
JSS Journal of Statistical Software
February 2016, Volume 69, Issue 3. doi: 10.18637/jss.v069.i03

PoweR: A Reproducible Research Tool to Ease
Monte Carlo Power Simulation Studies for

Goodness-of-fit Tests in R

Pierre Lafaye de Micheaux
Université de Montréal, CREST - ENSAI

Viet Anh Tran
Université de Montréal

Abstract

The PoweR package aims to help obtain or verify empirical power studies for goodness-
of-fit tests for independent and identically distributed data. The current version of our
package is only valid for simple null hypotheses or for pivotal test statistics for which
the set of critical values does not depend on a particular choice of a null distribution
(and on nuisance parameters) under the non-simple null case. We also assume that the
distribution of the test statistic is continuous. As a reproducible research computational
tool it can be viewed as helping to simply reproducing (or detecting errors in) simulation
results already published in the literature. Using our package helps also in designing new
simulation studies. The empirical levels and powers for many statistical test statistics
under a wide variety of alternative distributions can be obtained quickly and accurately
using a C/C++ and R environment. The parallel package can be used to parallelize
computations when a multicore processor is available. The results can be displayed using
LATEX tables or specialized graphs, which can be directly incorporated into a report. This
article gives an overview of the main design aims and principles of our package, as well
as strategies for adaptation and extension. Hands-on illustrations are presented to help
new users in getting started.

Keywords: reproducible research, Monte Carlo, goodness-of-fit test, power study, R.

1. Introduction
Reproducible research, a philosophy of research first promoted by Claerbout and Karrenbach
(1992), is a way of providing the reader of a document the possibility of reproducing all of its
graphical and numerical content. This implies access to all the data, codes and software to
run it, as well as instructions to use it properly. Note that this means that users can easily
produce similar results from their own data. In the specific field of research on goodness-of-
fit tests, most published papers contain a section including Monte Carlo simulation results

http://dx.doi.org/10.18637/jss.v069.i03


2 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

showing performance of several competing tests in terms of size and power. These results are
usually presented more or less in the form of voluminous tables. To obtain or reproduce such
results is a fastidious and time-consuming operation, as one usually has to program in one’s
favorite language all the test statistics involved, devise a plan for the simulations (including
all the chosen alternative distributions), run those simulations and integrate the results in a
LATEX table. These operations can take weeks (see e.g., Romão, Delgado, and Costa (2010) for
a comprehensive study of non-normality tests) and errors are difficult to avoid. To circumvent
these problems, we propose the following guidelines for reproducible research:

1. always provide an explicit (mathematical) formula or procedure to compute the test
statistic that has been developed;

2. apply the test on a small real (or simulated) data set and provide the data, the value
of the test statistic and the p value;

3. if possible, give a pseudocode description of the algorithm used to compute the test
statistic, its critical values and p values (see Kreher and Stinson (2005) for an appro-
priate LATEX package);

4. give clear indications or references for the competing tests and alternative distributions
used in the simulations, including the values of all the parameters involved;

5. assuming familiarity with the R and C/C++ languages, integrate the code of your func-
tions (with comments) into our package PoweR and use it to perform the simulations,
then in your publication give the set of instructions used.

As per these guidelines, we advocate the use of our new package PoweR. This is designed to
help obtain or verify empirical power studies for (goodness-of-fit) testing of a null hypothesis
that the (independent and identically distributed) simulated data comes from some specified
distribution. Its main characteristics are:

• generation of values from many probability distributions;

• computation of several goodness-of-fit test statistics;

• Monte Carlo computation of p values;

• functions to compute the empirical size and power of several hypothesis tests under
various distributions;

• various plot functions, described later, to ease graphical comparisons between tests;

• C/C++ implementation of several parts of the code for faster computations;

• optimized management of the random generated sampled values;

• possibility to use parallel computations, using the parallel package (R Core Team 2015),
if your computer is equipped with several CPUs or with multicore processors;

• output of LATEX tables that can be directly incorporated into your document;

• graphical user interface (GUI).



Journal of Statistical Software 3

However, we warn a potential user that the current version of our package is only valid for
simple null hypotheses or for pivotal test statistics for which the set of critical values does
not depend on a particular choice of a null distribution (and on nuisance parameters) under
the non-simple null case (but see Remark 2.2).
In the next section, we recall some results of computational theory of various statistical
quantities using Monte Carlo simulations, and recall the terminology used when one performs
a goodness-of-fit test simulation study. We also mention the probability distributions and the
hypothesis tests that are already included in the package. In Section 3, we show how to use
our package – via a script or via the GUI – to (re)produce a simulated comparison of powers
for already existing tests. In Section 4, we show how to extend the package to add a new law
or a newly created test. We then conclude the paper by giving future avenues of development.
Note that hereon, we will suppose that our package PoweR has been loaded into R memory
using the instruction library("PoweR"). All the computations presented in this paper have
been performed on a laptop under the Linux Debian 8 operating system, equipped with a 64
bit eight-cores Intel(R) Core(TM) i7 CPU 960 at 3.20GHz.

2. Monte Carlo simulations for goodness-of-fit tests

2.1. Theoretical background on hypothesis tests

Suppose that we have a sample X1, . . . , Xn of random variables for which the distribution
is assumed to belong to some parametric family F = {P(θ);P ∈ D,θ ∈ ΘP}, where D is
some subset of all the probability distributions and ΘP ⊂ RkP , kP ∈ N. Goodness-of-fit tests
are procedures designed to evaluate the following statistical hypotheses involving the true
probability distribution L(Xi) of Xi:

H0 : L(Xi) ∈ A = {P0(θ);θ ∈ Θ0 ⊂ ΘP0} versus H1 : L(Xi) ∈ F\A,

where P0(θ) ∈ F is called a null distribution. If the true distribution of the sample does
not belong to A, we call it an alternative distribution. For example, one might be interested
in testing non-normality, in which case P0(θ) = N (µ, σ2), the Gaussian distribution with
parameters θ = (µ, σ2). The truthfulness of hypothesis H0 is questioned, at a pre-specified
significance level α, using a test statistic Tn = T (X1, . . . , Xn) built so as to reflect a discrep-
ancy between the null hypothesis and the information brought by the data. Its observed value
tobs is usually compared with one (cα) or two (cL(α) and cR(α)) critical values (also called
percentage points) defining the so-called rejection (of H0) region Rα. That is we decide to
reject H0 (declare it is false) if and only if Tn ∈ Rα. In this paper, we shall only consider
rejection regions Rα of the form {Tn > cα}, {Tn < cα} or {Tn < cL(α)} ∪ {Tn > cR(α)}.
If F = F1 ∪ F2, where F1 and F2 are two nonempty disjoint families of distributions (e.g.,
sub-Gaussian and super-Gaussian distributions), and if the alternative hypothesis is H1 :
L(Xi) ∈ F1\A (instead of H1 : L(Xi) ∈ F\A), the test will be termed one-tailed or one-
sided; otherwise, it will be called two-tailed or two-sided.
Two types of errors are commonly associated with any test procedure. A Type-I error occurs
if we wrongly reject a true null hypothesis and a Type-II error if we fail to reject a false null
hypothesis. A test procedure is designed to control, with some threshold level (the significance
level α), the probability of committing a Type-I error. A critical value(s) is (are) needed to



4 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

define the rejection region, and is (are) chosen so that PH0 [Tn ∈ Rα] ≤ α (but as close to α as
possible). The probability of a Type-I error PH0 [Tn ∈ Rα] is called the size of the test and it
will be important to check if it is really less than α. Note that an evaluation of this size will be
possible numerically using our package; the value obtained being called the empirical size (or
sometimes empirical level) of the test. Note also that sometimes the critical values defining
the rejection region are computed based on the asymptotic distribution of Tn. Therefore, if
T∞ denotes any random variable following this asymptotic distribution, we choose critical
values such that PH0 [T∞ ∈ Rα] ≤ α. These asymptotic critical values will be denoted caα,
caL(α) and caR(α).

Several non-normality tests are available in the nortest package (Gross and bug fixes by
Uwe Ligges 2012). A question naturally arises for any user of this package: which test should
they use? The answer depends on the power 1−β(θ) of the test statistic Tn = T (X1, . . . , Xn)
considered, which is given by

1− β(θ) = PH1 [Tn ∈ Rα],

where β(θ) is the probability of committing a Type-II error and Rα is the α-rejection region
of the test procedure, determined beforehand as described above. For a given significance
level, the test with the greatest power (for a given value of θ) should be used. At this point,
one should note that given real data, the power of any test procedure is unknown because it
depends on the unknown true distribution of the sample at hand. This is why it is important
to perform simulations to compare numerically several hypothesis tests (designed to test the
same null hypothesis) numerically under a wide variety of common alternative distributions.
This is when our package PoweR becomes handy, as it offers a fast and automated way to
perform such computations using Monte Carlo simulations.

Another important characteristic attached to the application of a hypothesis test on real or
simulated data is the so-called p value, informally defined as the probability of obtaining
a test statistic at least as extreme as the one that was actually observed, assuming that
the null hypothesis is true. Note that two-sided statistical p values (those computed when
Rα = {Tn < cL(α)}∪{Tn > cR(α)}) are well defined (as 2PH0 [Tn > |tobs|]) only when the test
statistic considered has a symmetric distribution. For non-symmetric distributions, several
proposals have been made (Kulinskaya 2008) but none of them led to a consensus. In this
paper, we shall only consider the Fisher’s doubled p value (Yates 1984, p. 444), even given
the evident drawback of this doubling rule that it may result in a p value greater than 1
(The rule doubles the one-sided p value coming from the tail corresponding to the observed
direction, which is taken to be the lower one if tobs < q2 and the upper one otherwise, where
q2 is the median of Tn or of T∞). Fisher’s motivation was an equal prior weight of departure
in either direction. Future versions of our package might propose other approaches.

2.2. Monte Carlo computations

All the characteristics defined so far (critical values, size and power of the test, p value), can
be estimated numerically using Monte Carlo simulations. A typical algorithm is given below.



Journal of Statistical Software 5

Require: n (Sample size)
Require: M (Number of Monte Carlo samples)
Require: P (A probability distribution from which to generate numbers)
Require: θ (Vector of parameters of P)

for m = 1, . . . ,M do

– generate independently a sample xm = (x1,m, . . . , xn,m) of size n drawn at random
from a distribution P(θ) ∈ F for some fixed value θ of the parameter vector;

– compute the observed value of the test statistic tn,m = T (x1,m, . . . , xn,m).

end for
return

We can then use tn,1, . . . , tn,M to estimate quantities of interest. Let us consider a two-sided
test that rejects for either large or small values of the test statistic. If P = P0 (we are under
the null), we could compute (using our function many.crit()) the critical values

ĉL(α) = tn,(dMα/2e) and ĉR(α) = tn,(dM(1−α/2)e)

which are respectively the (α/2)th and (1 − α/2)th empirical quantiles, where dxe denotes
the smallest integer not less than x. Note that in the current version of our package, we
have assumed a rejection of the null with equal probability for large or small values of the
test statistic. The power of the test under some alternative distribution P(θ) can then be
estimated by

1− β̂(θ) =
#
{
tn,m; 1 ≤ m ≤M, tn,m < ĉL(α) or tn,m > ĉR(α)

}
M

,

where the tn,m are here computed under the alternative distribution specified by θ. If P = P0
and we have given values of cL(α) and cR(α), for example the (theoretical) asymptotical
critical values caL(α) and caR(α), we can compute the empirical size of the test by

#
{
tn,m; 1 ≤ m ≤M, tn,m < cL(α) or tn,m > cR(α)

}
M

.

