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Abstract

The Data Envelopment Analysis Toolbox is a new package for MATLAB that includes
functions to calculate the main data envelopment analysis models. The package includes
code for the standard radial input, output and additive measures, allowing for constant
and variable returns to scale, as well as recent developments related to the directional
distance function, and including both desirable and undesirable outputs when measuring
efficiency and productivity; i.e., Malmquist and Malmquist-Luenberger indices. Boot-
strapping to perform statistical analysis is also included. This paper describes the method-
ology and implementation of the functions, and reports numerical results using a reliable
productivity database on US agriculture to illustrate their use.
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1. Introduction

Data envelopment analysis, DEA, has grown in importance over the past decades due to in-
crease in the availability of data related to the performance of decision making units, DMUs,
regardless their market, governmental, or non-for-profit orientation. DEA is a nonparametric
method in operations research and economics that allows to practice benchmarking exercises
among a set of comparable observations. This comparison is made through optimizing math-
ematical programming techniques that approximate the production technology and identify
the most efficient facets or hyperplanes that, enveloping the data (hence the name), define
the production or best-practice frontier, serving as reference for all observations. The meth-
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ods yield individual efficiency scores and reference benchmarks for each observation, thereby
providing real-life peers that serve as example for managers and decision-makers interested in
improving their performance. Because of the flexibility of DEA, researchers in a number of
fields have quickly acknowledged these techniques as an excellent methodology for modeling
operational processes. The empirical orientation and absence of a priori assumptions have
resulted in numerous studies involving best-practice identification in a wide array of sectors
— for a comprehensive introduction and a complete list of applications see Fried, Lovell, and
Schmidt (2008). Indeed, the popularity of DEA has increased exponentially in these years
as recent volumes devoted to specific sectors and industries bear witness; e.g., Blackburn,
Brennan, and Ruggiero (2014), Ozcan (2014), Paradi, Sherman, and Tam (2018) and Khezri-
motlagh and Chen (2018). The present toolbox allows interested practitioners to implement
these studies in their everyday efficiency improvement strategies.

Basic DEA methods are included in some standard software packages used by econometricians
(e.g., Stata, StataCorp 2015, with the user-written command by Ji and Lee 2010; LIMDEP,
Econometric Software, Inc 2009); available in dedicated non-commercial software accompa-
nying academic handbooks — Cooper, Seiford, and Tone (2007), Wilson (2008), Bogetoft and
Otto (2011) (these latter two implemented in R; R Core Team 2020); commercial software
— including trials versions, Emrouznejad and Cabanda (2014); free-ware programs — Sheel
(2000); and even tutorials for spreadsheets: Sherman and Zhu (2006) and Zhu (2014). Earlier
versions of these programs have been reviewed, among others, by Hollingsworth (2004) and
Barr (2004). More recently, Daraio, Kerstens, Nepomuceno, and Sickles (2019) provide the
most recent survey of the available options. Their eligibility criteria include only software
that is diffused as self-contained programs, or packages and toolboxes for general computing
environments. To complement the above references with general purpose DEA software that
implements newer proposals, but excluding very specialized contributions that code specific
models normally linked to particular papers, it is worth referencing Oh and Suh (2013) and
Badunenko, Mozharovskyi, and Kolomiytseva (2020).

While these software packages implement the main DEA models, there is a lack of a full
set of functions for MATLAB (The MathWorks, Inc. 2017), including some recent theoretical
contributions that are missed in the existing software.! Thus, besides implementing the most
popular DEA models in the MATLAB environment, the toolbox solves new models such as
those corresponding to the directional and the weighted additive measures, while allowing for
a greater degree of flexibility in the formulations; e.g., users can supply their preferred direc-
tional and weights vectors. Also, the models implemented, such as the directional measure
with undesirable outputs, or the Malmquist-Luenberger index, correspond to the most recent
theoretical proposals that solve relevant inconsistencies. As the most recent contribution to
statistical software — mostly in R, the toolbox is up to date with respect to the models it in-
cludes, including bootstrapping techniques and hypotheses testing that are almost inexistent
in older alternatives.

In principle, it would be desirable that our toolbox were compatible with the current distribution of Octave
(v5.2.0; Eaton, Bateman, Hauberg, and Wehbring 2020). However, this is not the case with the out-of-the-box
distribution. The reason is that the 1inprog function for linear programming in MATLAB is more advanced and
flexible (in terms of the optimization options) than the equivalent function provided in Octave. In addition, some
of the functions used are not available in Octave (such as optimoptions) and need to be replaced with other
functions that do not have the same functionality as in MATLAB. Hence, it is not possible to make the toolbox
compatible with Octave while maintaining some of its desirable features. However, any reader interested in
solving any of our DEA models in Octave may adapt the syntax of our functions so they run in this program.
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Nevertheless, it is virtually impossible to keep track and implement all current proposals in the
literature. We refer the interested reader to the most recent specialized publications in DEA
topics. In particular Zhu (2015) includes a series of chapters on current DEA theory dealing
with most advanced topics such as stochastic nonparametric frontier approaches, efficiency
measurement with fuzzy data, models with production trade-offs and weight restrictions, etc.
Daraio and Simar (2007) deal with statistically robust DEA methods, including bootstrapping
techniques — partially implemented in R by Simm and Besstremyannaya (2020). Finally
Aparicio, Lovell, and Pastor (2016) and Hwang, Lee, and Zhu (2016) include state of the art
and recent advances in the field of efficiency and productivity theory. Indeed, issues related
to enhancing the discriminatory power of DEA as well as its statistical robustness are still
at the forefront of current research in DEA, e.g, Angulo-Meza and Pereira Estellita Lins
(2002). However while these topics merit special attention, their implementation exceeds the
scope of the present software, which should be seen as the baseline tool for further specific
implementations based on the proposed functions.

Arguably, a separate toolbox should be devoted to topics that are relevant by themselves
and self-contained, such as weight restrictions and the inclusion of a priori information, or
statistical methods such as robust, stochastic, and fuzzy DEA methods; e.g., see the recent
reviews on stochastic DEA and fuzzy DEA by Olesen and Petersen (2016) and Hatami-
Marbini, Emrouznejad, and Tavana (2011), respectively, and related applications by Kao and
Liu (2009) and Costantino, Dotoli, Epicoco, Falagario, and Sciancalepore (2012b).

The Data Envelopment Analysis Toolbox introduces a complete set of baseline functions,
covering a wide range of efficiency and productivity models, and reporting numerical results
based on classical examples presented in the literature. The Data Envelopment Analysis
Toolbox is available as free software, under the GNU General Public License version 3, and
can be downloaded from http://www.deatoolbox.com/, with all the supplementary material
(data, examples and source code) to replicate all the results presented in this paper. The
toolbox is also hosted on an open source repository on GitHub.?

The paper is organized as follows. The following section presents the data structures char-
acterizing the production possibility sets, the structure of the functions, results, etc., and
briefly describes the data that is used to illustrate the toolbox. Section 3 covers the standard
DEA models introduced by Charnes, Cooper, and Rhodes (1978) and Banker, Charnes, and
Cooper (1984) corresponding to the radial input and output efficiency measures, allowing
for constant and variable returns to scale, as well as newer proposals based on the flexible
directional distance function. The non-oriented additive model is also presented as well as
the super-efficiency model for all the previous efficiency measures. The complementary cross
efficiency model that also allows to overcome the low discriminatory power of standard DEA
is presented in Section 4. Malmquist productivity indices and their decomposition into effi-
ciency change and technical change are shown in Section 5, while Section 6 deals with the
measurement of economic efficiency, and its decomposition into technical and allocative fac-
tors. Section 7 is devoted to the measurement of efficiency with undesirable outputs, most
notably environmental efficiency, followed by Section 8 presenting the Malmquist-Luenberger
index. Statistical analyses and hypotheses testing using bootstrapping techniques are dis-
cussed in Section 9. Advanced options, including displaying and exporting results can be
found in Section 10. Section 11 concludes.

2The address of the repository is https://github.com/javierbarbero/DEAMATLAB.
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2. Data structures

Data envelopment analysis measures productive and economic performance of a set of j =
1,2,...,n observed DMUs (firms, activities, countries, individuals, etc.). These observations
transform a vector of 7 = 1,2,...,m positive inputs x € R, into a vector of i = 1,2,...,s
positive outputs y € R, using the technology represented by the following constant returns
to scale production possibility set: Pers = {(X,y) |[x = X\, y <Y\, A >0}, where X =
(x);€ R™™Y = (y),€ R™™ and A = (A1, ... ,An) | is a semipositive vector.

Data are managed as regular MATLAB vectors and matrices, constituting the inputs of the
estimation functions. All estimation functions return a structure ‘deaout’ that contains fields
with the estimation results as well as the input of the estimation function. Fields can be
accessed directly using the dot notation and the whole structure can be used as an input to
other functions that print or export results (e.g., deadisp).

Some of the fields of the ‘deaout’ structure are the following:?

e X, Yand Yu: Contain the inputs, outputs and undesirable outputs variables, respectively.
e n and neval: Number of DMUs, and number of evaluated DMUs.
e m, s and r: Number of inputs, outputs and undesirable outputs.

e model, orient, rts: Strings containing the model type, the orientation, and the returns
to scale assumption.

e eff: Computed efficiency measure.
e slackX, slacky, slackYu: Computed input, output and undesirable output slacks.

e names: Names of the DMUs.

2.1. Dataset and statistical sources

We illustrate all the models presented in this toolbox resorting to a single dataset. The
data has been collected and tabulated by the Economic Research Section (ERS) of the
United States Department of Agriculture (USDA) in an effort to study long term pro-
ductivity trends using prices-based indices. It corresponds to a subset of the state-level
tables including price indices and implicit quantities of farm outputs and inputs (Table
23), which can be downloaded in full from https://www.ers.usda.gov/data-products/
agricultural-productivity-in-the-us/.

To illustrate the cross-section efficiency models we focus on the last available year, 2004,
while productivity trends corresponding to the Malmquist index are calculated using panel
data from 2000 to 2004. Our dataset consists of three outputs (livestock, crops and other
farm related output), four inputs (capital, land, labor and intermediate inputs), supplemented
with the number of pesticide exposures reported by the Center for Disease Control and
Prevention (CDCP): https://ephtracking.cdc.gov/showPesticidesExposuresLanding.
This variable constituting an undesirable output is necessary to calculate ‘green’ Malmquist-
Luenberger indices accounting for externalities.

3For a full list see the help of the function typing help deaout in MATLAB.
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More information on the data, including a discussion on the agricultural productivity growth
in the US can be found in the above link. Due to its comprehensiveness and reliability, this
dataset has been used over the years by many authors, whose results are complemented with
those obtained by solving the models included in this toolbox — see, e.g., Fare, Grosskopf, and
Margaritis (2008), Ball, Fare, Grosskopf, and Nehring (2001) and Zofio and Lovell (2001).

3. Basic DEA models

3.1. Radial input oriented model: Constant and variable returns to scale

Based on the data matrix (X, Y’), we measure the input oriented efficiency of each observation
o by solving n times the following linear programming problem — known as the Charnes,
Cooper, and Rhodes, CCR, model:*

min 6 (1)
subject to

Ox, > X\

YA 2y

A>0.

The optimal solution to this program — characterizing a technology with constant returns to
scale, CRs, is denoted by 6},;. The constraints require the observation (fcrsXo,yo) to belong
to Pcrs, while the objective seeks the minimum 6czg that reduces the input vector x, radially
to OcrsX, while remaining in Pegg; i.e., that projects the observation to the production frontier.
The frontier corresponds to the supporting hyperplane defined by the linear combination of the
observations that serve as reference benchmark for the evaluated unit. Those observations
whose associated A multipliers are greater than zero define the enveloping hyperplane. A
feasible solution signaling radial efficiency is 07z = 1. Therefore if 07,4 < 1, the observation
is radially inefficient and (AX, AY) outperforms (x,,¥,). With regard to this property, we
define the additional input excesses and output shortfalls by the following slack vectors:
s~€ R™ and sTe R®, respectively. Therefore: s~ = 0},.x, — X\, and s = Y\ —y, with
s~ >0 and s™ > 0 for any feasible solution (6, \).
To obtain the possible input excesses and output shortfalls, the following second stage program
that incorporates the optimal value 67, and corrects radial inefficiency is solved:
max w=es +es’ (2)
A,s—,st
subject to

ST = O0fpeXo — XA

st =Y\ — Yo

A>0,s >0,s">0,
+

where e = (1,...,1)T soes™ =37, s; and est =37 s,

4This program corresponds to the so-called “envelopment form” of the formulation introduced by Charnes
et al. (1978). Correspondences with the dual approaches (“multipliers form”) can be found in Cooper et al.
(2007).
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As a result, an observation is technically efficient if the optimal solution (0., A\*,s™*,s7*)
of the two above programs satisfies 6%, = 1,s* = 0, and s = 0, so no equiproportional
contraction of inputs, and individual inputs reductions and outputs increases are possible
(Pareto-Koopmans efficiency).?

