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Abstract

The predictive value of a statistical model can often be improved by applying shrink-
age methods. This can be achieved, e.g., by regularized regression or empirical Bayes
approaches. Various types of shrinkage factors can also be estimated after a maximum
likelihood fit has been obtained: while global shrinkage modifies all regression coefficients
by the same factor, parameterwise shrinkage factors differ between regression coefficients.
The latter ones have been proposed especially in the context of variable selection. With
variables which are either highly correlated or associated with regard to contents, such as
dummy variables coding a categorical variable, or several parameters describing a nonlin-
ear effect, parameterwise shrinkage factors may not be the best choice. For such cases,
we extend the present methodology by so-called ‘joint shrinkage factors’, a compromise
between global and parameterwise shrinkage.

Shrinkage factors are often estimated using leave-one-out resampling. We also discuss
a computationally simple and much faster approximation to resampling-based shrinkage
factor estimation, can be easily obtained in most standard software packages for regression
analyses. This alternative may be relevant for simulation studies and other computer-
intensive investigations.

Furthermore, we provide an R package shrink implementing the mentioned shrinkage
methods for models fitted by linear, generalized linear, or Cox regression, even if these
models involve fractional polynomials or restricted cubic splines to estimate the influence
of a continuous variable by a nonlinear function. The approaches and usage of the package
shrink are illustrated by means of two examples.

Keywords: global shrinkage, parameterwise shrinkage, prediction, R package, regression.

1. Introduction
Since the work of Gauss, unbiasedness of statistical estimators has been a universal paradigm
for deriving statistical estimators. However, Stein (1956) and James and Stein (1961) showed
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that when several parameters are simultaneously estimated, shrinking their maximum likeli-
hood estimates towards the origin by introducing a (small) bias can reduce their mean squared
error. In the context of regression modeling, it has been known since the 1970s that shrink-
age methods can improve maximum likelihood estimates of regression coefficients. Hoerl and
Kennard (1970a,b) introduced ridge regression, which shrinks regression coefficients towards
zero by minimizing least squares penalized by the sum of squared regression coefficients.
Efron and Morris (1973) explained the James-Stein estimator from an empirical Bayes per-
spective (Robbins 1956; Casella 1985). In 1975, Efron already asked why this improvement
had not been fully embraced by statisticians and users of statistics, and even nowadays his
question is still justified. From the late 1980s modern extensions of regularized likelihood es-
timation have been proposed including the LASSO (Tibshirani 1996, 2011), which penalizes
the log likelihood by the sum of absolute regression coefficients. Greenland (2000) gave a
vivid explanation why compromising unbiasedness may improve other estimation properties,
and we recommend van Houwelingen (2001) for a review of shrinkage and penalization. A
number of R packages (R Core Team 2015) implementing regularized and shrinkage methods
are available among which the glmnet package (Friedman, Hastie, and Tibshirani 2010) has
become particularly popular. It implements ridge, LASSO and elastic-net (a hybrid of ridge
and LASSO) regularization in many types of generalized linear models. In the CRAN task
view for ‘Machine Learning & Statistical Learning’ (Hothorn 2015) an up-to-date summary
of available R packages can be found. Usually, the relative weight of the penalty term, i.e.,
the penalty factor, is determined by maximizing a cross-validated likelihood over a grid of
penalty factors, and this connects regularized regression to empirical Bayes methods.

