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Abstract

This article describes the R package BOIN, which implements a recently developed
methodology for designing single-agent and drug-combination dose-finding clinical trials
using Bayesian optimal interval designs (Liu and Yuan 2015; Yuan, Hess, Hilsenbeck,
and Gilbert 2016). The BOIN designs are novel “model-assisted” phase I trial designs
that can be implemented simply and transparently, similar to the 3 + 3 design, but yield
excellent performance comparable to those of more complicated, model-based designs.
The BOIN package provides tools for designing, conducting, and analyzing single-agent
and drug-combination dose-finding trials.

Keywords: maximum tolerated dose, dose finding, phase I trials, model-assisted design, Bayesian
adaptive design.

1. Introduction
The objective of a phase I trial is to find the maximum tolerated dose (MTD), which is
defined as the dose or dose combination with the dose limiting toxicity (DLT) probability
closest to the target DLT rate. Numerous phase I trial designs have been proposed to find
the MTD. The 3 + 3 design (Storer 1989) has been dominant in phase I clinical trials for
decades due to its simplicity, despite its poor ability to identify the MTD and tendency to
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treat patients at low doses that are potentially subtherapeutic (Le Tourneau, Lee, and Siu
2009). The 3+3 design and its variations are called algorithm-based designs because they use
simple, prespecified rules to guide dose escalation. Model-based designs have been proposed
to improve the efficiency of identifying the MTD. A typical example of model-based designs
is the continual reassessment method (CRM; O’Quigley, Pepe, and Fisher 1990). The CRM
yields better performance than the 3 + 3 design, but is statistically and computationally
complex, leading practitioners to perceive dose allocations as coming from a “black box”,
which limits its application in practice.
The Bayesian optimal interval (BOIN) design (Liu and Yuan 2015; Yuan et al. 2016) is a novel
phase I trial methodology, belonging to a new class of designs known as model-assisted designs
(Yan, Mandrekar, and Yuan 2017; Zhou, Murray, Pan, and Yuan 2018a), that combines the
simplicity of algorithm-based designs with the superior performance of model-based designs.
The BOIN design can be implemented in a simple way as the 3+3 design, but yields excellent
performance comparable to that of the more complicated, model-based CRM (Zhou, Yuan,
and Nie 2018b; Zhou et al. 2018a). Another example of model-assisted designs is the keyboard
design (Yan et al. 2017). Because of their good performance and simplicity, model-assisted
designs have been increasingly used in practice. Clertant and O’Quigley (2017) proposed a
semiparametric approach that provides the link between the BOIN and other designs, such
as the cumulative cohort design (Ivanova, Flournoy, and Chung 2007).
The objective of this article is to provide practitioners a comprehensive, well-documented,
easy-to-use R (R Core Team 2020) package to design phase I clinical trials using the BOIN
design. The BOIN package (Yuan and Liu 2020) incorporates a number of practical consid-
erations and functionalities that are not considered in the original methodological paper by
Liu and Yuan (2015). For example, the BOIN R package allows users to early stop the trial
when the number of patients accumulated in a dose reaches a certain cutoff. To the best of
our knowledge, this is the first R package that provides a comprehensive implementation of
the BOIN design, including simulation functions for generating operating characteristics of
the design and implementation functions for conducting a real trial in practice. The existing
dose-finding R packages, such as TEQR (Blanchard 2016) and DoseFinding (Bornkamp, Pin-
heiro, and Bretz 2009; Bornkamp 2019), cover algorithm-based designs (i.e., the cumulative
cohort design) and model-based designs (i.e., MCP-Mod design), respectively, and focus on
single-agent dose finding. In contrast, the BOIN R package focuses on the model-assisted
design, and covers both single-agent and drug-combination dose findings. Drug combination
trials are increasingly important in drug development.

2. Bayesian optimal interval designs

2.1. BOIN design for single-agent trials
Let d1 < . . . < dJ denote the J prespecified doses of the new drug that is under investigation
in the trial, pj denote the dose-limiting toxicity (DLT) probability that corresponds to dj ,
and φ denote the target DLT rate for the MTD. We use nj to denote the number of patients
who have been assigned to dj , and yj of them experienced DLTs, j = 1, . . . , J . The BOIN
design is illustrated in Figure 1 and summarized as follows:

(a) Patients in the first cohort are treated at the lowest or a prespecified dose level.
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Figure 1: The flowchart of the BOIN design.

(b) Let p̂j = yj/nj be the observed DLT rate at the current dose level j, to assign a dose
to the next cohort of patients,

• if p̂j ≤ λe, escalate the dose level to j + 1,
• if p̂j ≥ λd, de-escalate the dose level to j − 1,
• otherwise, i.e., λe < p̂j < λd, stay at the same dose level,

where λe and λd are prespecified dose escalation and de-escalation boundaries (see
Table 1). The method of specifying λe and λd is described below.

(c) Repeat step (b) until the prespecified maximum sample size Nmax is exhausted or the
trial is terminated because of excessive toxicity, as described next. At that point, the
MTD is selected as the dose for which the isotonic estimate of the DLT probability
is closest to the target DLT rate φ. The isotonic estimates of the DLT probabilities
can be obtained using the pooled adjacent violators algorithm (Barlow, Bartholomew,
Bremner, and Brunk 1972). In the case that the trial is terminated because of excessive
toxicity, no dose should be selected as the MTD.
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Target DLT rate φ
Boundaries 0.15 0.20 0.25 0.30 0.35 0.40

λe 0.118 0.157 0.197 0.236 0.276 0.316
λd 0.179 0.238 0.298 0.359 0.419 0.480

Table 1: Dose escalation and de-escalation boundaries of the BOIN design for different target
DLT rates.

For patient safety, during the trial conduct, the BOIN design imposes a dose elimination/safety
stopping rule as follows:

Suppose j is the current dose level. If P(pj > φ|yj , nj) > 0.95 and nj ≥ 3, dose
level j and higher doses are eliminated from the trial. The trial is terminated if
the lowest dose is eliminated.

The posterior probability P(pj > φ|yj , nj) can be evaluated on the basis of a beta-binomial
model, assuming yj |nj , pj ∼ Binom(nj , pj) and pj ∼ Beta(1, 1) ≡ Unif(0, 1). Under the
beta-binomial model, the posterior distribution of pj arises as

pj | yj , nj ∼ Beta(yj + 1, nj − yj + 1), for j = 1, . . . , J. (1)

The dose escalation and de-escalation boundaries (λe, λd) are obtained by minimizing the
chance of making incorrect dose escalation and de-escalation (Liu and Yuan 2015). To do
that, the BOIN design requires the investigator(s) to specify φ1, which is the highest DLT rate
that is deemed to be underdosing such that dose escalation is required, and φ2, which is the
lowest DLT rate that is deemed to be overdosing such that dose de-escalation is required. Liu
and Yuan (2015) provided general guidance to specify φ1 and φ2, and recommended default
values of φ1 = 0.6φ and φ2 = 1.4φ for general use. When needed, the values of φ1 and φ2 can
be calibrated to achieve a particular requirement of the trial at hand. For example, if more
conservative dose escalation is required, setting φ2 = 1.2φ may be appropriate. We should
avoid setting the values of φ1 and φ2 very close to φ. This is because the small sample sizes of
typical phase I trials prevent us from differentiating the target DLT rate from the probabilities
that are close to it. For example, at the significance level of 0.1, there is only 7% power to
distinguish 0.25 from 0.35 with 15 patients at each dose, based on Fisher’s exact test. Given
φ1 and φ2, the optimal escalation and de-escalation boundaries (λe, λd) that minimize the
incorrect decision of dose escalation and de-escalation arise as

