt + ψkt.

• Poisson: Ykt ∼ Poisson(µkt) and ln(µkt) = x>ktβ +Okt + ψkt.

In the binomial model (nkt, θkt) respectively denote the number of trials and the probability
of success in each trial in area k and time period t, while in the Gaussian model ν2 is the
observation variance. An Inverse-Gamma(a, b) prior is specified for ν2, and default values of
(a = 1, b = 0.01) are specified in the software package but can be changed by the user.

2.2. Spatio-temporal random effects models

All models implementable in this package induce spatio-temporal autocorrelation into the
response data Y via the latent random effects ψ, using CAR-type prior distributions and
spatio-temporal extensions thereof. Spatial autocorrelation is controlled by a symmetric non-
negative K ×K neighborhood, weight or adjacency matrix W = (wkj), where wkj represents
the spatial closeness between areal units (Sk,Sj). Larger valued elements represent spatial
closeness between the two areas in question, whereas smaller or zero values correspond to
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areas that are not spatially close. Typically, W is assumed to be binary, where wkj = 1 if
areal units (Sk,Sj) share a common border (i.e., are spatially close) and is zero otherwise.
Additionally, wkk = 0. Under this binary specification the values of (ψkt, ψjt) for spatially
adjacent areal units (where wkj = 1) are spatially autocorrelated, whereas values for non-
neighboring areal units (where wkj = 0) are conditionally independent given the remaining
{ψit} values. This binary specification of W based on sharing a common border is the most
commonly used for areal data, but the only requirement by package CARBayesST is for W
to be symmetric, non-negative, and for each row sum to be greater than zero. Similarly, the
model ST.CARanova() defined below uses a binary N × N temporal neighborhood matrix
D = (dtj), where dtj = 1 if |j − t| = 1 and dtj = 0 otherwise.
Package CARBayesST can fit the models for ψ outlined in Table 1, and full details for each
one are given below. This set of models allows users to fit different spatio-temporal struc-
tures to their data and thus examine different underlying hypotheses. Out of these models
ST.CARlinear(), ST.CARanova() and ST.CARar() are the simplest in terms of parsimony,
and thus missing (NA) values are allowed in the response data (Y) for these models. Missing
values are not allowed in the remaining models as they have more complex forms, and ex-
ploratory simulation-based testing showed that missing values could not be well recovered in
these cases.

ST.CARlinear()

This model is a modification of that proposed by Bernardinelli et al. (1995), and estimates
separate but correlated linear time trends for each areal unit. Thus it is appropriate if the
goal of the analysis is to estimate which areas are exhibiting increasing or decreasing (linear)
trends in the response over time. The full model specification is given below.

ψkt = β1 + φk + (α+ δk)
(t− t̄)
N

, (2)

φk|φ−k,W ∼ N
(

ρint
∑K
j=1wkjφj

ρint
∑K
j=1wkj + 1− ρint

,
τ2

int
ρint

∑K
j=1wkj + 1− ρint

)
,

δk|δ−k,W ∼ N
(

ρslo
∑K
j=1wkjδj

ρslo
∑K
j=1wkj + 1− ρslo

,
τ2

slo
ρslo

∑K
j=1wkj + 1− ρslo

)
,

τ2
int, τ

2
slo ∼ Inverse-Gamma(a, b),

ρint, ρslo ∼ Uniform(0, 1),
α ∼ N(µα, σ2

α),

where φ−k = (φ1, . . . , φk−1, φk+1, . . . , φK). Here t̄ = (1/N)∑N
t=1 t, and thus the modified

linear temporal trend covariate is t∗ = (t− t̄)/N , and runs over a centered unit interval. Thus
areal unit k has its own linear time trend, with a spatially varying intercept β1 + φk and a
spatially varying slope α + δk. Note, the β1 term comes from the covariate component x>ktβ
in Equation 1. Each set of random effects φ = (φ1, . . . , φK) and δ = (δ1, . . . , δK) are modeled
as spatially autocorrelated by the CAR prior proposed by Leroux et al. (2000), and are mean
centered, that is ∑K

j=1 φj = ∑K
j=1 δj = 0. Here (ρint, ρslo) are spatial dependence parameters,

with values of one corresponding to strong spatial smoothness that is equivalent to the intrinsic
CAR prior proposed by Besag et al. (1991), while values of zero correspond to independence
(for example if ρslo = 0 then δk ∼ N(0, τ2

slo)). Flat uniform priors on the unit interval are
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Model Eq. Description
ST.CARlinear() 2 This model is similar to that proposed by Bernardinelli et al.

(1995), and represents the spatio-temporal pattern in the mean
response with spatially varying linear time trends. The slope
and intercept parameters for each area’s temporal trend are
spatially autocorrelated, by assigning each the conditional au-
toregressive prior proposed by Leroux, Lei, and Breslow (2000).

ST.CARanova() 3 This model is similar to that proposed by Knorr-Held (2000),
and represents the spatio-temporal pattern in the mean re-
sponse with an ANOVA style decomposition into overall spatial
and temporal main effects and a space-time interaction. The
spatial and temporal main effects are modeled by the condi-
tional autoregressive prior proposed by Leroux et al. (2000),
while the interactions are assumed to be independent.

ST.CARsepspatial() 4 This model is that proposed by Napier et al. (2016), and repre-
sents the spatio-temporal pattern in the mean response with an
overall temporal effect and separate independent spatial effects
for each time period. Each time-period’s spatial effect as well
as the overall temporal effect are modeled by the conditional
autoregressive prior proposed by Leroux et al. (2000).

ST.CARar() 5 This model is that proposed by Rushworth et al. (2014), and
represents the spatio-temporal pattern in the mean response
with a single set of spatially and temporally autocorrelated
random effects. The effects follow a multivariate autoregres-
sive process of order 1, where spatial autocorrelation is induced
via the precision matrix based on the conditional autoregressive
prior proposed by Leroux et al. (2000).

ST.CARadaptive() 7 This model is that proposed by Rushworth et al. (2017), and
has the same spatio-temporal random effect structure as the
ST.CARar() model. Additionally, the spatially autocorrelated
precision matrix based on the adjacency matrix W is estimated
in the model, by means of treating those elements of W that
correspond to spatially adjacent areas as random quantities on
the unit interval. This allows adaptive levels of spatial smooth-
ness in the random effects surface.

ST.CARlocalised() 9 This model is that proposed by Lee and Lawson (2016), and
has the same spatio-temporal random effect structure as the
ST.CARar() model. The difference is that it additionally has
a piecewise constant intercept term with a maximum of G dif-
ferent levels, which can capture step-changes in disease risk be-
tween two spatially adjacent areas.

Table 1: Summary of the models available in the CARBayesST package together with the
equation numbers (Eq.) defining them mathematically in this paper.
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specified for the spatial dependence parameters (ρint, ρslo), while conjugate Inverse-Gamma
and Gaussian priors are specified for the random effects variances (τ2

int, τ
2
slo) and the overall

slope parameter α respectively. The corresponding hyperparameters (a, b, µα, σ2
α) can be

chosen by the user, and the default values specified by the software are (a = 1, b = 0.01, µα =
0, σ2

α = 1000), which correspond to weakly informative prior distributions. Alternatively, the
dependence parameters (ρint, ρslo) can be fixed at values in the unit interval [0, 1] rather than
being estimated in the model, by specifying arguments to the ST.CARlinear() function. For
example, using the arguments fix.rho.slo = TRUE, rho.slo = 1 sets ρslo = 1 when fitting
the model. Finally, missing (NA) values are allowed in the response data Y for this model.

ST.CARanova()

The model is a modification of that proposed by Knorr-Held (2000), and decomposes the
spatio-temporal variation in the data into 3 components, an overall spatial effect common
to all time periods, an overall temporal trend common to all spatial units, and a set of
independent space-time interactions. Thus this model is appropriate if the goal is to estimate
overall time trends and spatial patterns. The model specification is given below.

ψkt = φk + δt + γkt, (3)

φk|φ−k,W ∼ N
(

ρS
∑K
j=1wkjφj

ρS
∑K
j=1wkj + 1− ρS

,
τ2
S

ρS
∑K
j=1wkj + 1− ρS

)
,

δt|δ−t,D ∼ N
(

ρT
∑N
j=1 dtjδj

ρT
∑N
j=1 dtj + 1− ρT

,
τ2
T

ρT
∑N
j=1 dtj + 1− ρT

)
,

γkt ∼ N(0, τ2
I ),

τ2
S , τ

2
T , τ

2
I ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1).

Here the spatio-temporal autocorrelation is modeled by a common set of spatial random
effects φ = (φ1, . . . , φK) and a common set of temporal random effects δ = (δ1, . . . , δN ), and
both are modeled by the CAR prior proposed by Leroux et al. (2000). Additionally, the model
can incorporate an optional set of independent space-time interactions γ = (γ11, . . . , γKN ),
which can be specified by the argument interaction = TRUE (the default) in the function
call. All sets of random effects are mean centered. Fixed uniform (ρS , ρT ) or conjugate
(τ2
S , τ

2
T , τ

2
I ) priors are specified for the remaining parameters, and the default specifications

for the latter are (a = 1, b = 0.01). Alternatively, in common with the ST.CARlinear()
function the dependence parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1]
rather than being estimated in the model, for full details see the help file for this function.
Finally, missing (NA) values are allowed in the response data Y for this model.