A simple method to shrink maximum likelihood estimates in regression models was proposed
by van Houwelingen and le Cessie (1990) and Verweij and van Houwelingen (1993). They sug-
gested to estimate a ‘global’ shrinkage factor by leave-one-out cross-validation (jackknifing),
which is then multiplied with all regression coefficients in order to improve the fit of a model to
future data. Their method was further extended by Sauerbrei (1999), who computed shrinkage
factors for each regression coefficient separately, leading to ‘parameterwise’ shrinkage factors
(PWSF). This latter approach may leave regression coefficients of explanatory variables with
a strong effect nearly unshrunken, while shrinking coefficients corresponding to explanatory
variables with a weaker effect. PWSFs were recommended for models obtained by variable
selection (van Houwelingen and Sauerbrei 2013). Copas (1983, 1997) noted that regression
coefficients of such models are on average biased away from zero and application of shrinkage
methods might then be helpful. The overestimation bias arises for a variable with a weaker
effect which is more likely being selected if the effect is overestimated (in absolute terms) in
the particular sample (Copas and Long 1991). By means of an extensive simulation study,
van Houwelingen and Sauerbrei (2013) evaluated global and parameterwise shrinkage factors
in linear regression involving variable selection by backward elimination and compared them
to the LASSO. They concluded that the combination of backward elimination with parame-
terwise shrinkage is particularly attractive, yielding prediction errors competitive with that
of the LASSO, while selecting much sparser models than the LASSO. For logistic regression
models, Steyerberg, Eijkemans, Harrell, and Habbema (2000) and Steyerberg, Eijkemans, and
Habbema (2001) found that global shrinkage factors compared well with more sophisticated
regularized methods in reducing prediction error. In general, shrinkage effects are severe in
models derived by variable selection (Copas 1983), in models estimated from small data sets,
or when the ratio of sample size to number of estimated coefficients is low (Steyerberg et al.
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2000). Global and parameterwise shrinkage methods are simple alternatives to regularized
methods in such situations. They are particularly attractive to practitioners because they
are solely based on maximum likelihood fits and do not need specialized software. However,
existence of maximum likelihood estimates is a prerequisite for their use. Therefore, if the
number of explanatory variables exceeds the sample size these shrinkage methods cannot be
applied, but are also not needed since shrinkage is then typically achieved by regularized
methods. In the literature, shrinkage factor estimation approaches were sometimes also de-
noted by ‘post-estimation shrinkage’ and ‘post-selection shrinkage’ (Royston and Sauerbrei
2008; van Houwelingen and Sauerbrei 2013).
In this contribution, we extend parameterwise shrinkage for situations where some regres-
sion coefficients are naturally linked, e.g., if they correspond to dummy variables coding a
categorical explanatory variable, or to two main effects and their pairwise interaction term.
We propose that those regression coefficients should receive the same ‘joint’ shrinkage factor
instead of several different parameterwise shrinkage factors. Moreover, a computationally
efficient alternative to jackknifing in computing shrinkage factors using ‘difference in beta’
residuals (in literature and software packages commonly known as DFBETA residuals) (Bel-
sley, Kuh, and Welsh 1980, p. 13) is proposed. Finally, we present a new R package shrink
which can be used to estimate global, parameterwise and joint types of shrinkage factors,
using the jackknife or DFBETA residuals. With the help of shrink, shrinkage factors can be
conveniently obtained by invoking a one-line command after standard maximum likelihood
estimation of linear, generalized linear, or Cox models. The package can even handle fit
objects that involve fractional polynomials (FP) (Royston and Sauerbrei 2008) or restricted
cubic splines (Durrleman and Simon 1989) in the predictor.
Two biomedical examples are introduced in Section 2 motivating the application of shrinkage
factors. A detailed presentation of the methodology is provided in Section 3, followed by
the description of the R package shrink in Section 4. In Section 6, multivariable regression
analyses are applied to the two examples, and extended by shrinkage factor estimation using
our R package shrink. Interpretational differences of shrinkage approaches in these exam-
ples are discussed. The paper closes with some recommendations on application of global,
parameterwise and joint type shrinkage factor estimation.

2. Motivating examples

2.1. Deep vein thrombosis study

The first example deals with a prediction model for recurrence of thrombosis in individuals
with deep vein thrombosis or unprovoked pulmonary embolism (Eichinger, Heinze, Jandeck,
and Kyrle 2010). The data set we use here, deepvein, is included in the R package shrink,
and is a slightly modified version of the original data set created to protect individual pa-
tient data. 929 individuals with a first diagnosis of venous thrombosis were followed from
their date of discontinuation of oral anticoagulation for a median of 37.8 months. Time to
recurrence of thrombosis was the outcome variable of primary interest, and 147 events of
recurrence were observed. The following candidate predictors are available: D-dimer, which
was log2-transformed (log2ddim), body mass index (bmi), duration of anticoagulation ther-
apy (durther), age (age), sex (sex), location of first thrombosis (loc; variable with three
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unordered categories; the largest group, pulmonary embolism, as reference and distal deep
vein thrombosis, loc.distal, and proximal deep vein thrombosis, loc.proximal, as binary
indicators), Factor II G20210A mutation (fiimut), and Factor V Leiden mutation (fvleid).
Researchers preferred to have a parsimonious final model including only few predictors to fa-
cilitate clinical applicability. Using Cox regression and backward elimination the explanatory
variables log2ddim, sex, and loc were selected for the final model.
If the same data is used for selecting explanatory variables and estimating regression coef-
ficients, these coefficients may be overestimated and the prediction error may be underesti-
mated. Shrinkage methods may decrease this error and strengthen external validity of the
prediction model. We will revisit this example in Section 5.1, illustrating similarities and
dissimilarities between global and parameterwise shrinkage factors, and we will discuss the
suitability of joint shrinkage factors for nominal explanatory variables with more than two
levels. We will also compare jackknife and DFBETA-type estimation of shrinkage factors.