λe =
log

(1− φ1
1− φ

)
log

{
φ (1− φ1)
φ1 (1− φ)

} , λd =
log

( 1− φ
1− φ2

)
log

{
φ2 (1− φ)
φ (1− φ2)

} .
Table 1 provides the dose escalation and de-escalation boundaries (λe, λd) for commonly used
target DLT rates φ using the recommended default values φ1 = 0.6φ and φ2 = 1.4φ.
For example, given the target DLT rate φ = 0.25, the corresponding escalation boundary
λe = 0.197 and the de-escalation boundary λd = 0.298, that is, escalate the dose if the
observed DLT rate at the current dose p̂j ≤ 0.197 and de-escalate the dose if p̂j ≥ 0.298.
Liu and Yuan (2015) showed that (λe, λd) are the boundaries corresponding to the likelihood
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ratio test and Bayes factor, and thus the resulting BOIN design is optimal with desirable
finite-sample and large-sample properties, i.e., long-memory coherence and consistency.
As the observed DLT rate p̂j is the most natural and intuitive estimate of pj that is accessible
by non-statisticians, it is easy to explain the BOIN design to clinicians. In addition, thanks to
the feature that the BOIN design guarantees de-escalating the dose when p̂j is higher than the
de-escalation boundary λd, it is particularly easy for clinicians and regulatory agents to assess
the safety of a trial using the BOIN design. For example, given a target DLT rate φ = 0.25,
we know a priori that a phase I trial using the BOIN design guarantees de-escalating the
dose if the observed DLT rate is higher than 0.298 (with the default values of φ1 and φ2).
Accordingly, the BOIN design also allows users to easily calibrate the design to satisfy a
specific safety requirement mandated by regulatory agents through choosing an appropriate
target DLT rate φ or φ2. For example, suppose for a phase I trial with a new compound, the
regulatory agent mandates that if the observed DLT rate is higher than 0.25, the dose must be
de-escalated. We can easily fulfill that requirement by setting the target DLT rate φ = 0.21,
under which the BOIN automatically guarantees de-escalating the dose if the observed DLT
rate p̂j > λd = 0.250. If needed, the de-escalation boundary λd can be further fine tuned
by calibrating the value of φ2. Such flexibility and transparency gives the BOIN design an
important advantage over many existing designs in practice.

2.2. BOIN designs for drug-combination trials

Drug combination therapy provides a critical approach to improve treatment efficacy and
overcome resistance to monotherapies. One challenge in designing drug-combination trials
is that, due to complicated drug-drug interactions, combinations are only partially ordered
in toxicity probabilities. Consider a trial combining J doses of drug A, denoted as A1 <
A2 < . . . < AJ , and K doses of drug B, denoted as B1 < B2 < . . . < BK . Let AjBk

denote the combination of Aj and Bk, and pjk denote the true DLT rate of AjBk. We know
a priori that Aj′Bk′ is more toxic than AjBk for j′ > j and k′ > k, but typically do not
know their toxicity order if j′ > j but k′ < k. Another challenge in designing combination
trials is the existence of the MTD contour in the two-dimensional dose space, as shown in
Figure 2. In other words, multiple MTDs may exist in the J ×K dose matrix. Depending on
the application, combination trials may be interested in finding a single MTD or the MTD
contour (i.e., multiple MTDs; Yuan and Zhang 2017). Because of these challenges, the single-
agent phase I trial designs cannot be directly used for combination trials. In what follows,
we first describe the BOIN drug-combination design (Lin and Yin 2017a) that aims to find a
single MTD in the two-dimensional dose combination matrix, followed by a BOIN-waterfall
design (Zhang and Yuan 2016) that aims to find the MTD contour (i.e., multiple MTDs)

BOIN drug-combination design for finding a single MTD

Let p̂jk = yjk/njk denote the observed DLT rate at dose combination AjBk, where njk

denotes the number of patients treated at AjBk and yjk denotes the number of patients who
experienced DLT at AjBk. Given the current dose combination AjBk, define an admissible
dose escalation set as AE = {Aj+1Bk, AjBk+1} and an admissible dose de-escalation set as
AD = {Aj−1Bk, AjBk−1}. The BOIN drug-combination design makes the decision of dose
escalation/de-escalation based on the same rule as the single-agent BOIN design described
previously. That is, escalate the dose if p̂jk ≤ λe, and de-escalate the dose if p̂jk ≥ λd. The
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Figure 2: The MTD contour in the drug-combination space.

only difference is that, in combination trials, when we decide to escalate or de-escalate the
dose, there is more than one neighbor dose to which we can move. For example, when we
escalate/de-escalate the dose, we can escalate/de-escalate either the dose of drug A or the
dose of drug B. The BOIN drug-combination design makes this choice based on P(pjk ∈
(λe, λd)|Djk), which measures how likely a dose combination is located within the acceptable
toxicity interval (λe, λd), where Djk = (yjk, njk). Specifically, the BOIN drug-combination
design can be described as follows:

(a) Patients in the first cohort are treated at the lowest dose combination A1B1 or a pre-
specified dose combination.

(b) Suppose the current cohort is treated at dose combination AjBk. Proceed as follows to
assign a dose to the next cohort of patients.

• If p̂jk ≤ λe, we escalate the dose to the combination that belongs to AE and has
the largest value of P{pj′k′ ∈ (λe, λd)|Djk}.
• If p̂jk ≥ λd, we de-escalate the dose to the combination that belongs to AD and

has the largest value of P{pj′k′ ∈ (λe, λd)|Djk}.
• Otherwise, i.e., λe < p̂jk < λd, the dose stays at the same combination AjBk.

(c) Step (b) is continued until the maximum sample size is reached or the trial is terminated
because of excessive toxicity.

During dose escalation and de-escalation, if the two combinations in AE or AD have the
same value of P{pj′k′ ∈ (λe, λd)|data}, we randomly choose one with equal probability. If no
dose combination exists in the sets of AE and AD (i.e., we are at the boundaries of the dose
matrix), we retain the current dose combination. After the trial is completed, the MTD is
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selected as the dose combination with the estimated DLT rate closest to φ. The estimates of
DLT rates are obtained using isotonic regression as described previously, but in a matrix form.
More details on the BOIN drug-combination design can be found in Lin and Yin (2017a).