ST.CARsepspatial()

The model is a generalization of that proposed by Napier et al. (2016), and represents the data
by two components, an overall temporal trend, and separate spatial surfaces for each time
period that share a common spatial dependence parameter but have different spatial variances.
This model is appropriate if the goal is to estimate both a common overall temporal trend
and the extent to which the spatial variation in the response has changed over time. The
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model specification is given below.

ψkt = φkt + δt, (4)

φkt|φ−kt,W ∼ N
(

ρS
∑K
j=1wkjφjt

ρS
∑K
j=1wkj + 1− ρS

,
τ2
t

ρS
∑K
j=1wkj + 1− ρS

)
,

δt|δ−t,D ∼ N
(

ρT
∑N
j=1 dtjδj

ρT
∑N
j=1 dtj + 1− ρT

,
τ2
T

ρT
∑N
j=1 dtj + 1− ρT

)
,

τ2
1 , . . . , τ

2
N , τ

2
T , ∼ Inverse-Gamma(a, b),

ρS , ρT ∼ Uniform(0, 1),

where φ−kt = (φ1,t, . . . , φk−1,t, φk+1,t, . . . , φK,t). This model fits an overall temporal trend
to the data δ = (δ1, . . . , δN ) that is common to all areal units, which is augmented with
a separate (uncorrelated) spatial surface φt = (φ1t, . . . , φKt) at each time period t. The
overall temporal trend and each spatial surface are modeled by the CAR prior proposed by
Leroux et al. (2000), and the latter have a common spatial dependence parameter ρS but
a temporally-varying variance parameter τ2

t . Thus the collection (τ2
1 , . . . , τ

2
N ) allows one to

examine the extent to which the magnitude of the spatial variation in the data has changed
over time. Note that here we fix ρS to be constant in time as it is not orthogonal to τ2

t ,
thus if it varied then any changes in τ2

t would not directly correspond to changes in spatial
variance over time. As with all other models the random effects are zero-mean centered,
while flat and conjugate priors are specified for (ρS , ρT ) and (τ2

T , τ
2
1 , . . . , τ

2
N ) respectively with

(a = 1, b = 0.01) being the default values. Alternatively, in common with the ST.CARlinear()
function, the dependence parameters (ρS , ρT ) can be fixed at values in the unit interval [0, 1]
rather than being estimated in the model.

ST.CARar()

The model is that proposed by Rushworth et al. (2014), and represents the spatio-temporal
structure with a multivariate first order autoregressive process with a spatially correlated
precision matrix. This model is appropriate if one wishes to estimate the evolution of the
spatial response surface over time without forcing it to be the same for each time period. The
model specification is given below.

ψkt = φkt, (5)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W, ρS)−1
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W, ρS)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),
ρS , ρT ∼ Uniform(0, 1).

In this model φt = (φ1t, . . . , φKt) is the vector of random effects for time period t, which evolve
over time via a multivariate first order autoregressive process with temporal autoregressive
parameter ρT . The temporal autocorrelation is thus induced via the mean ρTφt−1, while
spatial autocorrelation is induced by the variance τ2Q(W, ρS)−1. The corresponding precision
matrix Q(W, ρS) was proposed by Leroux et al. (2000) and corresponds to the CAR models
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used in the other models above. The algebraic form of this matrix is given by

Q(W, ρS) = ρS [diag(W1)−W] + (1− ρS)I, (6)

where 1 is the K× 1 vector of ones while I is the K×K identity matrix. In common with all
other models the random effects are zero-mean centered, while flat and conjugate priors are
specified for (ρS , ρT ) and τ2 respectively, with (a = 1, b = 0.01) being the default values for
the latter. In common with the ST.CARanova() function the dependence parameters (ρS , ρT )
can be fixed at values in the unit interval [0, 1] rather than being estimated in the model.
Finally, missing (NA) values are allowed in the response data Y for this model.

ST.CARadaptive()

The model is that proposed by Rushworth et al. (2017), and is an extension of ST.CARar()
proposed by Rushworth et al. (2014) to allow for spatially adaptive smoothing. It is appro-
priate if one believes that the residual spatial autocorrelation in the response after accounting
for the covariates is consistent over time but has a localized structure. That is, it is strong in
some parts of the study region but weak in others. The model has the same autoregressive
random effects structure as the previous model ST.CARar(), namely:

ψkt = φkt, (7)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W, ρS)−1
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W, ρS)−1

)
,

τ2 ∼ Inverse-Gamma(a, b),
ρS , ρT ∼ Uniform(0, 1).

However, the random effects from ST.CARar() have a single level of spatial dependence that
is controlled by ρS . All pairs of adjacent areal units will have strongly autocorrelated random
effects if ρS is close to one, while no such spatial dependence will exist anywhere if ρS is close
to zero. However, real data may exhibit spatially varying dependencies, as two adjacent areal
units may exhibit similar values suggesting a value of ρS close to one, while another adjacent
pair may exhibit very different values suggesting a value of ρS close to zero.
This model allows for localized spatial autocorrelation by allowing spatially neighboring ran-
dom effects to be correlated (inducing smoothness) or conditionally independent (no smooth-
ing), which is achieved by modeling the non-zero elements of the neighborhood matrix W
as unknown parameters, rather than assuming they are fixed constants. These adjacency
parameters are collectively denoted by w+ = {wkj |k ∼ j}, where k ∼ j means areas (k, j)
share a common border. Estimating wkj ∈ w+ as equal to zero means (φkt, φjt) are condition-
ally independent for all time periods t given the remaining random effects, while estimating it
close to one means they are correlated. The adjacency parameters in w+ are each modeled on
the unit interval, by assuming a multivariate Gaussian prior distribution on the transformed
scale v+ = log

(
w+/(1−w+)

)
. This prior is a shrinkage model with a constant mean µ and

a diagonal variance matrix with variance parameter ζ2, and is given by

f(v+|τ2
w, µ) ∝ exp

− 1
2τ2
w

 ∑
vik∈v+

(vik − µ)2

 , (8)

τ2
w ∼ Inverse-Gamma(a, b).
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The prior distribution for v+ assumes that the degree of smoothing between pairs of adjacent
random effects is not spatially dependent, which results from the work of Rushworth et al.
(2017) that shows poor estimation performance when v+ (and hence w+) is assumed to
be spatially autocorrelated. Under small values of τ2

w the elements of v+ are shrunk to µ,
and here we follow the work of Rushworth et al. (2017) and fix µ = 15 because it avoids
numerical issues when transforming between v+ and w+ and implies a prior preference for
values of wkj close to 1. That is as τ2

w → 0 the prior becomes the global smoothing model
ST.CARar(), where as when τ2

w increases both small and large values in w+ are supported
by the prior. As with the other models the default values for the Inverse-Gamma prior for
τ2
w are (a = 1, b = 0.01). Alternatively, it is possible to fix ρS using the rhofix argument,
e.g., rhofix = 1 fixes ρS = 1, so that globally the spatial correlation is strong and is altered
locally by the estimates of w+. For further details see Rushworth et al. (2017).