The measurement of technical efficiency assuming variable returns to scale, VRS, as introduced
by Banker et al. (1984) — known as the Banker, Charnes and Cooper, BCC, model, considers
the following production possibility set Pyrs = {(x,y) |x = X\, y <Y\, eA=1, A >0.}.
Therefore, the only difference with the CrRS model is the adjunction of the condition Z?’:l Aj =
1. Calculating the VRS efficiency, along with the subsequent second stage program analogous
to (2), yields the corresponding optimal solution (8,4, A*,s™*,s7*). As before, an observation
is efficient with respect to the VRS technology if the optimal solution of the two programs
satisfies 6%, = 1,s7* =0, and s™ = 0.

Finally, the scale efficiency, SE, of each observation is calculated as the ratio of the VRS to the
CRS scores: SE = 0, /0%rs- As a result the radial technical efficiency of an observation can
be decomposed into its variable returns to scale efficiency (“pure” technical efficiency, PTE)
and scale efficiency: TE = 07,y = PTE x SE = 03, x SE.

The radial input oriented model can be computed in MATLAB using the dea(X, Y, ...)
function with the orient parameter set to io (input oriented). The returns to scale assump-
tion can be specified by setting the rts parameter to crs (constant returns to scale; default)
or vrs (variable returns to scale). With the optional parameter names we can specify a cell
string with the name of the decision making units, which in this case are the names of the
American states.

Results are returned in a ‘deaout’ structure and can be accessed directly (see Section 2)
or displayed using the deadisp function. The second parameter of the deadisp function
allows to specify the information that is displayed on screen. If not specified, the information
displayed will depend on the calculated model.”

load 'DataAgriculture’

X = [CAPITALO4, LANDO4, LABOR0O4, INTINPO4];
Y = [LS04, CROPS04, FARMOUTO4];

X=X ./ 1000;

Y=Y ./ 1000;

statenames = STATE_NAMEO4;
io = dea(X, Y, 'orient', 'io', 'names', statenames);
deadisp(io, 'names/eff/slack.X/slack.Y'));

Data Envelopment Analysis (DEA)

DMUs: 48

5Tt is possible to solve both programs in a single stage formulation employing a “non-Archimedian” infinites-
imal constant ¢, e.g., Ali and Seiford (1993, p. 140). However, this may result in computational inaccuracies
and erroneous results.

SIf the optional parameter names is not used, observations (DMUs) are numbered from 1 to n.

"See Section 10.3 for advanced uses of the deadisp function. Besides the US agricultural data, a second set
of data used by Ali and Seiford (1993) is available at the toolbox website. A previous version of this toolbox
illustrated the input, output, directional and additive models with these data.
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Inputs: 4 Outputs: 3

Model: radial

Orientation: io (Input oriented)
Returns to scale: crs (Constant)

slackY2| slackY3|

DMU| Thetal| slackX1l| slackX2| slackX3| slackX4|

AL| 0.9077| 58.2778| 54.5172| 0.0000| 0.0000]
AR| 0.9888| 0.0000| 94.0581] 0.0000| 0.0000]
AZ| 0.9698| 0.0000/278.0711| 0.0000| 0.0000]

WI| 0.8452(353.4822| 0.0000] 0.0000| 0.0000]|
WV| 0.6612] 0.0000| 34.2292| 55.9801| 0.0000]|
WY| 0.5911| 5.9018]465.9112| 0.0000| 0.0000]|

slackY1]

0.0000]331.
0.0000| O.
0.0000] O.
0.0000| O
0.0000] 29.
0.0000| O.

2950| 0.0000]|
00001121.3747|
0000| 34.4711|

.0000(332.8943|

2884| 0.0000]|
0000| 0.0000]|

io_vrs = dea(X, Y, 'oriemt', 'io', 'rts',
deadisp(io, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: io (Input oriented)
Returns to scale: vrs (Variable)

'names', statenames);

slackY2| slackY3|

DMU| Thetal| slackX1l| slackX2| slackX3| slackX4|

AL| 0.9666| 60.9790| 55.0145| 0.0000| 0.0000]
AR| 0.9891| 0.0000| 91.4690| 0.0000| 0.0000]
AZ| 0.9723| 0.0000|275.5144] 0.0000| 0.0000]|

WI| 1.0000| 0.0000| 0.0000] 0.0000| 0.0000]|
WV| 0.6724| 2.2679| 45.0415] 92.7799| 0.0000]|
WY| 0.5912| 5.1165]465.4577| 0.0000| 0.0000]|

slackY1|

0.0000]582.
0.0000| O.
0.0000] O.
0.0000| O.
0.0000]| 57.
0.0000| O.

8943| 31.0395]|
0000/105.0558]|
0000| 10.0449|

0000| 0.0000]|
0121 0.0000]|
0000| 0.0000]|

The scale efficiency can be calculated using the deascaleeff (X, Y,

...) function. The

function parameters are the same as those of the dea function, although the rts parameter
specified will be omitted since both are needed in order to compute scale efficiency.
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io_scale = deascale(X, Y, 'orient', 'io', 'names', statenames);
deadisp(io_scale);

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: io (Input oriented)

Returns to scale: scaleeff (Scale efficiency)

DMU| CRS| VRS| ScaleEff|
AL| 0.9077| 0.9666]| 0.9390]
AR| 0.9888| 0.9891]| 0.9998|
AZ| 0.9698| 0.9723| 0.9975]

WI| 0.8452| 1.0000]| 0.8452]
WVl 0.6612| 0.6724]| 0.9834]
WYl 0.5911| 0.5912] 0.9997|

Results show the relative difference between the constant returns to scale (CRS) and variable
returns to scale (VRS) efficiency scores. Since the VRS model envelops the data more tightly
as a result of the additional constraint e\ = 1, these scores are greater than their CRS coun-
terparts, and therefore scale efficiency is also equal or less than one. For the selected states
we observe that while none of them is technically efficient in the constant returns to scale
model, with scores less than one, Wisconsin (WI) is efficient under the VRS assumption with
a unitary score, and a relative scale efficiency of SE = 0.8452. Therefore, this state presents
a suboptimal scale in terms of relative input and output quantities when compared to other
counterparts that are almost efficient under CRrs; e.g., Arkansas (AR). As for the input and
output slacks, corresponding to no radial reductions and increased, we observe that there is
an excessive usage of the second input (land), whose values are greater than zero across the
majority of states. Other intermediate inputs and livestock output do not exhibit slacks at all.

3.2. Radial output oriented model: Constant and variable returns to scale

It is possible to measure the output oriented technical efficiency of each observation by solving
the following linear program, counterpart to (1):

Igi\x [0} (3)
subject to

XA <x,

Pyo < YA

A>0.
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In this case, the optimal solution is denoted by ¢, with the constraints ensuring that
(X0, PirsYo) belongs to Pors. Now the objective seeks the maximum ¢crg that increases the
output vector y, radially to ¢f;sy, while remaining in Pers. A feasible solution signaling
radial efficiency is ¢fs = 1. Therefore if ¢zs > 1, the observation is radially inefficient
and (AX, \Y) outperforms (x,,y,). Again, there might be further input excesses and output
shortfalls: s= = x, — X\, and s™ = YA — ¢}y, with s= > 0 and s > 0 for any feasi-
ble solution (¢, A). To calculate these slacks in a second stage, the corresponding program
incorporating the optimal value ¢f ;g is needed:

/\’nsa_af;r w=es +es’ (4)
subject to

s =x,— XA

sT=YX — PersYo

A>0,s >0,s">0.

Finally, it is also possible to calculate the technical efficiency with respect to Pyrg by solving
the programs for the radial component and its associated input and output slacks analogous to
(3) and (4), but adding the VRS constraint 337 ; A\; = 1. If ¢{,4 = 1 the observation is radially
efficient, while it is technically efficient if s™ = 0 and s™ = 0 in the second stage. The scale
efficiency defines in this case as SE = ¢/ d3rs and radial efficiency can be now decomposed
into pure technical efficiency, PTE, and scale efficiency: TE = ¢fys = PTEXSE = ¢y X SE.

The radial output oriented model is computed in MATLAB using the same dea(X, Y, ...)
function with the orient parameter set to oo (output oriented). Again, the returns to scale
assumption can be specified by setting the rts parameter to crs (constant returns to scale;
default) or vrs (variable returns to scale).

oo = dea(X, Y, 'orient', 'oo', 'names', statenames);
deadisp (oo, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: oo (Output oriented)
Returns to scale: crs (Constant)

DMU | Phi| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 1.1017| 64.2047| 60.0617| 0.0000| 0.0000| 0.0000(364.9884| 0.0000]|
AR| 1.0113] 0.0000| 95.1193| 0.0000| 0.0000| 0.0000| 0.0000|122.7440]|
AZ 1.0311] 0.0000|286.7192| 0.0000| 0.0000| 0.0000| 0.0000| 35.5432]|
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WI| 1.1831]418.2209| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000|393.8624|
WV| 1.5124| 0.0000| 51.7667| 84.6617| 0.0000] 0.0000| 44.2945| 0.0000]|
WY| 1.6919] 9.9850/788.2563| 0.0000| 0.0000| 0.0000|/ 0.0000| 0.0000]|

oo_vrs = dea(X, Y, 'oriemnt', 'oo', 'rts', 'vrs', 'names', statenames);
deadisp(oo_vrs, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: oo (Output oriented)
Returns to scale: vrs (Variable)

DMU | Phi| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 1.0309| 63.6312| 58.1154| 0.0000| 0.0000| 0.0000(609.0434| 32.1028|
AR| 1.0111] 0.0000| 92.6889| 0.0000| 0.0000| 0.0000| 0.0000|107.5199|
AZ| 1.0286| 0.0000/283.2863| 0.0000| 0.0000| 0.0000| 0.0000| 10.1863|

WI| 1.0000] 0.0000| 0.0000| 0.0000| 0.0000] 0.0000| 0.0000| 0.0000]|
WV| 1.4707| 23.1506| 71.4949|205.0725| 0.0000| .0000| 56.5374| 0.0000]|
WYl 1.6911| 10.6927|788.3816] 1.9521| 0.0000| 0.0000| 0.0000| 0.0000]|

o

oo_scale = deascale(X, Y, 'orient', 'oo', 'names', statenames);
deadisp(oo_scale);

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: oo (Output oriented)

Returns to scale: scaleeff (Scale efficiency)

DMU| CRS| VRS| ScaleEff|

AL| 1.1017| 1.0309]| 1.0687|
AR| 1.0113| 1.0111] 1.0002]
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AZ| 1.0311| 1.0286]| 1.0024]|

WI| 1.1831| 1.0000]| 1.1831]
WV| 1.5124| 1.4707| 1.0283]|
WYl 1.6919| 1.6911]| 1.0004]|

Regarding the output oriented results, we first highlight that from DEA theory the output
constant returns to scale scores are the inverse of their input counterparts; i.e., ¢5rs = 1/05s,
and therefore none of our selected states are efficient. Additionally, it is also the case that
if an observation is efficient under variable returns to scale from an input orientation, it
is efficient from the output perspective (and for the forthcoming directional and additive
models). Consequently Wisconsin (WI) is also VRS efficient from an output perspective.
However scale efficiency can be substantially different depending on the orientation. The
consistency of the results between the input and output models is also inferred from the

positive values of the slacks corresponding to the second input (land).