BOIN-waterfall design for finding the MTD contour

Because of the existence of the MTD contour and the fact that doses on the MTD contour may
have different efficacy due to drug-drug interactions, for many drug combination trials, it is of
intrinsic interest to find multiple MTDs (or the MTD contour). The efficacy of the MTDs can
be evaluated in subsequent phase II trials or simultaneously in phase I-II trials. Zhang and
Yuan (2016) extended the BOIN design to achieve this design goal. For convenience, we refer
to that design as the BOIN-waterfall design. As illustrated in Figure 3, the BOIN-waterfall
design takes the divide-and-conquer strategy to divide the task of finding the MTD contour
into a sequence of one-dimensional dose-finding tasks, known as “subtrials” (Yuan and Yin
2008). These subtrials are conducted sequentially from the top of the matrix to the bottom.
Specifically, the BOIN-waterfall design can be described as follows:

1. Divide the J ×K dose matrix into J subtrials SJ , . . . , S1, according to the dose level of
drug A:

SJ = {A1B1, . . . , AJB1, AJB2, . . . , AJBK},
SJ−1 = {AJ−1B2, . . . , AJ−1BK},
SJ−2 = {AJ−2B2, . . . , AJ−2BK},
. . .

S1 = {A1B2, . . . , A1BK}.

Note that subtrial SJ also includes lead-in doses A1B1, A2B1, . . . , AJB1 (the first col-
umn of the dose matrix) to impose the practical consideration that the trial starts at
the lowest dose combination. Within each subtrial, the doses are fully ordered with
monotonically increasing toxicity.

2. Conduct the subtrials sequentially using the single-agent BOIN design as follows:

(i) Conduct subtrial SJ , starting from the lowest dose combination A1B1, to find the
MTD. We call the dose selected by the subtrial the “candidate MTD” to highlight
that the dose selected by the individual subtrial may not be the “final” MTD that
we will select at the end of the trial. The final MTD selection will be based on
the data collected from all the subtrials. The objective of finding the candidate
MTD is to determine which subtrial will be conducted next and the corresponding
starting dose combination.

(ii) Assuming that the current subtrial Sj , j = J, . . . , 2, selects dose Aj∗Bk∗ as the
candidate MTD, next, conduct subtrial Sj∗−1 with the starting dose Aj∗−1Bk∗+1.
That is, the next subtrial to be conducted is the one with the dose of drug A
that is one level lower than the candidate MTD found in the previous subtrial.
After identifying the candidate MTD of subtrial Sj∗−1, the same rule is used to
determine the next subtrial and its starting dose combination. See Figure 3 for an
example.
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Figure 3: Illustration of the waterfall design for a combination trial of drug A with 3 levels
and drug B with 4 levels. The doses in the rectangle form a subtrial, and the asterisk denotes
the candidate MTD. As shown in panel (a), the trial started by conducting the first subtrial
with the starting dose A1B1. After the first subtrial identified A3B2 as the candidate MTD,
we conducted the second subtrial with the starting dose A2B3 (see panel (b)). After the
second subtrial identified A2B3 as the candidate MTD, we conducted the third subtrial with
the starting dose A1B4 (see panel (c)). All subtrials were conducted using the single-agent
BOIN design. After all the subtrials were completed, we selected the MTD contour based on
the data from all the subtrials, as shown in panel (d).

(iii) Repeat step (ii) until subtrial S1 is completed.

3. Estimate the DLT rate pjk based on the toxicity data collected from all the subtrials
using matrix isotonic regression. For each row of the dose matrix, select the MTD as
the dose combination that has the estimate of DLT rate closest to the target DLT rate
φ, unless all combinations in that row are overly toxic.

For the BOIN-waterfall design, one key issue is to determine when to end the current subtrial
and initiate the next one. Zhang and Yuan (2016) recommended the following stopping rule
to switch from one subtrial to the next one:

At any time during the subtrial, if the total number of patients treated at the
current dose reaches a certain prespecified number of patients, say nstop, we stop
the subtrial, select the candidate MTD and initiate the next subtrial.
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The rationale for the stopping rule is that when patient allocation concentrates at a given
dose, it indicates that the dose finding might have converged to the MTD, and thus we can
stop the trial and claim the MTD. This stopping rule allows the sample size of the subtrials to
be automatically adjusted according to the difficulty of the dose finding. Another attractive
feature of the above approach is that it automatically ensures that a certain number of patients
are treated at the MTD. Conventionally, we achieve this by adding cohort expansion after
identifying the MTD. In practice, we recommend nstop > 9 to ensure reasonable operating
characteristics. Although the above stopping rule provides an automatic, reasonable way to
determine the sample size for a subtrial, in some cases, it is desirable to put a cap on the
maximum sample size of the subtrials. This can be done by adding an extra stopping rule
as follows: Stop the subtrial if its sample size reaches Nmax, where Nmax is the prespecified
maximum sample size.

3. The R package BOIN
The R package BOIN is freely available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/package=BOIN. It contains functions for implementing the
BOIN design for both single-agent and drug-combination dose-finding trials (see Table 2). We
proceed with a small tutorial to present the use of the package. As an illustration, we load
the package:

R> install.packages("BOIN")
R> library("BOIN")

3.1. Single-agent trials

To design and conduct a single-agent dose-finding trial, we follow 3 steps as described below,
which involve functions get.boundary(), get.oc() and selet.mtd(), respectively. The
objects (or results) returned by these functions can be displayed in a user friendly form by
using the functions summary(), print(), and plot().

Step 1. Obtain dose escalation and de-escalation boundaries

Like the algorithm-based design, the dose escalation and de-escalation rule of the BOIN design
can be determined before the onset of the trial, making its implementation transparent and
simple. To obtain the dose escalation and de-escalation boundaries (λe, λd), we run the
function:

get.boundary(target, ncohort, cohortsize, n.earlystop = 100,
p.saf = 0.6 * target, p.tox = 1.4 * target, cutoff.eli = 0.95,
extrasafe = FALSE, offset = 0.05)

This function has the following arguments:

• target: The target DLT rate.

• ncohort: The total number of cohorts.

https://CRAN.R-project.org/package=BOIN
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Function Description Object returned
get.boundary Generate dose escalation and de-

escalation boundaries.
A list including dose escala-
tion and de-escalation bound-
aries.

select.mtd Select the maximum tolerated dose
(MTD) for single-agent trials.

A list including the selected
MTD and estimated toxicity
probability for each dose.

get.oc Generate operating characteristics
for single-agent trials.

A list including the selection
percentage, the number of pa-
tients treated at each dose,
and average total number of
patients.

next.comb Determine the dose combination for
treating the next cohort of new
patients for drug-combination trials
that aim to find an MTD.

A list including the recom-
mended dose combination for
the next cohort of patients.

next.subtrial Determine the starting dose combina-
tion and the dose-searching space for
the next subtrial in BOIN-waterfall
design.

A list including dose combina-
tions included in the subtrial
and the starting dose combi-
nation.

select.mtd.comb Select the MTD or MTD contour for
drug combination trials.

A list containing the selected
MTD or MTD contour, and
estimated toxicity probability
for each dose combination.

get.oc.comb Generate operating characteristics
for drug-combination trials.

A list containing the selection
percentage, the number of pa-
tients treated at each dose,
and average total number of
patients.

summary Generate summary for the objects re-
turned by other functions.

Descriptive results printed to
the console.

plot Generate flowchart of the design and
barplot for simulation results.

Figures.

print Print objects returned by other func-
tions.

Objects returned from other
functions.

Table 2: Overview of the user visible functions in BOIN. Please consult the documentation
(e.g., help("get.boundary")) for function arguments and detailed return types.
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• cohortsize: The cohort size.