Suppose one has an observed value tobs of some test statistic Tn used to evaluate some
goodness-of-fit hypothesis H0. The p value can be approximated (by p̂ given in Equation 1)
using the following procedure. First, randomly generateM samples under the null from which
you compute M values of the test statistic tn,1, . . . , tn,M . Next compute

p̂ =
{

2× #{tn,m;1≤m≤M,tn,m>tobs}
M if tobs > q̂0.5;

2× #{tn,m;1≤m≤M,tn,m≤tobs}
M otherwise,

(1)

where q̂0.5 is the empirical median of tn,1, . . . , tn,M .



6 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Remark 2.1. Let p ∈ (0, 1) and let {t(n,1), . . . , t(n,M)} be a set of i.i.d. generated realizations
of some continuous test statistic Tn arranged in ascending order. An asymptotic (in terms of
the number M of Monte Carlo samples) (1−α)-confidence interval for the p-th quantile xn,p
of Tn (i.e., P(Tn ≤ xn,p) = p) is given by[

t(n,iM ), t(n,jM )
]

where iM = b1
2 + Mp −

√
Mz1−α/2

√
p(1− p)c and jM = b1

2 + Mp +
√
Mz1−α/2

√
p(1− p)c,

1 ≤ iM , jM ≤ M , and where z1−α/2 is the (1 − α/2)-th quantile of a N (0, 1) distribution.
This approach can be used to obtain confidence intervals for the Monte Carlo estimators of
the critical values presented above (i.e., for ĉL and ĉR).
Similarly, a (1− α)-confidence interval for the estimated power 1− β̂(θ) is given by (normal
approximation) 1− β̂(θ)± z1−α/2

√
β̂(θ)(1− β̂(θ))

M


or by (Wilson 1927’s improvement)

1

1 +
z2

1−α/2
M

1− β̂(θ) +
z2

1−α/2
2M ± z1−α/2

√
β̂(θ)(1− β̂(θ))

M
+
z2

1−α/2
4M2

 .

2.3. Presenting results

Presenting Monte Carlo results to show evidence of the finite-sample properties of hypothesis
testing procedures usually relies on tables of the (empirical) size and power of these hypothesis
tests. One can also use simple techniques for the graphical display of simulation evidence. Our
package PoweR render these tasks easily. The reader is encouraged to read Ehrenberg (1977)
which contains some precepts for improving data presentations. Davidson and MacKinnon
(1998) describe three types of figures, called p value plots, p value discrepancy plots and size-
power curves that convey much more information, in a more easily assimilated form, than
tables; see also Koziol (1989), Lieber (1990), Schweder and Spjøtvoll (1982) and Wilk and
Gnanadesikan (1968).
All of these graphs, presented below, are based on the empirical distribution function (EDF)
of the p values of the test statistic considered. If we have a generated sample p1, . . . , pN of
p values derived from observed values of a certain test statistic Tn (under a given distribution),
then the associated EDF is computed using the following formula:

F̂ (x) = 1
N

N∑
`=1

1l{p` ≤ x} ∀x ∈ (0, 1), (2)

where 1l{C} equals 1 if condition C is satisfied, and 0 otherwise. This EDF can be evaluated
at J points xj , j = 1, . . . , J which should be chosen in advance so as to provide a reasonable
snapshot of the (0, 1) interval, or of that part of it which is of interest. A quite parsimonious
way to choose the xj is

xj = 0.001, 0.002, . . . , 0.010, 0.015, . . . , 0.990, 0.991, . . . , 0.999 (J = 215). (3)



Journal of Statistical Software 7

Extra points can be added near 0 and 1 to ensure that we do not miss any unusual behavior
in the tails.
Two plots designed to evaluate (and compare) the size of one or several test statistics under
the null hypothesis are:
• The p value plot: this is a plot of F̂ (xj) against xj , j = 1, . . . , J . If the distribution of
Tn used to compute the pi’s is correct, each of the pi should be the realization of a uniform
distribution on (0, 1). Therefore, when F̂ (xj) is plotted against xj , the resulting graph should
be close to the 45◦ line. We can then easily distinguish at a glance between test statistics that
systematically over-reject, under-reject, or reject in roughly the right proportion of times.
• The p value discrepancy plot: this is a plot of F̂ (xj)− xj against xj . This plot conveys
a lot more information than p value plots for test statistics that are well behaved. However,
some of this information is spurious, simply reflecting experimental randomness. Davidson
and MacKinnon (1998, Section 5) therefore discuss semi-parametric methods for smoothing
them. Moreover, because there is no natural scale for the vertical axis, p value discrepancy
plots can be harder to interpret than p value plots.
The nominal (i.e., approximated) size of a test is often different from the true size PH0 [Tn ∈
Rα], for example when it is computed using some approximation (e.g., asymptotic) of the
(finite sample) null-distribution of Tn. Because the previous graphs are used to evaluate the
correctness of the size, it is important to note that the p values under the null should be
calculated using this approximate distribution.
If we want to compare the power of competing tests, we can use the following graph which
has the advantage of being useable even if all the tests do not have the correct size. In this
case, the p values under the null can be calculated using a Monte Carlo approximation of the
null distribution.
• The size-power curves: the points (F̂ (xj), F̂ ∗(xj)), j = 1, . . . , J , including the points
(0, 0) and (1, 1), where F̂ (x) and F̂ ∗(x) are respectively the EDF of the p values under the null
and under the alternative distribution; see Wilk and Gnanadesikan (1968) for a description of
such a plot and Bhattacharya and Habtzghi (2002) for a definition of the p value as a random
variable.
We define three other quantities, given a table of powers pik (1 ≤ i ≤ I, 1 ≤ k ≤ K) of
test statistics T1, . . . , TK against I alternative distributions. For a given sample size n and
significance level α, the average power for test statistic Tk is defined as

1
I

I∑
i=1

pik,

the average gap power is defined as

1
I

I∑
i=1

∣∣∣∣pik − max
1≤k≤K

(pik)
∣∣∣∣

and the worst gap power is defined as

max
1≤i≤I

∣∣∣∣pik − max
1≤k≤K

(pik)
∣∣∣∣ .



8 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Remark 2.2. Unless the null is a simple one, there will be an infinite number of data
generating processes (DGPs) that satisfy it. If the test statistic is pivotal, it does not matter
which one we use to generate F̂ (x). However, if it is not pivotal (such as the standard
Kolmogorov-Smirnov test when the parameters are estimated), the choice of which DGP to
use can matter greatly. Davidson and MacKinnon (1996) argue that a reasonable choice
is the pseudo-true null, which is the DGP that satisfies the null hypothesis and is as close
as possible, in the sense of the Kullback-Leibler information criterion, to the DGP used to
generate F̂ ∗(x). This approach has not been implemented in our package and the choice of
which DGP to use is left to the responsibility of the reader.

3. Using PoweR

3.1. Preliminaries

The instruction help(package = "PoweR") returns a list of all the functions available in
package PoweR. These are listed in Table 1 below.

3.2. Distributions in PoweR

The PoweR package contains a large set of probability distributions (39 at the moment of
writing this paper) from which to generate random numbers. These are detailed in Section A
in the Appendix. Note that this information is also available from within R, as illustrated
below.

R> head(getindex()$mat.laws)

Index Law Nbparams Default1 Default2 Default3 Default4
1 1 Laplace(mu,b) 2 0 1 NA NA
2 2 Normal(mu,sigma) 2 0 1 NA NA
3 3 Cauchy(mu,sigma) 2 0 1 NA NA
4 4 Logistic(mu,sigma) 2 0 1 NA NA
5 5 Gamma(shape,rate) 2 2 1 NA NA
6 6 Beta(a,b) 2 1 1 NA NA

The columns Default1 to Default4 display the default values of the parameters of each corre-
sponding probability distribution in the Law column (e.g., mu = 0 and b = 1 for Laplace(mu,
b)). In this context, the useful function help.law() enables one to obtain various informa-
tion about a given law. For example, try help.law(6) to display documentation about the
law whose index is 6, namely the Beta(a,b) distribution.
The function gensample() enables one to generate a sample from any distribution in the
package. Try this to generate a random sample of size 10 from a N (µ, σ) distribution with
µ = 1 and σ = 2:

R> gensample(law.index = 2, n = 10, law.pars = c(1, 2))



Journal of Statistical Software 9

Name Description
calcFx() Empirical distribution function of p values
checklaw() Check proper behavior of a random generator
compquant() Computation of the quantile values only for one test statistic
create.alter() Return automatically a named list of alter values (type) for test

statistics
gensample() Generate random samples from a law added in the package
getindex() Retrieve indices of laws and test statistics
getnbparlaws() Retrieve the default number of parameters of some laws
getnbparstats() Get numbers of parameters of test statistics
graph() p value plots, p value discrepancy plots and size-power curves
help.law() Open documentation for a given law using its index
help.stat() Open documentation for a test using its index
law.cstr() Gives information about a given law
many.crit() Compute critical values for several test statistics, sample sizes and

significance levels, for a given law
many.pval() Computation of p values for several test statistics
plot.discrepancy() p value discrepancy plots
plot.pvalue() p value plots
plot.sizepower() Size-power curves
powcomp.easy() Computation of power and level tables for hypothesis tests (“slow”

but easy to use version)
powcomp.fast() Computation of power and level tables for hypothesis tests, for

several sample sizes and significance levels (“fast” version)
power.gui() Graphical user interfaces (GUI)
print.critvalues() Transform the critical values given by function many.crit() into

LATEX code to build a table of critical values
print.power() Transform the power values given by function powcomp.fast()

into LATEX code to build a table of power values
pvalueMC() Computation of one p value for one test statistic by means of

Monte Carlo simulations
stat.cstr() Gives information about a test statistic
statcompute() Perform one of the hypothesis tests available in the package

Table 1: Functions from package PoweR.

$sample
[1] -0.2529076 1.3672866 -0.6712572 4.1905616 1.6590155 -0.6409368
[7] 1.9748581 2.4766494 2.1515627 0.3892232

$law
[1] "Normal(mu,sigma)"

$law.pars
[1] 1 2



10 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

3.3. Goodness-of-fit test statistics in PoweR

The PoweR package contains many functions to test non-normality, non-uniformity and non-
laplacity. These are given in Tables 4, 6 and 5 of the Appendix respectively.
The instruction getindex()$mat.stats returns a data.frame with four columns listing these
test statistics. The first one (Index) contains the indices of all the test statistics available
in PoweR. The second one (Stat) contains the corresponding names of these test statistics.
The third one (Alter) gives the type of test:

Alter =



0 for a two-sided test with Rα = {Tn < cL(α)} ∪ {Tn > cR(α)};
1 for a one-sided test with Rα = {Tn < cα};
2 for a one-sided test with Rα = {Tn > cα};
3 for a two-sided test with Rα = {Tn > cα};
4 for a two-sided test with Rα = {Tn < cα}.

If Alter = 0, Fisher’s doubled p value will be computed. The fourth argument (Nbparams)
gives the number of parameters for the corresponding test statistic. This is illustrated below.

R> head(getindex()$mat.stats)

Index Stat Alter Nbparams
1 1 K-S 3 0
2 2 AD^* 3 0
3 3 Z_C 3 0
4 4 Z_A 3 0
5 5 P_S 3 0
6 6 K^2 3 0

Note that the function getindex() can be used to obtain this information for a subset of all
test statistics using its argument stat.indices:

R> getindex(stat.indices = c(17, 23, 78))

Index Stat Alter Nbparams
17 17 T_w 0,1,2 0
23 23 tilde{W} 4 0
78 78 D_{n,m}(phi_lambda) 3 2

The function help.stat() displays some information about a given test statistic. Try for
example help.stat(21) to display the documentation for the test whose index is 21, namely
the Shapiro-Wilk test for non-normality.