ST.CARlocalised()

The model was proposed by Lee and Lawson (2016), and augments the smooth spatio-
temporal variation in ST.CARar() with a piecewise constant intercept component. This model
is appropriate when the aim of the analysis is to identify clusters of areas that exhibit ele-
vated (or reduced) values of the response compared with their geographical and temporal
neighbors. Thus this model is similar to ST.CARadaptive(), in that both relax the restric-
tive assumption that if two areas are close together then their estimated random effects must
be similar. This model captures any step-changes in the response via the mean function,
whereas ST.CARadaptive() captures them via the correlation structure (via W). Model
ST.CARlocalised() is given by

ψkt = λZkt
+ φkt, (9)

φt|φt−1 ∼ N
(
ρTφt−1, τ

2Q(W)−
)

t = 2, . . . , N,

φ1 ∼ N
(
0, τ2Q(W)−

)
,

τ2 ∼ Inverse-Gamma(a, b),
ρT ∼ Uniform(0, 1),

where the “−” in Q(W)− denotes a generalized inverse. The random effects φ = (φ1, . . . ,φT )
are modeled by a simplification of the ST.CARar() model with ρS = 1, which corresponds to
the intrinsic CAR model proposed by Besag et al. (1991). Note, for this model the inverse
Q(W)−1 does not exist as the precision matrix is singular. This simplification is made so that
the random effects capture the globally smooth spatio-temporal autocorrelation in the data,
allowing the other component to capture localized clustering and step-changes. This second
component is a piecewise constant clustering or intercept component λZkt

. Thus spatially
and temporally adjacent data points (Ykt, Yjs) will be similar (autocorrelated) if they are
in the same cluster or intercept, that is if λZkt

= λZjs , but exhibit a step-change if they are
estimated to be in different clusters, that is if λZkt

6= λZjs . The piecewise constant intercept or
clustering component comprises at most G distinct levels, making this component a piecewise
constant intercept term. The G levels are ordered via the prior specification:

λj ∼ Uniform(λj−1, λj+1) for j = 1, . . . , G, (10)

where λ0 = −∞ and λG+1 = ∞. Here Zkt ∈ {1, . . . , G} and controls the assignment of the
(k, t)th data point to one of the G intercept levels. A penalty based approach is used to model
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Zkt, where G is chosen larger than necessary and a penalty prior is used to shrink it to the
middle intercept level. This middle level is G∗ = (G + 1)/2 if G is odd and G∗ = G/2 if G
is even, and this penalty ensures that Zkt is only in the extreme low and high risk classes if
supported by the data. Thus G is the maximum number of distinct intercept terms allowed
in the model, and is not the actual number of intercept terms estimated in the model. The
allocation prior is independent across areal units but correlated in time, and is given by:

f(Zkt|Zk,t−1) = exp(−δ[(Zkt − Zk,t−1)2 + (Zkt −G∗)2])∑G
r=1 exp(−δ[(r − Zk,t−1)2 + (r −G∗)2])

for t = 2, . . . , N, (11)

f(Zk1) = exp(−δ(Zk1 −G∗)2)∑G
r=1 exp(−δ(r −G∗)2)

,

δ ∼ Uniform(1,m).

Temporal autocorrelation is induced by the (Zkt − Zk,t−1)2 component of the penalty, while
the (Zkt − G∗)2 component penalizes class indicators Zkt towards the middle risk class G∗.
The size of this penalty and hence the amount of smoothing that is imparted on Z is controlled
by δ, which is assigned a uniform prior. The default value is m = 10, and full details of this
model can be found in Lee and Lawson (2016).

2.3. Inference

All models in this package are fitted in a Bayesian setting using Markov chain Monte Carlo
simulation. All parameters whose full conditional distributions have a closed form distribution
are Gibbs sampled, which includes the regression parameters (β) and the random effects (e.g.,
φ, etc.) in the Gaussian data models, as well as the variance parameters (e.g., τ2, etc.) in
all models. The remaining parameters are updated using Metropolis or Metropolis-Hastings
steps, and the random effects in the binomial and Poisson data models can be updated via
the simple Gaussian random walk Metropolis algorithm or the Metropolis adjusted Langevin
algorithm (MALA; Roberts and Rosenthal 1998). The default is to use MALA, but the user
can choose simple random walk Metropolis steps by specifying the MALA = FALSE argument in
the function call. The regression parameters are updated in blocks of size 10 utilizing MALA
updates, although if only a single covariate is incorporated in the model or only an intercept
term is included then simple random walks are used as they were found to perform better.
The remaining parameters utilize simple Gaussian random walk Metropolis updates. The
simple random walk Metropolis updates are automatically tuned in the algorithms to have
acceptances rates of between 40%–50% for scalar parameter updates, and between 20%–40%
for vector parameters. The MALA updates are also automatically tuned in the software to
have acceptance rates between 40%–50%. The overall functions that implement the MCMC
algorithms are written in R, while the computationally intensive updating steps are written as
computationally efficient C++ routines using the R package Rcpp (Eddelbuettel and Francois
2011). Additionally, the sparsity of the neighborhood matrices W and D are utilized via their
triplet forms when updating the random effects within the algorithms, which increases the
computational efficiency of the software. Finally, we note that the software runs only on one
core, and leaves possibilities of parallelization to the user.
As a note of caution, all conclusions from MCMC-based inference in Bayesian models are
only valid if the samples generated are well behaved, that is they are realizations from the
target posterior distribution. Thus one of the challenges of fitting Bayesian models using
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any software is determining when the Markov chains have converged, and as a result how
many samples to discard as the burn-in period and then how many more to generate on
which to base inference. Convergence can be assessed using many metrics, the simplest of
which is by eye, by viewing trace-plots of the parameters that should be stationary and
show random fluctuations around a single mean level (see Figure 1 for an example of Markov
chains showing no evidence against convergence). In addition to this visual check package
CARBayesST presents the convergence diagnostic proposed by Geweke (1992) for sample
parameters when applying the print() function to a fitted model object, which uses the
geweke.diag() function from the coda package (Plummer, Best, Cowles, and Vines 2006).
This statistic is in the form of a Z-score, and values between (−1.96, 1.96) are suggestive of
convergence. A full discussion of how many samples to generate, burn-in lengths and whether
or not to thin the Markov chains are beyond the scope of this paper, and further details
can be found in general texts on Bayesian modeling such as Robert and Casello (2010) and
Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin (2013). Additionally, further details of
MCMC algorithms for CAR-type models are given by Rue and Held (2005) and Gerber and
Furrer (2015).

3. Loading and using the software

3.1. Loading the software

CARBayesST is a package for the statistical computing environment R (R Core Team 2017)
and can be downloaded from the Comprehensive R Archive Network (CRAN) at https:
//CRAN.R-project.org/package=CARBayesST for Windows, Linux and macOS platforms.
The package requires R (≥ 3.0.0) and depends on packages MASS (Venables and Ripley
2002) and Rcpp (≥ 0.11.5). Additionally, it imports functionality from the CARBayesdata
(Lee 2016), coda, dplyr (Wickham and Francois 2015), matrixcalc (Novomestky 2012), sp
(Bivand, Pebesma, and Gómez-Rubio 2013), spam (Furrer and Sain 2010), spdep, stats, test-
that (Wickham 2011), truncdist (Novomestky and Nadarajah 2012), truncnorm (Trautmann,
Steuer, Mersmann, and Bornkamp 2014) and utils packages. Once installed it can be loaded
using the command library("CARBayesST").
The packages listed above are automatically loaded for use in package CARBayesST by the
above call, but a complete spatial analysis beginning with reading in and formatting shapefiles
and data, creating the neighborhood matrix W, and plotting the results requires a number
of other packages. Thus the worked examples in this paper utilize functionality from the
following packages: CARBayes, CARBayesdata, dplyr, maptools (Bivand and Lewin-Koh
2015), MASS, sp and spdep.

3.2. Using the software

The software can fit six models: ST.CARlinear(), ST.CARanova(), ST.CARsepspatial(),
ST.CARar(), ST.CARadaptive() ST.CARlocalised(), and full details of the arguments re-
quired for each function are given in the help files. However, the main arguments common to
all the functions that are required for a baseline analysis (for example using default priors)
are as follows.

https://CRAN.R-project.org/package=CARBayesST
https://CRAN.R-project.org/package=CARBayesST
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• formula: A formula for the covariate part of the model using the same syntax used
in the lm() function. Offsets can be included here using the offset() function. The
response and each covariate should be vectors of length KT × 1, where each vector is
ordered so that the first K data points are the set of all K spatial locations at time 1,
the next K are the set of spatial points for time 2 and so on.

• family: The likelihood model which must be one of "binomial", "Gaussian" or
"Poisson".

• trials: This is only needed if family = "binomial", and it is a vector of the same
length and in the same order as the response containing the total number of trials for
each area and time period.

• W: A K ×K symmetric and non-negative neighborhood matrix whose row sums must
all be positive. Typically a binary specification is used, where the kjth element wkj
equals one if areas (Sj ,Sk) are spatially close (e.g., share a common border) and is zero
otherwise. This matrix can be specified by hand or created from a shapefile and data
frame using functionality from the CARBayes and spdep packages.

• burn-in: The number of MCMC samples to discard as the burn-in period.

• n.sample: The number of MCMC samples to generate.

When a model has been fitted in package CARBayesST, the following methods are available
for the returned fitted model:

• coef(): Returns the estimated (posterior median) regression coefficients.

• fitted(): Returns the fitted values based on posterior medians.

• logLik(): Returns the estimated log-likelihood based on posterior medians.

• model.matrix(): Returns the design matrix of covariates.

• print(): Prints a summary of the fitted model to the screen, including both parameter
summaries and convergence diagnostics for the MCMC run.

• residuals(): Returns either the "response" (raw), "pearson", or "deviance" resid-
uals from the model (based on posterior medians).