3.3. The directional model: Constant and variable returns to scale

Chambers, Chung, and Fére (1996) introduced a measure of efficiency that projects observa-
tion (X,,y,) in a pre-assigned direction g = (—g;,g;{) # Opyts, 8x € R™ and g;,re R?% in a
proportion 3. The associated linear program is:

n%%\x 154 (5)
subject to

XA <x,— ey

YA> yo+ Begy

A>0.

In this occasion the optimal solution to this program corresponds to Bgps. Now [izs = 0
signals directional efficiency. Therefore if 5,5 > 0, the observation is inefficient and (AX, \Y")

outperforms (x,,y,), with (Xo —ﬁéng;,yo—l—ﬁéng;) € Pcrs. It is again possible that

further input excesses and output shortfalls exist. The slacks correspond to s~ = x, — g5 —
XA, and sT =Y\ —y, + g, respectively, with s™ > 0 and s™ > 0 for any feasible solution
(B,A). As a result, a second stage is once again needed to calculate these slacks. The next
program incorporating the optimal value ;4 allows determination of these values:

max w=es +es" (6)
A,s—,st

subject to
ST =X, — [0gx — XA
st =Y\ —y,+fgy
A>0,s” >0,s">0.

As in the inputs and outputs oriented models, one may also calculate technical efficiency with
respect to Pyrs. This requires solving equivalent programs to (5) and (6) adding the VRS

11
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constraint Y374 Aj = 1. If B3 = 0 and s7* = 0 and s = 0, the observation is technically
efficient. Consequently, we now define scale efficiency as SE = 35 — Byrs and directional
efficiency is decomposed into pure technical efficiency, PTE, and the scale efficiency term:
TE = Bérs = PTE + SE = Bjs + SE.

The directional model is oriented both in the input and output dimensions, while the choice of
directional vector corresponds to the researcher. Customarily, to keep consistency with the ra-
dial models, the observed amounts of inputs and outputs set the direction: g = (—g; , g; ) =
(—X0,¥0), coinciding with the generalized Farrell measure (Briec 1997). In this case it can
be shown that the directional model nests the input and output oriented models. Indeed,

if (—gx.87) = (=%,,0), then #* = 1 — 0%, while if (~g5 &) = (0,y,), 8" = ¢* — 1.
However, other choices are available; particularly (—g; , g; ) = (—1,1) or the mean of the

data: (—g; , g; ) =(—X,,¥0), which are neutral with respect to the orientation, as it does not

use the individual weights corresponding to the observed amounts of inputs and outputs.®
When deciding on the directional model, the researcher must declare whether the direction
corresponds to the observed input or output mixes, the unitary vectors, or her own choice of
directional vector. In this case she must introduce the directional input and output matrices.

The directional model can be computed in MATLAB using the dea(X, Y, ...) function with
the orient parameter set to ddf (directional). The input and output directions are specified
in the Gx and Gy parameters as a matrix or as a scalar (usually, 0 or 1). If omitted, X and Y
will be used for Gx and Gy respectively. The returns to scale assumption can be specified by
setting the rts parameter to crs (constant returns to scale; default) or vrs (variable returns
to scale).

ddf = dea(X, Y, 'orient', 'ddf', 'Gx', X, 'Gy', Y, 'names', statenames);
deadisp(ddf, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: ddf (Directional distance function)
Returns to scale: crs (Constant)

DMU | Beta| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 0.0484| 61.0978| 57.1553| 0.0000| 0.0000|] 0.0000|347.3265| 0.0000]
AR| 0.0056| 0.0000| 94.5857| 0.0000| 0.0000] 0.0000| 0.0000|122.0555]
AZ| 0.0153| 0.0000|282.3289| 0.0000| 0.0000] 0.0000| 0.0000| 34.9990|

80Other directions are possible, including elaborated transformations driven by the data as proposed by
Daraio and Simar (2016), or those projecting observations to economic optima as introduced by Zofio, Pastor,
and Aparicio (2013), e.g., maximum profit — as shown in Section 6.
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WI| 0.0839/383.1361] 0.0000| 0.0000] 0.0000| 0.0000| 0.0000/360.8211]|
WVl 0.2039] 0.0000| 41.2097| 67.3964| 0.0000| 0.0000| 35.2613| 0.0000]
WY| 0.2570| 7.41871585.6593| 0.0000] 0.0000| 0.0000| 0.0000] 0.0000]

ddf_vrs = dea(X, Y, 'oriemt', 'ddf', 'rts', 'vrs', 'Gx', X, 'Gy', Y,
'names', statenames);
deadisp(ddf_vrs, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: ddf (Directional distance function)
Returns to scale: vrs (Variable)

DMU | Betal| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 0.0161| 62.3563| 56.6249| 0.0000| 0.0000| 0.0000(596.4738| 31.5917|
AR| 0.0055| 0.0000| 92.0751| 0.0000| 0.0000| 0.0000| 0.0000|106.2801|
AZ| 0.0141] 0.0000]/279.3368| 0.0000| 0.0000| 0.0000| 0.0000| 10.1145|

WI| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000] 0.0000/ 0.0000| 0.0000]|
WV| 0.1932] 10.8377| 55.8973]138.8620| 0.0000| 0.0000| 56.8173| 0.0000]|
WY| 0.2570| 6.9367|585.3507| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000]|

ddf_scale = deascale(X, Y, 'oriemt', 'ddf', 'Gx', X, 'Gy', Y,
'names', statenames);
deadisp(ddf_scale);

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial

Orientation: ddf (Directional distance function)
Returns to scale: scaleeff (Scale efficiency)

DMU | CRS| VRS| ScaleEff|
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The results corresponding to the directional distance function are not bounded by one as
in the previous input and output models. Nevertheless, if any observation is efficient in the
former case with a score equal to one, either under CRS or VRS, it is also efficient under
the directional approach because it defines the production frontier; i.e., inputs and outputs
cannot be simultaneously reduced or increased, respectively. That is why Wisconsin (W)
presents a zero valued score under VRS. These scores can be compared among themselves,
and in this case the greater the value, the more inefficient is the state. Correspondingly, as
in the previous models, the most inefficient state among the selected ones is Wyoming (WY).
The values of the input and output slacks also present a similar pattern to that previously
commented.

3.4. The additive model

The additive model measures technical efficiency based solely on input excesses and output
shortfalls. It does not calculate efficiency scores corresponding to the radial or directional
interpretation of technical efficiency a la Farrell (1957), but characterizes efficiency in terms
of the input and output slacks: s~€ R™ and s™€ R®, respectively. The toolbox implements
the weighted additive formulation of Lovell and Pastor (1995) and Pastor, Lovell, and Aparicio
(2011), whose associated linear program is:

e "
subject to

XA+s = x,

YA—sT =y,

ex=1

A>0,s >0,s" >0,

where (py, p; ) € R x R% are the inputs and outputs weight vectors whose elements can
vary across DMUs. Therefore, assigning unitary values, program (7) corresponds to the
standard additive model, while it is worth noting that it encompasses a wide class of different
DEA models known as general efficiency measures (GEMs). Particularly, for the measure
of inefficiency proportions (MIP): (px,py) = (1/%,,1/y,); for the range adjusted measure
(RAM): (p—,p") = (1/(m+s)R~,(1/(m+s)R"), where R~ and R" are the variables’ ranges;
while for the bounded adjusted measure (BAM): (py, py) = (1/(m+5)(xo—x%), (1/(m+s)(yo—
y)), where x and y are the minimum observed values. Additionally, it is possible to consider
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other fixed values with the weights representing value judgments. For observation (x,,y,) the
objective seeks the maximum feasible reduction in its inputs and increase in its outputs while
remaining in Pyrs. An observation is technically efficient if the optimal solution (\*,s™*, s1*)
of the the program is s™* = 0, and s™ = 0. Otherwise individual input reductions and
output increases would be feasible, and the larger the sum of the slacks, wiys, the larger the
inefficiency. The relevance of these transformations is that they make the additive measures
independent of the units of measurement, which is a desirable property.

The function deaaddit(X, Y, ...) solves the weighted additive model in MATLAB. The
returns to scale assumption can be specified by setting the rts parameter to vrs (variable
returns to scale). Inputs and outputs weights are specified in the rhoX and rhoY parameters.
The default weights correspond to the MIP model if not included.

add_vrs = deaaddit(X, Y, 'rts', 'vrs', 'names', statenames);
deadisp(add_vrs, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: additive

Orientation: none

Returns to scale: vrs (Variable)

DMU | Eff| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 1.2677| 78.7255| 68.5399| 0.0000| 0.0000| 0.0000|718.8611| 29.8641|
AR| 0.6874| 37.0255|118.8919| 0.0000| 0.0000|] 0.0000| 0.0000|136.2832]|
AZ| 1.1851| 25.0847|304.5817| 33.4556| 0.0000| 16.9063| 0.0000| 30.7548|

WI| 0.0000| 0.0000| 0.0000| 0.0000| 0.0000] 0.0000| 0.0000| 0.0000]|
WV| 4.7765| 66.6089| 66.4211(217.3747| 0.0000| 0.0000/490.7063| 21.8707|
WY| 4.9848| 67.8369|783.75401 0.0000| 0.0000| 65.8284|810.6456| 48.5739|

For illustration purposes, the range adjusted measure (RAM) model can be computed by
specifying the appropriate input and output slacks weights:

n = size(X, 1);
m = size(X, 2);
s = size(Y, 2);

rhoX = repelem(1 ./ ((m + s) * range(X, 1)), n, 1);

rhoY = repelem(1 ./ ((m + s) * range(Y, 1)), n, 1);

add_ram = deaaddit(X, Y, 'rts', 'vrs', 'rhoX', rhoX, 'rhoY', rhoV,
'names', statenames);

deadisp(add_ram, 'names/eff/slack.X/slack.Y');

15
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Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: additive

Orientation: none

Returns to scale: vrs (Variable)

DMU | Eff| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 0.0168| 62.7419| 40.8181| 5.3285|168.2713| 0.0000|554.2238| 47.4548]|
AR| 0.0169| 37.0255(/118.8919| 0.0000| 0.0000| 0.0000| 0.0000|136.2832]|
AZ| 0.0149| 25.0847|304.5817| 33.4556| 0.0000| 16.9063| 0.0000| 30.7548|

WI| 0.0000| 0.0000| 0.0000| 0.0000/ ©0.0000] 0.0000] 0.0000| 0.0000]|
WV| 0.0199| 80.4503|101.1508(385.9306| 0.0000/117.8994| 2.8581| 0.0000]|
WY| 0.0442| 85.7319(838.6588]257.0071| 19.0255(247.3773| 0.0000| 11.3209]

Again, if an observation is identified as efficient by belonging to the the production frontier
under any of the previous models, including zero valued input or output slacks, it shows an
inefficiency score equal to zero in the additive models. This is the case of Wisconsin (WI).
Note also that since the slacks weighting scheme is introduced in the objective function, the
value of the optimal input and output slacks may remain the same. This is the case if the
evaluated state is projected to the strongly efficient frontier, i.e., once slacks are accounted
for, as it is the case of Arkansas (AR) in the above results. This not the case however for
the scores of inefficient states. Taking Arizona (AZ) as the exemplifying case, its score is
w = 0.1851 if the measure of inefficiency proportions (MIP) is calculated, while if the ranges
of the variables are used to weight the slacks (RAM), the score reduces to w = 0.0149. It is
relevant to remark that the use of alternative weights does not only change the value of the
inefficiency scores, but may also change the relative rankings, even if the weights are the same
for all observations, i.e., as in the RAM case. Hence, researchers should bear in mind that
the choice of weights is not neutral, because it may result in alternative efficiency rankings.

3.5. Super-efficiency models

One interesting model that allows to differentiate across technically efficient observations
is that proposed by Andersen and Petersen (1993). As Angulo-Meza and Pereira Estellita
Lins (2002) highlight, one of the relevant drawbacks of standard DEA models is their in-
ability to rank weakly efficient units differently as they all are assigned the same unitary
efficiency score. The super-efficiency scores allow discriminating across them by calculat-
ing an individual score that is different across observations. These scores are obtained by
individually solving for each observation any of the previous models, but excluding them
from the reference dataset, which therefore reduces to n — 1 observations; i.e., Pogg (X0, Yo) =
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{(x, y) |x > ;‘:_117#0 AjXj, y < ;»‘:_1177&0 AjYis A= 0}. The magnitude of the super-efficiency
score, as well as the number of observations whose efficiency changes as a result of each in-
dividual exclusion determine the importance of each efficient observation in the complete
dataset.