3.4. Perform a test on an observed data sample

The function statcompute() enables one to perform a test on a given sample of observed
(or simulated) data. This is illustrated by showing that it gives identical results to the
shapiro.test() function from stats package (R Core Team 2015).



Journal of Statistical Software 11

R> set.seed(1)
R> x <- rnorm(10)
R> shapiro.test(x)

Shapiro-Wilk normality test

data: x
W = 0.93828, p-value = 0.534

R> statcompute(stat.index = 21, data = x, level = 0.05)

$statistic
[1] 0.9382803

$pvalue
[1] 0.5340414

The arguments of this function are:

• stat.index: this should be a single integer-valued index.

• data: sample from which to compute the test statistic.

• levels: vector giving the desired significance levels for the test.

• critvalL: if not NULL, a vector of left critival values;
critvalR: if not NULL, a vector of right critival values.
The length of each vector of critical values should be the same as the length of the
argument levels. A convenient way to fill these values is either to use the quantiles
of the asymptotic null distribution (e.g., qchisq(0.95,2) for a χ2

2 distribution), or to
use the function compquant() to compute them using a Monte Carlo simulation with
M repetitions:

R> crit <- compquant(n = 10, law.index = 2, stat.index = 21, M = 10^5)
R> crit$quant

2.5% 5% 10% 90% 95% 97.5%
0.8186749 0.8443032 0.8702271 0.9714234 0.9782153 0.9830226

Note that if both critvalL and critvalR are NULL, then the decisions to reject H0
(1 is the code for a rejection) are taken by comparing the p value to each element of
levels. The p value is, most of the time, computed using the asymptotic (or tabulated1)
distribution of the test statistic under the null. If this computation is not possible, the
NA value is returned. Nevertheless, the function pvalueMC(), described later on, can
always be used.

1These tables can be found in the original articles where the test statistic has been published. An advanced
user could also look into the pvalue*.cpp files in folder src/law-stats/stats/pvalues/ (e.g., pvalue42.cpp).



12 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

• alter: a single integer value in {0, 1, 2, 3, 4}, explained at the beginning of Section 3.3.

• stat.pars: A vector of parameters. If NULL, the default parameter values for this
test statistic will be used. See Tables 4, 6 and 5 in the Appendix for a list of these
parameters.

3.5. Monte Carlo p values

The function pvalueMC() can be used to compute a Monte Carlo empirical p value as described
in Equation 1. Its arguments are

• data: sample from which to compute the p value.

• stat.index: this should be a single integer-valued index of the test statistic considered.

• null.law.index: index of the law under the null hypothesis.

• M: number of Monte Carlo repetitions; default value is 105.

• alter: integer value in {0, 1, 2, 3, 4} giving the type of test as described above.

• null.law.pars: if not NULL, vector of the parameter values for the law specified by
law.index.

• stat.pars: if not NULL, vector of parameter values for the test.

• list.stat: if not NULL, a vector of M statistic values computed under the null.

• method: not used. only the doubled p value of Fisher is available for the moment.

R> x <- rnorm(100)
R> statcompute(1, x, levels = 0.05, alter = 3)$pvalue

[1] 0.4342264

R> pvalueMC(x, stat.index = 1, null.law.index = 2, M = 10^5, alter = 3)

[1] 0.43143

3.6. Perform a simulation study using a script

In this section, we briefly present the main functions of our package by showing how to obtain
the simulation results from an article already published. Puig and Stephens (2000) present
several simulation results for tests of the Laplace distribution. Using our package PoweR, we
can easily retrieve the same simulation results with a few command lines.

Critical values

Let us start by reproducing their Table 1, containing the percentage points (critical values)
of the Cramér-von Mises statistic W 2 (index: 43). In the following, we consider n = 1, 000



Journal of Statistical Software 13

as being Infinity, the value 1 for law.index stands for the Laplace distribution, M denotes
the number of Monte Carlo repetitions, vectn is the vector of sample sizes and levels is the
vector of significance levels.

R> system.time({
+ law.index <- 1
+ M <- 10^5
+ vectn <- c(10, 15, 20, 35, 50, 75, 100, 1000)
+ levels <- c(0.50, 0.25, 0.10, 0.05, 0.025, 0.01)
+ table1 <- many.crit(law.index, stat.indices = 43, M, vectn, levels,
+ alter = list(stat43 = 3))
+ })

user system elapsed
46.432 0.026 46.597

R> print(table1, digits = 3)

n 0.5 0.25 0.1 0.05 0.025 0.01
[1,] 10 0.0485 0.0695 0.0968 0.118 0.140 0.171
[2,] 15 0.0539 0.0792 0.1137 0.142 0.171 0.210
[3,] 20 0.0509 0.0744 0.1060 0.131 0.157 0.191
[4,] 35 0.0539 0.0799 0.1156 0.144 0.173 0.212
[5,] 50 0.0528 0.0776 0.1113 0.138 0.166 0.206
[6,] 75 0.0542 0.0802 0.1157 0.144 0.173 0.212
[7,] 100 0.0534 0.0791 0.1142 0.142 0.171 0.209
[8,] 1000 0.0540 0.0800 0.1154 0.144 0.173 0.214

The function many.crit() computes critical values for several test statistics and significance
levels. It outputs an object of class critvalues. Its arguments are

1. law.index: law index as displayed by function getindex().

2. stat.indices: vector of the indices of statistics as displayed by function getindex().

3. M: number of Monte Carlo repetitions to use.

4. vectn: vector of numbers of observations for the samples to be generated.

5. levels: vector of required level values.

6. alter: named-list with type of test for each statistical test: alter[["statj"]] = 0, 1,
2, 3 or 4.

7. law.pars: if not NULL, a vector of length at most 4 containing parameters of the law
from which to generate random values.

8. parstats: named-list of parameter values for each statistic to simulate. The names
of the list should be statj, j taken in stat.indices. If NULL, the default parameter
values for the corresponding statistic will be used.



14 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Significance level (α)

Sample size (n) 0.5 0.25 0.1 0.05 0.025 0.01
10 0.049 0.069 0.097 0.118 0.140 0.171
15 0.054 0.079 0.114 0.142 0.171 0.210
20 0.051 0.074 0.106 0.131 0.157 0.191
35 0.054 0.080 0.116 0.144 0.173 0.212
50 0.053 0.078 0.111 0.138 0.166 0.206
75 0.054 0.080 0.116 0.144 0.173 0.212
100 0.053 0.079 0.114 0.142 0.171 0.209
1000 0.054 0.080 0.115 0.144 0.173 0.214

Table 2: Critical values of W 2 test.

9. model: NULL. Not implemented yet.

10. Rlaw : If law.index is set to 0, then Rlaw should be a (random generating) function.

11. Rstats: A list of the same length as stat.indices. If a value of the vector stat.indices
is set to 0, the corresponding component of the list Rstats should be an R function that
outputs a list with components statistic (value of the test statistic), pvalue (p-value
of the test; if not computable should be set to 0), decision (vector of decisions for each
value in levels; 1 if we reject the null, 0 otherwise), alter (see above), stat.pars
(see above), pvalcomp (1L if the p-value can be computed, 0L otherwise), nbparstat
(length of stat.pars). A user can thus provide its own R functions to perform statisti-
cal tests. Note: If a value of stat.indices is not 0, then the corresponding component
of Rstats should be set to NULL. The input arguments of this R function should be
data, levels, usecrit=0 (will be set to 1 upon call if critical values are to be used to
take the decisions), critvalL=0 and critvalR=0. Depending on the value of alter,
only critvalL or only critvalR or both will be used.

The function print.critvalues() allows us to display the simulation results of critical values
for the Cramér-von Mises W 2 statistic. Manipulating its arguments correctly yields the
required display:

1. x: critical values given by function many.crit().

2. digits: integer indicating the number of decimal places to be used.

3. latex.output: logical. If TRUE, we output LATEX code for the table of critical values.
If FALSE, we display a table in the R console.

If latex.output = TRUE, a LATEX code is returned. After compilation, with pdflatex say,
this gives directly Table 2 below, which is virtually identical to Table 1 in Puig and Stephens
(2000). Note that the function print.critvalues() automatically adapts its result (to
produce one or several tables) depending on the number of test statistics.



Journal of Statistical Software 15

Note that the same procedure can be used to obtain in one shot the critical values of Tables 1-
4 in Puig and Stephens (2000) for the Watson U2, Anderson-Darling A2, Kolmogorov

√
nD

and Kuiper V statistics.

Power

These critical values being obtained, we can study the empirical power of these tests using the
instructions below. The alternative distributions we have considered are the Normal, Cauchy,
Logistic symmetric and Generalized Extreme Value distributions, for which the indices (given
in law.indices) are 2, 3, 4 and 28, respectively. As before, the value 1 for law.index stands
for the Laplace distribution, and alter is a list defining the type of each test. Note that
the default values that we used for the alternative distributions can be obtained using the
function law.cstr().

R> system.time({
+ law.index <- 1
+ M <- 10^5
+ vectn <- c(10, 15, 20, 35, 50, 75, 100)
+ levels <- 0.05
+ stat.indices <- c(43, 44, 42, 45, 46)
+ law.indices <- c(2, 3, 4, 28)
+ alter <- create.alter(stat.indices, rep(3, 5))
+ critval <- many.crit(law.index, stat.indices, M, vectn, levels, alter)
+ table6 <- powcomp.fast(law.indices, stat.indices, vectn, M, levels,
+ critval = critval, alter)
+ })

user system elapsed
152.362 0.041 152.822

Remark 3.1. If you have at your disposal a multicore processor, you can use the argument
nbclus=p, where p is the number of cores on which you want to perform the computations.

The function print.power() works similarly to print.critvalues(). Table 3 below is
obtained using the instruction print(table6,digits=3,latex.output=TRUE). The results
we have obtained are very similar to those presented in Table 6 from Puig and Stephens
(2000). Note that our function adds the average power, the average gap power and the worst
gap power to this table of powers (see Section 2.3 for a definition of these quantities).
The arguments of the function powcomp.fast() are:

1. law.indices: vector of law indices as displayed by function getindex().

2. stat.indices: vector of indices of statistics as given by function getindex().

3. vectn: vector of numbers of observations for the samples to be generated.

4. M: number of Monte Carlo repetitions to use.

5. levels: vector of required level values.