• n.earlystop: The early stopping parameter. If the number of patients treated at the
current dose reaches n.earlystop, stop the trial early and select the MTD based on
the observed data. The default value of n.earlystop = 100 essentially turns off this
type of early stopping.

• p.saf: The highest toxicity probability that is deemed subtherapeutic (i.e., below the
MTD) such that dose escalation should be made. The default value of p.saf = 0.6 *
target.

• p.tox: The lowest toxicity probability that is deemed overly toxic such that dose de-
escalation is required. The default value of p.tox = 1.4 * target.

• cutoff.eli: The cutoff to eliminate the overly toxic dose for safety. We recommend
the default value cutoff.eli = 0.95 for general use.

• extrasafe: Set extrasafe = TRUE to impose a stricter stopping rule.

• offset: A small positive number (between 0 and 0.5) to control how strict the stopping
rule is when extrasafe = TRUE. A larger value leads to a stricter stopping rule. The
default value offset = 0.05 generally works well.

Suppose a phase I trial with J = 5 dose levels and a target DLT rate of φ = 0.3, the maximum
sample size is 30 patients, and patients are treated in cohorts of size 3. Using the default
values of p.saf, p.tox, and cutoff.eli automatically provided by the function, we can
design the trial by running get.boundary(), as follows:

R> bound <- get.boundary(target = 0.3, ncohort = 10, cohortsize = 3)
R> summary(bound)

Escalate dose if the observed DLT rate at the current dose <= 0.2364907
Deescalate dose if the observed DLT rate at the current dose >= 0.3585195

This is equivalent to the following decision boundaries

Number of patients treated 3 6 9 12 15 18 21 24 27 30
Escalate if # of DLT <= 0 1 2 2 3 4 4 5 6 7
Deescalate if # of DLT >= 2 3 4 5 6 7 8 9 10 11
Eliminate if # of DLT >= 3 4 5 7 8 9 10 11 12 14

A more completed version of the decision boundaries is given by

Number of patients treated 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Escalate if # of DLT <= 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4
Deescalate if # of DLT >= 1 1 2 2 2 3 3 3 4 4 4 5 5 6 6 6 7
Eliminate if # of DLT >= NA NA 3 3 4 4 5 5 5 6 6 7 7 8 8 8 9

Number of patients treated 18 19 20 21 22 23 24 25 26 27 28 29 30
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Escalate if # of DLT <= 4 4 4 4 5 5 5 5 6 6 6 6 7
Deescalate if # of DLT >= 7 7 8 8 8 9 9 9 10 10 11 11 11
Eliminate if # of DLT >= 9 9 10 10 11 11 11 12 12 12 13 13 14

Default stopping rule: stop the trial if the lowest dose is eliminated.

R> plot(bound)

A few remarks are in order. First, the flowchart generated by plot() provides a transparent
description of the trial design that can be easily understood by clinicians. We strongly
recommend including it in the trial protocol. Second, as described previously, in practice,
we should avoid setting the values of p.saf and p.tox very close to the target because the
small sample sizes of typical phase I trials prevent us from being able to discriminate the
target DLT rate from the rates close to it. The default values φ1 = 0.6φ and φ2 = 1.4φ are
strongly recommended and generally yield superior operating characteristics.
Lastly, the BOIN design has two built-in stopping rules: (i) stop the trial if the lowest dose
is eliminated due to toxicity. In this case, no dose should be selected as the MTD; (ii) stop
the trial and select the MTD if the number of patients treated at the current dose reaches
n.earlystop. The first stopping rule is a safety rule to protect patients from the case in which
all doses are overly toxic. The rationale for the second stopping rule is that when the number
of patients assigned to a dose is large (i.e., reaches n.earlystop), this means that the dose-
finding algorithm has approximately converged. Thus, we can stop the trial early and select
the MTD to save sample size and reduce the trial duration. The default value n.earlystop
= 100 essentially turns off this type of early stopping rule. Setting n.earlystop at a value
like 12 can potentially save sample size and finish the trial early. The trade-off is that it
may affect the MTD selection percentage and decrease the rate of stopping for safety if the
first dose is overly toxic. The value of n.earlystop should be calibrated by simulation to
obtain desirable operating characteristics. In general, we recommend n.earlystop = 9 to
18. Our experience is that this stopping rule is particularly useful when there is strong prior
knowledge that the first dose is safe, since a major side effect of using the stopping rule is
that it decreases the rate of stopping for safety when the first dose is actually overly toxic.
Although the BOIN design has a built-in safety stopping rule (i.e., stopping rule (i) described
above), for some applications, investigators may prefer a stricter stopping rule for extra
safety when the lowest dose is possibly overly toxic. Setting extrasafe = TRUE imposes the
following stronger stopping rule:

Stop the trial if (1) the number of patients treated at the lowest dose ≥ 3, and
(2) P(DLT rate of the lowest dose > target | data) > cutoff.eli - offset.

As a trade-off, the stricter stopping rule will decrease the MTD selection percentage when
the lowest dose actually is the true MTD. When using the option extrasafe = TRUE, we
recommend the default value offset = 0.05, but users can calibrate the value of offset to
obtain desired operating characteristics. In practice, offset is rarely greater than 0.2. If we
set extrasafe = TRUE to turn on the extrasafe feature, the output will include the extra
stopping boundaries, as follows,
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R> bound2 <- get.boundary(target = 0.3, ncohort = 10, cohortsize = 3,
+ extrasafe = TRUE)
R> summary(bound2)

......

In addition to the default stopping rule (i.e., stop the trial if the
lowest dose is eliminated), the following more strict stopping safety
rule will be used for extra safety:
stop the trial if
(1) the number of patients treated at the lowest dose >= 3, AND
(2) Pr(the DLT rate of the lowest dose > 0.3 | data) > 0.9,
which corresponds to the following stopping boundaries:

The number of patients treated at the lowest dose 1 2 3 4 5 6 7 8 9
Stop the trial if # of DLT >= NA NA 2 3 3 4 4 4 5

The number of patients treated at the lowest dose 10 11 12 13 14 15 16
Stop the trial if # of DLT >= 5 6 6 6 7 7 8

The number of patients treated at the lowest dose 17 18 19 20 21 22 23
Stop the trial if # of DLT >= 8 8 9 9 9 10 10

The number of patients treated at the lowest dose 24 25 26 27 28 29 30
Stop the trial if # of DLT >= 10 11 11 12 12 12 13

Step 2. Simulate operating characteristics

For protocol preparation, it is often useful to obtain the operating characteristics of the design.
The function get.oc() can be used for this purpose.

get.oc(target, p.true, ncohort, cohortsize, n.earlystop = 100,
startdose = 1, titration = FALSE, p.saf = 0.6 * target,
p.tox = 1.4 * target, cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05,
ntrial = 1000, seed = 6)

This function shares the same set of arguments as the function get.boundary() described
previously, with five additional simulation related arguments:

• p.true: The true toxicity probabilities of the investigational dose levels.

• startdose: The starting dose level for treating the first cohort of patients. The default
value is startdose = 1, i.e., starting from the lowest dose.