Therefore, if an observation is inefficient, its super-efficiency score is the same as that previ-
ously calculated, while in the efficient case it is greater than one for the radially input oriented
model, less than one for the output counterpart, and negative for the directional model — as
inputs are to be increased and outputs reduced to reach the reference benchmarks.’

For these oriented models we show in what follows the formulation corresponding to the input
orientation under CRS, while its output and directional counterparts are omitted for the sake
of brevity. For the same reason, while the MATLAB toolbox internally solves a two stage
process, the problem can be equivalently expressed according to the following single stage
non-Archimedian formulation:

_ min 6 —e(1s™ +1s™) (8)
0,\s st
subject to
. n—1
9Xo = Z )\jX]’ + s
Jj=l#o
n—1
Yo= D> Ajyj—s*
j=L#o

A>0,s >0, s">0,

where s~€ R™ and s € R®, and ¢ is an infinitesimal constant. The optimal solution — obtained
from a first stage equivalent to (1) but excluding the DMU under evaluation from the reference
set — is again denoted by 0%,.. In this case, if 6, > 1, the observation is super-efficient and
the larger the score and the increase in the values of the remaining observations with respect
to the original calculations in (1), the more relevant is the observation that has been removed
when defining the production frontier. Also, if an observation is inefficient when solving (1).
its efficiency score does not change when removing it from the production possibility set,
simply because it never defined the production frontier in the first place, and its original
benchmarks remain the same. Implementing the super-efficiency method in the directional
distance function model follows similar steps, while variable returns to scale can be computed
by adding the corresponding constraint: Z}:i Lo Aj=1.

The radial super-efficiency model corresponds to the deasuper (X, Y, ...) function in MAT-
LAB with the orient parameter set to the desired orientation (io, oo, or ddf). Once again,
the returns to scale assumption can be specified by setting the rts parameter to crs (constant
returns to scale; default) or vrs (variable returns to scale).

super = deasuper(X, Y, 'orient', 'io', 'rts', 'vrs', 'names', statenames);
deadisp (super, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

9When solving these models under the VRS assumption, it is likely that some unfeasible results are obtained.
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DMUs: 48

Inputs: 4 Outputs: 3

Model: radial-supereff
Orientation: io (Input oriented)
Returns to scale: vrs (Variable)

DMU| Thetal| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 0.9666| 60.9790| 55.0145| 0.0000| 0.0000] 0.0000| 582.8943| 31.0395]
AR| 0.9891] 0.0000| 91.4690| 0.0000| 0.0000| 0.0000]| 0.0000]105.0558]|
AZ| 0.9723] 0.0000]|275.5144| 0.0000| 0.0000| 0.0000]| 0.0000] 10.0449]|

WI| 1.02731625.3266| 0.0000/179.6911| 0.0000| 0.0000|2448.7623|510.6159]|
WVl 0.6724| 2.2679| 45.0415| 92.7799| 0.0000| 0.0000| 57.0121| 0.0000]|
WY| 0.5912| 5.1165|465.4577] 0.0000| 0.0000| 0.0000]| 0.0000| 0.0000]|

superddf = deasuper(X, Y, 'oriemt', 'ddf', 'Gx', X, 'Gy', Y, 'rts', 'vrs',
'names', statenames);
deadisp(superddf, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 OQutputs: 3

Model: directional-supereff

Orientation: ddf (Directional distance function)
Returns to scale: vrs (Variable)

DMU | Beta| slackX1l| slackX2| slackX3| slackX4| slackY1l| slackY2| slackY3|
AL| 0.0161| 62.3563| 56.6249| 0.0000|] 0.0000| 0.0000| 596.4738| 31.5917|
AR| 0.0055| 0.0000| 92.0751| 0.0000] 0.0000| 0.0000] 0.00001106.2801 |
AZ| 0.0141] 0.0000/279.3368| 0.0000] 0.0000| 0.0000]| 0.0000] 10.1145]

WI|-0.0104]611.4014| 0.0000/187.9909| 0.0000| 0.0000/2331.9308|501.9102]
WV| 0.1932] 10.8377| 55.8973]138.8620| 0.0000| 0.0000| 56.8173| 0.0000]|
WY| 0.2570| 6.9367|585.3507] 0.0000| 0.0000| 0.0000]| 0.0000| 0.0000]|

The results obtained for the super-efficient radial input oriented model under VRS show that
once the observations are removed from the production possibility set, their efficiency scores
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may exceed the unitary value. This is the case of Wisconsin (WI), with 0~$RS = 1.0273 > 1,
showing that input quantities must be actually increased to reach the production frontier. On
the contrary, for the rest of the selected states, their efficiency scores remain unchanged from
those reported for (1) since they are inefficient. Similarly, for the super-efficient directional
distance function model. The optimal inefficiency score for Wisconsin (WI) is now negative:
B{",RS = —0.0104 < 0, and therefore inputs must be increased and outputs reduced to reach
the production frontier. Again, the values for the remaining states do not change from those
obtained when solving (5). Note also that the super-efficiency model yields its own set of
optimal input and output slacks.

As for the super-efficiency calculations in the additive model, we follow Du, Liang, and Zhu
(2010), and solve the corresponding counterpart to (7) — for the case of the standard additive
model:
: ~ _ o—a— 4 otat
A7§12+ W= pyxs” +pys 9)
subject to
n—1
Xo > Z Ajx; —s~
Jj=L#o
n—1
Yo< Y. Ajyj+st
j=1#o
ex=1
A>0,s >0, st >0.

The constraints in the program are modified as inputs need to be increased and outputs
reduced so as to reach the production possibility set. Again, (py, p;,r ) € R x R% are the
corresponding weight vectors, and changing their value allows to calculate a wide range of ef-
ficiency scores, including the MIP, RAM and BAM models. By default, as in (7), program (9)
calculates the measure of inefficiency proportions (MIP) with (pi, pf) = (1/%0,1/y,). How-
ever one may set the individual weights to any value, including the unitary values correspond-
ing to the standard additive model. On this occasion an observation is super-efficient if the
optimal solution (A\*,s™* s7*) yields positive slacks, and the largest their sum, the largest the
super-efficiency.

The additive super-efficiency model can be computed using the function deaadditsuper (X,
Y, ...),and specifying returns to scale by setting the rts parameter to crs (constant returns
to scale; default) or vrs (variable returns to scale). Inputs and outputs weights are specified
in the rhoX and rhoY parameters. If omitted, the weights corresponding to the MIP model
are used.

additsuper = deaadditsuper(X, Y, 'rts', 'vrs', 'names', statenames);
deadisp(additsuper, 'names/eff/slack.X/slack.Y');

Data Envelopment Analysis (DEA)

DMUs: 48

19
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Inputs: 4 Outputs: 3

Model: additive-supereff
Orientation: none

Returns to scale: vrs (Variable)

DMU | Eff|slackX1l|slackX2| slackX3| slackX4| slackY1| slackY2| slackY3|

CA| 1.5210] 0.0000| 0.0000| 0.0000| 0.0000]2362.0479(13108.1558|1058.1630]

CT| 0.0181| 0.0000| 0.0000| 0.0000| 2.5121]| 0.0000] 0.0000| 0.0000]
DE| 1.0445| 0.0000| 0.0000| 14.3546| 0.0000| 355.3853| 0.0000| 18.3736]|
TX| 0.2305] 0.0000| 0.0000| 0.0000| 0.0000| 197.1796]| 0.0000| 388.8985]|
VT| 0.1754| 0.0000| 0.0000| 0.0000| 1.6959| 76.3999]| 0.0000| 0.0000]
WI| 0.0168] 0.0000| 0.0000| 0.0000| 0.0000| 77.4414]| 0.0000| 0.0000]

Program (9) solves the super-efficiency model only for the states that are efficient in its
standard additive counterpart (7), as inefficient observations have no interpretable solution.
In this case, the MATLAB output returns NaN for these observations. That is why previous
inefficient states are not reported in the above results (e.g., Alabama (AL), Arkansas (AR),
etc.). Only Wisconsin (WI) is shown with a super-efficiency score of @ s = 0.0168 > 0. In
this case, the super-efficiency slack can be found on the output side, implying that to reach the
production frontier from which this state is excluded, only the first output (livestock) must
be reduced. This is the reason why its super-efficiency score is rather low when compared to
other efficient states such as California (CA), with @j,s = 1.5210. California presents both a
greater slack value in the first output, as well as positive values in the remaining two outputs
(crops and other farm-related output). Other states, e.g., Delaware (DE) with &, = 1.0445,
present super-efficiency slacks both in the input and output dimensions, but their absolute
values are less than those of California, and therefore this state ranks in a lower position.
From these results it is worth remarking that a livestock slack is consistently found for the
majority of states, showing its relevance when defining the production frontier in the standard
additive model.

4. Cross efficiency

As the previous approach, cross efficiency models allow to overcome the low discriminatory
power of standard DEA, incapable of ranking the subset of efficient firms. Ultimately, the
flexibility of DEA when searching for the most favorable weights may turn against the method
itself by hampering its discriminatory power. A problem that is aggravated when the degrees
of freedom are limited, with a small number of observations relative to the number of inputs
and outputs. Initially developed by Sexton, Silkman, and Hogan (1986), cross efficiency
methods rely on peer appraisals instead of self-evaluations. Here we follow Doyle and Green
(1994) and implement the cross efficiency model based on the multiplier formulations of the
radial input measures under constant returns to scale, (1). The basic cross efficiency concept
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uses the obtained weights for observation j, (ujﬂ U7 J ), and multiplies them by the input and
output quantities of the unit under evaluation (X,,y,), thereby generating a peer-appraisal
(cross efficiency) score for every pair (j,0). This peer-appraisal efficiency score corresponds

to:

. *j, 0

; ui yz

9].70 - Z; *J .0
7,; V",

After performing these calculations, one is left with a n x n matrix of peer-appraisal scores,
from which the cross efficiency scores for every observation can be derived. Then cross
n
efficiency may be calculated as e, = % > 0,0 if own efficiency scores are included, or €] =
j=1
n . .
ﬁ > 0, if they are excluded. However, because the optimal weights (u;”,v;”)
j=1
from the first stage DEA run are not unique, one may obtain different results for e, in
successive implementations. To remedy this situation a secondary goal is defined. The general
idea of the benevolent and aggressive approaches is to solve the cross efficiency model with
an objective to maximize or minimize the sum of all peer-appraisal scores, subject to the
restrictions that: a) the self-appraisal scores remain equal to the results of the standard
first stage DEA run, and b) no peer-appraisal score is greater than one. Because optimizing
over the sum of ratios results in a non-linear problem, Sexton et al. (1986) propose a “linear
surrogate”, which uses the sum of all observed j inputs and outputs, j # o, multiplied by
the weights of observation o, (u¢,v¢): i.e., aggregate outputs: > jto i yJu?, and aggregate

obtained

1771
inputs:y_;4, > zlv¢. Subtracting the former from the latter results in the following linear
problem that is solved as a second stage of the method:

max F,= Z Zyzjuf — Z Zmzvf (10)

v?u? - ; -
jFo i iFo i

0,0 _
invi —1,
7
0,0 0,0 _
Zyiui_eo,ozl‘ivi =0,
) 7

0j,o§1 v j;ﬁO,

o o
v; ,'LL,LZO

subject to

Program (10) corresponds to the benevolent approach. Minimizing of the objective func-
tion results in the aggressive formulation. One may average the results obtained from both
approaches, for a less extreme set of cross efficiencies.!?