16 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Goodness-of-fit tests

Alternative n α W 2 U2 A2 √
nD V

Normal(mu=0,sigma=1) 10 0.05 4.985 5.52 4.589 4.65 5.407
15 0.05 6.906 7.546 6.572 7.762 7.574
20 0.05 7.468 11.116 6.747 8.61 10.566
35 0.05 12.058 21.932 10.542 14.563 19.298
50 0.05 17.209 33.531 14.917 19.74 29.343
75 0.05 27.635 52.554 24.272 28.907 45.134

100 0.05 40.934 68.833 36.258 37.895 59.987
Cauchy(mu=0,sigma=1) 10 0.05 33.748 39.232 35.658 32.399 38.036

15 0.05 41.529 52.576 44.067 39.771 50.648
20 0.05 53.839 63.26 55.911 51.114 61.017
35 0.05 73.236 82.613 74.666 69.888 80.347
50 0.05 86.347 92.122 87.236 83.201 90.572
75 0.05 95.382 97.977 95.851 93.481 97.259

100 0.05 98.68 99.527 98.811 97.75 99.287
Logistic(mu=0,sigma=1) 10 0.05 4.672 4.695 4.344 4.387 4.698

15 0.05 5.983 5.543 5.606 6.327 5.655
20 0.05 5.919 7.161 5.377 6.37 7.068
35 0.05 8.155 11.832 7.096 9.382 10.773
50 0.05 9.983 17.101 8.485 11.697 15.515
75 0.05 13.921 26.13 11.465 15.92 23.043

100 0.05 18.739 35.818 15.16 20.019 31.021
GEV(mu=0,sigma=1,xi=0) 10 0.05 7.437 6.871 7.715 6.436 6.645

15 0.05 9.808 9.009 10.911 9.154 8.648
20 0.05 12.007 12.431 13.993 10.626 11.337
35 0.05 19.062 23.288 24.077 16.281 19.62
50 0.05 28.544 35.614 38.068 22.724 29.631
75 0.05 43.922 54.677 59.274 33.957 45.658

100 0.05 61.426 71.114 78.618 46.877 60.424

Average power n α W 2 U2 A2 √
nD V

10 0.05 12.710 14.079 13.077 11.968 13.697
15 0.05 16.056 18.669 16.789 15.754 18.131
20 0.05 19.808 23.492 20.507 19.180 22.497
35 0.05 28.128 34.916 29.095 27.529 32.509
50 0.05 35.521 44.592 37.176 34.340 41.265
75 0.05 45.215 57.834 47.715 43.066 52.773

100 0.05 54.945 68.823 57.212 50.635 62.680

Average gap n α W 2 U2 A2 √
nD V

10 0.05 1.581 0.212 1.215 2.323 0.595
15 0.05 3.337 0.725 2.605 3.640 1.263
20 0.05 4.074 0.391 3.375 4.703 1.385
35 0.05 6.986 0.197 6.018 7.585 2.604
50 0.05 9.685 0.614 8.029 10.865 3.940
75 0.05 13.769 1.149 11.268 15.918 6.210

100 0.05 15.754 1.876 13.487 20.064 8.019

Worst gap n α W 2 U2 A2 √
nD V

10 0.05 5.484 0.844 3.574 6.833 1.196
15 0.05 11.047 1.902 8.509 12.805 2.263
20 0.05 9.421 1.562 7.349 12.146 2.656
35 0.05 9.874 0.789 11.390 12.725 4.457
50 0.05 16.322 2.454 18.614 15.344 8.437
75 0.05 24.919 4.597 28.282 25.317 13.616

100 0.05 27.899 7.504 32.575 31.741 18.194

Table 3: Power of W 2, U2, A2,
√
nD and V tests.



Journal of Statistical Software 17

6. critval: named-list of critical values for each test statistic. The names of the list
should be statj, j taken in stat.indices.

7. alter: named-list with type of test for each statistical test: alter[["statj"]]=0, 1,
2, 3 or 4.

8. parlaws: named-list of parameter values for each law to simulate. The names of the
list should be lawj, j taken in law.indices. The length of vector lawj should not be
greater than 4.

9. parstats: named-list of parameter values for each statistic to simulate. The names
of the list should be statj, j taken in stat.indices. If NULL, the default parameter
values for the corresponding statistics will be used.

10. nbclus: number of slaves to use for computation on a cluster.

11. model: NULL. Not implemented yet.

12. Rlaws: When some law indices in law.indices are equal to 0, this means that you will
be using some R random generators. In that case, you should provide the names of the
random generation functions in the corresponding components of Rlaws list, the other
components should be set to NULL.

13. Rstats: A list of the same length as stat.indices. If a value of the vector stat.indices
is set to 0, the corresponding component of the list Rstats should be an R function that
outputs a list with components statistic (value of the test statistic), pvalue (p-value
of the test; if not computable should be set to 0), decision (vector of decisions for each
value in levels; 1 if we reject the null, 0 otherwise), alter (see above), stat.pars
(see above), pvalcomp (1L if the p-value can be computed, 0L otherwise), nbparstat
(length of stat.pars). A user can thus provide its own R functions to perform statisti-
cal tests. Note: If a value of stat.indices is not 0, then the corresponding component
of Rstats should be set to NULL. The input arguments of this R function should be
data, levels, usecrit=0 (will be set to 1 upon call if critical values are to be used to
take the decisions), critvalL=0 and critvalR=0. Depending on the value of alter,
only critvalL or only critvalR or both will be used.

Plots
Our package PoweR provides not only the LATEX tables of critical values and powers, but also
plots based on p values as explained in Section 2.3. These are obtained (except for statistics
45 and 46 for which no general theory exists to find their asymptotic distribution) using
the R instructions given below, and are shown in Figures 1, 2 and 3. Note that the results
of Puig and Stephens (2000) are not that easy nor quick to obtain because the asymptotic
distribution is an infinite sum of weighted chi-squared random variables. Unfortunately, the
weights λ are not provided in their paper and computing them is not an easy task and
involves optimization procedures that can be time consuming. This illustrates pretty well the
reproducibility problem.

R> stind <- c(43, 44, 42)
R> alter <- create.alter(stind, rep(3, 3))



18 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P value plots
 N = 100000 & m = 215

Data: Laplace(mu=0,b=1)
Nominal Size

A
ct

ua
l S

iz
e

45
 d

eg
re

e 
lin

e

W^2
U^2
A^2

Figure 1: p value plot.

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

P value discrepancy plots
 N = 100000 & m = 215

Data: Laplace(mu=0,b=1)
Nominal Size

S
iz

e 
D

is
cr

ep
an

cy

W^2
U^2
A^2

W^2
U^2
A^2

Figure 2: p value discrepancy plot.

R> system.time({
+ ptmpnull <- many.pval(stat.indices = stind, law.index = 1,
+ n = 100, M = 10^5, N = 10^5, alter = alter, null.dist = 2,
+ method = "direct")$pvals
+ })

user system elapsed
31084.243 0.906 31170.972



Journal of Statistical Software 19

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Size−power curves
 N = 100000 & m = 215

Data: Logistic(mu=0,sigma=1)
size

po
w

er

45
 d

eg
re

e 
lin

e

W^2
U^2
A^2

Figure 3: Size-power curves.

R> Fxnull <- calcFx(ptmpnull)

The call to the many.pval() function above, where stind contains the indices of the hypoth-
esis tests and alter contains the type of each test, produces a N × 3 matrix for which the
k-th column is an N -dimensional vector of p values associated with the k-th test statistic
(1 ≤ k ≤ 3). These p values are calculated via a direct method, namely using the true null
distribution (if it is known), the asymptotic null distribution or any other theoretical approx-
imation to it. Next, the function calcFx() is applied columnwise on this matrix of p values
to compute F̂ (xj), using Equation 2 for the J points given in Equation 3.
Now we can produce the first two graphs (Figures 1 and 2):

R> plot.pvalue(Fxnull)
R> plot.discrepancy(Fxnull, legend.pos = "topleft")

To produce the size-power curves, we first need to use the following instructions, where now
a Monte Carlo approach is employed to compute the p values.

R> system.time({
+ ptmpnull <- many.pval(stat.indices = stind, law.index = 1, n = 100,
+ M = 10^5, N = 10^5, alter = alter, null.dist = 2, method = "MC")$pvals
+ })

user system elapsed
13279.27 0.34 13321.65

R> Fxnull <- calcFx(ptmpnull)
R> system.time({



20 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

+ ptmp <- many.pval(stat.indices = stind, law.index = 4, n = 100, M = 10^5,
+ N = 10^5, alter = alter, null.dist = 2, method = "MC")$pvals
+ })

user system elapsed
13054.455 0.548 13100.285

R> Fx <- calcFx(ptmp)

This last instruction will give the third graph (Figure 3):

R> plot.sizepower(Fx, Fxnull)

3.7. Using user-defined densities and tests coded in R
It is possible to avoid the burden of a C++ implementation of your test or of the random
generation procedure for a new density not yet included in the package. This is easily done
through the Rstats and Rlaw (or Rlaws) arguments, as will be described below. Note however
that this can lead to an increase in the computing time. Also, we think that one should
consider implementing these in C++ (see Section 4) before publication in order to follow the
guidelines presented in the Introduction (in particular step 5).
We present below a situation where we want to evaluate the power of the Shapiro-Wilks test
for normality against the Benini alternative distribution. Random values of this distribution
(not included in our package) can be obtained thanks to the rbenini() function in the VGAM
package (Yee 2014). For pedagogic purpose, we show how to use both (and simultaneously)
the Shapiro-Wilks test implemented (in C++) in our package (Index=21) and an R user-
defined function of the same test called my.shapiro().
Note that any R user-defined test function should follow the same pattern as the one below.
Its input and output arguments are described in page 17. The body of this function contains
a call to the base R function shapiro.test(). Obviously, if you develop a new goodness-of-fit
test, you will replace it by a call to your own R procedure.

R> my.shapiro <- function(data, levels, usecrit = 0, critvalL = 0,
+ critvalR = 0)
+ {
+ res <- shapiro.test(data)
+ decisions <- rep(0, length(levels))
+ for (i in 1:length(levels)) {
+ if (usecrit == 0) {
+ decisions[i] <- if (res$p.value < levels[i]) 1 else 0
+ } else {
+ decisions[i] <- if (res$statistic < critvalL[i]) 1 else 0
+ }
+ }
+ return(list(statistic = res$statistic, pvalue = res$p.value,
+ decision = decisions, alter = 4, stat.pars = NULL, pvalcomp = 1L,
+ nbparstat = 0))
+ }



Journal of Statistical Software 21

The following code computes critical values. Note that in order to use an R random generating
function (rnorm() here), one has to set law.index to 0, specify the name of that R function
via the Rlaw argument and specify the values of the parameters of the distribution through
the law.pars argument. Similarly, to use an R function for your test (my.shapiro() here),
you have to set the value of stat.indices to 0 and specify the name of that function via
the Rstats argument. The other components of Rstats, corresponding to non-zero values of
stat.indices, should be set to NULL.

R> M <- 10^5
R> levels <- 0.05
R> vectn <- c(10, 15, 100)
R> stind <- c(21, 0)
R> alter <- create.alter(stind, rep(4, 2))
R> (critval <- many.crit(law.index = 0, stat.indices = stind, M, vectn,
+ levels, alter, Rlaw = list(rnorm), law.pars = c(0, 1),
+ Rstats = list(NULL, my.shapiro)))

n level critL.stat21 critL.stat0
1 10 0.05 0.8442145 0.8442145
2 15 0.05 0.8816759 0.8816759
3 100 0.05 0.9746649 0.9746649

Now we compute the empirical power using the above set of critical values. The functioning
of the Rlaws and Rstats arguments are similar as above. We recall that Index=2 stands
for the Gaussian distribution. Below, we generate observations from the standard Gaussian
distribution and from the Benini(1, e1) distribution.

R> library("VGAM")
R> law.indices <- c(2, 0)
R> (powcomp.fast(law.indices, stind, vectn, M, levels, critval = critval,
+ alter, Rlaws = list(NULL,rbenini), parlaws = list(law2 = c(0, 1),
+ law0 = c(1, exp(1))), Rstats = list(NULL, my.shapiro)))

law n level W stat0
1 Normal(mu=0,sigma=1) 10 0.05 4.815 4.815
2 15 0.05 4.718 4.718
3 100 0.05 4.946 4.946
4 rbenini(1,2.71828182845905) 10 0.05 25.288 25.288
5 15 0.05 40.898 40.898
6 100 0.05 99.983 99.983

n level W stat0
Average power 10 0.05 15.052 15.052
2 15 0.05 22.808 22.808
3 100 0.05 52.465 52.465

n level W stat0
Average gap 10 0.05 0 0
2 15 0.05 0 0



22 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Figure 4: PoweR GUI.