2.2. Breast cancer study

In the second example, data from a breast cancer study (Schumacher et al. 1994) are used to
predict disease-free survival time (death, second malignancy or cancer recurrence considered
as event). We will apply shrinkage after variable selection and estimation of nonlinear influ-
ences of continuous variables using the multivariable fractional polynomial (MFP) algorithm
(Royston and Sauerbrei 2008, Chapter 6), which is briefly explained in Appendix A. As ex-
planatory variables, hormonal treatment with tamoxifen (htreat), and the prognostic factors
age (age), menopausal status (menostat), tumor size (tumsize), tumor grade (tumgrad),
number of positive lymph nodes (posnodal), progesterone (prm) and estrogen (esm) recep-
tor status are available. The data comprises 686 node positive women who had complete
data for these predictors; these women experienced 299 events during a median follow-up
time of 53.9 months. The data is included in the R package shrink and is also available at
http://portal.uni-freiburg.de/imbi/Royston-Sauerbrei-book.
Sauerbrei and Royston (1999) provide a comprehensive analysis of this data set, taking into
account all prognostic factors as potential predictors. Incorporating medical knowledge into
the model selection process, they proposed to represent posnodal by a pre-transformed vari-
able enodes = exp(-0.12 * posnodal). They considered FPs for the continuous variables
age, tumsize, prm, esm, and enodes. In order to apply transformations with FPs, variables
have to be strictly positive. Hence, prm and esm entered the model as prm + 1 and esm
+ 1, respectively. Furthermore, age was divided by 50 to avoid numerical problems caused
by different scalings of variables. menostat entered the model selection process as a binary
indicator, and for tumgrad, which is an ordinal variable with three levels, the ordinal dummy-
variable coding was used (Royston and Sauerbrei 2008, p. 56). Using a significance level of 5%
Sauerbrei and Royston (1999) arrived at their preferred model III including the prognostic
factors age, prm, enodes, and tumgrad1, which is the dummy variable contrasting tumor
grades 2 and 3 with tumor grade 1, and htreat, the variable for treatment.
In Section 5.2, we will reestimate this model by applying mfp (Ambler and Benner 2015).
However, while htreat was forced into model III of Sauerbrei and Royston (1999) irrespective
of being significant, we now stratify the analysis by hormonal treatment. We consider this
as the more appropriate approach, but because of software constraints it was not possible in
the original analysis which was performed more than 15 years ago. We will demonstrate the
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application of shrinkage to models with nonlinear effect estimation and selection, and discuss
possible advantages of joint over parameterwise shrinkage when applied to effects of highly
correlated explanatory variables.

3. Methods

3.1. Types of shrinkage factors

Assume a regression model is fitted, relating explanatory variables X1, . . . , Xk via estimates
of corresponding regression coefficients β̂ =

{
β̂1, . . . , β̂k

}
to some quantity of interest, such

as the log odds of an event or a relative log hazard. The explanatory variables may have
been selected from a larger set of candidate predictors using, e.g., backward elimination.
Subject knowledge may also play an important role in this selection and estimation process,
e.g., by inclusion of particular variables or interactions regardless of significance. This model
development phase ends with the specification of a final model.
The commonly used leave-one-out (jackknife) cross-validation procedure to compute the global
shrinkage factor c is characterized by a three-step procedure (Verweij and van Houwelingen
1993):

1. The regression coefficients of the final model are re-estimated n times, n being the
number of subjects, each time leaving out one subject in turn. This will result in n
vectors of regression coefficients β̂(−i); i = 1, . . . , n; where the superscript (−i) denotes
that the ith subject has been left out.

2. Cross-validated linear predictors (or ‘prognostic indices’) related to the n subjects can
now be derived as ηi = xi·β̂

(−i), where xi· denotes the covariate row vector for subject i.

3. Finally, another regression model of the same type (e.g., linear, logistic or Cox re-
gression) and with the same dependent variable as the final model is fitted, but using
η = {η1, . . . , ηn} as the only explanatory variable. The global shrinkage factor estimate
is given by the regression coefficient c estimated for η in this model, which is usually less
than 1. (If the non-cross-validated prognostic indices ηi = xi·β̂ were used in this model,
a coefficient of 1 would be obtained.) The globally shrunken regression coefficients are
given by cβ̂j ; j = 1, . . . , k.

Sauerbrei (1999) suggested to estimate parameterwise shrinkage factors, modifying steps 2
and 3 of the above procedure as follows:

2. Instead of a single prognostic index ηi, now partial prognostic indices are computed as
ηij = xij β̂

(−i)
j , j = 1, . . . , k.

3. A regression model of the same type and with the same dependent variable as the final
model is fitted, but using η.j = {η1j , . . . , ηnj}, j = 1, . . . , k, as explanatory variables.
This will yield PWSFs c1, . . . , ck related to η.1, . . . , η.k, respectively. The parameter-
wisely shrunken versions of the regression coefficients are γ̂j = cj β̂j ; j = 1, . . . , k.
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Type of shrinkage factor Cross-validated prognostic indices used
Global ηi = ∑k

j=1 xij β̂
(−i)
j

Parameterwise ηij = xij β̂
(−i)
j

Joint ηig = ∑
j∈Jg

xij β̂
(−i)
j

Table 1: Computation of cross-validated prognostic indices η for different types shrinkage
factors. Parameterwise shrinkage factors are obtained for variables 1, . . . , k; joint shrinkage
factors for groups of variables 1, . . . , h; h < k.