The cross efficiency model can be computed in MATLAB using the deacross(X, Y, ...)
function with the objective parameter set to benevolent for the benevolent formulation

0Cook and Zhu (2015) provide a recent review of cross efficiency methods based on multiplicative, game
theoretic, and alternative approaches. A promising venue of research brings fuzzy DEA methods into the cross
efficiency model, see Costantino, Dotoli, Epicoco, Falagario, and Sciancalepore (2012a) and Dotoli, Epicoco,
Falagario, and Sciancalepore (2015).
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(maximization) or to aggressive for the aggressive formulation (minimization). If the pa-
rameter mean is set to inclusive the cross efficiency score is calculated including the evaluated
DMU, whereas if it is set to exclusive the evaluated DMU is excluded.

load 'DataAgriculture’

X = [CAPITALO4, LANDO4, LABOR04, INTINP04];
Y = [LS04, CROPS04, FARMOUTO4];

X=X ./ 1000;

Y=Y ./ 1000;

statenames = STATE_NAMEO4;

cross_ben = deacross(X, Y, 'objective', 'benevolent', 'mean'’,
'exclusive', 'names', statenames);

deadisp(cross_ben) ;

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: deacross-linear
Orientation: io (Input oriented)
Returns to scale: crs (Constant)

Cross efficiency: Benevolent Approach

ALl 0.9077| 0.7731]
AR| 0.9888| 0.8522]
AZ| 0.9698| 0.8532]

WI| 0.8452] 0.6721]
WVl 0.6612] 0.4597|
WYl 0.5911] 0.4846|

CrossEff = Cross Efficiency (exclusive mean)

cross_agg = deacross(X, Y, 'objective', 'aggressive', 'mean’,
'inclusive', 'names', statenames);
deadisp(cross_agg) ;

Data Envelopment Analysis (DEA)

DMUs: 48
Inputs: 4 Outputs: 3
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Model: deacross-linear
Orientation: io (Input oriented)
Returns to scale: crs (Constant)

Cross efficiency: Aggressive Approach

AL| 0.9077]| 0.6827|
AR| 0.9888| 0.7430]
AZ| 0.9698| 0.7224]|

WI| 0.8452] 0.5804|
WVl 0.6612] 0.4005]|
WY| 0.5911] 0.3806|

CrossEff = Cross Efficiency (inclusive mean)

Results for the benevolent and aggressive models show that, when compared to their standard
radial input measure (1) counterparts, cross efficiency scores have smaller values. This is
consistent with the fact that the optimal solution to the standard DEA corresponds to the
most favorable weights (u;°, v;°) that the program can find, and therefore assessing efficiency
based on any other pair of weights (uzﬂ,v;ﬂ) results in smaller individual cross efficiencies;
ie., 0,0 > 0;,, and therefore their inclusive or exclusive averages. For illustrative purposes,
and taking as example West Virginia (WV), its standard efficiency score (1) is .5 = 0.6612,
greater than its benevolent cross efficient counterpart, CrossEff = 0.4597. In turn, this latter
score is larger than that corresponding to the aggressive approach 0.4005. Similar remarks can
be made for the other selected states. Note also that for efficient states, their cross efficiency
score would be less than one, and a comprehensive ranking could be obtained using these
approaches.

5. Productivity change: The Malmquist index

The Malmquist index, introduced by Caves, Christensen, and Diewert (1982), measures the
change in productivity of the observation under evaluation by comparing its relative per-
formance with respect to reference technologies corresponding to two different time periods.
The constant returns to scale production possibility set corresponding to ¢t = 1,...,T peri-
ods defines as Pls = {(x,y) |x > X'\, y <Y'A, X > 0}, with the variable returns to scale
counterpart denoted accordingly by P{... The standard Malmquist index relies solely on the
concept of radial efficiency and requires calculation of the input — or output — oriented scores
of (x!,y!) observed in two periods t = 1,2, with respect to the constant returns to scale
reference frontier of any period. Taking as the reference the first period, Pl.s, we denote both

scores by Qé’Rls and 9(23})\15, where the first superscript refers to the time period of the observation

and the second one to that of the reference technology. While 9(1;3;{15 is the solution to pro-

gram (1), the intertemporal score 9(2;;33 corresponds to the following program that evaluates
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period 2 observation (x2,y?2) with respect to period 1 technology:

nel’i)\n 0 (11)
subject to

0x2 > X'\

YA >y?

A>0.

Equivalently, the analogous intertemporal score 9(1;}33 using the second period technology as
reference corresponds to the same program but reverses the time superscripts of the firm under
evaluation from (x2,y2) to (x),yl), and those of the reference technology from (X!, Y!) to
(X2,Y2).

After the contemporary and intertemporal efficiency scores have been calculated it is pos-
sible to define the following Malmquist indices: M; = 02 / 0bL and My = 022 /GCRS For
both indices, if M > 1 there is productivity increase, while if M = 1 productivity remains
unchanged and M < 1 signals productivity decline. Following Féare, Grosskopf, Norris, and
Zhang (1994), productivity change can be decomposed into efficiency change and techni-
cal change.!''! The former corresponds to the so-called catch-up effect; i.e., the change in
the technical efficiency of the observation under evaluation with respect to the two peri-
ods, which defines for both indices as MTEC = GCRS / GCRS The latter corresponds to the
frontier-shift effect, i.e., the change in the reference frontier between both periods, which
defines for My as MTC1 = («9(23’RlS / egﬁs) using period 2 observation as the reference benchmark
to evaluate the shift in the frontier. For Ms it defines a MTCy = ( RS / GCRS) As in the
previous cases, if MTEC > 1 or MTC > 1 productivity change is driven respectively by
both technical efficiency gains and technical change improvements (technical progress); while
MTEC < 1 or MTC < 1 imply lower productivity due to greater inefficiency and technical
regress. Finally, unitary values signal that the technical efficiency and the reference frontier
remain unchanged. Therefore the decomposition of year-to-year productivity change defines
as My = MTEC x MTC, = HCRS Hé’Rls GgRls / GCRS and similarly for My, while the geomet-
ric mean of both indices and their corresponding decompositions represents a compromise
between both values: M = MTEC x MTC = 052 /0&ns x (02ns /02 X Ocns [ 0is) /2.
Finally, it is also possible to decompose long term productivity change from an initial period
to a final period into consecutive subperiods relying on the transitivity property of index
numbers. This allows the analysis of productivity change by subperiods. Therefore, given a
sequence of periods, i.e., t = 1,2, 3, it is verified that the Malmquist index between the base
and final periods can be expressed in terms of its chain components: M3 = ML2 x M?3.
The toolbox calculates the sequence of year-to-year Malmquist indices and the cumulative
Malmquist index taking the based period as reference.

To compute the Malmquist indices in MATLAB one calls the deamalm(X, Y, ...) function
with the orient parameter set to any of the two orientations (io or oo). The parameters X

HThe toolbox calculates a first level decomposition that does not take into account the contribution that
scale changes and input and output mixes make to productivity change. Therefore, as productivity change
is measured under the CRS assumptions, the input and output orientations are equal. To account for scale
effects alternative second level decompositions have been proposed in the literature, see Zofio (2007). An
authoritative discussion of meaningful decompositions of total factor productivity indices is presented by Balk
and Zofio (2018), along with its accompanying toolbox, Balk, Barbero, and Zofio (2020).
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and Y must be 3D arrays, with the third dimension corresponding to different time periods.
By default, Malmquist indices are computed as the geometric mean of M; and M>. However,
for simplicity, the indices can be computed taking the first period as the base for technical
change, Mj, by setting the parameter geomean to 0. Also, in case of having more than two
time periods, the transitive Malmquist index taking always the first period as the reference
technology can be computed by setting the fixbaset parameter to 1.

load 'DataAgriculture’

X00 = [CAPITALOO, LANDOO, LABOR0OO, INTINPOO];
Y00 = [LS00, CROPS00, FARMOUTOO];

X04 = [CAPITALO4, LANDO4, LABOR0O4, INTINP0O4];
Y04 = [LS04, CROPS04, FARMOUT04];

X = X00;

X(:,:,2) = X04;

Y = Y00,

Y(:,:,2) = Y04;

X=X ./ 1000;

Y=Y ./ 1000;

statenames = STATE_NAMEO4;

malmquist = deamalm(X, Y, 'orient', 'io', 'names', statenames);
deadisp(malmquist)

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial-malmquist
Orientation: io (Input oriented)
Returns to scale: crs (Constant)

Malmquist:
Geometric mean is computed
Base period is previous period

DMU | M| MTEC| MTC|
AL| 1.0390| 1.0032] 0356 |
AR| 1.1543| 1.1122] 0378|
AZ| 0.9948| 0.9769]| 0183|

M = Malmquist. MTEC = Technical Efficiency Change. MTC = Technical Change.
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Calculating the Malmquist productivity index for the selected states results in quite differ-
ent trends and sources of productivity change in the five year period between 2000-2004.
While Alabama (AL), Arkansas (AR), Wisconsin (WI) and West Virginia (VW) experience
productivity growth, M > 1, Arizona (AR) presents productivity stagnation, M ~ 1, and
Wyoming (WY) exhibits productivity decline, M < 1. Moreover, looking at the sources of
productivity change, technological progress drives productivity growth, MTC > 1, for all
states but West Virginia (VW), MTC < 1. Efficiency change is in line with productivity
change, contributing to its growth in the four states where progress is observed, MTEC > 1,
and causing productivity decline in the remaining two states, MTFEC < 1. Indeed, in the case
of Wyoming (WY), falling behind the production frontier is the main cause of productivity
decline: MTEC = 0.9115, while observed technological progress, MTC > 1.0061, cannot
counterbalance this declining trend.

6. Allocative models: Economic efficiency

Assuming an economic optimizing behavior on the part of the observations, e.g., cost min-
imization, revenue maximization, or profit maximization, and the corresponding input and
output positive prices: w € R, and p € R’ ,, it is possible to measure their economic effi-
ciency and, based on duality theory, decompose it into the technical efficiency and allocative
efficiency terms (Farrell 1957).

6.1. Cost efficiency

Since we are concerned with overall efficiency in the input space, we assume that obser-

vations minimize production costs. This implies that if observations succeed in using the

inputs mix (bundle) resulting in the minimum cost of producing a given output level at

the existing market prices, they are cost efficient. Let us denote by C(y,w) the mini-

mum cost of producing the output level y given the input price vector w: C(y,w) =
m

min { S wizilx = X, Ay, < YA A > 0}, which considers the input possibility set capable
i=1

of producing y,.'? For the observed output levels we can calculate minimum cost and the

associated optimal quantities of inputs consistent with the production technology by solving

the following program:

I;lgl C(y,w)=wx (12)
subject to

x> XA

YA >y

A>0.

Once minimum cost is calculated, cost efficiency defines as the ratio of minimum cost to
observed cost: CE = C(y,w)/wx,. Thanks to duality results — Shephard (1953), CE

can be decomposed into the technical efficiency measure associated to (1), 67, and the

residual difference corresponding to the allocative cost efficiency: AE = CE/0%,s. Therefore

12For a recent discussion on the properties of the technology when decomposing economic efficiency into
technical and allocative efficiencies see Aparicio, Pastor, and Zoffo (2015).
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allocative efficiency defines as the ratio between minimum cost and production cost at the
technically efficient projection of the observation: AE = C (y,w) /wX, — with X, = 5%
and CEF = TE x AE. Consequently, if CF < 1 and the observation is technically efficient,
0%rs = 1, all cost inefficiency is allocative, while if the projected benchmark uses the right
proportions of the optimal input quantities, which we denote by x*, then X, = x*, and the
observation is allocative efficient and AE = 1.

The cost efficiency model can be computed in MATLAB using the deaalloc(X, Y, ...)

function. The parameter Xprice with input prices, as a matrix or as a row vector, must be
included.'?

Joad 'DataAgriculture’

[WCAPITALO4, WLANDO4, WLABOR04, WINTINPO4];

[PLS04, PCROPS04, PFARMOUT04];

statenames = STATE_NAMEO4;

cost = deaalloc(X, Y, 'Xprice', W, 'names', statenames);
deadisp(cost, 'names/eff.T/eff.A/eff.C');

X = [CAPITALO4, LANDO4, LABOR04, INTINPO04];
Y = [LS04, CROPS04, FARMOUTO04];

X=X ./ 1000;

Y=Y ./ 1000;

W

P

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: allocative-cost
Orientation: io (Input oriented)
Returns to scale: crs (Constant)

AL| 0.9077]| 0.9422| 0.8552]
AR| 0.9888| 0.9291| 0.9187|
AZ| 0.9698| 0.9242| 0.8963|

WI| 0.8452] 0.7800| 0.6593|
WVl 0.6612] 0.6050| 0.4001]
WY| 0.5911] 0.7665| 0.4531]

131f input prices are the same for all DMUs the toolbox generates a matrix with the same values. If input
prices differ between DMUs a matrix with individual price information can be supplied. In a previous version
of the toolbox the economic models in this section were illustrated using an example from Cooper et al. (2007,
p. 261).
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6.2. Revenue efficiency

In an equivalent way, from an output dimension one may be interested in revenue efficiency.
Now if observations are able to produce the output mix (bundle) resulting in maximum
revenue given their input levels at the existing market prices, they are revenue efficient.