3 100 0.05 0 0
n level W stat0

Worst gap 10 0.05 0 0
2 15 0.05 0 0
3 100 0.05 0 0

3.8. The graphical user interface (GUI)
To aid in using the package, we have created a GUI. To start it, simply type power.gui()
in the R console (see the ‘Details’ section in help(power.gui) concerning potential problems
with Iwidgets). You should see the window shown in Figure 4.
This interface consists of five tabs:

• Generate sample: generate random samples from a law added in the package.

• Compute statistic: compute value of the test statistic for a given test index.

• Critical values: compute critical values of several test statistics.

• Compute power: compute power for hypothesis tests.

• Examples: reproduce simulation results already published in the literature.

The lower portion of the window – a different one corresponding to each tab – is divided into
two parts: the left and the right sides.

• Left side: this contains required fields (e.g., indices of laws, tests, or parameters, etc.),
a Reset button used to reset the fields to their original values and a Submit button
used to send commands to a text editor on the right side of the window. In addition, ?
buttons instruct us on how to fill in the fields, as depicted in Figure 5.
The ? button at the bottom left sends us directly to the documentation of the function
corresponding to this tab.



Journal of Statistical Software 23

Figure 5: Help window ?.

• Right side: this contains a text editor that receives commands from the left. It is easy
to edit, then to save with the Save button, or to load a file already created by the Load
button. We can execute commands via the Run button.

You will find in the Examples tab around 50 code examples which allow us to regenerate
simulation results from many articles already published in the literature.

4. Extending PoweR
When a researcher plans a new simulation study to evaluate the performance, in terms of
power, of a newly developed procedure, he or she might need to proceed as described below.
Note that to help in integrating new functions into the package, we employed a mechanism
described in Temple Lang (2001) to register our C/C++ routines. The developper then only
has to add his own law and/or hypothesis test files in the appropriate subfolders.

4.1. Adding a law

It is possible to add a new law to our package PoweR. These new laws will then be used to
generate random values in order to offer other choices of alternative distributions for power
comparisons. We assume that you have already downloaded our package source code from
the CRAN website. Here are a few steps to guide you through the process of implementing
a new law in the package:

1. Add the definition of the new law in the two C++ files def-laws-stats.cpp and
register.cpp, following the instructions given in those files. These two files are located
in the subfolder Power/src/laws-stats/.

2. Create a new C++ file lawj.cpp in subfolder Power/src/laws-stats/laws/ that will
contain the source code to generate observations from the new distribution, where j is
an available index for the new law. Note that j should be taken as the value returned
by the following instruction: nrow(getindex()$mat.laws)+1. Look at the other files
in that directory to see how to write your own file. All files (should) have the same
pattern which is succinctly described below. The function prototype (all arguments are
pointers) is:



24 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

void lawj (int *xlen, double *x, char **name, int *getname,
double *params, int *nbparams, int *setseed);

where xlen[0] will receive from R the length of the data sample to be generated, x
will be used for these generated data to be passed back to R, name will be a 50-length
pointer to char pointers each one of length 1, the purpose being to output the name
of the distribution, getname[0] will contain 1 or 0 depending if the distribution name
should be retrieved or not (in the former case, no data will be generated), params (of
length nbparams[0]) will receive the values of the parameters of the distribution, and
finally the input parameter seed[0] will contain 1 if one wants to read in .Random.seed
and write it out after use; otherwise it must be set to 0.

3. Create a help file for your new law in subfolder Power/man/. Follow the pattern
of the other law help files in that same directory. You should also update the file
Distributions.Rd.

4. Recompile package PoweR (Windows: R CMD INSTALL –build PoweR; Linux: R CMD
build PoweR).

Moreover, it is advisable to program (in R language) the new law density function and to add
it to the file PoweR/inst/laws/densities.R as well as the computation of the expectation
and variance and add them to the file PoweR/inst/laws/moments.R. You should next update
the files PoweR/man/densities.Rd and PoweR/man/moments.Rd by adding an alias to the new
density and moments functions respectively.
After that you can use the function gensample() to verify whether the new added law behaves
correctly. First of all, having a sufficient number of generated random numbers from the new
law allows us to compute their empirical expectation and variance. We can then compare
them with the theoretical values. This is exemplified below for a Weibull(10,1) distribution.

R> x <- gensample(law.index = 11, n = 10^5, c(10, 1))$sample
R> mean(x)

[1] 0.9511258

R> var(x)

[1] 0.01324107

R> moments11(10, 1)

$expectation
[1] 0.9513508

$variance
[1] 0.01310046

Next, using the function checklaw(), you can check if the histogram of the generated random
values matches the corresponding density curve. This is illustrated below.



Journal of Statistical Software 25

Weibull(shape=10,scale=1)

Sample size = 1e+05

D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0
1

2
3

Figure 6: Graphical check for histogram and density from Weibull law.

R> checklaw(law.index = 11, sample.size = 10^5, law.pars = c(10, 1),
+ density = dlaw11)

Note that this last figure can also be obtained using the dweibull function instead of dlaw11.

4.2. Adding a test statistic

Once a new goodness-of-fit test has been developed, a researcher might want to compare
it with other existing tests in the literature in terms of power. The idea is to add it to
our package and use the function powcomp.fast() to perform this kind of comparison. We
present in this section the steps to follow to implement a new test statistic in the package.
We assume that you have already downloaded the source code of our package from the CRAN
website.

1. Add the definition of the new test in the two C++ files def-laws-stats.cpp and
register.cpp. These two files are located in subfolder Power/src/laws-stats/.

2. Create a new C++ file statj.cpp in subfolder Power/src/laws-stats/stats/ that
contains the source code of this new test statistic, where j is an available index for the
new test statistic. It is also important to create another C++ file named pvaluej.cpp
in subfolder Power/src/laws-stats/stats/pvalues/ which contains the code to com-
pute the p value of the test number j. Note that j should be taken equal to the value
returned by the following instruction: nrow(getindex()$mat.stats)+1. Look at the



26 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

other files in that directory to see how to write your own file. All files (should) have the
same pattern which is described in the files statj.cpp and pvaluej.cpp. The function
prototype (all arguments are pointers) is:

void statj (double *x, int *xlen, double *level, int *nblevel, char **name
int *getname, double *statistic, int *pvalcomp, double *pvalue,
double *critvalL, double *critvalR, int *usecrit, int *alter,
int *decision, double *paramstat, int *nbparamstat);

where x will receive the data sample (of length xlen[0]), level will contain the
nblevel[0] values of levels to be considered, name and getname are arguments sim-
ilar to the ones used in the previous subsection (but for the test statistic name),
statistic[0] will contain an output of the test statistic value, pvalcomp[0] is 1 or
0 depending on whether a computation of the p-value is required (the portion of C++
code for the computation of this p-value will be in the file pvaluej.cpp and called via
#include "pvalues/pvaluej.cpp"), pvalue[0] will contain an output of the p-value
(or (int)0 if this computation is not possible), critvalL and critvalR will respec-
tively contain an input of the vectors (of length nblevel[0]) of left and right critical
values of the test, usecrit[0] is 1 if these critical values have to be used to take the
decision to reject (decision[i]=1, i = 0, . . . ,nblevel[0]−1) or not (decision[i]=0)
the null or if the p-value has to be used instead, alter[0] is an input integer value
in {0, 1, 2, 3, 4} described in Section 3.3, and finally paramstat and nbparamstat are
similar to the arguments params and nbparams described in the previous section but
here used for parameters of the test statistic.

3. Create a help file for your new test statistic in subfolder Power/man/. Follow the pattern
of the other stat help files in that same directory. You should also consider updating
one of the files Laplace.tests.Rd, Normality.tests.Rd, Uniformity.tests.Rd, or
creating a new one, depending on the kind of test you want to include.

Now we give two pieces of advice to verify if your new goodness-of-fit test has been correctly
coded. Firstly, if you already have a R code of your test statistic, simply use the function
statcompute() described in Section 3 to compute the test statistic value, and compare it
with the one obtained from your R code, as we have already shown in Section 3.3. Secondly,
if you know how to compute your test p value, use the function pvalueMC(), which computes
the value given in Equation 1, to compute a Monte Carlo empirical p value, and then compare
it with the one computed inside the C++ file pvaluej.cpp. Make sure that for both the same
vector of data is used to compute the results. This is illustrated below where we find two
p values which are almost identical.

R> x <- rnorm(100)
R> pvalueMC(x, stat.index = 21, null.law.index = 2, M = 10^5, alter = 4)

[1] 0.16367

R> shapiro.test(x)$p.value

[1] 0.1656738



Journal of Statistical Software 27

4.3. Adding an example in the GUI

To make simulation results from some published paper available in the ‘Examples’ tab of the
GUI, one only has to create a file in the folder PoweR/inst/examples/, following the pattern
of those already present. This will increase the reproducibility of simulation results published
in the literature.

5. Conclusion
The package PoweR, available on the CRAN website, relieves in a reproducible manner the
heavy work associated with producing Monte Carlo simulations for goodness-of-fit tests for
i.i.d. data. Ideally, once a new goodness-of-fit test has been published it should be included
(with a reference to the publication) in our package, which we think could become a very
useful tool for our community. The authors of a new test published in the literature could
send to the maintainer of the PoweR package their files lawj.cpp, lawj.R, densities.R,
moments.R, statj.cpp, pvaluej.cpp, statj.R (and example.txt for inclusion in the GUI
examples) as explained in Section 4.
The current version of our package is currently restricted to the case of simple null hypotheses
or for pivotal test statistics for which the set of critical values does not depend on a particular
choice of a null distribution (and on nuisance parameters) under the non-simple null case.
When this is not the case, a classical Monte Carlo approach is not valid anymore because of
the presence of nuisance parameters. As such, the pvalueMC() and many.crit() functions
are potentially dangerous. These problems could manifest if users want to add new tests to the
package. For example, if they want to test a distribution with an unknown shape parameter,
then the Anderson-Darling test statistic would depend on that parameter. This problem can
also be seen in the Algorithm on page 5. Indeed, when H0 is a family of distributions, each
θ0 ∈ Θ0 would lead to a different (pair of) critical value(s). One should then compute critical
values for all θ0 ∈ Θ0 and take the supremum (resp. infimum) of these right (resp. left)
critical values in order to build a test procedure controlling the (maximal) type-I error rate.
Similarly, to calculate p-values, one should take something of a supremum over the parameter
space Θ0. The problem here is that the cardinal of Θ0 could be infinite. Several approaches
can be considered to try to circumvent this problem: a) Using a (finite) grid of points over
Θ0, hopping that this will be sufficient; b) choose a value θ such that P0(θ) ∈ A (i.e.,
corresponds to a null distribution) and such that the Kullback-Leibler (KL) distance between
the distribution P0(θ) and the alternative distribution (with density g(x) say) is minimum
(see Remark 2.1). Note that, for a power computation, the alternative distribution is chosen
by the user and should be entirely specified. For example, g(x) could be the U [0, 1] uniform
density and P0(x,θ) the density of the N (µ, σ2) Gaussian distribution, where θ = (µ, σ2).
The objective would then be to find a θ such that∫ +∞

−∞
P0(x,θ) log P0(x,θ)

g(x) dx

is minimum. This can be achieved by numerical integration and optimization. The intuition
is that we want to be able to measure the capability (power) of some test to detect departures
from a given set of distributions corresponding to the null hypothesis towards some entirely
specified alternative. This will be more difficult if the chosen null distribution is close to



28 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

the alternative, which is the choice made using this KL approach. Note that to compute a
p-value for an observed sample, one could start by replacing g(x) by some density estimate
based on the sample; c) add an option for parametric bootstrapping to generate observations
under the null when the distribution of the test statistic depends about nuisance parameters
of the null distributions. These nuisance parameters would be estimated using the sample
simulated under the alternative (or the observed sample), the intuition being to choose a null
distribution closest in some sense to the alternative (or true) distribution.
Some other future avenues of development include:

• to treat the case of test statistics having a discrete distribution, for example using the
empirical quantiles of Ma, Genton, and Parzen (2011);

• to compute empirical critical values with a non-equal probability of rejection of the null
in the tails (for bilateral tests);

• to perform simulations for goodness-of-fit tests for the errors of parametric models;

• to use a cluster of workstations; and

• to provide other templates for the LATEX output of critical values and powers, with an
alias in files print.critvalues.Rd and print.power.Rd).