Additionally, the CARBayes functions summarise.samples() and summarise.lincomb() can
be applied to CARBayesST models to summarize the results. The software updates the user
on its progress to the R console, which allows the user to monitor the function’s progress.
However, using the verbose = FALSE option will disable this feature. Once run, each model
fitted with this package consists of a list object with the following components.

• summary.results: A summary table of selected parameters that is presented when
using the print() function. The table includes the posterior median (Median) and
95% credible interval (2.5%, 97.5%), the number of samples generated (n.sample), the
acceptance rate for the Markov chain (% accept), the effective number of independent
samples using the effectiveSize() function from the coda package (n.effective),
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and the convergence diagnostic proposed by Geweke (1992) and implemented in the
coda package (Geweke.diag). This diagnostic takes the form of a Z-score, so that
convergence is suggested by the statistic being within the range (−1.96, 1.96).

• samples: A list containing the MCMC samples from the model, where each element in
the list is a matrix. The names of these matrix objects correspond to the parameters
defined in Section 2 of this paper, and each column contains the set of samples for a single
parameter. For example, for ST.CARlinear() the (tau2, rho) elements of the list have
columns ordered as (τ2

int, τ
2
slo) and (ρ2

int, ρ
2
slo) respectively. Similarly, for ST.CARanova()

the (tau2, rho) elements of the list have columns ordered as (τ2
S , τ

2
T , τ

2
I ) (the latter only

if interaction = TRUE) and (ρ2
S , ρ

2
T ) respectively. Finally, each model returns samples

from the posterior distribution of the fitted values for each data point (fitted).

• fitted.values: A vector of fitted values based on posterior medians for each area and
time period in the same order as the data Y.

• residuals: A matrix of 3 types of residuals in the same order as the response. The 3
columns of this matrix correspond to "response" (raw), "pearson", and "deviance"
residuals.

• modelfit: Model fit criteria including the deviance information criterion (DIC; Spiegel-
halter, Best, Carlin, and Van der Linde 2002) and its corresponding estimated effec-
tive number of parameters (p.d.), the Watanabe-Akaike information criterion (WAIC;
Watanabe 2010) and its corresponding estimated number of effective parameters (p.w.),
and the log marginal predictive likelihood (LMPL; Congdon 2005). Also included is the
log-likelihood. The best fitting model is one that minimizes the DIC and WAIC but
maximizes the LMPL.

• accept: The acceptance probabilities for the parameters.

• localised.structure: This element is NULL except for the models ST.CARadaptive()
and ST.CARlocalised(). For ST.CARadaptive() this element is a list with 2 K ×K
matrices, Wmn and W99, which summarize the estimated adjacency relationships. Wmn
contains the posterior median for each wkj element estimated in the model for adjacent
areal units, while W99 contains indicator variables for whether P(wjk < 0.5|Y) > 0.99.
For both matrices, elements corresponding to non-adjacent pairs of areas have NA values.
For ST.CARlocalised() this element is a vector of lengthKT×1, and gives the posterior
median class (Zkt value) that each data point is assigned to. This vector is in the same
order as the data Y.

• formula: The formula (as a text string) for the covariate and offset part of the model.

• model: A text string describing the model that has been fitted.

• X: The design matrix of covariates inherited from the formula argument.

The remainder of this paper illustrates the CARBayesST package via a small simulation study
to illustrate the correctness of the MCMC algorithms, as well as two worked examples, the
latter of which utilize spatio-temporal data to answer important questions in public health
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and the housing market. Note that slightly different results might be obtained depending on
the specific computing environment, in particular the linear algebra library used.

4. Simulation exercises
This section is split into three parts. The first illustrates how to use the software to fit
a model, the second presents a short simulation study to illustrate the correctness of the
CARBayesST implementation of a model, while the third describes a comparison of run
times for various data sizes. All three exercises are based on the ST.CARanova() model,
but similar studies could be done for the other models. We note in passing that the cor-
rectness of the CARBayesST implementations of the ST.CARsepspatial() (Napier et al.
2016), ST.CARar() (Rushworth et al. 2014), ST.CARadaptive() (Rushworth et al. 2017), and
ST.CARlocalised() (Lee and Lawson 2016) models has been assessed in the accompanying
papers where the models were developed. Here we generate data from a binomial logistic
model, thus the model comprises the data likelihood Ykt ∼ Binomial(nkt = 50, θkt) and
ln(θkt/(1−θkt)) = β1 +xktβ2 +ψkt, which is combined with Equation 3, yielding parameters
(β2×1,φK×1, δN×1,γKN×1, ρS , ρT , τ

2
S , τ

2
T , τ

2
I ). Generation of the data is described below, and

in what follows we fix β = (0, 0.1), ρS = ρT = 0.8, τ2
S = τ2

T = τ2
I = 0.01.

4.1. Generating data and fitting a model

Consider a spatial region comprising K = 400 areal units on a regular 20×20 grid and N = 20
consecutive time periods. Such a grid can be constructed using the following code.

R> n.space <- 20
R> N <- 20
R> x.easting <- 1:n.space
R> x.northing <- 1:n.space
R> Grid <- expand.grid(x.easting, x.northing)
R> K <- nrow(Grid)
R> N.all <- N * K

A binary 400× 400 spatial neighborhood matrix W can be constructed for this region based
on spatial adjacency (rook, in chess) using the following code.

R> distance <- as.matrix(dist(Grid))
R> W <- array(0, c(K, K))
R> W[distance == 1] <- 1

Similarly, a binary 20 × 20 temporal neighborhood matrix D can be constructed using the
following code.

R> distance <- as.matrix(dist(1:N))
R> D <- array(0, c(N, N))
R> D[distance == 1] <- 1

From W the precision matrix can be computed for the multivariate Gaussian representation
of the spatial random effects φ from (6) as follows:
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R> Q.W <- 0.8 * (diag(apply(W, 2, sum)) - W) + 0.2 * diag(rep(1, K))

where ρS = 0.8. This matrix can then be inverted and a sample of random effects φ generated
(assuming τ2

S = 0.01) using the following code.

R> Q.W.inv <- solve(Q.W)
R> library("mvtnorm")
R> phi <- rmvnorm(n = 1, mean = rep(0, K), sigma = (0.01 * Q.W.inv))
R> phi.long <- rep(phi, N)

Here the last line repeats the spatial random effects N times, as the ST.CARanova() model
assumes that there is a single set of spatial random effects for all time periods. The temporal
random effects under the ST.CARanova() model have the same functional form but depend
on D rather than W, and thus a realization can be generated analogously using the code:

R> Q.D <- 0.8 * (diag(apply(D, 2, sum)) - D) + 0.2 * diag(rep(1, N))
R> Q.D.inv <- solve(Q.D)
R> delta <- rmvnorm(n = 1, mean = rep(0, N), sigma = (0.01 * Q.D.inv))
R> delta.long <- kronecker(delta, rep(1, K))

Again, the final line repeats the temporal random effects for each spatial unit. Next, we
generate space-time interactions and a covariate x, both of which are generated independently
from Gaussian distributions.

R> x <- rnorm(n = N.all, mean = 0, sd = 1)
R> gamma <- rnorm(n = N.all, mean = 0, sd = sqrt(0.01))

Finally, we set the intercept term β1 = 0, the regression coefficient β2 = 0.1, and the number
of trials for the binomial likelihood in each area and time period being nkt = 50. Then we
generate the response variable via the code below. Here LP denotes the linear predictor, which
contains an intercept term, a covariate and three sets of random effects (spatial, temporal,
and interactions).

R> beta1 <- 0
R> beta2 <- 0.1
R> n <- rep(50, N.all)
R> LP <- beta1 + beta2 * x + phi.long + delta.long + gamma
R> theta.true <- exp(LP) / (1 + exp(LP))
R> Y <- rbinom(n = N.all, size = n, prob = theta.true)

The ST.CARanova() model can then be applied to this data using the following code.

R> library("CARBayesST")
R> model <- ST.CARanova(formula = Y ~ x, family = "binomial", trials = n,
+ W = W, burnin = 20000, n.sample = 120000, thin = 10)

In the code above inference is based on 10,000 MCMC samples, which were generated from
a single Markov chain that was run for 120,000 iterations with a 20,000 burn-in period and
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Figure 1: Posterior distributions of the regression parameters (the true values are β1 = 0 and
β2 = 0.1). The left panel contains trace-plots while the right panel are density estimates.

subsequently thinned by 10 to reduce the autocorrelation of the Markov chain. The model
object is a ‘list’ containing elements such as the posterior samples for all parameters, fitted
values and residuals, and model fit criteria, and further details are given in Section 3. The
posterior samples are available in the samples element of the list object model, which is itself
a list of ‘mcmc’ objects (from the coda package) for each set of parameters. Trace-plots of the
parameters for β can be produced using the code below, and the result is shown in Figure 1.