Let us denote by R (x,p) the maximum feasible revenue using input levels x and given the
S

output prices p: R(x,p) = max{ Pivilxo = XA, y <Y\ A > 0}; i.e., considering the
1

1=

output possibility set producible with x,.

In this case, we calculate maximum revenue along with the optimal output quantities by
solving the following program:

max R (x0,p) = PY (13)
subject to

X, > XA

YN >y

A>0

Revenue efficiency defines as the ratio of observed revenue to maximum revenue: RE =
py,/R (x,p). Again, duality results from an output perspective allow us to decompose RE
into the output technical efficiency measure associated to the inverse of (3), TE = 1/¢,s, and
the residual difference corresponding to the allocative revenue efficiency: AE = RE X ¢fps.
In this occasion allocative efficiency defines as the ratio between revenue at the technically
efficient projection of the observation and maximum revenue: AE = py,/R (x,p) — with
Yo = OtrsYo, and therefore RE = TEx AE. Now, if RE < 1 and the observation is technically
efficient, ¢fs = 1, all revenue inefficiency is allocative and the observation is unable to
produce the right output mix. Contrarily, if the projected benchmark produces the right mix
of optimal output quantities given their prices, which we denote by y*, then y, = y*, and
the observation is allocative efficient: AE = 1.

The revenue efficiency model can be computed in MATLAB using the deaalloc(X, Y, ...)
function. The parameter Yprice with the output prices, as a matrix or as a row vector, must
be included.

revenue = deaalloc(X, Y, 'Yprice', P, 'names', statenames);
deadisp(revenue, 'names/eff.T/eff.A/eff.R');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 OQutputs: 3

Model: allocative-revenue
Orientation: oo (Output oriented)
Returns to scale: crs (Constant)
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DMU| TechEff| AllocEff| RevEff|
AL] 0.9077]| 0.8922| 0.8098|
AR| 0.9888| 0.9611| 0.9504]|
AZ| 0.9698| 0.9718| 0.9425]

WI| 0.8452] 0.8474| 0.7163|
WV| 0.6612] 0.7859| 0.5197]|
WYl 0.5911] 0.9536| 0.5637|

The cost and revenue efficiency models show that none of the selected states minimize the
cost of production or maximize the revenue associated to agricultural activities. None of them
present a score equal to one, and indeed they are far away from it except Arkansas (AR),
with CF = 0.9187 and RE = 0.9504, and Arizona (AR), with CE = 0.8963 and RE = 0.9425.
These two states present relatively high values of technical efficiency and allocative efficiency,
but are inefficient in both dimensions, either from a cost or revenue perspective. The states
that are cost efficient (not reported here) are Delaware (DE), Florida (FL), Georgia (GA),
Iowa (IA), Idaho (ID) and Illinois (IL) — and similarly from a revenue efficiency perspective.
Therefore all of them are both technical and allocative efficient. On the contrary West Virginia
(VW) and Wyoming (WY) have rather low cost and revenue efficiency scores. In general, both
sources of inefficiency are balanced, except in the case of Wyoming (WY), whose technical
inefficiency is mainly responsible for all revenue inefficiency: TF = 0.5911 vs. AFE = 0.9536.

6.3. Profit efficiency: The directional approach

Profit efficiency allows studying the economic behavior of observations as profit maximizers.
In this case, if observations are able to maximize the difference between revenue and cost given
market prices by producing and using the right quantities of outputs and inputs respectively,

S m
they are profit efficient. The profit function defines as II (w,p) = max{ 21 DilYi — '21 w;; |
i= =

x 2 X\ y<YhNe=1\2> O}. Calculating maximum profit along with the optimal

output and input quantities and requires solving:

Xm}z}))f II(w,p) = py — wx (14)
subject to

XxX>XA=x

ysYi=y

ex=1

A>0.

Profit efficiency defines as the difference between maximum profit and observed profit. As
duality results concerning its decomposition into technical and allocative profit efficiencies rely
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on the directional model (5), we can use the directional vector to define a normalized profit
efficiency measure that is homogeneous of degree one in prices — invariant to proportional price
changes; i.e., PE = (Il (W, p) — (Py, — WX,))/(Pgy + W8y ) — see Chambers, Chung, and Fire
(1998) and Zofio et al. (2013) for more recent proposals. Subsequently, profit efficiency can be
decomposed into the directional technical efficiency measure associated to (5) under variable
returns to scale, TE = [3%.s, and the residual difference corresponding to the allocative profit
efficiency term: AE = PE — [3%.:s. Therefore, allocative efficiency defines as the difference
between maximum profit and profit at the technically efficient projection of the observation:
AE = (Il(w,p) — (PYo — W)A(O))/(pg;_ + wgy ), with (30,%0) = (yo + ﬂ;k/ng;’ Xo — Birs8x )
and PE = TE + AE. Now, if PE > 0 and the observation is technically efficient, 55,5 = 0,
all profit inefficiency is allocative, and the observation is unable to produce with the optimal
combination of outputs and inputs. Contrarily, if the benchmark observation supplies and
demands the profit maximizing quantities of optimal outputs and inputs, which we denote by
y* and x*, then (3,,%,) = (y*,x*), and the observation is allocative efficient: AE = 0.

The profit inefficiency model can be computed in MATLAB using the deaalloc(X, Y, ...)
function. Both the parameters Xprice and Yprice with inputs and outputs prices must be
included. The input and output directions are specified in the Gx and Gy parameters. If
omitted, X and Y will be used for Gx and Gy respectively.

profit = deaalloc(X, Y, 'Xprice', W, 'Yprice', P, 'names', statenames);
deadisp(profit, 'names/eff.T/eff.A/eff.P');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: allocative-profit

Orientation: ddf (Directional distance function)
Returns to scale: vrs (Variable)

AL| o0.0161]| 1.3321| 1.3481]|
AR| 0.0055]| 0.5049| 0.5104]|
AZ| 0.0141]| 2.6562| 2.6703]

WI|l 0.0000]| 0.3881| 0.3881]|
WV| 0.1932] 6.2741| 6.4673|
WY| 0.2570] 6.1169| 6.3739]|

6.4. Profit efficiency: The weighted additive approach

An alternative decomposition of profit efficiency based on the weighted additive measure and
duality results is possible (Cooper, Pastor, Aparicio, and Borras 2011). In contrast to the
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radial and directional approaches, the technical efficiency component of the decomposition
accounts for all inefficiencies (i.e., it includes individual input and output slacks).

Profit efficiency defines in this case as the difference between maximum profit and observed
profit, normalized by the minimum among the ratios of of market prices to weights; i.e.,
PE = (IL(w,p) — (PY, — WXo)) /min{(p1/p} ), - (bm/pd), (w1 /p7), .-, (p1/p)}. This nor-
malization ensures once again that the profit efficiency is homogeneous of degree one in prices,
rendering it units invariant.

Once the weighted additive measure (7) is calculated, profit efficiency can be decomposed into
technical efficiency, TE = wi;s, and the residual difference corresponding to the allocative
profit efficiency term: AE = PE — wj,s. Consequently, allocative efficiency defines as the
difference between maximum profit and profit at the technically efficient projection of the ob-
servation: AE = (H (W7 p)_ (pyo—w&o))/min{(pl/pf)v T (pm/pj), (wl/pl_)7 SRR (pl/p’;l)}7
with (¥,,%0) = (Yo + p;fer, Xo — pxS_ ), and once again PE = TE+ AE. Now, if PE > 0 and
the observation is technically efficient, wy,s = 0, all profit inefficiency is allocative, and the
observation is unable to produce with the optimal combination of outputs and inputs. Con-
trarily, if the observation supplies and demands the profit maximizing quantities of outputs
and inputs, (¥,,%,) = (y*,x%), it is allocative efficient: AE = 0.

In this section we have focused on the decomposition of profit efficiency, while the cost and
revenue counterparts presented in the previous sections can be easily obtained by setting
outputs and inputs weights equal to zero, and using cost and revenue as support functions,
respectively.

The weighted additive profit efficiency model is computed with the deaadditprofit (X, Y,
...) function. Both the parameters Xprice and Yprice with inputs and outputs prices
must be included. The returns to scale assumption, rts parameter, is set to vrs (variable
returns to scale). Inputs and outputs weights are specified in the rhoX and rhoY parameters.
As before, the default weights correspond to the measure of inefficiency proportions (MIP)
model if not included.

addprofit = deaadditprofit(X, Y, 'rts', 'vrs', 'Xprice', W, 'Yprice', P,
'names', statenames);
deadisp(addprofit, 'names/eff.T/eff.A/eff.P');

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: additive-profit
Orientation: none

Returns to scale: vrs (Variable)

DMU| TechEff| AllocEff]| ProfEff|
ALl 1.2677| 1311.5991| 1312.8669]|
AR| 0.6874| 811.3089| 811.9963|
AZ| 1.1851| 1809.7652| 1810.9504|

31
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WI| 0.0000| 847.1218| 847.1218]|
WVl 4.7765| 1217.5219| 1222.2983]|
WY| 4.9848| 2001.9177| 2006.9024|

Looking at the profit efficiency results, either directional or additive, the state that max-
imizes profit by not incurring in technical and allocative inefficiencies is California (CA).
Consequently this state defines the benchmark against which the remaining states compare
themselves. In the profit efficiency models the larger the value of the score, the greater the
inefficiency. In the results for the directional distance function model West Virginia (VW)
and Wyoming (WY) rank again amongst the worse states, with efficiency scores equal to
PE = 6.4673 and PE = 6.3739, respectively. Arkansas (AR) and Wisconsin (WI) present
values that are relatively low, PE = 0.5104 and PE = 0.3881. As this latter state is efficient
technically, TE = 0, all inefficiency is allocative, PE = AE = 0.3881, which is due to a wrong
choice of input and output mixes; i.e., farms are not demanding and supplying the optimal
amounts of inputs and outputs given their prices. The results are similar in qualitative terms
if the weighted additive approach is used to measure profit efficiency, although the values are
substantially different as a result of the change in the objective function. Nevertheless, we can
observe that, once again, the change of model does not have a neutral effect on the efficiency
rankings. For example, based on the results for the directional distance function, Alabama
(AL) is ranked ahead of West Virginia (VW): PE = 1.3481 vs. PE = 6.4673, but this is
reversed in the weighted additive model: PE = 1312.8669 vs. PE = 1222.2983. Therefore,
considering an efficiency measure that takes slacks into account by projecting observations to
the strongly efficient frontier, rather than to the weakly efficient frontier, where slacks may
still exist, may have relevant implications.

7. Undesirable outputs

Along with desirable and market oriented products, observations may produce undesirable
or detrimental outputs as byproducts, such as pollutants or hazardous wastes from an en-
vironmental perspective. As a result, efficiency and productivity measures that do not take
into account the asymmetry between both types of production: desirable and undesirable,
will result in biased assessments of performance and erroneous calculations; e.g., when assess-
ing environmental performance and making recommendations to improve technical efficiency,
one seeks increments in desirable production but reductions in undesirable outputs. To in-
corporate undesirable outputs into the efficiency and productivity change models, we rely
on the directional measures (5) that treat both sets of outputs differently. This requires
a redefinition of the production technology where the initial vector of ¢ = 1,2,...,s out-
puts y € R% | is partitioned into desirable and undesirable production, i.e., y = (yd,y"),
with y?e R‘i + and y“€ R!, |, respectively. This translates into the corresponding reference
technology Pors = {(x, vy, y“) x> X\ yi<YN y=Y\ A > O}, characterizing unde-
sirable outputs as weakly disposable (Cooper et al. 2007, Chapter 12). As the directional
efficiency measure resulting in increases in desirable outputs and reductions in undesirable
outputs relative to the same amount of inputs is used in the following section to define the
Malmquist-Luenberger productivity measure, we rely on Aparicio, Pastor, and Zofio (2013)
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to calculate it, thereby preventing the inconsistencies of the original approach introduced by
Chung, Fare, and Grosskopf (1997). In this case, the directional efficiency measure projecting

observation (Xo, ygl, yg) along the pre-assigned direction corresponding to the output vector

gy = (yd, y“) = Opyts, corresponds to the solution of the following program:

1
négx I} (15)
subject to
X <x,

vy > yd 4+ gyd
YN < yo — By,
max {y}'} > yu — Bys
2> 0.