Other ideas in which to use this package could also emerge. For example, one can use it
with students for pedagogic purposes to investigate the robustness of the Student t-test (test
index: 83) to non-normality of the data.

Acknowledgments
This research has been funded by the NSERC of Canada. We thank the anonymous reviewer
and an editor for their helpful comments that improved the quality of this work.

References

Anderson TW, Darling DA (1954). “A Test of Goodness of Fit.” Journal of the American
Statistical Association, 49, 765–769. doi:10.1080/01621459.1954.10501232.

Atkinson AC (1982). “The Simulation of Generalized Inverse Gaussian and Hyperbolic Ran-
dom Variables.” Society for Industrial and Applied Mathematics. Journal on Scientific and
Statistical Computing, 3(4), 502–515. doi:10.1137/0903033.

Azzalini A (2005). “The Skew-Normal Distribution and Related Multivariate Families.”
Scandinavian Journal of Statistics. Theory and Applications, 32(2), 159–200. doi:
10.1111/j.1467-9469.2005.00426.x.

Bates GE (1955). “Joint Distributions of Time Intervals for the Occurrence of Successive
Accidents in a Generalized Pólya Scheme.” The Annals of Mathematical Statistics, 26,
705–720. doi:10.1214/aoms/1177728429.

http://dx.doi.org/10.1080/01621459.1954.10501232
http://dx.doi.org/10.1137/0903033
http://dx.doi.org/10.1111/j.1467-9469.2005.00426.x
http://dx.doi.org/10.1111/j.1467-9469.2005.00426.x
http://dx.doi.org/10.1214/aoms/1177728429


Journal of Statistical Software 29

Bhattacharya B, Habtzghi D (2002). “Median of the p Value Under the Alternative Hypoth-
esis.” The American Statistician, 56(3), 202–206. doi:10.1198/000313002146.

Bonett DG, Seier E (2002). “A Test of Normality With High Uniform Power.” Computational
Statistics & Data Analysis, 40(3), 435–445. doi:10.1016/s0167-9473(02)00074-9.

Bontemps C, Meddahi N (2005). “Testing Normality: A GMM Approach.” Journal of Econo-
metrics, 124(1), 149–186. doi:10.1016/j.jeconom.2004.02.014.

Brunk HD (1962). “On the Range of the Difference Between Hypothetical Distribution Func-
tion and Pyke’s Modified Empirical Distribution Function.” The Annals of Mathematical
Statistics, 33, 525–532. doi:10.1214/aoms/1177704578.

Brys G, Hubert M, Struyf A (2008). “Goodness-of-Fit Tests Based on a Robust Measure of
Skewness.” Computational Statistics, 23(3), 429–442. doi:10.1007/s00180-007-0083-7.

Cabaña A, Cabaña EM (1994). “Goodness-of-Fit and Comparison Tests of the Kolmogorov-
Smirnov Type for Bivariate Populations.” The Annals of Statistics, 22(3), 1447–1459.

Castillo E, Hadi AS, Balakrishnan N, Sarabia JM (2005). Extreme Value and Related Models
With Applications in Engineering and Science. Wiley Series in Probability and Statistics.
John Wiley & Sons, Hoboken, NJ.

Chambers JM, Mallows CL, Stuck BW (1976). “A Method for Simulating Stable Random
Variables.” Journal of the American Statistical Association, 71(354), 340–344. doi:10.
1080/01621459.1976.10480344.

Chen L, Shapiro SS (1995). “An Alternative Test for Normality Based on Normalized
Spacings.” Journal of Statistical Computation and Simulation, 53, 269–288. doi:
10.1080/00949659508811711.

Choi B, Kim K (2006). “Testing Goodness-of-Fit for Laplace Distribution Based on Maximum
Entropy.” Statistics, 40(6), 517–531. doi:10.1080/02331880600822473.

Claerbout J, Karrenbach M (1992). “Electronic Documents Give Reproducible Research a
New Meaning.” In Proceedings of the 62nd Annual International Meeting of the Society of
Exploration Geophysics, pp. 601–604.

Coin D (2008). “A Goodness-of-Fit Test for Normality Based on Polynomial Regression.”
Computational Statistics & Data Analysis, 52(4), 2185–2198. doi:10.1016/j.csda.2007.
07.012.

Coles S (2001). An Introduction to Statistical Modeling of Extreme Values. Springer
Series in Statistics. Springer-Verlag, London. ISBN 1-85233-459-2. doi:10.1007/
978-1-4471-3675-0.

Cressie N (1978). “Power Results for Tests Based on High Order Gaps.” Biometrika, 65(1),
214–218. doi:10.1093/biomet/65.1.214.

Cressie N (1979). “An Optimal Statistic Based on Higher Order Gaps.” Biometrika, 66(3),
619–627.

http://dx.doi.org/10.1198/000313002146
http://dx.doi.org/10.1016/s0167-9473(02)00074-9
http://dx.doi.org/10.1016/j.jeconom.2004.02.014
http://dx.doi.org/10.1214/aoms/1177704578
http://dx.doi.org/10.1007/s00180-007-0083-7
http://dx.doi.org/10.1080/01621459.1976.10480344
http://dx.doi.org/10.1080/01621459.1976.10480344
http://dx.doi.org/10.1080/00949659508811711
http://dx.doi.org/10.1080/00949659508811711
http://dx.doi.org/10.1080/02331880600822473
http://dx.doi.org/10.1016/j.csda.2007.07.012
http://dx.doi.org/10.1016/j.csda.2007.07.012
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1007/978-1-4471-3675-0
http://dx.doi.org/10.1093/biomet/65.1.214


30 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

D’Agostino RB (1971). “An Omnibus Test of Normality for Moderate and Large Size Sam-
ples.” Biometrika, 58, 341–348. doi:10.1093/biomet/58.2.341.

D’Agostino RB, Pearson ES (1973). “Tests for Departure From Normality. Empirical Results
for the Distributions of b2 and

√
b1.” Biometrika, 60, 613–622. doi:10.1093/biomet/60.

3.613.

D’Agostino RB, Pearson ES (1974). “Correction To: “Tests for Departure From Normality.
Empirical Results for the Distributions of b2 and

√
b1” (Biometrika 60 (1973), 613–622).”

Biometrika, 61, 647. doi:10.1093/biomet/60.3.613.

D’Agostino RB, Stephens MA (1986). Goodness-of-Fit Techniques. Marcel Dekker, New York.

Davidson R, MacKinnon JG (1996). “The Power of Bootstrap Tests.” Technical report,
Queen’s Institute for Economic Research Discussion Paper 937.

Davidson R, MacKinnon JG (1998). “Graphical Methods for Investigating the Size and Power
of Hypothesis Tests.” The Manchester School, 66(1), 1–26. doi:10.1111/1467-9957.
00086.

del Barrio E, Cuesta-Albertos J, Matran C, Rodriguez-Rodriguez J (1999). “Tests of
Goodness-of-Fit Based on the L2-Wasserstein Distance.” The Annals of Statistics, 27,
1230–1239. doi:10.1214/aos/1017938923.

Desgagné A, Angers JF (2005). “Importance Sampling With the Generalized Expo-
nential Power Density.” Statistics and Computing, 15(3), 189–196. doi:10.1007/
s11222-005-1308-7.

Desgagné A, Lafaye de Micheaux P (2016). “Tests of Normality Based on 2nd-Power Skewness
and Kurtosis.” Submitted.

Desgagné A, Lafaye de Micheaux P, Leblanc A (2009). “P-Kurtosis and Goodness-of-Fit Tests
for Normality.” Unpublished.

Desgagné A, Lafaye de Micheaux P, Leblanc A (2013). “Test of Normality Against Generalized
Exponential Power Alternatives.” Communications in Statistics - Theory and Methods,
42(1), 164–190. doi:10.1080/03610926.2011.577548.

Desgagné A, Lafaye de Micheaux P, Leblanc A (2014). “Goodness-of-Fit Tests for the Laplace
Distribution.” Unpublished.

Doornik JA, Hansen H (2008). “An Omnibus Test for Univariate and Multivariate Normality.”
Oxford Bulletin of Economics and Statistics, 70, 927–939. doi:10.1111/j.1468-0084.
2008.00537.x.

Durbin J (1969). “Tests for Serial Correlation in Regression Analysis Based on the Peri-
odogram of Least-Squares Residuals.” Biometrika, 56, 1–15. doi:10.1093/biomet/56.1.1.

Ehrenberg ASC (1977). “Rudiments of Numeracy.” Journal of the Royal Statistical Society
A, 140(3), 277–297. doi:10.2307/2344922.

Epps TW, Pulley LB (1983). “A Test for Normality Based on the Empirical Characteristic
Function.” Biometrika, 70(3), 723–726.

http://dx.doi.org/10.1093/biomet/58.2.341
http://dx.doi.org/10.1093/biomet/60.3.613
http://dx.doi.org/10.1093/biomet/60.3.613
http://dx.doi.org/10.1093/biomet/60.3.613
http://dx.doi.org/10.1111/1467-9957.00086
http://dx.doi.org/10.1111/1467-9957.00086
http://dx.doi.org/10.1214/aos/1017938923
http://dx.doi.org/10.1007/s11222-005-1308-7
http://dx.doi.org/10.1007/s11222-005-1308-7
http://dx.doi.org/10.1080/03610926.2011.577548
http://dx.doi.org/10.1111/j.1468-0084.2008.00537.x
http://dx.doi.org/10.1111/j.1468-0084.2008.00537.x
http://dx.doi.org/10.1093/biomet/56.1.1
http://dx.doi.org/10.2307/2344922


Journal of Statistical Software 31

Feller W (1968). An Introduction to Probability Theory and Its Applications. Vol. I. Third
edition. John Wiley & Sons, New York.

Feller W (1971). An Introduction to Probability Theory and Its Applications. Vol. II. Second
edition. John Wiley & Sons, New York.

Filliben JJ (1975). “The Probability Plot Correlation Coefficient Test for Normality.” Tech-
nometrics, 17(1), 111–117. doi:10.1080/00401706.1975.10489279.

Gel YR (2010). “Test of Fit for a Laplace Distribution Against Heavier Tailed Alternatives.”
Computational Statistics & Data Analysis, 54(4), 958–965. doi:10.1016/j.csda.2009.
10.008.

Gel YR, Gastwirth JL (2008). “A Robust Modification of the Jarque-Bera Test of Normality.”
Economics Letters, 99(1), 30–32. doi:10.1016/j.econlet.2007.05.022.

