Journal of Statistical Software

April 2016, Volume 70, Issue 1. doi: 10.18637/jss.v070.i01

missMDA: A Package for Handling Missing Values
in Multivariate Data Analysis

Julie Josse Francois Husson
Agrocampus Ouest Rennes Agrocampus Ouest Rennes

Abstract

We present the R package missMDA which performs principal component methods
on incomplete data sets, aiming to obtain scores, loadings and graphical representations
despite missing values. Package methods include principal component analysis for continu-
ous variables, multiple correspondence analysis for categorical variables, factorial analysis
on mixed data for both continuous and categorical variables, and multiple factor analysis
for multi-table data. Furthermore, missMDA can be used to perform single imputation to
complete data involving continuous, categorical and mixed variables. A multiple imputa-
tion method is also available. In the principal component analysis framework, variability
across different imputations is represented by confidence areas around the row and col-
umn positions on the graphical outputs. This allows assessment of the credibility of results
obtained from incomplete data sets.

Keywords: missing values, principal component analysis, single imputation, multiple imputa-
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1. Introduction

When starting a new project involving statistical analysis, it is important to first describe,
explore and visualize the given data. Principal component methods can be useful in such cases,
and several methods are available depending on the nature of the data: Principal component
analysis (PCA) can be used for continuous data, multiple correspondence analysis (MCA) for
categorical data (Gifi 1990; Greenacre and Blasius 2006; Husson and Josse 2014), factorial
analysis for mixed data (FAMD) for both continuous and categorical data (Escofier 1979;
Kiers 1991), and multiple factor analysis (MFA) for data structured in groups of variables
(Escofier and Pages 2008; Pages 2015). These methods involve reducing data dimensionality
in order to provide a subspace that best represents the data in the sense of maximizing the
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variability of the projected points. From a technical point of view, the core of all these
methods is the singular value decomposition (SVD) of certain matrices with specific metrics.

Unfortunately, data sets often have missing values, and most principal component methods
available in software packages can only be applied to complete data sets. To this end, the
missMDA package (Husson and Josse 2016) for the R system (R Core Team 2016) performs
principal component methods on incomplete data, aiming at estimating parameters (left and
right singular vectors and singular values) and obtaining graphical representations despite
missing values. The package is based on the methodology presented in Josse and Husson
(2012).

As we will see throughout the paper, missing value imputation is automatically associated with
parameter estimation. Consequently, the missMDA package has a broad range of applications
since it can be used to impute incomplete data sets with continuous, categorical or mixed
variables (i.e., data with both types of variables). Then, it is possible to apply statistical
methods. As it is based on a principal component method, imputation takes into account
both similarities between individuals and relationships between variables. However, one has
to be careful when applying statistical methods to imputed data sets since a unique value
is predicted for a missing entry and therefore cannot reflect uncertainty in the prediction.
Indeed, a model (explicit or not) is used to predict the value for the missing entry based on
the observed data, so there is uncertainty associated with the prediction. This implies that
when applying statistical methods to an imputed data set, the variance of the estimators
is underestimated since variability due the imputation of missing values is not taken into
account. This issue can be minimized by using multiple imputation methods (Rubin 1987)
whereby several plausible values are predicted for each missing entry, leading to a set of
imputed data tables. The variability between imputations reflects variance in predictions.
Multiple imputation methods then perform the desired analysis on each imputed data set
and combine the results.

In this paper, we first give a brief overview (Section 2) of other known software packages where
the implemented methods might be considered to run principal component methods with
missing values. Then, we present in detail our method to perform PCA with missing values
in Section 3. Since the core of all principal component methods is SVD, the methodology we
present serves as a basis for MCA (Section 4), FAMD (Section 5) and MFA (Section 6) with
missing values. We briefly present each method as well as the algorithm to deal with missing
values, and show how to perform analyses with missMDA on real data sets. In Section 7,
we highlight the ability of the package to be used for single and multiple imputation. Note
that the proposed methods were designed under the missing at random (MAR) assumption
(Rubin 1976), meaning that we do not address the case missing non at random (MNAR)
where the probability that a value is missing is related to the value itself. Such informative
missing values require to model the mechanism that generates the missing entries.

2. Possible competitors

One of the pioneering works on missing values in PCA is that of Wold and Lyttkens (1969)
in the field of chemometrics. They present the “NIPALS” algorithm which obtains the first
principal component (also known as the scores) and first principal axis (also known as the
loadings) from an incomplete data set using an alternating weighted least squares algorithm,
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where two weighted simple linear regressions are alternated. Then, the following dimen-
sions are obtained by applying the same method to the residuals matrix. This method is
implemented in (commercial) software products dedicated to chemometrics such as SIMCA
(Umetrics 2013) and Unscrambler (CAMO 2013), and a MATLAB toolbox (Eigenvector Re-
search 2011). It is also implemented in R with the function nipals in the ade4 package (Dray
2007) and the function nipalsPca in the pcaMethods package (Stacklies, Redestig, Scholz,
Walther, and Selbig 2007). However, this algorithm has many drawbacks. It is known to be
very unstable (i.e., it provides estimates of the parameters with large variability), does not
minimize some explicit criterion and does not allow one to perform a standardized PCA with
missing values (Josse, Pages, and Husson 2009).

Theoretical advances have been made on the topic of missing values and PCA, leading to
other methods being proposed. For instance, another alternating least squares algorithm
(Gabriel and Zamir 1979), which can be seen as an extension of “NIPALS”, directly estimates
a subspace and does not work sequentially. Also, there is the iterative PCA algorithm (Kiers
1997) which estimates parameters and missing values simultaneously. This algorithm is more
popular that the other since it can be used as a single imputation method to produce a
complete data set, not only to perform PCA with missing values. However, Josse et al. (2009)
and Ilin and Raiko (2010) highlighted this algorithm’s overfitting problems, and suggested
regularized versions to tackle these issues.

A regularized version of the iterative PCA algorithm is available in MATLAB toolboxes (Porta,
Verbeek, and Krose 2005; Ilin 2010). In R an implementation was provided by Stacklies
et al. (2007) in the pcaMethods package. In the missMDA package we also implemented the
iterative PCA algorithm and a regularized iterative PCA algorithm where the properties are
given in the associated theoretical papers (Josse et al. 2009; Josse and Husson 2012).

The main difference between the two R packages missMDA and pcaMethods is that the
primary aim of missMDA is to estimate PCA parameters and obtain the associated graphical
representations in spite of missing values, whereas pcaMethods focuses more on imputation
aspects. Indeed, as we will explain in Section 3, we implemented in package missMDA a
method to perform standardized PCA with missing values in which scaling is considered as
part of the analysis and not as a pre-processing step. Another point of difference is that
the pcaMethods package and MATLAB toolboxes only provide point estimates of parameters
from incomplete data, whereas an idea of variability is given in missMDA. In particular,
a multiple imputation method is included with the possibility to draw confidence areas on
graphical outputs in order to know how much credibility can be given to outputs obtained
from incomplete data.