Shrunken regression coefficients can also be directly obtained from a ‘postfit regression model’
by using as explanatory variables x∗ij = ηij/β̂j = xij β̂

(−i)
j /β̂j . However, in models with an

intercept (e.g., linear or generalized linear models) this requires that ηij , β̂j and β̂(−i)
j were

estimated with centered explanatory variables.
Explanatory variables are sometimes represented by multiple design variables, e.g., two or
more dummy variables representing a categorical variable, two explanatory variables and
their pairwise interaction term, or several different transformations of an explanatory variable
allowing to estimate the influence of a continuous variable by a nonlinear function.These
design variables are associated with regards to content and are often highly correlated. The
regression coefficient of one such design variable may lack intuitive interpretation. In these
cases, PWSFs of single regression coefficients are not interpretable, and their application
may lead to extreme modifications of the shrunken regression coefficients compared to the
original ones. This may sometimes even result in a reversed sign of a particular regression
coefficient. To avoid such issues we suggest a compromise between global and parameterwise
shrinkage, termed ‘joint’ shrinkage, which embraces these associated regression coefficients
by providing one common shrinkage factor for them. More formally, assume that the indices
of explanatory variables {1, . . . , k} are accordingly joined, yielding mutually exclusive and
collectively exhaustive sets J1, . . . , Jh. Each such set Jg (g = 1, . . . , h) may correspond to one
or several explanatory variables.
To compute joint shrinkage factors we now modify steps 2 and 3 as follows:

2. Joint partial prognostic indices are computed as ηig = ∑
j∈Jg

xij β̂
(−i)
j , g = 1, . . . , h.

3. A regression model of the same type and with the same dependent variable as the final
model is fitted, but using η.g = {η1g, . . . , ηnh}, g = 1, . . . , h, as explanatory variables.
This will yield joint shrinkage factors c1, . . . , ch related to η.1, . . . , η.h, respectively. For
each Jg, g = 1, . . . , h, the jointly shrunken versions of the associated regression coeffi-
cient(s) β̂j (j ∈ Jg) are γ̂j = cgβ̂j .

The three types of shrinkage factors are contrasted in Table 1.

Covariance matrix of shrinkage factors

An estimate of the covariance matrix of the shrinkage factors is ‘automatically’ provided by
the regression analysis of step 3. This covariance matrix is conditional on the estimated
regression coefficients β̂. Thus, it does not fully reflect the uncertainty in the estimates of the
shrinkage factors, which is a very general problem of parameter estimates of models derived
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data-dependently (Breiman 1992). However, it serves the researcher as a rough guide to judge
the variability and correlation of the shrinkage factors. In particular, a high standard error of
a shrinkage factor indicates that the shrinkage effect is not estimated precisely, and then use
of the shrinkage factor might not improve the predictive value of the model for future data.
A high absolute correlation between PWSFs may further indicate unstable shrinkage factor
estimation, which motivates the use of a joint shrinkage factor for the involved effects. We
exemplify interpretation of variability and correlation of shrinkage factors in Section 5.2.

3.2. Estimation of shrinkage factors

The above-described three-step jackknife method for estimating global, parameterwise or joint
shrinkage factors requires n + 2 fitting processes. In logistic and Cox models, model fitting
usually needs several iterations. Here we describe an approximation to the jackknife based
on DFBETA residuals which in these models greatly reduces the computational burden by
using quantities that are readily available after iterative model fitting.
In maximum likelihood estimation, parameter estimates β̂ are commonly estimated by Newton-
Raphson iteration, i.e., by iteratively updating β̂{s+1} = β̂{s} + I−1(β̂{s})U(β̂{s}) until con-
vergence, where the superscript {s} refers to the sth iteration. I(β) and U(β) denote the
observed information matrix (equalling minus the matrix of second derivatives of the log like-
lihood), and the score vector (the vector of first derivatives), respectively. The score vector
U(β) can be decomposed into subject-specific contributions Ui(β), such that ∑

i Ui(β) = U(β).
The quantities I(β) and Ui(β), i = 1, . . . , n, are usually available at each step of the iterative
procedure.
Suppose that subject i is omitted from the analysis. Then, the parameter vector β can
be re-estimated, starting from the maximum likelihood estimate for the full data set β̂, by
iteratively solving β̂(−i){s+1} = β̂(−i){s} + I−1(β̂(−i){s}) ∑

r 6=i Ur(β̂(−i){s}) until convergence.
The difference of β̂(−i){1} and β̂ (= β̂(−i){0}) is given by I−1(β̂) ∑

r 6=i Ur(β̂). Since at the
maximum likelihood estimate U(β̂j) = 0 for all j = 1, . . . , k, Ui(β̂) = −∑

r 6=i Ur(β̂). Thus,
DFBETAi = I−1(β̂)Ui(β̂) may serve as a one-step approximation to β̂ − β̂(−i). In the sequel
its k components are denoted as DFBETAij .
The jackknife-estimated β̂(−i) (see Table 1) can be approximated by β̂ − DFBETAi. This
replacement, termed ‘DFBETA method’, saves n estimation procedures.
In small samples DFBETA residuals may underestimate the influence of some highly influen-
tial observations on the parameter vector, as these subjects may also affect the observed infor-
mation matrix, which is ignored in the DFBETA residual approach (Therneau and Grambsch
2000). Therefore, a slight underestimation of shrinkage may be encountered when using the
DFBETA method, i.e., DFBETA shrinkage factors are always slightly closer to 1 compared
to their jackknife counterparts. Nevertheless, for sufficiently large data sets where individual
observations have only little influence on the observed information matrix, DFBETA and
jackknife values will approximately agree.