• titration: If titration = TRUE, dose titration is performed to accelerate dose esca-
lation at the beginning of the trial, where patients are treated one by one (i.e., cohort
size = 1), starting from startdose. If no DLT is observed, escalate the dose; otherwise
switch to the specified cohort size = cohortsize.
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• ntrial: The number of trials to be simulated.

• seed: Set a seed for the random number generator.

Dose titration, by setting titration = TRUE, accelerates dose escalation and improves the
selection percentage of the MTD when the number of patients is small (e.g., ncohort/(number
of doses) < 1.5) and low doses are expected to be safe. The tradeoff is that if the low doses
are toxic, the dose titration increases the risk of overdosing patients.
Using the same setting as above and assuming that the true toxicity scenario is p.true =
(0.05, 0.15, 0.30, 0.45, 0.6), here we show how to obtain the operating characteristics based on
1000 simulated trials.

R> oc.single <- get.oc(target = 0.3, p.true = c(0.05, 0.15, 0.3, 0.45, 0.6),
+ ncohort = 10, cohortsize = 3, ntrial = 1000)
R> summary(oc.single)

selection percentage at each dose level (%):
1.1 23.4 54.2 20.2 1.1
average number of patients treated at each dose level:
4.2 9.3 11.0 4.9 0.7
average number of toxicity observed at each dose level:
0.2 1.4 3.3 2.2 0.4
average number of toxicities: 7.4
average number of patients: 30.0
percentage of early stopping due to toxicity: 0.0 %
risk of overdosing (>60% of patients treated above the MTD): 2.9 %
risk of overdosing (>80% of patients treated above the MTD): 0.0 %

We can use the plot() function to plot the operating characteristics, including the selection
percentage (Figure 4), average number of patients treated, and average number of toxicities
observed.

R> plot(oc.single)

Step 3. Select the MTD

When the trial is completed, based on the observed data, we can select the MTD using the
function select.mtd().

select.mtd(target, npts, ntox, cutoff.eli = 0.95, extrasafe = FALSE,
offset = 0.05, verbose = TRUE)

This function has the following arguments:

• npts: The vector recording the total number of patients treated at each dose level.

• ntox: The vector recording the number of patients who experienced toxicity at each
dose level.
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Figure 4: Selection percentage of the doses in the simulation example using get.oc().

Arguments cutoff.eli, extrasafe and offset are the same as (and should be consistent
with) those in functions get.boundary() and get.oc(). Assume that when the trial is
completed, the number of patients treated at the five doses is n = (3, 3, 15, 9, 0) and the
corresponding number of patients who experienced toxicity is y = (0, 0, 4, 4, 0).

R> n <- c(3, 3, 15, 9, 0)
R> y <- c(0, 0, 4, 4, 0)
R> sel.single <- select.mtd(target = 0.3, ntox = y, npts = n)
R> summary(sel.single)

The MTD is dose level 3

Dose Posterior DLT 95%
Level Estimate Credible Interval Pr(toxicity>0.3|data)

1 0.02 (0.00,0.20) 0.01
2 0.02 (0.00,0.20) 0.01
3 0.27 (0.09,0.51) 0.36
4 0.45 (0.16,0.75) 0.81
5 ---- (----,----) ----

NOTE: no estimate is provided for the doses at which no patient was treated.

We can plot the estimates of DLT rates (Figure 5) by calling the plot() function.

R> plot(sel.single)
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Figure 5: Estimated DLT rate with a 95% confidence interval at each dose for the example
using select.mtd(). Dotted line indicates the target DLT rate.

3.2. Drug-combination trials aiming to find a single MTD
Designing a drug-combination trial follows the similar three steps as those for single-agent
trials. This involves four functions get.boundary(), next.comb(), get.oc.comb() and
selet.mtd.comb().

Step 1. Determine dose escalation and de-escalation
The BOIN drug-combination design uses the same dose escalation and de-escalation bound-
aries as the single-agent designs, which can be obtained using get.boundary() as described
previously. For drug combination trials, the challenge is that when the number of observed
DLTs crosses the dose escalation and de-escalation boundaries, we need to determine which
drug (i.e., drug A or drug B) to be escalated or de-escalated. The function next.comb() is
used to make such a decision.

next.comb(target, npts, ntox, dose.curr, n.earlystop = 100,
p.saf = 0.6 * target, p.tox = 1.4 * target, cutoff.eli = 0.95,
extrasafe = FALSE, offset = 0.05)

This function takes the data from patients who have been enrolled into the trial as the input,
and outputs the dose combination for treating the next cohort of new patients. It shares a
similar set of arguments with the function get.boundary() described previously, with three
additional arguments:

• npts: The matrix recording the number of patients treated at each dose combination.
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• ntox: The matrix recording the number of patients who experienced toxicity at each
dose combination.

• dose.curr: The current dose combination, i.e., the dose combination that was used to
treat the most recently enrolled cohort of patients.

Suppose that we conduct a 3 × 4 drug-combination trial with 3 dose levels of drug A and
4 dose levels of drug B, aiming to find a MTD that has the target DLT rate of 0.25. The
maximum sample size is 48 patients, and patients are treated in cohort sizes of 3. To be
consistent with the matrix notation of R, we now use (j, k), rather than AjBk, to denote the
combination of the jth dose level of drug A and the kth dose level of drug B. The trial can
be conducted as follows. We start the trial by treating the first cohort of 3 patients at the
lowest dose (1, 1). Assuming that none of the patients experienced DLT, the data from the
first cohort of patients are given by

n =

 3 0 0 0
0 0 0 0
0 0 0 0

 , y =

 0 0 0 0
0 0 0 0
0 0 0 0

 ,
where n records the number of patients treated at each dose combination, and y records the
number of patients who experienced toxicity at each dose combination. In matrices y and n,
entry (j, k) records the data associated with combination (j, k). To determine the dose for
the second cohort of patients, we call the function next.comb():

R> set.seed(4)
R> n <- matrix(c(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
R> nxt.comb <- next.comb(target = 0.25, npts = n, ntox = y,
+ dose.curr = c(1, 1))
R> summary(nxt.comb)

The recommended dose combination for the next cohort of patients is (1, 2).

Therefore, we escalate the dose and treat the second cohort of patients at dose combination
(1, 2). Suppose that one patient in the second cohort experiences DLT, the data matrices
then become

n =

 3 3 0 0
0 0 0 0
0 0 0 0

 , y =

 0 1 0 0
0 0 0 0
0 0 0 0

 .
To determine the dose for the third cohort of patients, we again call next.comb() with
updated y, n and dose.curr, as follows:

R> n <- matrix(c(3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
R> y <- matrix(c(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
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R> nxt.comb2 <- next.comb(target = 0.25, npts = n, ntox = y,
+ dose.curr = c(1, 2))
R> summary(nxt.comb2)

The recommended dose combination for the next cohort of patients is (1, 1).

Therefore, we should de-escalate the dose and treat the third cohort of patients at dose (1, 1).
We repeat this procedure until the maximum sample size is reached.