Again, the optimal solution corresponds to f¢gs, and if fips = 0, with A, = 1,A; =0 (j #
0), the observation is directional efficient. Otherwise, (&,s > 0 signals inefficiency and
(AX, A\Y? AY") outperforms (Xo, vy, y?). It is possible also to calculate any additional slacks

associated to further increases of individual outputs as well as reductions in individual inputs
and undesirable outputs.

The undesirable outputs model is computed in MATLAB using the deaund (X, Y, Yu, ...)
function, where Y is now reserved for the matrix of desirable outputs — i.e., from a computa-
tional perspective we drop the superscript d —, and Yu is the matrix of undesirable outputs.

load 'DataAgriculture’

X [CAPITALO4, LANDO4, LABOR0O4, INTINPO4];

Y [LS04, CROPS04,FARMOUTO4, ];

Yu = PESTEXPNCASES04;

X=X ./ 1000;

Y Y ./ 1000;

statenames = STATE_NAMEO4;

undesirable = deaund (X0, YO, YuO, 'names', statenames);
deadisp(undesirable) ;

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3 Undesirable: 1
Model: directional-undesirable

Orientation: ddf (Directional distance function)
Returns to scale: crs (Constant)

AL| 0.0743| 0.0000|
AR| 0.0000]| 0.0000|

33
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AZ| 0.0311| 1042.0088]|

WI| 0.0837]| 0.0000|

WV| 0.4770] 0.0000|
WY| 0.1469]| 0.0000|

The environmental or eco-efficiency model based on the directional distance function takes
into consideration the possibility of reducing undesirable outputs when assessing productive
performance; in this case the possibility of reducing the number of pesticide exposures among
the population as a results of the agricultural activity. It is therefore relevant to compare the
results of this model to those obtained for the standard directional model (5). For example,
focusing on Arkansas (AR), which is almost efficient in the variable returns to scale model
ignoring undesirable outputs By;s = 0.0055, it becomes fully efficient when they are taken
into consideration (even under the chosen constant returns to scale model, which implies that
it is also efficient if variable returns to scale were considered). Moreover, this state defines the
weakly efficient production frontier, since no slacks are observed in that dimension. This is not
the case however for the rest of the selected states, which are environmentally inefficient. Also,
it is worth remarking that Arizona (AZ), besides reducing inputs and increasing outputs in
the magnitude represented by the efficiency score times its observed quantities, could further
reduce the number of pesticide exposures in 1,042 cases, as measured by its associated slack,
showing that additional gains in efficiency could obtained in that individual dimension.

8. Productivity change: The Malmquist-Luenberger index

Finally, it is possible to define the undesirable outputs productivity counterpart to the
Malmquist index. Chung et al. (1997) introduced the Malmquist-Luenberger (ML) produc-
tivity index measuring the change in productivity of the observation under evaluation by
comparing its relative efficiency with respect to reference technologies corresponding to two
different time periods. As its radial counterpart, the standard ML uses the directional ef-
ficiency score only — disregarding second stage slacks — and requires calculation of the mix

period efficiency of (xf,,yf;d,yf;") observed in two periods ¢ = 1,2. We denote both scores

by Bégls and 6(23;{15, where once again the first superscript refers to the time period of the ob-

servation and the second one to that of the reference technology. While ﬁé;{ls is the solution
to program (15), the intertemporal score ﬁg;{ls corresponds to the following program that

evaluates period 2 observation (xg, yg’d, y%“) with respect to period 1 technology:

1
nﬁlg\x 15} (16)
subject to
X' < x?

Yl’d)\ > y(Q),d +,8yg’d
Yl’uA S yg,u _ Byg,u

t,
max {y;"} > yo* — By "
A>0,
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where max {y “} is the maximum observed amount of each undesirable output in all time pe-
riods (Aparicio et al. 2013). Correspondingly, the score BCRS: using the second perlod technol—
ogy as reference can be calculated solving an equivalent program that evaluates (x}, yl: ,yo )
with respect to the reference technology (X2, Y24, y2u),

Once these scores are calculated the ML indices define as follows: ML = (1+ Bens)/(1+ Bs)
and MLy = (1 + B52)/(1 + BA2). If ML > 1 efficiency increases and the evaluated unit is
capable of producing more desirable output with less undesirable production, while if ML =1
productivity remains unchanged, and ML < 1 signals productivity decline. Following Chung
et al. (1997) the index can be decomposed into efficiency change and technical change, which
have the same interpretation than their previous Malmquist counterparts. The change in
technical efficiency defines now as MLTEC = (1 + Béns)/(1 + BCRS) while the frontier-shift
effects corresponding to technical change are MLTC; = (1 + 5CRS) J(1+ 52;35) and MLTCy =
(1+ BL%) /(1 + B&). Again, if MLTEC > 1 or MLTC > 1 productivity change responds
to both technical efficiency gains and technical change improvements (technical progress);
while MLTEC < 1 or MLTC < 1 imply lower productivity with greater inefficiency and
technical regress. Finally, unitary values signal that the technical efficiency and the reference
frontier remain unchanged. Therefore the decomposmon of product1v1ty change defines as
MLy = MLTEC x MLTC; = (1 + BCRS)/( + BCRS) (14 BCRS)/( BCRS) — and similarly
for MLy. Given a sequence of years, the toolbox calculates the year-to-year variation of ML1
and the geometrlc mean of both indices: ML = MLTEC x MLTC = (1+ BCRS)/(l + ﬁCRS)

(1 + Bers)/ (1 + Beas) x (1 + Bews)/ (1 + Bois)) /2.

The Malmquist-Luenberger indices are computed in MATLAB calling the deamalmluen (X,
Y, Yu, ...) function. The parameters X, Y and Yu must be 3D arrays, with the third
dimension corresponding to different time periods. By default, Malmquist-Luenberger indices
are computed on a year-to-year basis taking the previous year as reference period. The
aggregate Malmquist-Luenberger index taking the first period as the base period can be
computed by setting the fixbaset parameter to 1. By default, Malmquist-Luenberger indices
are computed as the geometric mean of ML, and M Lo. However, for simplicity, the indices
can be computed taking the first period as the base for technical change, M L1, by setting
the parameter geomean to 0.

load 'DataAgriculture’

X00 = [CAPITAL0OO, LANDOO, LABOROO, INTINPOO];
Y00 = [LS00, CROPS00, FARMOUTOO];

Yu00 = [PESTEXPNCASESO00] ;

X04 = [CAPITALO4, LANDO4, LABOR04, INTINPO4];
Y04 = [LS04, CROPS0O4, FARMOUTO4];

Yu04 = [PESTEXPNCASES04];

= X00;
X(:,:,2) = X04;

= Y00;
Y(:,:,2) = Y04;
Yu = YuO0O0;

Yu(:,:,2) = Yu04;

X=X ./ 1000;

Y=Y ./ 1000;

statenames = STATE_NAMEO4;

35



36 A Data Envelopment Analysis Toolbox for MATLAB

ml = deamalmluen(X, Y, Yu, 'names', statenames);
deadisp(ml);

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3 Undesirable: 1
Model: directional-malmquist-luenberger
Orientation: ddf (Directional distance function)
Returns to scale: crs (Constant)

Malmquist-Luenberger:
Geometric mean is computed
Base period is previous period

ML: Malmquist-Luenberger. MLTEC: Technical Efficiency Change.
MLTC: Technical Change.

Just as the undesirable output dimension can be incorporated to the directional efficiency
cross-sectional model, the same can be done from a panel data perspective, redefining the
notion of productivity to account for undesirable outputs. For this reason it is relevant to
compare the productivity trends previously discussed in Section 5 for the Malmquist index
(M) with those reported here for the Malmquist-Luenberger indices (ML). In the latter case,
the inclusion of the number of pesticide exposures as undesirable output may change the
nature of productivity change. A good example is Wisconsin (WI), which shows productivity
growth according to the Malmquist index, M = 1.0469, but exhibits productivity decline in
the case of the Malmquist-Luenberger index ML = 0.9172. Moreover, compared with the
differences observed for other states, this gap between both indices is remarkable, showing
that if one is willing to adopt a definition that accounts for the externalities of production
processes, the results can vary dramatically. Also, in the Malmquist case, while Arizona (AR)
leads the ranking of productivity growth by far, with Wisconsin (WI) in second place, this
is not the case for the ML index, whose value ML = 1.0389 is closely followed by that of
Alabama (AL), ML = 1.0384, with Wisconsin (WI) falling from the second to the fifth place.
As for the sources of productivity change, while technological progress, MTC > 1, was the
main driver of productivity change in the Malmquist case for all but one of the selected states
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(West Virginia, WV), in the Malmquist-Luenberger results this is only observed for the first
three states, MLTC > 1. Similarly, the values for the technical efficiency change component
are different depending on the definition of productivity. These results simply show that
productivity change is much lower when undesirable outputs are taken into account, and
therefore its components also show smaller values. These trends suggest that the effort exerted
in reducing pesticide run-offs, so as to internalize the damage that they produce on humans,
is lower than that aimed at increasing marketable outputs and reducing costly inputs. Hence
the difference in productivity growth in favor of the Malmquist values.

9. Bootstrapping DEA estimators

The efficiency scores and productivity indices calculated in the previous sections can be con-
sidered as estimates as their values are subject to uncertainty due to sampling variation.
Indeed, because of the uncertainty in many real situations, input and/or output data could
be in stochastic form (e.g., historical data) or arising from qualitative judgments (e.g., de-
cision maker’s preferences).'* Simar and Wilson (1998) introduce bootstrap methods that,
based on resampling, provide estimation bias, confidence intervals and allow hypotheses test-
ing. This toolbox implements the algorithms presented by these authors following Bogetoft
and Otto (2011), who also discuss other non-parametric and asymptotic tests. We implement
the tests that allow determining the significance of the models covered by the toolbox: the
assumption about returns to scale, i.e., whether constant and variable returns to scale scores
are significantly different (Simar and Wilson 2002), and the existence of productivity change
over time, i.e., whether the Malmquist index and its components are different from unity
(Simar and Wilson 1999).

The algorithm implemented in the toolbox is the following:

1. Selection of B independent bootstrap samples — drawn from the original dataset with
replacements.

2. Calculate an initial estimate for the efficiency score of each DMU with respect to each
bootstrapped sample and smooth their distribution by perturbing them with a random
noise generated from a kernel density function with scale given with bandwidth h;

3. Correct the original estimates for the mean and variance of the smoothed values;

4. Obtain a second set of bootstrapped samples generating inefficient DMUs, inside the
DEA attainable set and conditional on the original input — or output — mix;

MFor recent reviews on alternative methods to overcome the deterministic nature of DEA we refer the
reader to Olesen and Petersen (2016) and Hatami-Marbini et al. (2011), who review the stochastic and fuzzy
approaches to DEA, respectively. Stochastic DEA complements the usual technological axioms characterizing
the deterministic production technology with a set of distributional assumptions that provide a statistical foun-
dation for the model. The former authors discuss three recent extensions of deterministic DEA: (i) deviations
from the standard frontier are modeled as stochastic variables, (ii) random noise in terms of measurement
errors, sample noise, and specification errors is made an integral part of the model, and (iii) the frontier is
stochastic as is the underlying production possibility set (PPS). These approaches allow for an estimation
of stochastic inefficiency and for statistical inference, while maintaining an axiomatic foundation. The latter
authors also review recent advances in fuzzy DEA by presenting a taxonomy of methods. In particular they
propose a classification scheme based on the following typology: the tolerance approach, the a-level based
approach, the fuzzy ranking approach, and the possibility approach. The interested reader is also referred to
empirical implementations of these methods by Kao and Liu (2009) and Costantino et al. (2012b).
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5. Repeat the process, estimate the efficiency scores for each original DMU with respect
to that second set, so as to obtain a set of B bootstrap estimates; and finally,

6. Based on this distribution calculate the threshold values that truncate it according to
the pre-determined significance value «, so as to determine the confidence intervals for
the efficiency score of each DMU.