Next, let us consider MCA for categorical variables. From a technical point of view, MCA
consists of coding categorical variables with an indicator matrix of dummy variables and then
performing a SVD on this matrix, weighted with weights that depend on the margins. MCA
is also known as homogeneity analysis (Gifi 1990). In this framework, a popular approach
to deal with missing value is the “missing passive” approach (Meulman 1982), based on the
following assumption: An individual who has a missing entry for a variable is considered to
have not chosen any category for that variable. Consequently, in the indicator matrix, the
entries in the row and columns corresponding to this individual and variable are marked 0.

This method is implemented in the function homals in the R package homals (De Leeuw
and Mair 2009a) as well as in the function CATPCA in the software package SPSS (Meulman,
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Heiser, and SPSS 2003). Greenacre and Pardo (2006) showed that it is also closely related to
their “subset MCA” approach, in which one adds a new category for the missing values and
then treats it as an additional element. Their strategy is implemented in the R package ca
(Nenadic and Greenacre 2007) using the function mjca with argument subsetcol.

Josse, Chavent, Liquet, and Husson (2012) provided a review of existing methods for handling
missing values in MCA and suggested a new approach named regularized iterative MCA.
They distinguish between different kinds of missing values and show which method is best-
suited to each kind. In questionnaires for instance, it often happens that a missing value for a
categorical variable corresponds to “a new category in itself", e.g., when the respondent cannot
find an appropriate category to select among the available categories and consequently does
not answer the question. The missing value is not really a “true" missing value (which could be
imputed using the available categories for instance) but corresponds to a new category like “no
opinion” or “do not know”. In this case, the “missing passive” approach for estimating MCA
parameters from incomplete data is appropriate. In other cases, Josse et al. (2012) suggest
using their approach for estimating MCA parameters from incomplete data. This method is
implemented in package missMDA. Note that unlike other approaches, this method allows
to impute an incomplete data set when variables are categorical; see Section 7 for further
details.

Regarding the FAMD and MFA methods, no solution was previously available to perform
them with missing values. Package missMDA therefore provides the first implementation
of the regularized iterative FAMD algorithm (Audigier, Husson, and Josse 2016a) and the
regularized iterative MFA algorithm (Husson and Josse 2013). However, we note that re-
lated algorithms have been suggested for other multi-table and multi-way methods, including
PARAFAC (Tomasi and Bron 2005; Kroonenberg 2008; Acar, Dunlavy, Kolda, and Mrup
2011; Smilde, Bro, and Geladi 2004). Some are available as MATLAB toolboxes (Andersson
and Bro 2000) or as standalone software products (Kroonenberg 2011). More information can
be found at http://www.leidenuniv.nl/fsw/three-mode. Note that in these implementa-
tions, however, no attempt is made to use regularized versions of the algorithms.

Note that in the current version of package missMDA, we do not address the issue of per-
forming correspondence analysis (CA) with missing values. CA (Greenacre 1984, 2007) is
dedicated to analyze multivariate count data. Nora-Chouteau (1974) suggested an algorithm
to estimate CA parameters with missing values which is implemented in the package anacor
(De Leeuw and Mair 2009b) and which can be seen as underlying the algorithms dedicated
to perform principal component methods with missing values.

In summary, the missMDA package provides a complete framework for performing principal
component methods for different data types in the presence of missing values. In addition,
it provides solutions for selecting the number of underlying dimensions from incomplete data
sets.

In this section, we did not detail software packages that are available for exploring and
visualizing data with missing values outside the principal component framework such as the
VIM package (Templ, Alfons, Kowarik, and Prantner 2015) as well as software packages that
are available for imputing data; these implementations will be discussed in Section 7. Such
packages aim at completing a data set and do not to perform principal component methods
with missing values. It is still possible to perform a principal component method on a data set
that has been completed by such imputation methods, e.g., using random forests (Stekhoven
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and Bithlmann 2012). However, the properties of the results obtained in terms of quality of
parameter estimation are unknown and, in addition, it is not straightforward to combine the
results of different principal component methods for multiple imputation methods. Thus, we
do not advise this strategy.

3. Principal component analysis

3.1. Point estimates

PCA in the complete case is often presented from a geometrical point of view as providing
a subspace that maximizes the variance of the projected points, and therefore represents the
diversity of the individuals. Equivalently, it can be presented as providing a subspace that
minimizes the Euclidean distance between individuals and their projection onto the subspace.
It boils down to finding a matrix of low rank S that gives the best approximation of the
matrix X,,x, with n individuals and p variables in the least squares sense:

Xnsp = Xl (1)

The PCA solution is given by the first S terms of the singular value decomposition of the
1

matrix X: X = U, SAgX SV;X g, with U and 'V being the left and right singular vectors

and A the diagonal matrix containing the eigenvalues. The matrix UA? is also known as the
scores matrix, principal components matrix, or matrix of the coordinates of the individuals
on the axes, and the matrix V as the loadings matrix, principal axes matrix or coefficients
matrix.

A common approach to deal with missing values in PCA involves ignoring the missing values
by minimizing the least squares criterion (1) over all non-missing entries. This can be achieved
by the introduction of a weighted matrix W in the criterion, with w;; = 0 if ;; is missing
and w;; = 1 otherwise:

1
[Wixp * (Xnxp — UnXsAéxSV;xS)H2= (2)

where * is the Hadamard product. The aim is to estimate the PCA parameters despite
the missing entries which have been skipped. In contrast to the complete case, there is no
explicit solution to minimize criterion (2) and it is necessary to resort to iterative algorithms.
Many algorithms were proposed and re-discovered in the literature under different names and
in different fields (see Josse and Husson 2012 for references), including the iterative PCA
algorithm suggested by Kiers (1997) and detailed in Josse and Husson (2012).

To illustrate this algorithm, let us consider a small data set with five individuals and two
variables and a missing value for individual 4 and variable 2 identified by a small blue segment
in Figure 1. The first step of the algorithm consists in imputing the missing entry with an
initial value such as the mean of the variable over the observed values (red point in Figure 1,
top middle panel), then PCA is performed on the imputed data set. The PCA red line is
the best approximation of the 2-dimensional data set in one dimension in the least squares
sense. Then, the value fitted by PCA is used to predict a new value for the missing one.
The observed values are the same but the missing entry is replaced by the fitted one (green
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Figure 1: Illustration of the iterative PCA algorithm.
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point in Figure 1). On the new completed data set, the same procedure is applied. These
two steps of parameter estimation with PCA (estimation of the PCA line) and imputation
of the missing entry using the values predicted by PCA are repeated until convergence. At
the end of the algorithm, we obtained both an estimation of the PCA parameters from an
incomplete data set as well as an imputed data set. This explains why this algorithm is so
popular, since it can be used either to perform PCA despite missing values or to complete
data sets. These kinds of algorithms have become popular for matrix completion problems,
especially in the machine learning community for collaborative filtering problems, e.g., the
Netflix prize (Netflix 2009).