Step 2. Simulate operating characteristics

The function get.oc.comb() can be used to obtain the operating characteristics of the BOIN
drug-combination design.

get.oc.comb(target, p.true, ncohort, cohortsize, n.earlystop = NULL,
startdose = c(1, 1), titration = FALSE, p.saf = 0.6 * target,
p.tox = 1.4 * target, cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05,
ntrial = 1000, mtd.contour = FALSE, seed = 6)

This function shares the same set of arguments as the function get.oc() described previously
(for single-agent trials), except that p.true is now a matrix (rather than a vector), startdose
is a vector of length 2 (rather than a scalar), and an additional arguments mtd.contour is
used to indicate whether we are interested in finding the MTD or the MTD contour. To find
a single MTD, we should set mtd.contour = FALSE. Again, performing dose titration, by
setting titration = TRUE, is useful to accelerate dose escalation and improve the selection
percentage of the MTD when the number of patients is small (e.g., ncohort/(number of
doses) < 1.5) and low doses are expected to be safe. However, when the low doses are toxic,
dose titration may increase the risk of overdosing patients.
Consider a 3× 4 combination trial with the true toxicity probabilities

p.true =

 0.02 0.04 0.08 0.14
0.08 0.25 0.42 0.48
0.25 0.45 0.50 0.60

 ,
and the target DLT rate of 0.25. Here, we show how to obtain the operating characteristics
based on 1000 simulated trials.

R> p.true <- matrix(c(0.02, 0.04, 0.08, 0.14, 0.08, 0.25, 0.42, 0.48, 0.25,
+ 0.45, 0.50, 0.60), ncol = 4, byrow = TRUE)
R> oc.comb <- get.oc.comb(target = 0.25, p.true = p.true, ncohort = 16,
+ cohortsize = 3, ntrial = 1000)
R> summary(oc.comb)

true DLT rate of dose combinations:
0.02 0.04 0.08 0.14
0.08 0.25 0.42 0.48
0.25 0.45 0.50 0.60
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Figure 6: Selection percentage of the dose combinations in the example using get.oc.comb().

selection percentage at each dose combination (%):
0.00 1.10 2.80 19.80
4.30 37.60 7.10 1.40

21.80 3.90 0.20 0.00

average number of patients treated at each dose combination:
4.06 3.73 3.22 4.18
6.08 10.04 4.19 1.90
5.85 3.65 0.80 0.30

average number of toxicity observed at each dose combination:
0.10 0.15 0.25 0.58
0.47 2.57 1.80 0.89
1.48 1.65 0.39 0.18

average number of toxicities: 10.5
average number of patients: 48.0
selection percentage of MTD: 59.4%
percentage of patients treated at MTD: 33.1%

We can use the plot() function to plot the figure illustrating dose escalation/de-escalation
and operating characteristics such as selection percentage (Figure 6), average number of
patient treated, and average number of toxicity observed at each dose combination.

R> plot(oc.comb)
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Step 3. Select an MTD
When the trial is completed, based on the observed data, we can select the MTD using the
function select.mtd.comb().

select.mtd.comb(target, npts, ntox, cutoff.eli = 0.95,
extrasafe = FALSE, offset = 0.05, mtd.contour = FALSE)

Since we are interested in finding a single MTD, we set mtd.contour = FALSE. The other ar-
guments are the same as those in get.boundary() described previously for single-agent trials.
Assume that the number of patients treated at each dose combination and the corresponding
number of patients who experience toxicity at each dose combination are

n =

 6 3 0 0
6 24 9 0
0 0 0 0

 , y =

 0 0 0 0
1 5 4 0
0 0 0 0

 .
R> n <- matrix(c(6, 3, 0, 0, 6, 24, 9, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 1, 5, 4, 0, 0, 0, 0, 0), ncol = 4,
+ byrow = TRUE)
R> sel.mtd.comb <- select.mtd.comb(target = 0.25, npts = n, ntox = y)
R> summary(sel.mtd.comb)

The MTD is dose combination (2, 2)

Isotonic estimates of the DLT rates are:
0.01 0.02 NA NA
0.17 0.21 0.45 NA

NA NA NA NA

NOTE: no estimate is provided for the doses at which no patient was treated.

The result is that dose combination (2, 2) is selected as the MTD. Note that no estimate is
provided for dose combinations that have never been used to treat patients, e.g., (1, 3) or (3,
3). The plot() function can be used to show the DLT estimates.

R> plot(sel.mtd.comb)

3.3. Drug-combination trials aiming to find the MTD contour

Designing a drug-combination trial for finding the MTD contour also follows the similar
three steps as those for single-agent trials. This involves four functions get.boundary(),
next.subtrial(), get.oc.comb() and selet.mtd.comb().

Step 1. Obtain dose escalation and de-escalation boundaries and determine subtrials
The BOIN-waterfall design is used to find the MTD contour, which divides the task of finding
the MTD contour into a sequence of subtrials. Each subtrial is conducted using the BOIN
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single-agent design, whose dose escalation and de-escalation boundaries can be obtained using
get.boundary() as described previously. The function next.subtrial() is used to determine
the next subtrial based on the observed data.

next.subtrial(target, npts, ntox, p.saf = 0.6 * target, p.tox = 1.4 * target,
cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05)

As described in Figure 3 and Zhang and Yuan (2016), the first subtrial is prespecified and
starts from the lowest dose (1, 1). When the first subtrial is completed, we call the function
next.subtrial() to determine the starting dose combination and the dose-searching space
for next subtrial. The function next.subtrial() shares a similar set of arguments with the
function get.boundary() described previously, with two additional arguments:

• npts: The matrix recording the number of patients treated at each dose combination.

• ntox: The matrix recording the number of patients who experienced toxicity at each
dose combination.

Assume that when the current subtrial is completed, the number of patients treated at each
dose combination (i.e., matrix n) and the corresponding number of patients who experienced
toxicity at each dose combination (i.e., matrix y) are

n =

 6 0 0 0
6 0 0 0
9 12 0 0

 , y =

 0 0 0 0
1 0 0 0
2 3 0 0

 .
We call next.subtrial() to determine the dose space for the next subtrial and its starting
dose, as follows,

R> n <- matrix(c(6, 0, 0, 0, 6, 0, 0, 0, 9, 12, 0, 0), ncol = 4,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 1, 0, 0, 0, 2, 3, 0, 0), ncol = 4,
+ byrow = TRUE)
R> nxt.trial <- next.subtrial(target = 0.3, npts = n, ntox = y)
R> summary(nxt.trial)

Next subtrial includes doses:
(2, 2), (2, 3), (2, 4)

The starting dose for this subtrial is:
(2, 3)

That is, the next subtrial consists of three doses {(2, 2), (2, 3), (2, 4)}. As these doses are
monotonically ordered, the BOIN design described in Section 3.1 for single-agent trial can be
directly used here to run this subtrial with the starting dose (2, 3), i.e., the second dose level.

Step 2. Simulate operating characteristics
The function get.oc.comb() can be used to obtain the operating characteristics of the BOIN-
waterfall design. This function shares the same set of arguments as the function get.oc()
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described in Section 3.1 (for single-agent trials), except that p.true is now a matrix (rather
than a vector), startdose is a vector of length 2 (rather than a scalar), and an additional
argument mtd.contour is used to indicate whether we are interested in finding an MTD or
the MTD contour.
Consider a 3× 5 drug combination trial with true toxicity probabilities as follows

p.true =

 0.01 0.03 0.10 0.20 0.30
0.03 0.05 0.15 0.30 0.60
0.08 0.10 0.30 0.60 0.75

 ,
and the target DLT rate is 0.30. We show below how to obtain the operating characteristics
based on 1000 simulated trials.