In addition, the bootstrapped scores can be used to obtain an estimate of the bias of the true
efficiency value, and thereby a bias-corrected estimator.'®

The radial bootstrap model can be computed in MATLAB using the deaboot(X, Y, ...)
function with the orient parameter set to the desired orientation (io for input oriented or
oo for output oriented). The returns to scale assumption can be specified by setting the rts
parameter to crs (constant returns to scale; default) or vrs (variable returns to scale). The
number of bootstrap replication are set in the nreps parameter (which defaults to 200), and
the significance level in the alpha parameter (0.05).¢

load 'DataAgriculture’
X = [CAPITALO4, LANDO4, LABORO4, INTINPO4];

Y = [LS04, CROPS04, FARMOUTO4];
X=X ./ 1000;
Y=Y ./ 1000;

statenames = STATE_NAMEO4;

rng (1234567, 'twister'); ], Set seed for reproducibility

io_b = deaboot(X, Y, 'orient', 'io', 'nreps', 200, 'alpha', 0.05,
'names', statenames);

deadisp(io_b);

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial-bootstrap
Orientation: io (Input oriented)
Returns to scale: crs (Constant)
Bootstrap replications: 200
Significance level: 0.05

DMU| eff| effboot| effCI1l| effCI2]

15 A similar procedure is implemented to determine the significance of the Malmquist indices — see Simar
and Wilson (1999) for the specific algorithm.

6 Calculation of the bootstrapped radially input model with the default options takes around 26 seconds
on a PC with an i7-8700K CPU (3.70GHz, 3696 Mhz), 32 GB DDR4 (2666 MH) of RAM, and making use of
the parallel computing toolbox connected to 6 workers. Computing time rises to 37 seconds when running the
returns to scale test — since both the constant and variables returns to scale need to be calculated, and up to
70 seconds for the bootstrapped Malmquist (including the calculation of several cross-period efficiency scores).
The rest of the models in the toolbox are solved within one or two seconds.
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AL| 0.9077| 0.8471] 0.7818] 0.9042]
AR| .9888| .9456 | .8988| 0.9864|
AZ| 0.9698| 0.9072] 0.8117| 0.9680]|

o
o
o

WI| 0.8452| 0.8070] 0.7694| 0.8410]
WVl 0.6612| 0.6270] 0.5906| 0.6593]
WYl 0.5911| 0.5607| 0.5319| 0.5886]

The returns to scale test is computed by calling the deatestrts(X, Y, ...) function with
the orient parameter set to the desired orientation (io for input oriented or oo for output
oriented). The number of bootstrap replication are set in the nreps parameter (which defaults
to 200), and the significance level in the alpha parameter (0.05). Results of the test can be
displayed on screen by setting the parameter disp to 1.

rng (1234567, 'twister'); 7, Set seed for reproducibility
deatestrts(X, Y, 'orient', 'io', 'nreps', 200, 'alpha', 0.05, 'disp', 1);

DEA Test of RTS

HO: Globally CRS
Hi: VRS

Bootstrap replications: 200
Significance level: 0.05

S statistic: 0.9813
Critical value: 0.9426
p-value: 0.5800

To compute bootstrapped Malmquist indices in MATLAB one calls the deamalmboot (X, Y,
...) function with the orient parameter set to input orientation (io). The parameters X
and Y must be 3D arrays, with the third dimension corresponding to different time periods.
The number of bootstrap replication are set in the nreps parameter (which defaults to 200),
and the significance level in the alpha parameter (0.05). Again, by default, Malmquist indices
are computed as the geometric mean of My and M,. However, for simplicity, the indices can
be computed taking the first period as the base for technical change, M;j, by setting the
parameter geomean to O.

load 'DataAgriculture’

X00 = [CAPITALOO, LANDOO, LABOR0OO, INTINPOO];
Y00 = [LS00, CROPS00, FARMOUTOO] ;

X04 = [CAPITALO4, LANDO4, LABOR04, INTINPO4];
Y04 = [LS04, CROPS04, FARMOUT04];

X = X00;

X(:,:,2) = X04;
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Y = Y00;

Y(:,:,2) = Y04;

X=X ./ 1000;

Y=Y ./ 1000;

statenames = STATE_NAMEO4;

rng (1234567, 'twister'); J, Set seed for reproducibility

malmquist = deamalmboot(X, Y, 'orient', 'io', 'mreps', 200, 'alpha', 0.05);
deadisp(malmquist)

Data Envelopment Analysis (DEA)

DMUs: 48

Inputs: 4 Outputs: 3

Model: radial-malmquist-bootstrap
Orientation: io (Input oriented)
Returns to scale: crs (Constant)
Bootstrap replications: 200
Significance level: 0.05

Malmquist:
Geometric mean is computed
Base period is previous period

AL| 1.0390| 1.0232] 0.9566| 1.0679]|
AR| 1.1543| 1.0967| 1.0278| 1.1771]|
AZ| 0.9948| 1.0062| 0.9411| 1.0740]|

WI| 1.0469| 1.0201] 0.9569| 1.0636]|
WV| 1.0282| 0.9906] 0.9066| 1.0416]|
WYl 0.9170]1 0.9499| 0.8866| 0.9903]
M = Malmquist. Mboot = Bootstrapped Malmquist.
McLow = Lower confidence interval. McUpp: Upper confidence interval.

Bootstrapping allows to test whether the standard efficiency scores, the existence of constant
returns to scale, and productivity change are statistically significant or not. Focusing first on
the bootstrapped scores calculated for the radially oriented input measure in Section 3.1, one
sees that at the 5% default significance level, all original scores exceed the upper confidence
interval threshold, and therefore none of them are reliable estimates of efficiency change.
Taking Alabama (AL) as example, its standard score from program (1), 67, = 0.9077, is above
the confidence interval (effCI2 = 0.9042), while the bootstrapped index, effboot = 0.8471,
falls within the confidence interval defined by the lower and upper bounds. Consequently,

bias corrected scores provide a robust and statistically sound alternative. Note however
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that the ranking among the selected states does not change for this particular database and
default settings, with Arkansas (AR) and Wyoming (WY) ranking in the first and sixth
place, respectively. Regarding returns to scale, for the default settings the null hypotheses
of constant returns to scale cannot be rejected, suggesting that these property should be
considered when solving the different models. Turning now to the standard and bootstrapped
Malmquist indices, all of them fall within the confidence interval defined by the lower and
upper levels, which also comprise the unitary value, except in the case of Wyoming (WY),
whose bounds are McLow = 0.8866 and McUpp = 0.9903. Therefore, in this particular case, it
can be concluded that the bootstrapped value equal to Mboot = 0.9499, signaling productivity
decline, is indeed different from one, which allows rejecting the hypothesis that productivity
remains unchanged.

10. Advanced options, displaying and exporting results

10.1. Advanced optimization options

As recommended by The MathWorks, Inc. (2017), by default all DEA programs are solved
using the dual-simplex algorithm, with a constraint tolerance of 1e-7 and an optimality
tolerance of 1e-10. However, if needed, optimization options can be changed by passing an
‘optimoptions’ structure to the optimopts optional parameter.!” As an example, if we want
to solve the input oriented DEA program using the interior-point algorithm:

opts = optimoptions('linprog', 'display', 'off', 'Algorithm',
'interior-point');

io_ip = dea(X, Y, 'orient', 'io', 'names', statenames, 'secondstep', O,
'optimopts', opts);

10.2. Changing the reference set

Sometimes we need to evaluate some DMUs with respect to a reference set that differs from
the observed input and output data. By default, all functions solve all models using the data
corresponding to X, Y and Yu — the observed DMUs, which also represent the reference set.
However, we can change the data corresponding to the DMU to be evaluated with the Xeval,
Yeval and Yueval optional parameters.'®

As an example, using data from Section 3, if we want to evaluate the first DMU with respect
to a reference set including all the other DMUs but not itself:

Xref = X(2:end, :);
Yref Y(2:end, :);
Xeval = X(1, :);
Yeval = Y(1, :);

17See the official MATLAB documentation to create an optimization options structure at https://www.
mathworks.com/help/optim/ug/optimoptions.html.

8This is the procedure used internally by the toolbox to compute super-efficiency models and the produc-
tivity indices.
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iol = dea(Xref, Yref, 'oriemnt', 'io', 'Xeval', Xeval, 'Yeval', Yeval);
disp(iol.eff);

0.9077

10.3. Custom display

When calling the deadisp(out, dispstr) function after computing a DEA model, appro-
priate information depending on the estimated model will be displayed on the screen. This
setting can be changed to display the desired information by specifying in the deadisp func-
tion the string dispstr (display string) as a second parameter.

The default dispstr after using the dea function is names/X/Y/eff/slack.X/slack.Y. Each
of the fields to be displayed in the output table must be separated with a / including the
names corresponding to the field names of the ‘deaout’ structure. The available fields are
presented in Table 1.

10.4. Exporting results

Results of the computed DEA models can be easily exported to diverse file formats for pos-
terior analysis and sharing. First the ‘deaout’ structure should be converted to a MATLAB
‘table’ data type using the dea2table(out, dispstr) function using the desired dispstr.!?

io = dea(X, Y, 'orient', 'io', 'names', statenames);
T = dea2table(io);

Then, the table can be exported using the MATLAB function writetable.?"

writetable(T, 'ioresults.csv');

11. Conclusions

The Data Envelopment Analysis Toolbox covers a wide variety of models calculating effi-
ciency and productivity measures in an organized environment for MATLAB. The models
implemented correspond to the classic radially oriented, the directional model and the addi-
tive formulation. Both constant and variable returns to scale technical efficiency measures
are calculated, which allows the calculation of scale efficiency. The economic performance
of firms in terms of technical and allocative criteria is also presented, along with efficiency
models including undesirable outputs. Models that overcome the low discriminatory power
of the standard DEA models such as the super-efficiency or cross efficiency model are also
included. Productivity indices are also implemented, both the standard Malmquist index
based on radial efficiency, and the Malmquist-Luenberger defined in terms of the directional
distance function. Finally, statistical analyses and hypotheses testing using bootstrapping
techniques are also available.

191f the dispstr parameter is omitted, the default one is used.
208ee the official MATLAB documentation for this function http://www.mathworks.com/help/matlab/ref/
writetable.html.
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Common fields

Field Data
names DMU names
X Inputs
Y Outputs
eff Efficiency measure
slack.X Input slacks
slack.Y Output slacks
lambda Computed M\’s
Xeff Efficient X’s
Yeff Efficient Y’s
dual.X Shadow prices of inputs
dual.yY Shadow prices of outputs
exitflag Exit flag of the optimization
Scale efficiency models
eff.crs CRS efficiency
eff.vrs VRS efficiency
eff.scale Scale efficiency
Cross efficiency models
eff.eff Efficiency
eff.crosseff Cross efficiency score
eff.PA Peer-Appraisal matrix
eff.vab Inputs weights
eff.uab Output weights
Malmquist index
eff.M Malmquist index
eff .MTEC Technical efficiency change
eff .MTC Technical change
Allocative efficiency model
Xprice Input prices
Yprice Output prices
eff.C Cost efficiency
eff.R Revenue efficiency
eff.P Profit efficiency
eff.A Allocative efficiency
eff.T Technical efficiency
Undesirable outputs model
Yu Undesirable outputs
slack.Yu Undesirable outputs’ slacks
Yueff Efficient Yu’s
Malmquist-Luenberger index
eff .ML Malmquist-Luenberger index
eff .MLTEC Technical efficiency change
eff .MLTC Technical change

Table 1: Fields of the ‘deaout’ structure available for the dispstr string.
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We also show how to organize the data, use the available functions and interpret results. To
illustrate all the models in the toolbox we use a reliable database on U.S. agriculture. This
positions the new toolbox as a valid self-contained package for these evaluating techniques in
MATLAB. Since the code is freely available in an open source repository on GitHub, under the
GNU General Public License version 3, users will benefit from the collaboration and review of
the community, and can check the code to learn how DEA optimizing programs are translated
into suitable code.?!
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