We note that the iterative PCA algorithm is also known as the EM-PCA algorithm (expectation-
maximization PCA; Dempster, Laird, and Rubin 1977). This makes sense because it corre-
sponds to an EM algorithm for a PCA fixed-effects model (Caussinus 1986), where data are
generated as a fixed structure having a low rank representation in S dimensions corrupted by
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noise:
S
2y = >V Asuisvjs + €ijy with g5 ~ N(0,02). (3)
s=1

Such algorithms converge to a possible local maximum.

The iterative PCA algorithm provides a good estimation of the PCA parameters when there
are very strong correlations between variables and the number of missing values is very small.
However, it very rapidly suffers from overfitting problems when data are noisy and/or there
are many missing values. This means that the observed values are well-fitted but prediction
quality is poor. Such problems are illustrated in Ilin and Raiko (2010) and Josse and Husson
(2012). To tackle this issue, a common strategy is to use regularized methods. Josse et al.
(2009) suggested the following regularized iterative PCA algorithm:

1. Initialization ¢ = 0: Substitute missing values with initial values such as the mean of
the variables with non-missing entries, the imputed matrix is denoted X". Calculate
M?O, the matrix of the vector containing the mean of the variables of X, repeated in
each row of MO,

2. Step £ > 1:

(a) Perform the PCA, i.e., the SVD of (XE*1 — MZ*I) to estimate parameters U’, V¢

and (Ag) 1/2.

(b) Keep the first S dimensions and build the fitted matrix with

S ~2\0
A0 / (6%) 0. ¢
Lij = Z )\4; - J UisVjss
s=1 \/)‘s

- /2 x0T 2
¢ XU Af) VO T
= np—n(S—gs et , and define

the new imputed data set as X = W x X + (1 — W) % X, where 1 is a matrix of
size n x p with only ones. The observed values are the same but the missing ones
are replaced by the (regularized) fitted values.

with the noise variance estimated as (62)

(c) From the new completed matrix, M is updated.

3. Steps (2.a), (2.b) and (2.c) are repeated until the change in the imputed matrix falls
below a predefined threshold Zij(.%fj_l — fcfj)Q < ¢, with € equal to 1076 for example.

Additional justification for the specific regularization shown here is given in Verbanck, Josse,
and Husson (2015). Much can be said about the regularized iterative PCA algorithm. First,
note that the mean matrix M is updated during the algorithm. Indeed, after each imputation
step, the means of the variables change. Consequently, it is necessary to re-center the data
after each imputation step. In the same vein, if one wishes to perform a standardized PCA
(to give the same weight to each variable in the analysis) with missing values, a re-scaling step
must be incorporated after each imputation step. In the complete case, scaling is often carried
out prior to analysis and thus often regarded as a pre-processing step. In the incomplete case,
it is necessary to consider the scaling process as a part of the analysis. As far as we know,
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many algorithms performing PCA with missing values do not include these re-centering or
re-scaling steps and thus variables do not have the same weights in the analysis.

Next, the algorithm requires as tuning parameter the number of dimensions S, chosen a
priori. Many strategies are available in the literature to select the number of dimensions
from a complete data set (Jolliffe 2002). Cross-validation (Bro, Kjeldahl, Smilde, and Kiers
2008; Josse and Husson 2011b) is one such method which shows good performance and can
be easily extended to the incomplete case. We implemented three cross-validation techniques
in missMDA.: leave-one-out, k-fold and generalized cross-validation.

Leave-one-out cross-validation consists of removing each observed value x;; of the data matrix
X one at a time. Then, for a fixed number of dimensions S, we predict its value using the PCA
model obtained from the data set that excludes this cell (using the iterative PCA algorithm

on the incomplete data set). The predicted value is denoted (i;”)

. Lastly, the prediction
error is computed and the operation repeated for all observed cells in X and for a number
of dimensions varying from 0 to min(n — 2,p — 1). The number S that minimizes the mean

square error of prediction (MSEP) is kept:

1 n p N 2
MSEP(S) = — <g; (37 ) |

np ZZIJZI 4 ( i )
This method is computationally costly, especially when the number of cells is large, since
it requires S times the number of observed cells to perform the iterative PCA algorithm.
To reduce the computational cost it is possible to use a k-fold approach which consists in
removing more than one value in the data set, for instance 10% of the cells and predict them
simultaneously. Lastly, inspired by generalized cross-validation (GCV; Craven and Wahba
1979) in the framework of regression, Josse and Husson (2012) defined a GCV value in the
framework of PCA to approximate the MSEP. It is defined as follows:

2
np Yy Y (xz‘j - (@'j)s)
np—p—nS—pS+52+S5

GCOV(S) =

The GCV value can be interpreted as a classical model selection criterion where the residuals
sum of squares is penalized by the number of degrees of freedom. This strategy is faster
since it only requires running the iterative PCA algorithm once to estimate the Z;; and no
additional cells are removed.

3.2. Confidence areas

The (regularized) iterative PCA algorithm provides estimates of the PCA parameters despite
the absence of some data, as well as a single imputed data set. Josse and Husson (2011a)
proposed a multiple imputation method called MIPCA which generates several imputed data
sets. The observed values from one imputed data set to another are the same but the imputed
values for missing data differ. Variability across the various imputations reflects variability
in the prediction of missing values. The multiple imputation is “proper” in the sense of
Little and Rubin (1987, 2002), meaning that the variance of predictions is composed of two
parts: variability in the estimated values of the PCA parameters plus variability due to noise.
Josse and Husson (2011a) used a residuals bootstrap procedure to obtain the variance of
parameters. Indeed, it is in agreement with model (3) where the randomness part can be
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Figure 2: Supplementary projection of the multiple imputed data sets onto the reference
configuration (in black).

seen as coming only from the measurement errors. Thus, it is possible to create B bootstrap
replicates of the data X%, b = 1,..., B, by adding to the estimator X, B new matrices of
residuals obtained by bootstrapping the current residuals matrix £ = X — X. T hen, the
(regulamzed) iterative PCA algorithm is applied to each new matrix X? which gives B new
estimators X!, ..., X5 representing the variability of the PCA parameters. Finally, the B
imputed Values are obtained by drawing from the predictive distribution meaning that a
Gaussian noise with variance equal to the residuals variance is added to each matrix X°. This
strategy is implemented in package missMDA. An alternative is to use a Bayesian approach,
as suggested in Audigier, Husson, and Josse (2016b).

The impact of different predicted values on the PCA results can be visualized using a strategy
illustrated in Figure 2. In Figure 2, the blue color is used for the observed values and each
square corresponds to an imputed value. The first data table with black squares corresponds
to the one obtained after performing the (regularized) iterative PCA algorithm. Then, the
B other imputed data sets are obtained with the multiple imputation method MIPCA. The
observed values are the same from one table to another but the imputed values are different
and the variability across the imputation represents the variance of prediction of the missing
entries. Individuals in the B imputed data sets generated by the MIPCA algorithm are
projected as supplementary individuals onto the reference configuration (the one obtained
with the regularized iterative PCA algorithm). It means that we compute the inner-product
between the individuals and the axes (loadings) of the reference configuration. An individual
without any missing values is projected onto its corresponding point whereas an individual
with missing entries is projected around its initial position. In this way, we can visualize the
position of individuals with different missing value predictions. Next, confidence ellipses are
drawn assuming a Gaussian distribution.