R> p.true <- matrix(c(0.01, 0.03, 0.10, 0.20, 0.30, 0.03, 0.05, 0.15, 0.30,
+ 0.60, 0.08, 0.10, 0.30, 0.60, 0.75), nrow = 3, ncol = 5, byrow = TRUE)
R> oc.comb2 <- get.oc.comb(target = 0.3, p.true, ncohort = c(10, 5, 5),
+ cohortsize = 3, n.earlystop = 12, startdose = c(1, 1), ntrial = 1000,
+ mtd.contour = TRUE)
R> summary(oc.comb2)

true DLT rate of dose combinations:
0.01 0.03 0.10 0.20 0.30
0.03 0.05 0.15 0.30 0.60
0.08 0.10 0.30 0.60 0.75

selection percentage at each dose combination (%):
0.00 0.00 1.80 26.40 71.80
0.00 0.60 22.30 69.60 7.50
3.00 21.30 68.60 6.90 0.00

average number of patients treated at each dose combination:
3.10 0.00 0.45 3.46 9.67
3.45 0.28 3.09 8.20 3.23
4.11 6.05 8.82 3.12 0.11

average number of toxicity observed at each dose combination:
0.03 0.00 0.05 0.66 2.89
0.11 0.01 0.46 2.42 1.92
0.35 0.56 2.67 1.85 0.09

average number of toxicities: 14.1
average number of patients: 57.1
percentage of patients treated at MTD contour: 46.7%
percentage of patients treated above MTD contour: 11.3%
percentage of patients treated below MTD contour: 42%
percentage of correct selection of the MTD contour: 36.3%
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Figure 7: Selection percentage of the dose combinations in the example using get.oc.comb().

We can use the plot() function to plot the figure illustrating the waterfall design (similar
to Figure 3) and operating characteristics such as selection percentage (Figure 7), average
number of patient treated, and average number of toxicity observed at each dose combination.

R> plot(oc.comb2)

Step 3. Select the MTD contour

When the trial is completed, based on the observed data, we can select the MTD contour using
the function select.mtd.comb(), described previously. Since we are interested in finding the
MTD contour, we should set argument mtd.contour = TRUE.
Assume that the number of patients treated at each dose combination (i.e., matrix n) and the
corresponding number of patients who experienced toxicity at each dose combination (i.e.,
matrix y) are

n =

 6 9 24 0
6 24 9 0

12 18 0 0

 , y =

 0 1 5 0
1 5 4 0
1 5 0 0

 .
R> n <- matrix(c(6, 9, 24, 0, 6, 24, 9, 0, 12, 18, 0, 0), ncol = 4,
+ byrow = TRUE)
R> y <- matrix(c(0, 1, 5, 0, 1, 5, 4, 0, 1, 5, 0, 0), ncol = 4,
+ byrow = TRUE)
R> sel.comb2 <- select.mtd.comb(target = 0.3, npts = n, ntox = y,
+ mtd.contour = TRUE)
R> summary(sel.comb2)
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Number of patients treated
3 6 9 12 15 18 21 24 27 30

Escalate if # of DLT ≤ 0 1 2 2 3 4 4 5 6 7
De-escalate if # of DLT ≥ 2 3 4 5 6 7 8 9 10 11
Eliminate if # of DLT ≥ 3 4 5 7 8 9 10 11 12 14

Table 3: Dose escalation and de-escalation rule for the BOIN design.

The MTD contour includes dose combinations (1, 3) (2, 2) (3, 2)

Isotonic estimates of the DLT rates are:
0.01 0.12 0.21 NA
0.12 0.21 0.45 NA
0.12 0.28 NA NA

NOTE: no estimate is provided for the doses at which no patient was treated.

The result is that dose combinations (1, 3) , (2, 2) and (3, 2) are selected as the MTD contour.
Note that no estimate is provided for dose combinations that have never been used to treat
patients, e.g., (1, 4) or (3, 3). We can use plot() function to show the estimates of the DLT
rates.

R> plot(sel.comb2)

4. Trial examples

4.1. Single-agent phase I trial

Consider a single-agent phase I trial with 5 dose levels, in which the objective is to find the
MTD with a target DLT rate of 0.3. The maximum sample size is 30 patients, treated in
cohort sizes of 3. To design and conduct this trial, we first ran the following commands:

R> bound <- get.boundary(target = 0.3, ncohort = 10, cohortsize = 3)
R> summary(bound)
R> plot(bound)

This yields the dose escalation and de-escalation boundaries as shown in Table 3, and a
flowchart of the trial design similar to Figure 1. The trial started by treating the first
cohort of 3 patients at dose level 1 and none of the patients had dose limiting toxicity (DLT).
According to the dose escalation and de-escalation rule provided in Table 3, we escalated
the dose to level 2 to treat the second cohort of 3 patients, none of whom experienced DLT.
Thus, we escalated the dose to level 3 and treated the third cohort of patients, 2 of whom
experienced DLT. Based on Table 3, we de-escalated the dose back to level 2 and treated
the fourth cohort of patients, one of whom experienced DLT. We then escalated the dose to
level 3 and treated the fifth cohort of patients, none of whom experienced DLT. Therefore,
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Figure 8: Illustration of the single-agent phase I trial using the BOIN design.

the sixth cohort was also treated at dose level 3. Figure 8 shows the dose assignment for all
30 patients. At the end of the trial, the number of patients and the number of DLTs at the
5 doses were n = c(3, 6, 18, 3, 0) and y = c(0, 1, 5, 3, 0). To select the MTD, we
ran the following commands:

R> n <- c(3, 6, 18, 3, 0)
R> y <- c(0, 1, 5, 3, 0)
R> sel.single <- select.mtd(target = 0.3, ntox = y, npts = n)
R> summary(sel.single)

The MTD is dose level 3

Dose Posterior DLT 95%
Level Estimate Credible Interval Pr(toxicity>0.3|data)

1 0.02 (0.00,0.20) 0.01
2 0.17 (0.01,0.53) 0.18
3 0.28 (0.10,0.50) 0.39
4 0.98 (0.80,1.00) 1.00
5 ---- (----,----) ----

NOTE: no estimate is provided for the doses at which no patient was treated.

which recommended the dose level 3 as the MTD, with the estimated DLT rate = 0.28 and
the 95% CI = (0.10, 0.50). And the illustration of the single-agent phase I trial is shown in
Figure 8.
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4.2. Drug-combination trial to find a single MTD

Consider a drug-combination trial that combines 3 doses of drug A and 5 doses of drug B.
The objective is to find an MTD with a target DLT rate of 0.3. The maximum sample size
is 30 patients, treated in cohort size of 3. The trial started by treating the first cohort of 3
patients at the lowest dose combination (1, 1), at which no DLT was observed. The observed
data were

n =

 3 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , y =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,
where n records the number of patients treated at each dose combination, and y records the
number of patients who experienced DLT at each dose combination. In matrices y and n,
entry (j, k) records the data associated with dose combination (j, k). To determine the dose
for the second cohort of patients, we used the following code:

R> set.seed(4)
R> n <- matrix(c(3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> nxt.comb <- next.comb(target = 0.3, npts = n, ntox = y,
+ dose.curr = c(1, 1))
R> summary(nxt.comb)

The recommended dose combination for the next cohort of patients is (1, 2).

which recommended to escalate the dose to combination (1, 2). Therefore, we treated the
second cohort of patients at dose combination (1, 2). In the second cohort, no patient expe-
rienced DLT, so the updated data matrices became

n =

 3 3 0 0 0
0 0 0 0 0
0 0 0 0 0

 , y =

 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
To determine the dose for the third cohort of patients, we again called next.comb() with
updated y, n and dose.curr.