4. The R package shrink
For a given model our R package shrink allows to estimate global, parameterwise and joint
shrinkage factors corresponding to the parameter estimates of the regression coefficients. The
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package’s main function shrink has four arguments:

• fit specifies the model object for which shrinkage factors are to be computed. The
class of fit must be one of lm, glm, coxph, or mfp. The fit objects must have been
called with x = TRUE (and y = TRUE when fit is an object of class lm).

• type specifies the type of shrinkage, and must be either "global", "parameterwise",
or "all".

• method specifies the shrinkage method, and must be either "jackknife" for shrinkage
factor computation based on leave-one-out resampling, or "dfbeta" for its approxima-
tion by DFBETA residuals.

• If type = "parameterwise" or "all", an additional optional argument join invokes
the option to compute joint shrinkage factors for sets of variables. Each such set of
variables can be represented by a character vector of variable names, and several sets
are specified by collecting corresponding vectors in a list object. Any variable not
represented in this list forms its own set.

The output of shrink is an object of class shrink with the following main components:

• ShrinkageFactors: A scalar value of the global shrinkage factor (if type = "global"),
or a vector of shrinkage factors (if type = "parameterwise").

• ShrinkageFactorsVCOV: The covariance matrix of the shrinkage factors.

• ShrunkenRegCoef: The shrunken regression coefficients.

An additional predict method provided in the shrink package facilitates predictions with
shrunken regression coefficients. Further methods for objects of class shrink are coef, which
extracts shrunken regression coefficients, vcov, which extracts the variance-covariance matrix
of the shrinkage factors, summary, and print. The following examples illustrate application
of the R package shrink.

5. Examples revisited

5.1. Deep vein thrombosis study

Types of shrinkage factors

Fitting the ‘full’ model with all available predictors by applying the coxph function from the
survival package

R> fitfull <- coxph(Surv(time, status) ~ log2ddim + bmi + durther + age +
+ sex + loc + fiimut + fvleid, data = deepvein, x = TRUE)

reveals significant effects (Wald tests, significance level 0.05) of log2ddim (p = 0.010), sex
(p = 0.009) and loc (p = 0.014, 2 degrees of freedom [df], expressed by loc.distal and
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loc.proximal). The global shrinkage factor of the full model is only 0.607, and this could be
taken as an indicator that the model is not useful for prediction. Estimating the nine PWSFs
for this model illustrates that the PWSF approach is not adequate for such an overfitted
model. Five of these PWSFs have a negative sign, indicating that even the sign in the full
model may be wrong. These are strong indications that some of the variables have no or at
most a weak effect and should be eliminated from the model.
Using backward elimination with an Akaike’s information criterion for variable selection,
which corresponds approximately to a significance level of 0.157, one arrives at a final predic-
tion model including log2ddim (p = 0.010), sex (p = 0.008), and loc (p = 0.010, 2 df). The
unshrunken regression coefficients of this model can be estimated by invoking step:

R> fitd <- step(fitfull, direction = "backward")

From model fitd, shown below, we learn that high D-dimer, male sex and a first pulmonary
embolism (which is the reference group for loc.distal and loc.proximal) are associated
with earlier recurrence. The final model can be displayed by print(fitd):

coef exp(coef) se(coef) z p
log2ddim 0.219 1.245 0.0854 2.56 0.0100
sex.male 0.491 1.634 0.1847 2.66 0.0079
loc.distal -0.922 0.398 0.3101 -2.97 0.0029
loc.proximal -0.205 0.815 0.1787 -1.15 0.2500

Likelihood ratio test=24.5 on 4 df, p=6.37e-05, n=929, number of events=147

The global shrinkage factor, quantifying the required correction for overestimation, and
shrunken regression coefficients can be obtained using the shrink package with a simple one-
line command:

R> shrink(fitd, type = "global", method = "jackknife")

Shrinkage Factors (type=global, method=jackknife):
[1] 0.808
Shrunken Regression Coefficients:
log2ddim sex.male loc.distal loc.proximal
0.177 0.396 -0.745 -0.166

The global shrinkage factor of the final model is 0.808, and is remarkably higher than the
global shrinkage factor of the unselected model (0.607), but still indicates some overestima-
tion. This residual overestimation may be removed by multiplying the regression coefficients
with the global shrinkage factor, leading to predictions that are shrunken towards the mean
expected outcome over all patients.
A large patient-level meta-analysis revealed that sex is the strongest predictor of recurrence
(Douketis et al. 2011). This medical knowledge indicates that the inclusion of sex in our model
is probably not an accidental result caused by chance and may not need much correction for
selection bias. Consequently, its globally shrunken regression coefficient may underestimate
its true relevance for prediction. PWSFs were suggested to overcome this problem, and to
assign different shrinkage factors to each explanatory variable. In our example, PWSFs can
be obtained by the command:
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R> pwsf <- shrink(fitd, type = "parameterwise", method = "jackknife")

Shrinkage Factors (type=parameterwise, method=jackknife):
log2ddim sex.male loc.distal loc.proximal
0.732 0.835 0.839 0.132

Shrunken Regression Coefficients:
log2ddim sex.male loc.distal loc.proximal
0.160 0.410 -0.774 -0.027

The four PWSFs reflect the unequal importance of shrinkage for the four design variables for
prediction, ranging from 0.132 for loc.proximal to 0.839 for loc.distal.
The approximate covariance matrix for these shrinkage factors can be assessed by
pwsf$ShrinkageFactorsVCOV. In our case, the standard error for the PWSF of locproximal
is estimated at 0.870, being considerably larger then the standard errors of the PWSFs of the
other design variables in the model.