Then, the impact of the various imputed values on the PCA parameters is obtained with a
PCA performed on each imputed data set as illustrated in Figure 3. This leads to scores and
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Figure 3: Procrustes rotations of the PCA configurations obtained from the multiple imputed
data sets onto the reference configuration (in black).

loadings that are different from one table to the next. Individuals (using their scores) are
represented in the same subspace with Procrustes rotations (Gower and Dijksterhuis 2004).
The underlying idea is to perform geometric transformations on each PCA configuration
(translation, rotation and dilatation) in order to obtain configurations comparable to the one
obtained by the (regularized) iterative PCA algorithm. Then, confidence ellipses around the
positions of individuals are drawn. These ellipses represent between-imputation variability.

Note that the ellipses should be interpreted as areas of variability rather than confidence
ellipses. Indeed, we cannot ensure that the probability that the “true” values lie inside the
ellipses equals 95%. The first ellipses represent only the position of individuals with different
missing entries whereas the second ones represent the variability of the parameters due to
missing values (the between-imputation variability) and not the total variability which should
be composed of the between and within variability. More research has to be done in this area.
Nevertheless, these ellipses are still very valuable to assess the impact of the missing values
strategies on the analysis.

3.3. PCA on a genotype-environment data set

We illustrate the method on a genotype-environment data set coming from the field of crop
science. After installing the missMDA package, the package as well as the incomplete data
set geno are loaded.

R> set.seed(1234)

R> library("missMDA")

R> data("geno", package = "missMDA")
R> summary(geno)

R> head(round(geno, 2))
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ACOR AORE ASAL CALB CBAD CCOR CLER CSE1 CSE2 CTO1

C_10.64 0.43 0.37 NA -0.64 -0.14 NA NA 0.16 -0.47
C_2 2.17 0.86 NA 0.01 NA 0.04 -1.32 -0.56 -0.77 -0.53
C_30.85 0.96 -0.26 -0.13 -0.39 0.27 -0.20 -0.49 -0.33 -0.27
Cc_41.41 1.50 -0.03 -0.10 -0.32 -0.16 -0.73 -0.54 -1.09 0.07
C_50.87 0.86 0.54 -0.10 -0.03 0.05 -0.88 -0.34 -0.66 -0.32
C_61.71 0.34 0.53 0.17 NA -0.34 -0.83 -0.51 -1.03 0.06

The data set geno has 16 rows corresponding to genotypes (triticale lines) and 10 columns
corresponding to different environments where the genotypes were sown. Each cell of the
data matrix corresponds to the grain yield (kilograms per hectare) for one genotype in a
given environment. The first six genotypes correspond to the so-called “complete” type,
while the next eight are of the “substituted” type; two reference genotypes are also included.
More details about the data can be found in Royo, Rodriguez, and Romagosa (1993) and
Josse, Eeuwijk, Piepho, and Denis (2014). Such data sets are often incomplete. Indeed, it
frequently happens that all varieties are not assessed in all environments.

To perform a PCA on an incomplete data set, we proceed in three steps, and only require the
three following lines of code:

R> ncomp <- estim_ncpPCA(geno)
R> res.imp <- imputePCA(geno, ncp = ncomp$ncp)
R> res.pca <- PCA(res.imp$completeObs)

We now detail these steps and the associated functions. First, we select the number of
dimensions that will be used in the algorithm using the function estim_ncpPCA.

R> ncomp <- estim_ncpPCA(geno, ncp.min = 0, ncp.max = 6)
R> ncomp$ncp

[1] 2

This returns the MSEP for a number of dimensions varying from ncp.min to ncp.max in the
criterion object, as well as the number of dimensions minimizing the MSEP in the object
ncp (here, two dimensions). By default, the function estim_ncpPCA uses the GCV method.
It is possible to use another cross-validation strategy by specifying the argument method.cv
as follows:

R> ncomp$ncp <- estim_ncpPCA(geno, ncp.min = 0, ncp.max = 6,
+ method.cv = "Kfold", nbsim = 100, pNA 0.05)

With the Kfold method two additional arguments are useful: pNA indicates the percentage of
missing values inserted and predicted with PCA using ncp.min to ncp.max dimensions, and
nbsim the number of times this process is repeated.

The second step consists of performing the (regularized) iterative PCA algorithm with the
number of dimensions selected in the previous step, using the function imputePCA:

R> res.imp <- imputePCA(geno, ncp = 2, scale = TRUE,
+ method = "Regularized", row.w = NULL, coeff.ridge = 1,
+ threshold = 1e-06, seed = NULL, nb.init = 1, maxiter = 1000)

11
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By default, the function imputePCA uses the regularized iterative PCA algorithm. However,
it is possible to use the argument method = "EM" to perform the iterative PCA algorithm.
The argument scale = TRUE is used by default to perform a standardized PCA (with the
standard deviations updated during the algorithm as explained in Section 3); the alternative
is scale = FALSE. Since the algorithm may converge to a local minimum, it is possible to run
it nb.init times with different random initializations (different imputations) and keep the
best solution in the sense of the least squares criterion. This can be performed by specifying a
value for the argument seed. The algorithm stops either when the relative difference between
two successive imputations is less than threshold, or when the number of iterations exceeds
the fixed number maxiter. The other options are rarely used; it is possible to give weights
to the individuals (row.w) and to apply a milder or a stronger penalization (coeff.ridge).

As described in Section 3, at convergence the algorithm provides both an estimation of the
scores and loadings as well as a completed data set. The imputePCA function outputs the
imputed data set. Indeed, as will be discussed in Section 7, this allows the possibility of using
the missMDA package to complete data before performing any statistical analyses (on the
imputed data set). The completed data set is in the object completeQbs:

R> head(round (res.imp$completelbs, 2))

ACOR AORE ASAL CALB CBAD CCOR CLER CSE1 CSE2 CTO1

C_10.64 0.43 0.37 -0.07 -0.64 -0.14 -0.51 -0.29 0.16 -0.47
C_22.17 0.86 0.50 0.01 -0.56 0.04 -1.32 -0.56 -0.77 -0.53
C_30.85 0.96 -0.26 -0.13 -0.39 0.27 -0.20 -0.49 -0.33 -0.27
C_41.41 1.50 -0.03 -0.10 -0.32 -0.16 -0.73 -0.54 -1.09 0.07
C_50.87 0.86 0.54 -0.10 -0.03 0.05 -0.88 -0.34 -0.66 -0.32
Cc_61.71 0.34 0.53 0.17 -0.36 -0.34 -0.83 -0.51 -1.03 0.06

The imputePCA function also outputs the fitted matrix X in the object recon.