R> n <- matrix(c(3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> nxt.comb2 <- next.comb(target = 0.3, npts = n, ntox = y,
+ dose.curr = c(1, 2))
R> summary(nxt.comb2)

The recommended dose combination for the next cohort of patients is
(2, 2).
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Figure 9: Illustration of the dual-agent combination design of finding the MTD for a 3 × 5
combination trial with a cohort of 3. Open circles indicate patients without toxicity, and solid
circles denote patients with toxicity.

The function recommended escalating the dose to (2, 2) for treating the third cohort of
patients. We repeated this procedure until the maximum sample size was reached. Figure 9
shows the dose assignments for all 30 patients. For example, at dose combination (3, 4)
when completing the eighth cohort, there were two DLTs, based on the accumulating toxic
information on this dose combination level, the function recommended de-escalating the dose
to combination (3, 3). When the trial was completed, the number of patients treated at each
dose combination and the corresponding number of patients who experienced toxicity at each
dose combination were

n =

 3 3 0 0 0
0 3 0 0 0
0 3 12 6 0

 , y =

 0 0 0 0 0
0 0 0 0 0
0 0 4 4 0

 .
We called the function select.mtd.comb(), which recommended dose combination (3, 3) as
the MTD.

R> n <- matrix(c(3, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 12, 6, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0), nrow = 3,
+ ncol = 5, byrow = TRUE)
R> sel.comb <- select.mtd.comb(target = 0.3, npts = n, ntox = y)
R> summary(sel.comb)

The MTD is dose combination (3, 3)
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Isotonic estimates of toxicity probabilities for combinations are
0.02 0.02 NA NA NA
NA 0.03 NA NA NA
NA 0.03 0.34 0.66 NA

NOTE: no estimate is provided for the doses at which no patient was treated.

4.3. Drug-combination trial to find the MTD contour
Consider a drug-combination trial that combines 3 doses of drug A and 5 doses of drug
B. The objective is to find the MTD contour (multiple MTDs) with a target DLT rate of
0.25. The trial started with the first subtrial, which consisted of 7 ordered combinations
{A1B1 → A2B1 → A3B1 → A3B2 → A3B3 → A3B4 → A3B5}. This subtrial was conducted
using the BOIN design in a way similar to those as described in Example 4.1. The starting
dose for this subtrial was A1B1 and n.earlystop was set as 12 such that the subtrial stopped
when the number of patients treated at that dose reached 12. The first subtrial resulted in
the following data:

n =

 6 0 0 0 0
6 0 0 0 0
9 12 0 0 0

 , y =

 0 0 0 0 0
1 0 0 0 0
1 3 0 0 0

 .
Based on the data, we called the function next.subtrial() to obtain the doses for the next
subtrial.

R> n <- matrix(c(6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 9, 12, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 3, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> nxt.trial <- next.subtrial(target = 0.25, npts = n, ntox = y)
R> summary(nxt.trial)

Next subtrial includes doses:
(2, 2), (2, 3), (2, 4), (2, 5)

The starting dose for this subtrial is:
(2, 3)

Therefore, we conducted the second subtrial with doses {A2B2 → A2B3 → A2B4 → A2B5}
using the BOIN design with the starting dose A2B3. After the second subtrial was completed,
the observed data were

n =

 6 0 0 0 0
6 0 3 12 0
9 12 0 0 0

 , y =

 0 0 0 0 0
1 0 0 3 0
1 3 0 0 0

 .
We called next.subtrial() again using the above updated data to obtain the doses for the
third subtrial.
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R> n <- matrix(c(6, 0, 0, 0, 0, 6, 0, 3, 12, 0, 9, 12, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 0, 0, 1, 0, 0, 3, 0, 1, 3, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> nxt.trial2 <- next.subtrial(target = 0.25, npts = n, ntox = y)
R> summary(nxt.trial2)

Next subtrial includes doses:
(1, 2), (1, 3), (1, 4), (1, 5)

The starting dose for this subtrial is:
(1, 5)

The third subtrial included doses {A1B2 → A1B3 → A1B4 → A1B5}, with starting dose
A1B5. After completing the third subtrial using the BOIN, the trial was completed and
resulted in the following final data:

n =

 6 0 0 6 12
6 0 3 12 0
9 12 0 0 0

 , y =

 0 0 0 1 3
1 0 0 3 0
1 3 0 0 0

 .
Based on the final data, we ran select.mtd.comb() to select the MTD contour:

R> n <- matrix(c(6, 0, 0, 6, 12, 6, 0, 3, 12, 0, 9, 12, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> y <- matrix(c(0, 0, 0, 1, 3, 1, 0, 0, 3, 0, 1, 3, 0, 0, 0), ncol = 5,
+ byrow = TRUE)
R> sel.comb2 <- select.mtd.comb(target = 0.25, npts = n, ntox = y,
+ mtd.contour = TRUE)
R> summary(sel.comb2)

The MTD contour includes dose combinations (1, 5) (2, 4) (3, 2)

Isotonic estimates of toxicity probabilities for combinations are
0.01 NA NA 0.17 0.25
0.12 NA 0.12 0.25 NA
0.12 0.25 NA NA NA

NOTE: no estimate is provided for the doses at which no patient was treated.

Thus, we selected dose combinations A1B5, A2B4 and A3B2 as the MTD contour, which had
the estimated DLT rate of 0.25.

5. Discussion
As a model-assisted design, the BOIN design combines the simplicity of the algorithm-based
design and the superior performance of the model-based design, providing an attractive ap-
proach to designing phase I clinical trials. The R package BOIN provides an easy-to-use and
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well-documented tool to implement the BOIN designs for single-agent and drug-combination
phase I trials. The package allows users to generate the dose escalation and de-escalation
boundaries, plot the flowchart, and simulate the operating characteristics of the design for
trial protocol preparation. It also provides functions to allow users to make the real-time
decision of dose assignment and MTD selection for conducting a real trial. By facilitating the
use of novel adaptive designs, the BOIN package has potential to improve the efficiency of
phase I trials and accelerate drug development. Recently, the BOIN design has been extended
to account for toxicity grade, continuous, and semi-continuous toxicity endpoints (Mo, Yuan,
Xu, Mandrekar, and Yin 2018), late-onset toxicity (Yuan, Lin, Li, Nie, and Warren 2018),
and phase I-II trials (Lin and Yin 2017b; Takeda, Taguri, and Morita 2018). We plan to
incorporate these new developments into the future version of the BOIN package.
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