R> colnames(model$samples$beta) <- c("beta1", "beta2")
R> plot(model$samples$beta)

The figures show no evidence against convergence, and that the posterior distributions for
both parameters are centered close to their true values. A summary of the fitted model can
be obtained using the print() function as follows.

R> model

#################
#### Model fitted
#################
Likelihood model - binomial (logit link function)
Latent structure model - spatial and temporal main effects and an interaction
Regression equation - Y ~ x

############
#### Results
############
Posterior quantities for selected parameters and DIC
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Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag
(Intercept) -0.0725 -0.0787 -0.0664 10000 35.1 8895.4 -0.3
x 0.1017 0.0949 0.1087 10000 35.1 8042.4 0.2
tau2.S 0.0128 0.0098 0.0165 10000 100.0 6171.6 -1.1
tau2.T 0.0083 0.0047 0.0165 10000 100.0 11337.6 0.8
tau2.I 0.0127 0.0098 0.0158 10000 100.0 303.3 -1.1
rho.S 0.8216 0.6260 0.9583 10000 44.1 7080.2 -1.1
rho.T 0.6512 0.1925 0.9371 10000 66.6 10000.0 -1.8

DIC = 44096.02 p.d = 1266.178 LMPL = -20852.61

The summary is presented in two parts, the first of which describes the model that has been
fit. The second summarizes the results, and includes the posterior median (Median) and 95%
credible intervals (2.5%, 97.5%) for selected parameters (not the random effects), the con-
vergence diagnostic proposed by Geweke (1992) (Geweke.diag) as a Z-score and the effective
number of independent samples (n.effective). Also displayed are the actual number of
samples kept from the MCMC run (n.sample) as well as the acceptance rate for each param-
eter (% accept). Note, parameters that have an acceptance rate of 100% have been Gibbs
sampled due to their full conditional distributions being a standard distribution. Finally, the
DIC and LMPL overall model fit criteria are displayed, which allows models with different
space-time structures to be compared.

4.2. Small simulation study

This section illustrates the correctness of the CARBayesST package implementation of the
ST.CARanova() model, by simulating 100 data sets using the code presented above and sum-
marizing the bias and 95% coverage probabilities of the estimated model parameters. The
results of this simulation study are presented in Table 2, which shows bias and 95% cover-
age probabilities (mean square error is not presented as we are not seeking to compare two
different models) for (β1, β2, ρS , ρT , τ

2
S , τ

2
T , τ

2
I ,φ, δ,γ) as well as for the fitted values. For the

random effects and fitted values all results are averaged over both the 100 simulated data
sets and over all the elements (either K, N or N.all) in each simulated data set. The results
show that overall the CARBayesST implementation of the ST.CARanova() model produces
largely unbiased parameter estimates, with all parameters except the dependence parameters
(ρS , ρT ) having negligible biases. The largest bias in absolute size is −0.219 for ρT , which is
not surprising because it is a temporal dependence parameter estimated from data on only 20
time points. Additionally, the table shows that the coverage probabilities for all the parame-
ters are generally close to the nominal 0.95 levels, suggesting that the 95% credible intervals
have the correct width. The only exceptions are the dependence parameters which are slightly
below 90% coverage.

4.3. Timing and data sizes

The final part of this section presents some timings for fitting the ST.CARanova() model
to data sets of various sizes. All data sets are generated on a regular lattice with a single
covariate and interaction random effects present as illustrated in Section 4.1. The results are
presented in Table 3, and relate to fitting the model for a total of 120,000 iterations, with
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Parameter Bias Coverage probability
β1 −0.000825 0.990
β2 0.000638 0.980
ρS −0.109 0.890
ρT −0.219 0.890
τ2
S −0.000618 0.900
τ2
T 0.000471 0.950
τ2
I −0.000368 0.970
φ −3.74×10−6 0.950
δ 7.96×10−7 0.956
γ −6.51×10−7 0.944
Fitted values −0.0102 0.946

Table 2: Summary of the simulation study undertaken to assess the bias and 95% coverage
probabilities of the parameter estimates from the ST.CARanova() model. All results are based
on 100 simulated data sets generated as outlined above.

Timing
K N N all in seconds (h:m.s)

K = 10× 10 = 100 N = 10 1,000 139 (2.19)
K = 10× 10 = 100 N = 20 2,000 244 (4.04)
K = 20× 20 = 400 N = 10 4,000 466 (7.46)
K = 20× 20 = 400 N = 20 8,000 895 (14.55)
K = 30× 30 = 900 N = 20 18,000 2,192 (36.32)
K = 30× 30 = 900 N = 30 27,000 3,201 (53.21)
K = 40× 40 = 1600 N = 30 48,000 6,349 (1:45.49)
K = 40× 40 = 1600 N = 40 64,000 7,772 (2:09.32)
K = 50× 50 = 2500 N = 40 100,000 13,509 (3:45.09)

Table 3: Summary of the time taken to run the ST.CARanova() model in seconds (in hours,
minutes and seconds in brackets) on a regular grid with different square grid sizes (K),
numbers of time periods (N) and total number of data points (N all).

a burn-in period of 20,000 and thinning the resulting Markov chains by 10. The timings
were carried out on an Apple iMac computer with a 3.5 GHZ Intel Core i7 processor and
32GB 1600 MHz DDR3 memory. The table shows that the example run times range between
just over 2 minutes for 1,000 data points to around 3 hours and 45 minutes for 100,000 data
points, which shows the increased computational effort required as the number of data points
increases.

5. Example 1: The effect of air pollution on human health

This first example is an ecological regression problem, where the aim is to estimate the effect
that air pollution concentrations have on respiratory disease risk.
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5.1. Data and exploratory analysis

For the purposes of delivering health care Scotland is split into 14 health boards, and this study
focuses on the Greater Glasgow and Clyde health board, which contains the city of Glasgow
and has a population of around 1.2 million people during the 2007 to 2011 study period. This
health board is split into K = 271 intermediate geographies (IG), which are a key geography
for the distribution of small-area statistics in Scotland and contain populations of between
2,468 and 9,517 people. The aim of this study is to quantify the impact of particulate matter
air pollution concentrations on respiratory ill health, and we have yearly data for N = 5 years
(2007 to 2011) for the K = 271 IGs. The disease and covariate data are freely available from
Scottish Statistics (http://statistics.gov.scot/), while the particulate matter pollution
concentrations are available from the Department for the Environment, Food and Rural Affairs
(DEFRA; https://uk-air.defra.gov.uk/data/pcm-data).
The respiratory disease data are population level counts of the numbers of admissions to
hospital in each IG and year with a primary diagnosis of respiratory disease, which corresponds
to the International Classification of Disease tenth revision (ICD-10) codes J00-J99 and R09.1.
However, the observed numbers of admissions in an IG and year depends on the size and
demographic structure (e.g., age and sex profile) of the population living there, which is
adjusted for using indirect standardization. This involves computing the number of admissions
that would be expected in each IG and year if national age and sex specific admissions
rates applied. The observed and expected numbers of respiratory hospital admissions in the
kth IG and tth year are denoted by (Ykt, Ekt) respectively, and the Poisson model, Ykt ∼
Poisson(EktRkt) is typically used to model these data. Here Rkt is the risk, relative to Ekt, of
disease in IG k and year t, and a value of 1.2 corresponds to a 20% increased risk of disease.
Operationally, the Ekt is included as an offset term in the model on the natural log scale,
that is Okt = ln(Ekt) in Equation 1.
The pollution data we utilize are yearly average modeled concentrations of particulate matter
less than 10 microns (PM10), which come from both anthropogenic (e.g., particles in car
exhaust fumes) and natural (e.g., sea salt) sources. These data are estimates on a 1 kilometer
square grid produced by a numerical simulation model, and full details can be found in
Ricardo-AEA (2015). These 1 kilometer square estimates are spatially misaligned with the
irregularly shaped polygonal IGs at which the disease and covariate data are available, and
thus simple averaging is used to produce IG level PM10 estimates. Specifically, the median
value of PM10 over the set of 1 kilometer grid squares having centroids lying within each IG
was computed, and if an IG was too small to contain a grid square centroid then the nearest
grid square was used as the concentration.
Finally, the data set contains 2 potential confounders that will be included in the model, both
of which are proxy measures of socio-economic deprivation (poverty). The main confounder
in spatio-temporal air pollution and health studies is smoking rates, but such smoking data
are unavailable. However, smoking rates are strongly linked to socio-economic deprivation,
and thus existing studies such as Haining, Li, Maheswaran, Blangiardo, Law, Best, and
Richardson (2010) control for smoking effects using deprivation based proxy measures. Here
we have two measures of socio-economic deprivation, the average property price in each IG
and year (in hundreds of thousands), and the proportion of the working age population who
are in receipt of job seekers allowance (JSA), the latter being a benefit paid to individuals
who are unemployed and seeking employment.

http://statistics.gov.scot/
https://uk-air.defra.gov.uk/data/pcm-data


Journal of Statistical Software 21

These data are available in the CARBayesdata package in the object pollutionhealthdata,
and the package also contains the spatial polygon information for the Greater Glasgow and
Clyde health board study region in the object GGHB.IG as a ‘SpatialPolygonsDataFrame’
object. These data can be loaded using the following commands.