The last step of the analysis is to perform PCA on the imputed data set. To this end, we
propose to use the PCA function of the FactoMineR package (Husson, Josse, Lé, and Mazet
2016; Lé, Josse, and Husson 2008), but any other function performing PCA can be used such
as prcomp or dudi.pca from the ade4 package (Dray 2007):

R> res.pca <- PCA(res.imp$completeObs)

This provides the classical graphical outputs represented in Figure 4 for individuals and
variables. Even if these outputs are obtained first by imputing the incomplete data set and
then performing PCA on the completed data set, they correspond to the solution minimizing
the criterion (2) which skips missing values. Therefore, they correspond to the estimates of
the axes and components of a PCA performed on the incomplete data table. In this example,
the first dimension of variability separates the complete and substituted genotypes. The
substituted genotypes yield more in the environments that have high coordinates on the first
dimension (CTO1, CBAD, ..., CES1) and less in the environments ACOR and AORE. The
two reference genotypes (Sys and Sg) are located around the center of gravity. More details
about how to interpret the results of a PCA can be found in many books such as in Husson,
Lé, and Pages (2010).
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Figure 4: Outputs of the PCA function: graph of individuals (left) and correlation circle
(right).

To perform multiple imputation, we use the MIPCA function which generates multiple imputed
data sets. Then, the plot method for ‘MIPCA’ objects is applied to visualize the impact of
the different imputed values on the PCA results.

R> resMIPCA <- MIPCA(geno, ncp = 2, nboot = 200)
R> plot (resMIPCA)

The function MIPCA gives as output the data set imputed by the (regularized) iterative PCA
algorithm (in res.imputePCA) and the other data sets generated by the MIPCA algorithm
(in res.MI). The number of data sets generated by this algorithm is controlled by the nboot
argument, equal to 100 by default. The other arguments of this function are the same as
those for the imputePCA function. The plot method for ‘MIPCA’ objects draws the graphs
represented in Figure 5. Those on the left represent the projection of the individuals (top)
and variables (bottom) of each imputed data set as supplementary elements onto the refer-
ence configuration obtained with the (regularized) iterative PCA algorithm, as described in
Section 3.2. For the individuals, a confidence area is constructed for each, and if one has
no missing entries, its confidence area is restricted to a point. The graphs on the right are
obtained after applying PCA to each imputed data set. The top one corresponds to the rep-
resentation of the individuals obtained after performing Procrustes rotations as described in
Section 3.2. Even if an individual has no missing entries, its confidence area is not restricted
to a point since the PCA components are not strictly identical from one PCA to another due
to the different imputed values of the other individuals. The bottom-right graph corresponds
to the projection of the two first principal components of each imputed data set onto the
two first principal components of the reference configuration obtained with the (regularized)
iterative PCA algorithm. In this example, we can observe that genotype Sg has no missing
values, genotype Sg has one missing entry for a variable with a high value on the second di-
mension such as CALB. In this example, all the plots show that the variability across different
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Figure 5: Visualization of multiple imputed data sets on PCA outputs. The graphs on the
left represent the projection as supplementary elements of the individuals (top) and variables
(bottom) of the imputed data sets. The graphs on the right are obtained after applying
PCA to each imputed data set. At the top, Procrustes rotations are performed to obtain the
individuals graph and on the bottom the first two principal components of each imputed data
sets are projected onto the first two principal components of the reference configuration.

imputations is small and a user can interpret the PCA results with confidence.

The arguments of the plot method for ‘MIPCA’ objects are as follows:

R> plot(resMIPCA , choice = "all", axes = c(1, 2), new.plot = TRUE,
+ main = NULL, level.conf = 0.95)

and can be modified using the following options:

e choice: the graphs to plot. By default all the graphs are plotted; ind.supp to draw a
confidence ellipse around each individual (Figure 5, top left) by projecting the imputed
data sets as supplementary elements; var for the projection of the variables of the
imputed data sets as supplementary variables (Figure 5, bottom left); ind.proc to draw
a confidence ellipse around the position of each individual using Procrustes rotations
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(Figure 5, top right); dim for the projection of the first two principal components of
each imputed data set (Figure 5, bottom right).

e axes: a length 2 vector specifying the dimensions to plot.

e new.plot: a Boolean. If TRUE, a new graphical device is created.

e main: a string corresponding to the graph’s title, by default NULL.

e level.conf: a confidence level used to construct the ellipses; by default 0.95.

e ...: other standard options of the plot function.

4. Multiple correspondence analysis

In the missMDA package, it is also possible to handle missing values in MCA. MCA can be
seen as the equivalent of PCA for categorical data. It is often used to analyze survey data
and aims to visualize similarities between respondents and relationships between categorical
variables, and more precisely associations between categories. MCA can be seen as a PCA on
a certain data matrix. More precisely, it means performing a PCA on the following triplet:

1 1
IXDg!, —Dgy, -1
< b)) ’IJ R I I) )
with X the indicator matrix of dummy variables (represented in Figure 6) for the I individuals
and J categorical variables; the row margins of X are equal to the number of variables J,
the column margins of X to I, the number of individuals taking the category k. Dy =
diag ((Ix)k=1,..K) is the diagonal matrix of the column margins of X. The matrix D = %]II

corresponds to the row masses and M = %DE is the metric (used to compute distances
between rows).

Because MCA is a particular example of PCA, the method to deal with missing values in PCA
can be extended to deal with missing values in MCA, taking into account details specific to

100/10/01...(01 |J
100/10/10... vmm
nmanan 0100 .../01
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Figure 6: Coding of categorical variables with an indicator matrix of dummy variables X.
The first categorical variable has three categories and a missing value for individual 3.
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MCA, namely the precise weighting. Josse et al. (2012) proposed the iterative MCA algorithm,
which consists of an initialization step in which missing values in the indicator matrix are
imputed by initial values such as the proportion of the category. Values can be non-integer
as long as the sum for each individual and each variable is equal to 1. This initialization for
categorical variables is equivalent to mean imputation for continuous variables. Then, MCA is
performed on the imputed indicator matrix to obtain an estimation of parameters, and missing
values are imputed using the fitted values. After the imputation step, the margins Dy, change
and thus it is necessary to incorporate a step for updating the margins like for means and
standard deviations in PCA (Section 3). A regularized version of the algorithm has also been
suggested, since overfitting problems are exacerbated in MCA due to high-dimensionality of
the space induced by the categorical variables.

We illustrate the method on the vnf data set which concerns a user satisfaction survey of
pleasure craft operators. These were asked numerous questions with categorical answers, each
with two or three categories. 1232 individuals answered 14 questions involving a total of 35
categories. The data set has 9% of values missing, involving 42% of respondents. As in PCA
(Section 3.3), we proceed in three steps to perform MCA with missing values:

R> data("vnf", package = "missMDA")

R> ncomp <- estim_ncpMCA(vnf, method.cv = "Kfold")

R> tab.disj.impute <- imputeMCA(vnf, ncp = 4)$tab.disj
R> res.mca <- MCA(vnf, tab.disj = tab.disj.impute)

The first step consists of estimating the number of dimensions, using the estim_ncpMCA
function. Then, the regularized iterative MCA algorithm is performed using the imputeMCA
function. The arguments of these functions are the same as those used in the analogous
functions in estim_ncpPCA and imputePCA.

If the seed argument of the imputeMCA function is not NULL, a random initialization is per-
formed. More precisely, random numbers are entered in the indicator matrix that meet the
constraint that the sum of the entries corresponding to each individual and each variable is 1.