Gel YR, Miao W, Gastwirth JL (2007). “Robust Directed Tests of Normality Against Heavy-
Tailed Alternatives.” Computational Statistics & Data Analysis, 51(5), 2734–2746. doi:
10.1016/j.csda.2006.08.022.

Glen AG, Leemis LM, Barr DR (2001). “Order Statistics in Goodness-of-Fit Testing.” IEEE
Transactions on Reliability, 50(2), 209–213. doi:10.1109/24.963129.

Greenwood M (1946). “The Statistical Study of Infectious Diseases.” Journal of Royal Sta-
tistical Society A, 109, 85–110. doi:10.2307/2981176.

Gross J, bug fixes by Uwe Ligges (2012). nortest: Tests for Normality. R package version
1.0-2, URL https://CRAN.R-project.org/package=nortest.

Gulati S (2011). “Goodness of Fit Test for the Rayleigh and the Laplace Distributions.”
International Journal of Applied Mathematics & Statistics, 24(SI-11A), 74–85.

Hegazy YAS, Green JR (1975). “Some New Goodness-of-Fit Tests Using Order Statistics.”
Applied Statistics, 24, 299–308. doi:10.2307/2347090.

Hosking JRM (1990). “L-Moments: Analysis and Estimation of Distributions Using Linear
Combinations of Order Statistics.” Journal of the Royal Statistical Society B, 52(1), 105–
124.

Jarque CM, Bera AK (1987). “A Test for Normality of Observations and Regression Resid-
uals.” International Statistical Review. Revue International de Statistique, 55(2), 163–172.
doi:10.2307/1403192.

Johnson NL (1949). “Systems of Frequency Curves Generated by Methods of Translation.”
Biometrika, 36, 149–176. doi:10.1093/biomet/36.1-2.149.

Kallenberg WCM, Ledwina T (1997). “Data Driven Smooth Tests for Composite Hypotheses:
Comparison of Powers.” Journal of Statistical Computation and Simulation, 59(2), 101–121.
doi:10.1080/00949659708811850.

Kolmogorov AN (1933). “Sulla Determinazione Empirica Di Una Legge Di Distibuziane.”
Giornale dell’Istituta Italiano degli Attuari, 4, 83–91.

http://dx.doi.org/10.1080/00401706.1975.10489279
http://dx.doi.org/10.1016/j.csda.2009.10.008
http://dx.doi.org/10.1016/j.csda.2009.10.008
http://dx.doi.org/10.1016/j.econlet.2007.05.022
http://dx.doi.org/10.1016/j.csda.2006.08.022
http://dx.doi.org/10.1016/j.csda.2006.08.022
http://dx.doi.org/10.1109/24.963129
http://dx.doi.org/10.2307/2981176
https://CRAN.R-project.org/package=nortest
http://dx.doi.org/10.2307/2347090
http://dx.doi.org/10.2307/1403192
http://dx.doi.org/10.1093/biomet/36.1-2.149
http://dx.doi.org/10.1080/00949659708811850


32 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Kotz S, Kozubowski TJ, Podgórski K (2001). The Laplace Distribution and Generalizations.
Birkhäuser Boston Inc., Boston, MA. A revisit with applications to communications, eco-
nomics, engineering, and finance.

Koziol JA (1989). “A Note on Plots of P-Values to Evaluate Many Tests Simultaneously.”
Biometrical Journal, 31(8), 969–972. doi:10.1002/bimj.4710310813.

Kreher DL, Stinson DR (2005). A Pseudocode: A LATEX Style File for Displaying
Algorithms. Department of Mathematical Sciences, Michigan Technological Univer-
sity, Houghton, MI 49931. URL http://mirrors.ctan.org/macros/latex/contrib/
pseudocode/pseudocode.pdf.

Kulinskaya E (2008). “On Two-Sided P-Values for Non-Symmetric Distributions.” arXiv:
0810.2124.

Kundu D (2005). “Discriminating Between Normal and Laplace Distributions.” In Advances
in Ranking and Selection, Multiple Comparisons, and Reliability, Stat. Ind. Technol., pp.
65–79. Birkhäuser Boston, Boston, MA.

Langholz B, Kronmal RA (1991). “Tests of Distributional Hypotheses With Nuisance Pa-
rameters Using Fourier Series Methods.” Journal of the American Statistical Association,
86(416), 1077–1084. doi:10.1080/01621459.1991.10475154.

Leone FC, Nelson LS, Nottingham RB (1961). “The Folded Normal Distribution.” Techno-
metrics, 3, 543–550. doi:10.1080/00401706.1961.10489974.

Lieber RL (1990). “Statistical Significance and Statistical Power in Hypothesis Testing.”
Journal of Orthopaedic Research. doi:10.1002/jor.1100080221.

Lilliefors H (1967). “On the Kolmogorov-Smirnov Test for Normality With Mean and Variance
Unknown.” Journal of the American Statistical Association, 62, 399–402. doi:10.1080/
01621459.1967.10482916.

Ma Y, Genton MG, Parzen E (2011). “Asymptotic Properties of Sample Quantiles of Discrete
Distributions.” Annals of the Institute of Statistical Mathematics, 63, 227–243. doi:10.
1007/s10463-008-0215-z.

Marhuenda MA, Marhuenda Y, Morales D (2005). “Uniformity Tests Under Quantile Cate-
gorization.” Kybernetes, 34(6), 888–901. doi:10.1108/03684920510595553.

Martinez J, Iglewicz B (1981). “A Test for Departure From Normality Based on a Biweight
Estimator of Scale.” Biometrika, 68(1), 331–333.

Meintanis SG (2004). “A Class of Omnibus Tests for the Laplace Distribution Based on the
Empirical Characteristic Function.” Communications in Statistics. Theory and Methods,
33(4), 925–948. doi:10.1081/sta-120028735.

Morales D, Pardo L, Pardo MC, Vajda I (2003). “Limit Laws for Disparities of Spacings.”
Journal of Nonparametric Statistics, 15(3), 325–342. doi:10.1080/1048525031000120206.

Moran PAP (1951). “The Random Division of an Interval. II.” Journal of the Royal Statistical
Society B, 13, 147–150.

http://dx.doi.org/10.1002/bimj.4710310813
http://mirrors.ctan.org/macros/latex/contrib/pseudocode/pseudocode.pdf
http://mirrors.ctan.org/macros/latex/contrib/pseudocode/pseudocode.pdf
arXiv:0810.2124
arXiv:0810.2124
http://dx.doi.org/10.1080/01621459.1991.10475154
http://dx.doi.org/10.1080/00401706.1961.10489974
http://dx.doi.org/10.1002/jor.1100080221
http://dx.doi.org/10.1080/01621459.1967.10482916
http://dx.doi.org/10.1080/01621459.1967.10482916
http://dx.doi.org/10.1007/s10463-008-0215-z
http://dx.doi.org/10.1007/s10463-008-0215-z
http://dx.doi.org/10.1108/03684920510595553
http://dx.doi.org/10.1081/sta-120028735
http://dx.doi.org/10.1080/1048525031000120206


Journal of Statistical Software 33

Nadarajah S (2005). “A Generalized Normal Distribution.” Journal of Applied Statistics,
32(7), 685–694. doi:10.1080/02664760500079464.

Pardo MC (2003). “A Test for Uniformity Based on Informational Energy.” Statistical Papers,
44(4), 521–534. doi:10.1007/bf02926008.

Puig P, Stephens MA (2000). “Tests of Fit for the Laplace Distribution, With Applications.”
Technometrics, 42(4), 417–424. doi:10.2307/1270952.

Quesenberry CP, Miller FLJ (1977). “Power Studies of Some Tests for Uniformity.” Journal of
Statistical Computation and Simulation, 5, 169–191. doi:10.1080/00949657708810150.

Rahman MM, Govindarajulu Z (1997). “A Modification of the Test of Shapiro and Wilk for
Normality.” Journal of Applied Statistics, 24(2), 219–235. doi:10.1080/02664769723828.

Rayner JCW, Best DJ (1989). Smooth Tests of Goodness of Fit. The Clarendon Press Oxford
University Press, New York. ISBN 0-19-505610-8.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Read TRC, Cressie NAC (1988). Goodness-of-Fit Statistics for Discrete Multivariate Data.
Springer Series in Statistics. Springer-Verlag, New York. ISBN 0-387-96682-X. doi:10.
1007/978-1-4612-4578-0.

Romão X, Delgado R, Costa A (2010). “An Empirical Power Comparison of Univariate
Goodness-of-Fit Tests for Normality.” Journal of Statistical Computation and Simulation,
80(5-6), 545–591. doi:10.1080/00949650902740824.

Schweder T, Spjøtvoll E (1982). “Plots of P-Values to Evaluate Many Tests Simultaneously.”
Biometrika, 69(3), 493–502.

Shapiro SS, Francia R (1972). “An Approximation Analysis of Variance Test for Normality.”
Journal of the American Statistical Association, 67, 215–216. doi:10.1080/01621459.
1972.10481232.

Shapiro SS, Wilk MB (1965). “An Analysis of Variance Test for Normality: Complete Sam-
ples.” Biometrika, 52, 591–611. doi:10.1093/biomet/52.3-4.591.

Spiegelhalter DJ (1977). “A Test for Normality Against Symmetric Alternatives.” Biometrika,
64(2), 415–418. doi:10.1093/biomet/64.2.415.

Swartz T (1992). “Goodness-of-Fit Tests Using Kullback-Leibler Information.” Commu-
nications in Statistics. Simulation and Computation, 21(3), 711–729. doi:10.1080/
03610919208813046.

Temple Lang D (2001). “In Search of C/C++ & Fortran Routines.” R News, 1(3), 20–23.

Vasicek O (1976). “A Test for Normality Based on Sample Entropy.” Journal of the Royal
Statistical Society B, 38(1), 54–59.

Wilk MB, Gnanadesikan R (1968). “Probability Plotting Methods for the Analysis of Data.”
Biometrika, 55(1), pp. 1–17. doi:10.1093/biomet/55.1.1.

http://dx.doi.org/10.1080/02664760500079464
http://dx.doi.org/10.1007/bf02926008
http://dx.doi.org/10.2307/1270952
http://dx.doi.org/10.1080/00949657708810150
http://dx.doi.org/10.1080/02664769723828
http://www.R-project.org/
http://dx.doi.org/10.1007/978-1-4612-4578-0
http://dx.doi.org/10.1007/978-1-4612-4578-0
http://dx.doi.org/10.1080/00949650902740824
http://dx.doi.org/10.1080/01621459.1972.10481232
http://dx.doi.org/10.1080/01621459.1972.10481232
http://dx.doi.org/10.1093/biomet/52.3-4.591
http://dx.doi.org/10.1093/biomet/64.2.415
http://dx.doi.org/10.1080/03610919208813046
http://dx.doi.org/10.1080/03610919208813046
http://dx.doi.org/10.1093/biomet/55.1.1


34 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Wilson EB (1927). “Probable Inference, the Law of Succession, and Statistical Inference.”
Journal of the American Statistical Association, 22, 209–212. doi:10.2307/2276774.

Yates F (1984). “Tests of Significance for 2 × 2 Contingency Tables.” Journal of the Royal
Statistical Society A, 147(3), 426–463. doi:10.2307/2981577.

Yee TW (2014). VGAM: Vector Generalized Linear and Additive Models. R package version
0.9-5, URL https://CRAN.R-project.org/package=VGAM.