R> set.seed(1234)
R> library("CARBayesdata")
R> library("sp")
R> data("GGHB.IG", package = "CARBayesdata")
R> data("pollutionhealthdata", package = "CARBayesdata")

The structure of pollutionhealthdata is shown below

R> head(pollutionhealthdata)

IG year observed expected pm10 jsa price
1 S02000260 2007 97 98.24602 14.02699 2.25 1.150
2 S02000261 2007 15 45.26085 13.30402 0.60 1.640
3 S02000262 2007 49 92.36517 13.30402 0.95 1.750
4 S02000263 2007 44 72.55324 14.00985 0.35 2.385
5 S02000264 2007 68 125.41904 14.08074 0.80 1.645
6 S02000265 2007 24 55.04868 14.08884 1.25 1.760

The first column labeled IG is the set of unique identifiers for each IG, while observed
and expected are respectively the observed (e.g., Ykt) and expected (e.g., Ekt) numbers of
hospital admissions due to respiratory disease. An exploratory measure of disease risk is
the standardized morbidity ratio (SMR), which for the kth IG and tth year is computed as
SMRkt = Ykt/Ekt. However, due to the natural log link function in the Poisson model, the
covariates are related in the model to the natural log of the SMR. Therefore the code below
adds the SMR and the natural log of the SMR to the data set and produces a pairs() plot
showing the relationship between the variables.

R> pollutionhealthdata$SMR <- with(pollutionhealthdata, observed / expected)
R> pollutionhealthdata$logSMR <- log(pollutionhealthdata$SMR)
R> par(pty = "s", cex.axis = 1.5, cex.lab = 1.5)
R> pairs(pollutionhealthdata[, c(9, 5:7)], pch = 19, cex = 0.5,
+ lower.panel = NULL, panel = panel.smooth,
+ labels = c("ln(SMR)", "PM10", "JSA", "Price (*100,000)"))

The pairs plot shown in Figure 2 shows respectively positive and negative relationships be-
tween the natural log of SMR and the two deprivation covariates jsa and price, in both
cases suggesting that increasing levels of poverty are related to an increased risk of respira-
tory hospitalization. There also appears to be a weak positive relationship between log(SMR)
and PM10, while the only relationship that exists between the covariates is a negative non-
linear one between jsa and price. Next, it is of interest to visualize the average spatial
pattern in the SMR over all five years, and the data can be appropriately aggregated using
the summarise() function from the dplyr package using the code below. The aggregation
is done by the second line, while the final line adds the aggregated averages to the GGHB.IG
‘SpatialPolygonsDataFrame’ object.
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Figure 2: Scatter plot of the disease, pollution and covariate data.

R> library("dplyr")
R> SMR.av <- summarise(group_by(pollutionhealthdata,IG), SMR.mean =
+ mean(SMR))
R> GGHB.IG@data$SMR <- SMR.av$SMR.mean

Finally, the spplot() function from the sp package can be used to draw a map of the average
SMR over time using the code below:

R> l1 <- list("SpatialPolygonsRescale", layout.north.arrow(),
+ offset = c(220000, 647000), scale = 4000)
R> l2 <- list("SpatialPolygonsRescale", layout.scale.bar(), offset =
+ c(225000, 647000), scale = 10000, fill = c("transparent", "black"))
R> l3 <- list("sp.text", c(225000, 649000), "0")
R> l4 <- list("sp.text", c(230000, 649000), "5000 m")
R> breakpoints <- seq(min(SMR.av$SMR.mean) - 0.1,
+ max(SMR.av$SMR.mean) + 0.1, length.out = 11)
R> spplot(GGHB.IG, "SMR", sp.layout = list(l1, l2, l3, l4), xlab = "Easting",
+ ylab = "Northing", scales = list(draw = TRUE), at = breakpoints,
+ col.regions = terrain.colors(n = length(breakpoints) - 1),
+ par.settings = list(fontsize = list(text = 20)))
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Figure 3: Map showing the average SMR over all five years from 2007 to 2011.

The first four lines in the code create a north-arrow and scale-bar to add to the map, the
fifth line creates the breakpoints for the color scheme into 10 equally sized intervals, while
the last line draws the map. The resulting map is shown in Figure 3, where the green shaded
areas are low risk (SMR < 1), while the orange to silver areas exhibit elevated risks (SMR
> 1). The map shows that the main high-risk areas are in the east-end of Glasgow in the
east of the study region, and the Port Glasgow area in the far west of the region on the lower
bank of the river Clyde (the white line running north west to south east). The analysis that
follows requires us to compute the neighborhood matrix W and a ‘listw’ object variant of the
same spatial information, the latter being used in a hypothesis test for spatial autocorrelation.
Both of these quantities can be computed from the ‘SpatialPolygonsDataFrame’ object using
functionality from the spdep package, and code to achieve this is shown below.

R> library("spdep")
R> W.nb <- poly2nb(GGHB.IG, row.names = SMR.av$IG)
R> W.list <- nb2listw(W.nb, style = "B")
R> W <- nb2mat(W.nb, style = "B")

Here W is a binary K×K neighborhood matrix computed based on sharing a common border,
and W.list is the ‘listw’ object variant of this spatial information.

5.2. Assessing the presence of spatial autocorrelation

The spatio-temporal models in package CARBayesST allow for spatio-temporal autocorre-
lation via random effects, which capture the remaining autocorrelation in the disease data
after the effects of the known covariates have been accounted for. Therefore, we assess the
presence of spatial autocorrelation in our data set by first computing the residuals from a
simple over-dispersed Poisson log-linear model that incorporates the covariate effects. This
model is fitted using the code:
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R> formula <- observed ~ offset(log(expected)) + jsa + price + pm10
R> model1 <- glm(formula = formula, family = "quasipoisson",
+ data = pollutionhealthdata)
R> resid.glm <- residuals(model1)
R> coef(summary(model1))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.59752496 0.054333524 -10.99735 5.287385e-27
jsa 0.06041994 0.003231475 18.69732 1.467196e-69
price -0.28293191 0.018292049 -15.46748 8.225472e-50
pm10 0.04174701 0.003282156 12.71938 4.344434e-35

R> summary(model1)$dispersion

[1] 4.399561

The results show significant effects of all three covariates on disease risk, as well as sub-
stantial over-dispersion with respect to the Poisson equal mean and variance assumption
(over-dispersion parameter equal to around 4.40). To quantify the presence of spatial auto-
correlation in the residuals from this model we can compute Moran’s I statistic (Moran 1950)
and conduct a permutation test for each year of data separately. The permutation test has the
null hypothesis of no spatial autocorrelation and an alternative hypothesis of positive spatial
autocorrelation, and is conducted using the moran.mc() function from the spdep package.
The test can be implemented for the first year of residuals (2007) using the code below.

R> moran.mc(x = resid.glm[1:271], listw = W.list, nsim = 10000)

Monte-Carlo simulation of Moran I

data: resid.glm[1:271]
weights: W.list
number of simulations + 1: 10001

statistic = 0.10358, observed rank = 9953, p-value = 0.0048
alternative hypothesis: greater

The estimated Moran’s I statistic is 0.10358 and the p value is less than 0.05, suggesting strong
evidence of unexplained spatial autocorrelation in the residuals from 2007 after accounting for
the covariate effects. Similar results were obtained for the other years and are not shown for
brevity. We note that residual temporal autocorrelation could be assessed similarly for each
IG, for example by computing the lag − 1 autocorrelation coefficient, but with only 5 time
points the resulting estimates would not be reliable. These results show that the assumption
of independence is not valid for these data, and that spatio-temporal autocorrelation should
be allowed for when estimating the covariate effects.

5.3. Spatio-temporal modeling with CARBayesST
We illustrate model fitting in CARBayesST by applying the ST.CARar() model to the data,
details of which are given in Section 2. This model has previously been used to account for
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spatio-temporal autocorrelation in an air pollution and health study, for details see Rushworth
et al. (2014). The model can be fitted with the following one-line function call, and we note
that all data vectors (response, offset and covariates) have to be ordered so that the first K
data points relate to all spatial units at time 1, the next K data points to all spatial units at
time 2 and so on.