The first output of the imputeMCA function is tab.disj and corresponds to the completed
indicator matrix resulting from the last step of the (regularized) iterative MCA algorithm.
Using this completed indicator matrix as input to the MCA function of the FactoMineR package
leads to an estimation of the MCA parameters obtained from the incomplete data by skipping
the missing values. Indeed, a criterion of the same form as in Equation 2 is minimized with
zero weights for missing entries. More details about the analysis can be found in Josse et al.
(2012). Thus, to perform MCA using an incomplete data set, it uses the FactoMineR package
(i.e., package missMDA imports FactoMineR functions) and the MCA function needs to use the
argument tab.disj. This then leads to the classical MCA outputs such as a representation of
the categories (Figure 7). This shows that respondents who answered response 2 for question
8.2 often answered response 2 for question 8.1. We can also say that category 2 of question
8.3 is a rare choice since it lies far from the other categories. The rules of interpretation are
the same as usual and can be found in books on MCA such as Greenacre and Blasius (2006).

Note that an imputed value in the indicator matrix can be seen as a degree of membership
to the associated category. Consequently, each missing entry of the original data set can be
imputed with the most plausible category (as we will see in Section 5). This completed data
table is available in the output completeObs and thus, as we will discuss in Section 7, the
missMDA package can be used to impute categorical data sets.
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Figure 7: A representation of the categories of the incomplete vnf data set.

5. Factorial analysis for mixed data

When some variables are continuous and others categorical (known as mixed data), one
way to explore the data with principal components methods is to transform the continuous
variables into categorical variables and then perform MCA. Though this method is simple,
it has drawbacks (Pages 2015) since information is lost. Factorial analysis for mixed data
(FAMD; Escofier 1979; Pages 2015) is an alternative, also known as PCAMIX (Kiers 1991).
The method consists of coding the data first as illustrated in Figure 8. Categorical variables
are transformed into dummy variables and concatenated with the continuous variables. Then
each continuous variable is standardized (centered and divided by its standard deviation) and
each dummy variable is divided by the squared root of the proportion of individuals taking
the associated category: \/I/I} for category k. FAMD consists of performing a PCA on this
weighted matrix. This specific weighting induces balance in the influence of both variable
types. It is based exactly on the same rationale as the scaling in PCA which gives the same
weight to each variable in the analysis; here the specific weights ensure that all continuous and
categorical variables play the same role. In addition, the first principal component, denoted
F1, maximizes the link between the continuous and categorical variables in the following

sense:
Kcant cht
Z 7"2(:Fla Uk:) + Z 772(F17 vq)a
k=1 q=1

with v, being the variable ¢, Ko, the number of continuous variables, Qc.; the number of
categorical variables, r? the square of the correlation coefficient and n? the square of the
correlation ratio.

FAMD is similar to PCA when there are only continuous variables and to MCA when there
are only categorical variables. Consequently, the algorithm to perform FAMD with missing
values (Audigier et al. 2016a) is close to the ones described in Sections 3 and 4 and can be
summarized as follows:
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Figure 8: Coding the data in factorial analysis for mixed data.

1. Initialization: Imputation using for example the means (for continuous variables) and
proportions (for the dummy variables). Compute the standard deviations and column
margins and thus the weights for the concatenated matrix (of the continuous variables
and indicator matrix of dummy variables).

2. Iterate until convergence:

(a) Perform PCA on the completed weighted data matrix to estimate the parameters
U,A and V.

(b) Impute the missing values with the fitted values using S dimensions.

(c) Update the mean, standard deviations (for the continuous variables) and column
margins (for the categories).

We illustrate this method using the imputeFAMD function of the missMDA package and the
FAMD function of the FactoMineR package on the incomplete mixed data set snorena rep-
resented in Figure 9 (left-hand side). The following lines of code perform FAMD on the
incomplete data set:

R> data("snorena", package = "missMDA")
R> res.impute <- imputeFAMD(snorena, ncp = 3)
R> res.famd <- FAMD(snorena, tab.comp = res.impute)

The function imputeFAMD gives as output the object tab.disj which is the imputed matrix,
i.e., the imputed continuous variables and imputed indicator matrix as illustrated in Figure 9
(bottom right-hand side). Note that in this imputed indicator matrix, imputed values are
real numbers that satisfy the constraint that the sum of the entries corresponding to each
individual and each variable is equal to 1. This property is inherited from the FAMD method
without missing values and is due to the specific weighting (Pages 2015). Consequently, they
can be seen as the degree of membership in the corresponding category, and it is possible to
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age weight size alcohol sex snore tobacco

NA 100 190 NA M yes no NA 100 190 | NA NA NA| 10| O 1 1 0 O
70 96 186 1-2gl/d M NA <=1 | 70 96 186 | O 1 O0|10|NA NA|l O 1 0
NA 104 194 No W no NA "INA104 194 1 0O 0|O01| 1 O NA NA NA
62 68 165 1-2glld M no <=1 62 68 165| O 1 0|10 1 0| O 1 0

imputeAFDM

age weight size alcohol sex snore tobacco

51 100 190 1-2gl/[d M yes no 51 100 1901(0.2 0.7 0.1|1 0| O 1 1 0 O
70 96 186 1-2glild M no <=1 70 96 186 | O 1 0]/10(0.80.2| O 1 0
48 104 194 No W no <=1 48 104 194| 1 0 0|01 1 0(0.10.80.1
62 68 165 1-2glld M no <=1 62 68 165| O 1 0|10 1 o0f O 1 0

Figure 9: Illustration of the regularized iterative FAMD algorithm on the incomplete snorena
data set. Top left: the incomplete data table; top right: coding the data with the categorical
variables coded using the indicator matrix of dummy variables; bottom right: the imputed
data matrix with the imputed continuous variables and the imputed indicator matrix of
dummy variables; bottom left: the original data set completed; values imputed in the indicator
matrix are used as degree of membership in the corresponding category, and imputation is
performed using the most plausible categories.

impute the original categorical variables using the most plausible categories. The result of
this operation is given in the object completeQObs, as illustrated in Figure 9 (bottom left-had
side). The value predicted for the individual 2 on variable snore is “no” since its corresponding
imputed values are 0.8 and 0.2. As for MCA, using this completed matrix as input to the
FAMD function of the FactoMineR package leads to an estimation of the FAMD parameters
by skipping missing values. Note that for the function FAMD, the argument tab.comp takes
as input the output of the function imputeFAMD.

6. Multiple factor analysis

Let us now extend the case of one data table to multi-tables. We consider data where the rows
are described by several groups of variables. In many fields, it is more and more common to
deal with heterogeneous data coming from different information sources. Let us consider an
example from biology where 53 brain tumors of 4 different types defined by the standard World
Health Organization classification (O, oligodendrogliomas; A, astrocytomas; OA, mixed oligo-
astrocytomas and GBM, glioblastomas) are described by information at the transcriptome
level with expression data (356 continuous variables for microarrays) and genome level (76
continuous variables for CGH data) as illustrated in Figure 10.