R> sqrt(diag(pwsf$ShrinkageFactorsVCOV))

log2ddim sex.male loc.distal loc.proximal
0.370 0.370 0.327 0.870

When associated dummy variables such as loc.distal and loc.proximal are jointly selected,
joint shrinkage of the corresponding coefficients may be more appropriate. In our example,
we obtain a joint shrinkage factor of 0.806 with the command:

R> shrink(fitd, join = list(c("loc.distal", "loc.proximal")))

Shrinkage Factors (type=parameterwise with join option, method=jackknife):
log2ddim sex.male loc.distal loc.proximal
0.781 0.836 0.806 0.806

Shrunken Regression Coefficients:
log2ddim sex.male loc.distal loc.proximal
0.171 0.411 -0.743 -0.165

Jackknife and DFBETA estimation of shrinkage factors

Now we turn to the estimation method of shrinkage factors, which could be by jackknife (Sec-
tion 3.1) or by DFBETA approximation (Section 3.2). In the example above we have only
used the jackknife (method = "jackknife"); the DFBETA method is invoked by specifying
method = "dfbeta". Table 2 compares the results from both methods. Overall, the DF-
BETA shrinkage factors exceed their jackknife counterparts by maximally 0.015. However,
while the call to shrink with the jackknife method took 3.03 seconds on a contemporary PC,
the DFBETA method only required 0.02 seconds which is about 150 times faster. As long as a
single model is evaluated, this does not make much difference in absolute time, but time sav-
ings multiply when using computer-intensive methods, such as, evaluating model stability or
performing model validation by resampling methods or in simulation studies (Sauerbrei 1999).
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Explanatory variable Jackknife DFBETA Relative difference
Global shrinkage 0.8076 0.8123 0.6%

Parameterwise shrinkage
log2ddim 0.7321 0.7385 0.9%
sex.male 0.8351 0.8373 0.3%
loc.distal 0.8394 0.8449 0.7%
loc.proximal 0.1321 0.1470 11.2%

Joint shrinkage
log2ddim 0.7806 0.7864 0.7%
sex.male 0.8364 0.8386 0.3%
loc 0.8055 0.8111 0.7%

Computing time 3.03 0.02 -99.3%

Table 2: Deep vein thrombosis study: Comparison of jackknife and DFBETA-approximated
shrinkage factors. Computing time is given for parameterwise shrinkage factors in seconds.
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Figure 1: Data resampled from deep vein thrombosis study: Comparison of jackknife and
DFBETA-approximated global shrinkage factors.

By means of simulating data from the deep vein thrombosis study with various sample sizes,
we demonstrate the typical deviation of DFBETA and jackknife methods depending on sample
size and magnitude of shrinkage factors (Figure 1). Specifically, we resampled 200–1400
subjects from the original data set with replacement, fitted models with log2ddim, sex,
and loc as explanatory variables, and computed the global shrinkage factors. This was
repeated 100 times, and the median values of the shrinkage factors at each sample size are
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shown in Figure 1. In summary, this investigation led us to the following conclusions:

• Sample size: The deviation of DFBETA from jackknife shrinkage factors depends on
the sample size (more deviation with smaller samples). Note that the estimated regres-
sion coefficients have equal average values across sample sizes, but considerably higher
variance in smaller samples compared to larger ones. This causes the lower shrinkage
factors with smaller samples.

• Magnitude of shrinkage factors: The smaller the shrinkage factors, the higher is the
deviation of DFBETA from jackknife shrinkage factors. If shrinkage factors are not too
low (> 0.5), then the deviations of jackknife and DFBETA can be expected to be less
than 10%.

• Time savings by the DFBETAmethod compared to the jackknife method are substantial
and grow exponentially with increasing sample size.

5.2. Breast cancer study

In this example, we will apply shrinkage after variable selection and estimation of nonlinear
effects using the MFP algorithm. Following the approach of Sauerbrei and Royston (1999)
with the only exception that the model is stratified by htreat, we reestimate their model III
by using the mfp package (Ambler and Benner 2015). Model selection (at a significance level
of 5%) and estimation can be performed by submitting the following code:

R> contrasts(GBSG$tumgrad) <- matrix(c(0, 1, 1, 0, 0, 1), ncol = 2,
+ dimnames = list(1:3, c("tumgrad1", "tumgrad2")), byrow = FALSE)

tumgrad1 tumgrad2
1 0 0
2 1 0
3 1 1

R> fitg <- mfp(Surv(rfst, cens) ~ fp(age) + fp(prm) + fp(esm) +
+ fp(tumsize) + fp(enodes) + tumgrad + menostat + strata(htreat),
+ family = cox, data = GBSG, alpha = 0.05, select = 0.05)