R> library("CARBayesST")
R> model2 <- ST.CARar(formula = formula, family = "poisson",
+ data = pollutionhealthdata, W = W, burnin = 20000, n.sample = 220000,
+ thin = 10)

In the above code the covariate and offset component defined by formula is the same as for
the simple Poisson log-linear model fitted earlier, and the neighborhood matrix is binary and
defined by whether or not two areas share a common border. The ST.CARar() model is run
for 220,000 MCMC samples, the first 20,000 of which are removed by the burn-in period. The
samples are then thinned by 10 to reduce the autocorrelation of the Markov chain, resulting
in 20,000 samples for inference. A summary of the model results can be visualized using the
print() function developed for package CARBayesST, which gives a very similar summary
to that produced in the CARBayes package.

R> model2

#################
#### Model fitted
#################
Likelihood model - Poisson (log link function)
Latent structure model - Autoregressive CAR model
Regression equation - observed ~ offset(log(expected)) + jsa + price + pm10

############
#### Results
############
Posterior quantities for selected parameters and DIC

Median 2.5% 97.5% n.sample % accept n.effective Geweke.diag
(Intercept) -0.6643 -0.8335 -0.4929 20000 45.1 1461.7 1.2
jsa 0.0644 0.0538 0.0749 20000 45.1 851.3 -4.5
price -0.1968 -0.2387 -0.1540 20000 45.1 2060.5 -1.5
pm10 0.0353 0.0234 0.0464 20000 45.1 1717.9 0.8
tau2 0.0582 0.0490 0.0686 20000 100.0 5705.0 -3.7
rho.S 0.5523 0.3960 0.7137 20000 43.7 3135.9 -3.1
rho.T 0.7583 0.6964 0.8165 20000 100.0 11995.4 3.0

DIC = 10394.9 p.d = 769.2512 LMPL = -4535.355

The output from the print() function shows that all three covariates exhibit relationships
with disease risk, as none of the 95% credible intervals contain zero. Furthermore, the spatial
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(rho.S) and temporal (rho.T) dependence parameters exhibit relatively high values in the
unit interval, suggesting that both spatial and temporal autocorrelation are present in these
data after adjusting for the covariate effects. The model object model2 is a list, and details
of its elements are described in Section 3 of this paper. A list object containing the MCMC
samples for each individual parameter and the fitted values is stored in model2$samples, and
each element of this list corresponds to a different group of parameters and is stored as a
‘mcmc’ object from the coda package. Applying the summary() function to this object yields:

R> summary(model2$samples)

Length Class Mode
beta 80000 mcmc numeric
phi 27100000 mcmc numeric
rho 40000 mcmc numeric
tau2 20000 mcmc numeric
fitted 27100000 mcmc numeric
Y 1 mcmc logical

Here the Y object is NA as there are no missing Ykt observations in this data set. If there had
been say m missing values, then the Y component of the list would have contained m columns,
with each one containing posterior predictive samples for one of the missing observations. The
key interest in this analysis is the effects of the covariates on disease risk, which for Poisson
models are typically presented as relative risks. The relative risk for an ε unit increase in a
covariate with regression parameter βs is given by the transformation exp(εβs), and a relative
risk of 1.02 corresponds to a 2% increased risk if the covariate increased by ε. The code below
draws the posterior relative risk distributions for a one unit increase in each covariate, which
are all realistic increases given the variation observed in the data in Figure 2.

R> par(pty = "m")
R> colnames(model2$samples$beta) <- c("Intercept", "JSA", "Price", "PM10")
R> plot(exp(model2$samples$beta[, -1]))

These distributions are displayed in Figure 4, where the left side shows trace-plots and the
right side shows density estimates. Posterior medians and 95% credible intervals for the
relative risks can be computed using the summarise.samples() function from the CARBayes
package using the code below:

R> library("CARBayes")
R> parameter.summary <- summarise.samples(exp(model2$samples$beta[, -1]),
+ quantiles = c(0.5, 0.025, 0.975))
R> round(parameter.summary$quantiles, 3)

0.5 0.025 0.975
[1,] 1.067 1.055 1.078
[2,] 0.821 0.788 0.857
[3,] 1.036 1.024 1.047
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Figure 4: Posterior distributions for the covariate effects.

The output above shows that the posterior median and 95% credible interval for the relative
risk of a 1µgm−3 increase in PM10 is 1.036 (1.024, 1.047), suggesting that such an increase
corresponds to 3.6% additional hospital admissions. The corresponding relative risk for a
one percent increase in JSA is 1.067 (1.055, 1.078), while for a one hundred thousand pound
increase in property price (the units for the property price data were in hundreds of thousands)
the risk is 0.821 (0.788, 0.857). Thus, we find that increased air pollution concentrations are
related, at this ecological level, to increased respiratory hospitalization, while decreased socio-
economic deprivation, as measured by both property price and JSA, is related to decreased
risks of hospital admission.

6. Example 2: Monitoring the state of the housing market
This second example focuses on the state of the housing market, specifically property sales,
and aims to quantify its changing trend over time in an era that encompasses the global
financial crisis that began in late 2007.

6.1. Data and exploratory analysis

The study region is the same as for the first example, namely the set of K = 271 intermediate
geographies that make up the Greater Glasgow and Clyde health board. The data also
come from the same source (Scottish Statistics; http://statistics.gov.scot/), and include
yearly observations of house sales from 2003 to 2013 inclusive. The response variable is the

http://statistics.gov.scot/
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number of property sales Ykt in each IG (indexed by k) and year (indexed by t), and we
additionally have the total number of properties nkt in each IG and year that will be used in
the model as the offset term. We use the following Poisson log-linear model for these data,
Ykt ∼ Poisson(nktθkt), where θkt is the rate of property sales as a proportion of the total
number of properties. We note that we have not used a binomial model here as a single
property could sell more than once in a year, meaning that each property does not constitute
a Bernoulli trial. Thus θkt is not strictly the proportion of properties that sell in a year, but
is on approximately the same scale for interpretation purposes.
These data are available in the CARBayesdata package in the object salesdata, as is the
spatial polygon information for the Greater Glasgow and Clyde health board study region (in
the object GGHB.IG). These data can be loaded using the following commands.

R> set.seed(1234)
R> library("CARBayesdata")
R> library("sp")
R> data("GGHB.IG", package = "CARBayesdata")
R> data("salesdata", package = "CARBayesdata")

The data frame salesdata contains 4 columns, the intermediate geography code (IG), the
year the data relates to (year), the number of property sales (sales, Ykt) and the total
number of properties (stock, nkt). We visualize the temporal trend in this data using the
code below, where the first line creates the raw rate of property sales as a proportion of the
total number of properties.

R> salesdata$salesprop <- with(salesdata, sales / stock)
R> boxplot(salesprop ~ year, data = salesdata, range = 0, xlab = "Year",
+ ylab = "Property sales rate", col = "darkseagreen", border = "navy")

This produces the boxplot shown in Figure 5, where the global financial crisis began in 2007.
The plot shows a clear step-change in property sales between 2007 and 2008, as sales were
increasing up to and including 2007, before markedly decreasing in subsequent years. Sales
in the last year of 2013 show slight evidence of increasing relative to the previous 4 years,
possibly suggesting the beginning of an upturn in the market. Also there appears to be a
change in the level of spatial variation from year to year, with larger amounts of spatial
variation observed before the global financial crisis. The spatial pattern in the average (over
time) rate of property sales as a proportion of the total number of properties is shown in
Figure 6, which was created using the code below.

R> library("dplyr")
R> salesprop.av <- summarise(group_by(salesdata, IG),
+ salesprop.mean = mean(salesprop))
R> GGHB.IG@data$sales <- salesprop.av$salesprop.mean
R> l1 <- list("SpatialPolygonsRescale", layout.north.arrow(),
+ offset = c(220000, 647000), scale = 4000)
R> l2 <- list("SpatialPolygonsRescale", layout.scale.bar(),
+ offset = c(225000, 647000), scale = 10000,
+ fill = c("transparent", "black"))
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Figure 5: Boxplots showing the temporal trend in the raw rate of property sales as a proportion
of the total number of properties between 2003 and 2013.