For this kind of data, we are interested in studying the similarities between rows from a
multidimensional point of view, as well as the correlation between variables (same objectives
as for PCA). In addition, the setting is more complex due to the data structure, and we are
interested in highlighting similarities and differences between groups of variables, i.e., studying
what is common to groups and what is specific. In other words, we would like to compare
the information brought by each group and identify for instance if two tumors, similar from
the point of view of the transcriptome, are also similar in terms of the genome.

Different multi-blocks methods are available in the literature (Kroonenberg 2008) to answer

19
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Figure 11: Pattern of missing values with missing rows in sub-tables.

such questions and visualize results; we focus here on multiple factor analysis (MFA; Pages
2015). MFA handles tables where the groups of variables are continuous or categorical, or
may be contingency tables. One of the aims of MFA is to balance the influence of the
groups of variables in the analysis in such a way that no single group (with many correlated
variables for instance) dominates the first dimension of variability. To do so, for each group
of variables a principal component method is performed (PCA for a continuous group or
MCA for a categorical one) and then each value in the group is divided by the square root
of the first eigenvalue. Then, MFA consists in performing a global PCA on the data table
that concatenates the weighted matrix of each group. More details about the method can be
found in Pages (2015). The rationale is also the same as in standardized PCA where variables
are weighted to have the same influence in the analysis; here it can be seen as an extension
to groups of variables where the first singular value plays the role of the standard deviation.

The risk of being confronted with missing values increases when there are many sources of
information. In addition, with multi-table data, we can have specific patterns of missing
values involving missing rows per sub-table, as illustrated in Figure 11 where Ki,..., K
represent the number of variables in groups 1,...,J. In the previous example, ten samples
were not available for the expression data. More details about the data and the results of
MFA can be found in Tayrac, Lé, Aubry, Mosser, and Husson (2009), though note that they
deleted samples with missing values to perform their analysis. Since the core of MFA is also
a weighted PCA, it is possible to develop a method inspired by the one proposed for PCA
to handle missing values. Husson and Josse (2013) developed a (regularized) iterative MFA
algorithm to perform MFA using an incomplete data set. This algorithm also alternates steps
of estimation of the parameters and imputation of the missing values as described for the other
methods (PCA, MCA and FAMD) in Sections 3, 4, and 5, taking into account details specific
to MFA, namely the precise weighting. They applied the method to examples coming from
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the field of sensory analysis and also focused on missing values defined in an experimental
design set-up. To apply the method to the tumor example, we run the following lines of code:

R> data("gene", package = "missMDA")

R> res.impute <- imputeMFA(genel[, -1], group = c(76, 356),

+ type = rep("s", 2), ncp = 2)

R> res.mfa <- MFA(cbind.data.frame(genel[, 1], res.impute$completeObs),
+ group = c(1, 76, 356), type = c("n", rep("s", 2)),

+ name.group = c("WHO", "CGH", "expr"), num.group.sup = 1)

The function imputeMFA takes as input the multi-table data gene (without its first column,
corresponding to the categorical variable giving the tumor type), the argument group which
specifies the number of variables per group, and the argument type which specifies the nature
of the variables and the pre-processing step to apply to each group of variables. It takes as
values "n" for “nominal” when the variables of the group are categorical, "c" when they are
continuous and will be “centered”, and "s" for continuous variables that will be “standard-
ized” (each variable within a given group is divided by its standard deviation to give the
same importance of each variable within a group). The other arguments are the same as
those defined for the functions imputePCA and imputeMCA. Then, as before, the function gives
as output a completed data set that is taken as input to the MFA function of the FactoMineR
package. An MFA can then be performed on the completed data set. In this example, the
first group "WHO", which is composed of one categorical variable indicating tumor type, is
added as supplementary information, i.e., it is not used when performing the global PCA;
thus the principal components are obtained without information from this group. This group
is therefore not part of the main analysis, and only used afterward to help enhance the in-
terpretation of results (here for instance the individuals obtained from the global PCA are
colored according to the variable in this group). Note that if at least one active group (not
supplementary) has categorical variables, then the completed indicator matrix can be used in
the MFA function like for the MCA and FAMD functions.

Let us present some of the graphical outputs obtained and interpret briefly the results. Fig-
ure 12 shows the representation of the tumors and variables. We interpret these graphs as
those for PCA. They shows that the first dimension of variability separates the glioblastomas
tumors from the lower grade tumors and that dimension 2 separates tumors O from tumors
OA and A. The expression data is much more one-dimensional whereas the CGH data is
represented in at least two dimensions (red arrows are hidden by green arrows).

FALSE)
FALSE, habillage = "group")

R> plot(res.mfa, habillage = 1, lab.ind
R> plot(res.mfa, choix = "var", lab.var

Figures 13 and 14 are specific to MFA. Figure 13 allows us to study the global similarities
between groups using the following rule: Two groups are close if they induce the same struc-
ture, that is to say the relative positions of individuals in one group are similar to those of
individuals in the other group. We can also see that the first dimension is common to the
two groups (i.e., they have a high coordinate on dimension 1) whereas the second is mainly
due to the group’s CGH.

R> plot(res.mfa, choix = "group", habillage = '"group")
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Figure 12: Representation of individuals and variables obtained from an MFA of the gene
data set.
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Figure 13: Group representations obtained from an MFA of the gene data set.

Figure 14 gives the “graph of partial points” that allows us to compare groups at the individual
level. It represents an individual “seen” by each group of variables. Each individual is
at the barycenter of its partial points and the more its partial points are close, the more
“homogeneous” (i.e., seen in the same way by each group of variables) it is.

R> plot(res.mfa, invisible = "ind", partial = "all", habillage = "group")
R> plot(res.mfa, lab.ind = FALSE, partial = "GBM29", habillage = "group")

We can see on the left of Figure 14 that the partial coordinates of each tumor type are very
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Figure 14: Representation of the partial points obtained from an MFA of the gene data set.

close in the first dimension. This means that both the expression and CGH data allow us
to separate the glioblastomas from the other tumors. On the other hand, the coordinates
of the expression data are nearly equal to zero for all points in the second dimension. This
means that only the CGH data allows us to see differences between the O tumors and the
OA and A. This representation is also useful to highlight specific individuals meriting closer
inspection. Indeed, the individual with partial points in the right of Figure 14 does not have
the same behavior as the others since its partial points have quite different coordinates in the
first dimension. It means that when we look at its CGH data, this individual is on the side of
the dangerous tumors (on the right of the plot) whereas it is on the side of the other tumors
when considering its expression data. There is thus no consensus for this individual between
the two information sources.