The backward elimination applied by mfp with a significance level of 0.05 selects age, prm,
enodes, and tumgrad1, the dummy variable contrasting tumor grade 1 from grades 2 and 3.
mfp applies a built-in pretransformation algorithm which gently transforms variables by
shifting them to the positive range, if necessary, and by approximately aligning their scal-
ings (Royston and Sauerbrei 2008, Chapter 4.11). Here, mfp determines pretransformations
(PT(·)) for age and prm of PT(age) = age / 100 and PT(prm) = (prm + 1) / 100, re-
spectively. For PT(age), mfp selects an FP of degree 2 (powers of -2 and -1), leading to
the design variables age.1 = PT(age) ˆ-2 and age.2 = PT(age) ˆ-1. Furthermore, mfp
suggests a square root transformation for PT(prm) (prm.1 = PT(prm) ˆ0.5), and a linear
function for enodes. The estimated regression coefficients of the selected model are displayed
by print(fitg):
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Explanatory Design β̂j df p value Parameterwise Joint
variable variable shrinkage (SE) shrinkage (SE)
age 4 0.001 0.876 (0.188)

age.1 0.606 0.811 (0.236)
age.2 −2.654 0.782 (0.277)

prm prm.1 −0.572 4 <0.001 0.978 (0.189) 0.982 (0.189)
posnodal enodes.1 −1.978 4 <0.001 0.987 (0.116) 0.986 (0.116)
tumgrad1 tumgrad1 0.514 1 0.028 0.811 (0.453) 0.809 (0.452)

Table 3: Breast cancer study: Regression coefficients β̂j , degrees of freedom (df), p values,
parameterwise, and joint shrinkage factors with respective standard errors (SE) based on the
jackknife method.

coef exp(coef) se(coef) z p
age.1 0.6060 1.83303 0.1188 5.101 3.37e-07
age.2 -2.6539 0.07037 0.5902 -4.496 6.91e-06
prm.1 -0.5717 0.56456 0.1109 -5.154 2.55e-07
enodes.1 -1.9782 0.13832 0.2272 -8.706 0.00e+00
tumgrad1 0.5137 1.67141 0.2495 2.059 3.95e-02

Likelihood ratio test=142 on 5 df, p=0 n=686

The p values given in the output above, based on 1 df, refer to the design variables, and are
thus conditional on the selection. In Table 3, we supply p values based on likelihood ratio
tests for the explanatory variables which are unconditional of the selected degree and power.

The following two lines estimate global and parameterwise shrinkage factors:

R> globalsf <- shrink(fitg, type = "global", method = "jackknife")
R> pwsf <- shrink(fitg, type = "parameterwise", method = "jackknife")

The global shrinkage factor is 0.953 with a standard error of 0.081. PWSFs of prm.1 and
enodes.1 are above 0.975, and tumgrad1’s PWSF is somewhat lower with 0.811. The PWSFs
for age.1 and age.2 are 0.811 and 0.782, respectively. The corresponding SEs are large
in absolute terms, ranging from 0.116 for enodes.1 to 0.453 for tumgrad1. As outlined in
Section 3.1, regression coefficients and PWSFs of age.1 and age.2 are not interpretable, as the
two effects are components of one function estimating the influence of the explanatory variable
age on the outcome. This is also reflected in the PWSFs’ estimated correlation matrix, which
can be obtained by submitting the command cov2cor(pwsf$ShrinkageFactorsVCOV):

age.1 age.2 prm.1 enodes.1 tumgrad1
age.1 1.000 0.984 0.026 0.030 -0.040
age.2 0.984 1.000 0.032 0.021 -0.035
prm.1 0.026 0.032 1.000 -0.055 -0.200
enodes.1 0.030 0.021 -0.055 1.000 -0.078
tumgrad1 -0.040 -0.035 -0.200 -0.078 1.000
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Figure 2: Breast cancer study: Estimates of the log hazard of age relative to 50 years before
and after post-estimation shrinkage (top) and frequency distribution of age (bottom).

All correlations between PWSFs of design variables from different explanatory variables are
low. Only the correlation of the PWSFs of age.1 and age.2 is close to 1, which further
motivates the use of a joint shrinkage factor for these effects:

R> shrink(fitg, type = "parameterwise", method = "jackknife",
+ join = list(c("age.1", "age.2")))