R> l3 <- list("sp.text", c(225000, 649000), "0")
R> l4 <- list("sp.text", c(230000, 649000), "5000 m")
R> breakpoints <- c(0, quantile(salesprop.av$salesprop.mean,
+ seq(0.1, 0.9, 0.1)), 0.1)
R> spplot(GGHB.IG, "sales", sp.layout = list(l1, l2, l3, l4),
+ xlab = "Easting", ylab = "Northing",
+ scales = list(draw = TRUE), at = breakpoints,
+ col.regions = terrain.colors(n = length(breakpoints) - 1),
+ par.settings = list(fontsize = list(text = 20)))

The first 3 lines of code create the IG specific temporal averages using the dplyr package,
and then adds them to the GGHB.IG ‘SpatialPolygonsDataFrame’ object. The remaining
lines of code produce the map shown in Figure 6, again using code very similar to that in
Example 1. The map and its color key shows that the property sales data are skewed to the
right, as the color key chosen has unequal groups. Initially an equally-spaced color scheme was
created, but that showed little color variation, hence the use of the unequal quantile-based
color key. Secondly, the map shows a largely similar pattern to that seen for respiratory
disease risk in Figure 3, with areas that exhibit relatively high sales rates largely being the
same ones that exhibit relatively low disease risk. Figures 5 and 6 highlight the change in
temporal dynamics and the spatial structure in property sales in Glasgow, and we now apply
the ST.CARsepspatial() model from CARBayesST to more formally quantify these features.

6.2. Quantifying temporal trends and spatial patterns in sales rates

The extent to which the region-wide average level of sales and its spatial variation and spatial
structure changes over time can be assessed by applying the model proposed by Napier et al.
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Figure 6: Map showing the average (between 2003 to 2013) raw rate of property sales as a
proportion of the total number of properties.

(2016) to the data, which can be implemented using the ST.CARsepspatial() function.
Before fitting this model we need to create the neighborhood matrix using the following code:

R> library("spdep")
R> W.nb <- poly2nb(GGHB.IG, row.names = salesprop.av$salesprop.mean)
R> W <- nb2mat(W.nb, style = "B")

Then the model can be fitted using the code below, where inference is again based on 20,000
post burn-in and thinned MCMC samples.

R> library("CARBayesST")
R> formula <- sales ~ offset(log(stock))
R> model1 <- ST.CARsepspatial(formula = formula, family = "poisson",
+ data = salesdata, W = W, burnin = 20000, n.sample = 220000, thin = 10)

A summary of the model fit can be obtained using the print() function, and the output is
similar to that shown in Example 1 and is not shown for brevity. The model fitted represents
the estimated rate of property sales by

θkt = exp(β1 + φkt + δt),

which is the sum of an overall intercept term β1, a space-time effect φkt with a time period
specific variance, and a region-wide temporal trend δt. The mean and standard deviation of
{θkt} over space for each year is computed by the following code, which produces the posterior
median and a 95% credible interval for each quantity for each year.
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R> trend.mean <- array(NA, c(11, 3))
R> trend.sd <- array(NA, c(11, 3))
R> for (i in 1:11) {
+ posterior <- exp(model1$samples$phi[, ((i-1) * 271 + 1):(i * 271)] +
+ matrix(rep(model1$samples$beta + model1$samples$delta[, i], 271),
+ ncol = 271, byrow = FALSE))
+ trend.mean[i, ] <- quantile(apply(posterior, 1, mean),
+ c(0.5, 0.025, 0.975))
+ trend.sd[i, ] <- quantile(apply(posterior, 1, sd), c(0.5, 0.025, 0.975))
+ }

These temporal trends in the average rate of property sales and its level of spatial variation
can be plotted by the following code, and the result is displayed in Figure 7.

R> par(mfrow = c(2, 1))
R> plot(jitter(salesdata$year), salesdata$salesprop, pch = 19, cex = 0.2,
+ col = "blue", xlab = "Year", main = "(a)", ylab = "Average sales rate",
+ ylim = c(0, 0.11), cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)
R> lines(2003:2013, trend.mean[, 1], col = "red", type = "l")
R> lines(2003:2013, trend.mean[, 2])
R> lines(2003:2013, trend.mean[, 3])
R> plot(2003:2013, trend.sd[, 1], col = "red", type = "l", xlab = "Year",
+ main = "(b)", ylab = "Spatial standard deviation", ylim = c(0, 0.06),
+ cex.axis = 1.5, cex.lab = 1.5, cex.main = 1.5)
R> lines(2003:2013, trend.sd[, 2])
R> lines(2003:2013, trend.sd[, 3])

The figure shows that both the region-wide average (panel (a)) and the level of spatial varia-
tion (as measured by the spatial standard deviation, panel (b)) in property sales rates show
the same underlying trend, with maximum values just before the global financial crisis in
2007, and then sharp decreases afterwards. This provides some empirical evidence that the
global financial crisis negatively affected the housing market in Greater Glasgow, with aver-
age sales rates dropping from just under 6.0% in 2007 to 3.3% in 2008. The spatial standard
deviation also dropped from 0.050 to 0.036 over the same two-year period, suggesting that
the global financial crisis had the effect of reducing the disparity in sales rates in different
regions of Greater Glasgow. We note that when measuring the spatial standard deviation we
have not simply presented the posterior distribution of τ2

t , because this relates to the linear
predictor scale and thus the results change after the exponential transformation to the {θkt}
scale due to a non-constant mean level (due to the δt term).
The posterior median sales rate {θkt} is computed and then plotted for the 6 odd numbered
years using the code below, where the color scale is the same as for Figure 6. The first 3
lines create a ‘data.frame’ object of estimated sales rates, while the fourth line adds these
sales rate data to the ‘SpatialPolygonsDataFrame’ object. Finally, the last line plots the
estimated sales rates for odd numbered years.

R> rate.est <- matrix(model1$fitted.values / salesdata$stock,
+ nrow = nrow(W), byrow = FALSE)
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Figure 7: Posterior median (red) and 95% credible interval (black) for the temporal trend in:
(a) region-wide average property sales rates; and (b) spatial standard deviation in property
sales rates. In panel (a) the blue dots are the raw sales proportions for each area and year
(jittered in the x direction to improve the presentation).

R> rate.est <- as.data.frame(rate.est)
R> colnames(rate.est) <- c("r2003", "r2004", "r2005", "r2006", "r2007",
+ "r2008", "r2009", "r2010", "r2011", "r2012", "r2013")
R> GGHB.IG@data <- data.frame(GGHB.IG@data, rate.est)
R> spplot(GGHB.IG, c("r2011", "r2013", "r2007", "r2009", "r2003", "r2005"),
+ names.attr = c("Rate 2011", "Rate 2013", "Rate 2007", "Rate 2009",
+ "Rate 2003", "Rate 2005"), sp.layout = list(l1, l2, l3, l4),
+ xlab = "Easting", ylab = "Northing", scales = list(draw = TRUE),
+ at = breakpoints,
+ col.regions = terrain.colors(n = length(breakpoints - 1)),
+ par.settings = list(fontsize = list(text = 15))

The maps are displayed in Figure 8, and show the clear changing spatial pattern in sales rates
over time. The spatial rates for 2003 to 2007 are largely consistent, but a clear step-change
is evident between 2007 and 2009, which incorporates the start of the global financial crisis.
The figure shows that the downturn in sales rates continues into 2011 but that the property
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Figure 8: Maps showing the changing spatial evolution of the posterior median estimated
sales rates {θkt} for odd numbered years.

market is beginning an upturn by 2013. So in conclusion, Figures 7 and 8 show that the
global financial crisis in 2007 resulted in a downturn in both the region-wide rate of sales and
the level of spatial variation in sales across Glasgow, but that areas of high sales, such as the
west-end of Glasgow (the thin strip of orange shaded areas north of the river in 2009), always
remained higher than other parts of the study region.
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7. Discussion
This paper presented the CARBayesST package, which is the first software package dedicated
to fitting spatio-temporal CAR-type models to areal unit data. This paper outlined the class
of models that can be implemented by the software together with the Bayesian inferential
framework used to fit these models. The key advantage of this package, compared to say
implementing the models in BUGS, is its ease of use, which includes fitting models with a
one-line function call, specifying the spatial adjacency information via a single matrix, and
the ability to fit multiple models addressing different questions about the data in a common
software environment. The paper has presented a small simulation study to illustrate the
correctness of the software, as well as two fully worked examples based on quantifying the
effect of air pollution on human health and the changing nature of the housing market.
Future development of the software will be in two main directions. First, as the literature on
spatio-temporal modeling advances we aim to increase the number of spatio-temporal models
that can be implemented, providing the user with an even wider set of modeling tools. Second,
with the rapid increase in the availability of small-area data, we aim to develop a suite of
multivariate space-time models (MVST). The development of MVST methodology for areal
unit data is in its infancy, and the ability to jointly examine the spatio-temporal patterns
in multiple response variables simultaneously allows one to address questions that cannot be
addressed by single variable models. For example, in a public health context it allows one to
estimate overall and disease specific spatio-temporal patterns in disease risk, allowing one to
see which areas repeatedly signal at high risk for all diseases, and which exhibit elevated risks
for only one disease. In the housing context of Example 2, an MVST approach would allow
one to extend the analysis carried out by different property types, e.g., flats, terraced houses,
etc., which would allow more insight to be gained about the exact nature of the housing
market.
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