7. Single and multiple imputation with missMDA

The primary aim of all algorithms presented in this paper is to perform principal component
methods despite missing values, i.e., estimating parameters and obtaining graphical outputs
from incomplete data sets. However, imputation is done during the running of the algorithm
and consequently these methods can be used to impute data. Even if at first this “imputation”
may be seen as an aside to these methods, it is in fact very valuable and indeed, the quality
of imputation is usually high. This can be explained by the fact that imputation is based
on the scores and loadings and thus takes into account similarities between individuals as
well as relationships between variables. In the PCA community, this property explains the
revival of interest (and publications) in the “PCA and missing values” question, especially
in the machine learning community with matrix completion problems such as the Netflix
prize (Netflix 2009). This property can also be used for other methods and consequently, the
methodology implemented in the missMDA package can be seen as an alternative to all other
methods dedicated to imputing various data types (continuous, categorical and mixed) that
are available in other software packages.
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Many methods are available to perform single imputation of continuous variables using explicit
or implicit models, including imputation based on k-nearest neighbors (Troyanskaya, Cantor,
Sherlock, Brown, Hastie, Tibshirani, Botstein, and Altman 2001), imputation based on the
assumption of a joint Gaussian distribution for the variables (Schafer 1997), and imputation
obtained by successively drawing from conditional distributions (Van Buuren, Boshuizen, and
Knook 1999; Van Buuren 2007). This latter approach consists roughly in specifying for each
variable a model to predict the missing values, then cycling through the variables. Recent
propositions include the algorithm of Mazumder, Hastie, and Tibshirani (2009), which is
similar to the regularized iterative PCA algorithm except that it applies a soft thresholding
rule on the singular values.

For imputation of categorical variables, the k-nearest neighbors method is also a popular
approach. Imputation assuming a joint distribution of the variables is possible via log-linear
models (Schafer 1997). However, this approach encounters difficulties when there are many
variables. An alternative can be the use of latent class models (Vermunt, Van Ginkel, Van der
Ark, and Sijtsma 2008). Imputation can also be obtained by successively drawing from
conditional distributions (Van Buuren et al. 1999; Van Buuren 2007). For more details on
these methods, we refer the reader to Little and Rubin (1987, 2002), Van Buuren (2012) and
Carpenter and Kenward (2013).

Lastly, for mixed data, there are fewer options. One consists in transforming the categorical
variables into dummy variables and then using an imputation based on the assumption of a
joint Gaussian distribution for the variables. Alternatively, one can specify a model for each
variable (Van Buuren et al. 1999), requiring a significant modeling effort on the part of the
user. Kropko, Goodrich, Gelman, and Hill (2014) compared and discussed both approaches.
One of the most recent propositions for mixed data is that of Stekhoven and Biihlmann (2012)
who suggest an approach based on random forests, which seems to outperform the other
methods in terms of imputation quality. Audigier et al. (2016a) compared imputation quality
of the regularized iterative FAMD algorithm to the one using the algorithm of Stekhoven and
Bithlmann (2012) and highlighted the performance of the former approach when imputing
continuous, categorical and mixed data. The results become more accurate whenever there
are strong linear relationships between variables, as well as when there are categorical variables
with small frequency categories.

Thus, package missMDA provides imputed data sets with good predictions for missing values.
However, as mentioned in the introduction, if a statistical method is applied to the completed
data set, the variance of the estimators is underestimated because uncertainty in the missing
data is not taken into account. Multiple imputation can be a solution.

The PCA multiple imputation method (MIPCA) is also an alternative to the other multiple
imputation methods suggested in the literature, including multiple imputation based on joint
modeling (Schafer 1997) or conditional modeling (Van Buuren et al. 1999; Van Buuren 2007).
The comparisons made in Audigier et al. (2016b) showed that MIPCA is competitive in terms
of coverage for different estimators, with the advantage that it can be applied directly when
the number of individuals is smaller than the number of variables.

As mentioned earlier, many software products and R packages are available to perform sin-
gle and multiple imputation. This includes for single imputation the R package SoftImpute
(Hastie and Mazumder 2015), where Mazumder et al. (2009)’s method is implemented, as well
as the missForest package (Stekhoven 2013) for Stekhoven and Bithlmann (2012)’s method.
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The main packages that implement multiple imputation methods are Amelia (Honaker, King,
and Blackwell 2011), mice (Van Buuren and Groothuis-Oudshoorn 2011) and mi (Su, Gel-
man, Hill, and Yajima 2011). Yucel (2011) gives a good overview of multiple imputation
software products and packages. Van Buuren’s web page (http://www.stefvanbuuren.nl/
mi/Software.html) is a source of information for R packages and software products perform-
ing multiple imputation, as well as the CRAN Task View on Official Statistics and Survey
Methodology (Templ 2015). The web page http://missingdata.lshtm.ac.uk/ of the main-
tainers of the software REALCOMP-IMPUTE (Carpenter, Goldstein, and Kenward 2011),
which provides imputation for multi-level data, also mentions a number of resources on the
topic of missing values.

8. Conclusion

The missMDA package presented in this paper performs principal component methods with
missing values (PCA, MCA, FAMD, MFA) and can be used to impute continuous, categorical
and mixed data. In addition, a multiple imputation strategy is implemented to study the vari-
ability of results in PCA and can be used as an alternative to other multiple imputation meth-
ods. As a complement to the paper, several videos are available on the YouTube play list “Ex-
ploratory multivariate data analysis with R and FactoMineR” (https://www.youtube.com/
watch?v=YDbx2pk9xNY&1ist=PLnZgp6epRBbTSZEFXi_p6WA8HhNyqwxIu&index=9) that show
how to use the missMDA package.

In this paper, we do not dwell on the specific kind of missing values (such as missing at
random, missing non at random) exhibited. Of course, a first step in a typical analysis is to
look for patterns in the missing values and the reasons for their occurrence; indeed, methods
as well as the properties of the methods to deal with missing values depend on this evaluation.
To study the patterns of missing values, packages such as VIM (Templ et al. 2015) may be
used. We also suggest the approach consisting of coding with “o” the observed values and “m”
the missing ones and performing a multiple correspondence analysis on this data set to study
associations between missing entries. The following lines of code can be used to visualize the
pattern of missing values in a data set called MyData:

R> mis.ind <- matrix("o", nrow = nrow(MyData), ncol = ncol(MyData))
R> mis.ind[is.na(MyData)] <- "m"

R> dimnames (mis.ind) <- dimnames(MyData)

R> library("FactoMineR")

R> resMCA <- MCA(mis.ind, graph=FALSE)

R> plot(resMCA, invis = "ind", title = "MCA graph of the categories")

Methods implemented in this package could be used on very large data sets. However, the
implementation in package missMDA is not optimized for such purposes since it is based on
the MCA and PCA functions which are as well not optimized for this. The computational time
of the functions increases with the number of rows and columns and tends to increase with
the number of missing values. However, when the variables are strongly related (i.e., there
is a strong structure in the data), it is “easy” to impute the missing entries even if there are
many missing values and the methods are fast. Of course the structure of the data is not
known in advance and consequently it is difficult to know in advance the computational time
for a given number of rows and columns.
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Future research will be focused on the development of methods to take into account uncer-
tainty for techniques other than PCA and develop multiple imputation methods for cate-
gorical and mixed data sets. We also note that combining the results of statistical analyses
after multiple imputation is still a challenge. Indeed, theoretical results are only available for
very simple models such as linear regression and only for specific parameters, e.g., coefficients.
There is therefore huge room for improvement in this direction. Finally, the methods to select

the number of dimensions from incomplete data have also to be developed for the methods
FAMD and MFA.
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