The joint shrinkage factor of age of 0.876 is larger than the PWSFs of the individual compo-
nents age.1 and age.2, while the standard error (0.188) is lower.
In Figure 2 we have compared the resulting functional form of the age effect on the log
hazard scale when applying no, global, parameterwise or joint shrinkage factor estimation.
The selected functional form for age suggests a U-shaped risk profile, with the lowest risk
for women aged around 46 years. This functional form determined by estimation with FPs
is not affected by global or joint shrinkage, our preferred method in this example. However,
parameterwise shrinkage changes the functional form and the magnitude of the effect of age
particularly for older women.
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6. Concluding remarks
We discussed three types of shrinkage factors obtained after maximum likelihood estimation,
which quantify by how much regression coefficients may need to be corrected for overestima-
tion. A global shrinkage factor penalizes all predictors equally. By contrast, PWSFs shrink
weak, less relevant predictors more than strong ones, and in the extreme case, a PWSF may
be close to 0 indicating ‘random selection’ of a variable and its irrelevance for prediction.
The PWSFs of regression coefficients related to a set of associated design variables may be
misleading, as the effects of these design variables are inseparable. Hence, the corresponding
regression coefficients should be shrunken jointly using the proposed joint shrinkage factor. In
general, joint shrinkage should replace parameterwise shrinkage in situations where a single
regression coefficient βj is uninterpretable because of the inherent dependency of the design
variable corresponding to βj on other design variables.
In Section 5.2 we used MFP as it is a well-described algorithm that simultaneously selects vari-
ables and estimates their functional form. A researcher could also estimate nonlinear effects
of continuous explanatory variables using restricted cubic splines, which are also supported
by shrink. Similarly as in the case of fractional polynomials, the individual components of
restricted cubic splines have no interpretation and therefore joint shrinkage factors should be
applied.
One should also consider joint shrinkage when multiple dummy variables of a categorical
explanatory variable were selected jointly in a significance-based selection procedure. Param-
eterwise shrinkage factors may still be applied if dummy variables are separately tested and
selected. This latter approach may sometimes lead to a more parsimonious model, since it
allows for a data-driven collapsing of some categories with the reference category, but it re-
quires careful selection of a suitable reference. For a deeper discussion on coding and selection
of categorical variables, we refer to Royston and Sauerbrei (2008, Chapter 3).
Usually global, parameterwise or joint shrinkage factors are estimated for the purpose of
decreasing the prediction error of a model, but it may not be clear upfront which type of
shrinkage factor is best suited for this purpose. In addition to the magnitude of the shrinkage
factors, their covariance matrix can help the researcher with this decision. PWSFs which are
much lower than 1, and have high correlations or large variances may severely inflate the
prediction error (van Houwelingen and Sauerbrei 2013). This is likely the case when variables
are correlated.
To avoid this unfavorable consequence of PWSFs, a researcher could estimate a joint shrinkage
factor for each set of correlated variables or variables related by content. For example, in an
epidemiological study variable groups could result from separating environmental exposures
(‘above the skin’ exposures) from variables describing the genetic or clinical state of individuals
(‘below the skin’ variables). Sometimes, the joint shrinkage factors are still correlated and
low, and then they may be better replaced by a single global shrinkage factor, estimated with
lower variance.
We have also presented a new method for shrinkage factor estimation, based on DFBETA
residuals, as an alternative to the more time-consuming leave-one-out (jackknife) method.
This variant may be of particular interest in resampling-based analyses or in simulation stud-
ies. In our examples, as expected, jackknife shrinkage factors were closely approximated by
their DFBETA counterparts.
These shrinkage types (global, parameterwise and joint) and shrinkage methods (jackknife and
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DFBETA) have been implemented in the R package shrink enabling convenient and efficient
computation of shrinkage factors, their correlation structure and their variances with an easy-
to-use one-line command. By providing methods applicable to the classes lm, glm, coxph and
mfpmany statistical models used in biomedical research and in other disciplines are supported.
The package is available at https://CRAN.R-project.org/package=shrink or at http://
cemsiis.meduniwien.ac.at/en/kb/science-research/software/. The package manual
contains additional examples for all supported object classes.
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A. Fractional polynomials and MFP
Royston and Altman (1994) suggested that to account for a possibly nonlinear effect of a
continuous explanatory variable x, one or two transformations of type xp, termed fractional
polynomials (FP) of degree 1 or 2, respectively, often suffice as design variables in the model.
They proposed to use the following set of eight power terms {−2,−1,−0.5, 0, 0.5, 1, 2, 3}. If
p = 0, the logarithm of x is used. Another special case is the use of ‘repeated powers’,
i.e., two transformations with the same power p. In this case, the second transformation is
multiplied by log(x), such that the two fractional polynomial terms are defined by xp and
xp log(x). Linear pretransformations of explanatory variables could be necessary to shift all
values to the strictly positive range, which is a prerequisite for applying power exponents of
less than one. There are eight FP1 functions with one power term and 36 FP2 functions
with two power terms. To decide which of these FP functions is the most suitable one for a
given problem, Royston and Sauerbrei (2008, Chapter 4.10.2) described a function selection
procedure (FSP) which preserves the type I error probability at any desired level.
For multivariable model building requiring the selection of important variables and determi-
nation of the functional form for continuous variables the MFP algorithm has been developed
(Royston and Sauerbrei 2008, Chapter 6). It combines backward elimination with the FSP. A
final model produced by the MFP algorithm may either select an explanatory variable using
a fractional polynomial transformation, using no transformation (effect is linear), or exclude
a variable from the model. These decisions are based on significance tests at the level α. The
main implementation for MFP is in Stata (StataCorp. 2011), but it is also implemented as a
SAS macro (Sauerbrei, Meier-Hirmer, Benner, and Royston 2006) and in the R package mfp
(Ambler and Benner 2015).
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