Yen VC, Moore AH (1988). “Modified Goodness-of-Fit Test for the Laplace Distribution.”
Communications in Statistics - Simulation and Computation, 17(1), 275–281. doi:10.
1080/03610918808812661.

Zhang J (2002). “Powerful Goodness-of-Fit Tests Based on the Likelihood Ratio.” Journal of
the Royal Statistical Society B, 64(2), 281–294. doi:10.1111/1467-9868.00337.

Zhang J, Wu Y (2005). “Likelihood-Ratio Tests for Normality.” Computational Statistics &
Data Analysis, 49(3), 709–721. doi:10.1016/j.csda.2004.05.034.

Zhang P (1999). “Omnibus Test of Normality Using the Q Statistic.” Journal of Applied
Statistics, 26(4), 519–528. doi:10.1080/02664769922395.

http://dx.doi.org/10.2307/2276774
http://dx.doi.org/10.2307/2981577
https://CRAN.R-project.org/package=VGAM
http://dx.doi.org/10.1080/03610918808812661
http://dx.doi.org/10.1080/03610918808812661
http://dx.doi.org/10.1111/1467-9868.00337
http://dx.doi.org/10.1016/j.csda.2004.05.034
http://dx.doi.org/10.1080/02664769922395


Journal of Statistical Software 35

A. Distributions
This section contains a description (name, notation, density function, generation procedure,
theoretical expectation and variance) of all the probability distributions available in the pack-
age from which a user can generate observations.

1. Laplace: Lp(µ, b).
Density: 1

2b exp
(
− |x−µ|b

)
.

Generation: µ− b.sgn{U − 1
2} ln(1− 2|U − 1

2 |).
Expectation: µ.
Variance: 2b2.

2. Normal: N(µ, σ).
Density: (

√
2πσ)−1 exp−

x2
2σ2 .

Generation: σZ + µ.
Expectation: µ.
Variance: σ2.

3. Cauchy: Cauchy(l, s).
Density: 1

πs(1+(x−l
s

)2) .
Generation: rcauchy(l, s).
Expectation: undefined.
Variance: undefined.

4. Logistic: Lg(µ, s).
Density: 1

se
−x−µ

s (1 + e−
x−µ
s )−2.

Generation: µ+ s ln
(

U
1−U

)
.

Expectation: µ.
Variance: π2

3 s
2.

5. Gamma: Gamma(a, b).
Density: 1

(1/b)aΓ(a)x
a−1e−xb, X ≥ 0, a, b > 0.

Generation: rgamma(a, 1/b).
Expectation: a

b .
Variance: a

b2 .

6. Beta: Beta(α, β).
Density: Γ(α+β)

Γ(α)Γ(β)x
α−1(1− x)β−1, 0 ≤ x ≤ 1.

Generation: rbeta(α, β).
Expectation: α

α+β .
Variance: αβ

(α+β)2(α+β+1) .

7. Uniform: U(a, b).
Density: (b− a)−1, a ≤ x ≤ b.
Generation: U

(b−a) + a.
Expectation: a+b

2 .
Variance: (b−a)2

12 .



36 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

8. Student: Student-t(k).

Density: (
√
kπ)−1 Γ( k+1

2 )
Γ( k2 )

(
1 + x2

k

)− k+1
2 , k > 0.

Generation: Z√
χ2(k)/k

.
Expectation: k = 1: undefined, k > 1: 0.
Variance: k ≤ 2: ∞, k > 2: k

k−2 .

9. Chi-squared: χ2(k).
Density: 2−k/2Γ(k/2)−1xk/2−1e−x/2, x > 0.
Generation:

∑k
i=1 Z

2
i .

Expectation: k.
Variance: 2k.

10. Log normal: LN (µ, σ).

Density: 1
xσ
√

2πe
− (ln x−µ)2

2σ2 .
Generation: exp{N(µ, σ2)}.
Expectation: eµ+σ2/2.
Variance: (eσ2 − 1)e2µ+σ2 .

11. Weibull: W (λ, k).
Density: λ

k

(
x
k

)λ−1
e−(x/k)λ .

Generation: k(− ln(U))1/λ.
Expectation: µ = kΓ

(
1 + λ−1).

Variance: k2Γ
(
1 + 2

λ

)
− µ2.

12. Shifted exponential: SE(l, b).
Density: b exp{−(x− l)b}, x ≥ l.
Generation: − lnU

b + l.
Expectation: l + 1

b .
Variance: 1

b2 .

13. Power uniform: U1+j .
Density: 1

1+jx
− j
j+1 .

Generation: U1+j .
Expectation: 1

j+2 .
Variance: 1

2j+3
(j+1)2

(j+2)2 .

14. Average uniform: AveUnif (k, a, b).
Density: kk

(k−1)!
∑bk x−a

b−a c
j=0 (−1)j

(k
j

)
(x−ab−a −

j
k )k−1 for a ≤ x ≤ b.

Generation: mean(runif(k, a, b)).
Expectation: 1

2(a+ b).
Variance: 1

12k (b− a)2.

15. UUniform: UUnif (j).
Density: (2(1 + j))−1(x−j/(1+j) + (1− x)−j/(1+j)).
Generation: SU j+1 + (1− S)(1− U j+1).



Journal of Statistical Software 37

Expectation: 1
2 .

Variance: 2j2+3j+2
2(2j+3)(2j+4) .

16. VUniform: VUnif (j).
Density: f14(x− 1

2)1l{x < 1}+ f14(x+ 1
2)1l{x ≥ 0} where f14 is AveUnif (j + 1, 0, 1).

Generation: if Zj+1 < 0.5: Zj+1 + 0.5, else: Zj+1 − 0.5, with Zj+1 = AveUnif (j + 1).
Expectation: 1

2 .
Variance: see Remark A.

17. Johnson SU: JSU (µ, σ, ν, τ).
Density: 1

cσ 1
τ

1√
z2+1

1√
2πe
−r2/2.

Generation: µ + cσ
√
w sinh(ω) + cσ sinh

(
1
τ (Z + ν)

)
; r = −ν + τ sinh−1(z);

z = x−(µ+cσ
√
w sinh(ω))

cσ ; c = ((w − 1)(w cosh(2ω) + 1)/2)−1/2; w = e( 1
τ

)2 and ω = −ν 1
τ .

Expectation: µ.
Variance: σ2.

18. Symmetrical Tukey: TU (l).
Density: undefined.
Generation: U l−(1−U)l

l ,−1 ≤ X ≤ 1.
Expectation: 0.
Variance: 2

l2

(
1

2l+1 −
Γ2(l+1)
Γ(2l+2)

)
.

19. Location contaminated: LoConN (p,m).
Density: 1√

2π

[
pe−

(x−m)2
2 + (1− p)e−

x2
2

]
.

Generation: U = runif(0, 1); if(U < p) x = rnorm(m, 1), otherwise x = rnorm(0, 1).
Expectation: pm.
Variance: 1− (pm)2 + pm2.

20. Johnson SB: JSB(g, d).
Density: d√

2π
1

x(1−x)e
− 1

2 (g+d ln x
1−x)2

, d > 0.

Generation:
(
1 + e−

Z−g
d

)−1
, 0 < X < 1.

Expectation: undefined.
Variance: undefined.

21. Skew normal: SkewN (ξ, ω, α).
Density:

(
2
ω

)
φ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
, ω > 0.

Generation: ξ + ωY ; if(U0 ≥ 0) Y = U1; otherwiseY = −U1; U0, V independent of
N(0, 1); U1 = δU0 +

√
1− δ2V ; δ = α/

√
1 + α2.

Expectation: ξ + ω
√

2/πδ.
Variance: ω2(1− 2δ2/π).

22. Scale contaminated: ScConN (p, d).
Density: 1√

2π

[
p
de
− x2

2d2 + (1− p)e−
x2
2

]
.

Generation: U = runif(0, 1); if(U < p) x = rnorm(0, d); otherwise x = rnorm(0, 1).



38 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Expectation: 0.
Variance: pd2 + 1− p.

23. Generalized Pareto: GP(µ, σ, ξ).
Density: if ξ > 0: 1l[0 ≤ x ≤ µ + σ

ξ ] 1
σ (1 − ξ x−µσ )(1−ξ)/ξ; else 1l[−µ ≤ x ≤ ∞] 1

σ (1 −
ξ x−µσ )(1−ξ)/ξ.
Generation: µ− σ(Uξ−1)

ξ .
Expectation: µ+ σ

1+ξ (ξ < 1).
Variance: σ2

(1+ξ)2(1+2ξ) (ξ < 1/2).

24. Generalized error distribution: GED(µ, σ, p).
Density: p

2σΓ(1/p)e
−(|x−µ|/σ)p .

Generation: µ+ σ
(
Gp
p

)(1/p)
sign(U − 1/2).

Expectation: µ.
Variance: σ2Γ(3/p)

Γ(1/p) .

25. Stable: S(α, β, c, µ).
Density: undefined, 0 < α ≤ 2, −1 ≤ β ≤ 1, c > 0, µ ∈ R.
Generation: if (α = 1 and β = 0) tmp = rcauchy(0, 1), x = tmp · c+µ; else see function
rstable() in package stabledist.
Expectation: µ if α > 1, undefined otherwise.
Variance: 2c2 if α = 2, ∞ otherwise.

26. Gumbel: Gumbel(µ, σ).
Density: 1

σ exp
{
− exp

[
−
(
x−µ
σ

)]
−
(
x−µ
σ

)}
.

Generation: µ− σ ln(E).
Expectation: µ+ σ(−Γ′(1)).
Variance: π2

6 σ
2.

27. Frechet: Frechet(µ, σ, α).
Density: α

σ

(
x−µ
σ

)−α−1

+
exp

{
−
(
x−µ
σ

)−α}
.

Generation: µ+ σE−1/α.
Expectation: if α > 1: µ+ σΓ(1− 1

α); else ∞.
Variance: if α > 2: σ2(Γ(1− 2

α)− (Γ(1− 1
α))2); else ∞.

28. Generalized extreme value: GEV (µ, σ, ξ).
Density: ξ 6= 0: [1 + z]−

1
ξ
−1 exp

{
−[1 + z]−

1
ξ

}
/σ with z = ξ x−µσ , for 1 + z > 0; ξ = 0:

Gumbel.
Generation: if ξ = 0: µ− σ ln(E); else: µ+ σ(E−ξ − 1)/ξ.
Expectation: if ξ 6= 0, ξ < 1: µ + σ Γ(1−ξ)−1

ξ ; µ + σγ if ξ = 0; ∞ if ξ ≥ 1; γ: Euler
constant.
Variance: if ξ 6= 0, ξ < 1

2 : σ
2 (g2−g2

1)
ξ2 ; σ2 π2

6 if ξ = 0; ∞ if ξ ≥ 1
2 ; gk = Γ(1− kξ).

29. Generalized arcsine: GArcSine(α).
Density: sin(πα)

π x−α(1− x)α−1 for 0 ≤ x ≤ 1 and 0 < α < 1.
Generation: rbeta(1− α, α).



Journal of Statistical Software 39

Expectation: 1− α.
Variance: (1− α)α/2.

30. Folded normal: FoldN (µ, σ).
Density: dnorm(x, µ, σ) + dnorm(−x, µ, σ) for x ≥ 0.
Generation: |N(µ, σ2)|.

Expectation: σ
√

2
πe
− µ2

2σ2 + µ[1− 2Φ(−µ
σ )].

Variance: µ2 + σ2 −
{
σ
√

2
πe
− µ2

2σ2 + µ[1− 2Φ(−µ
σ )]
}2

.

31. Mixture normal: MixN (p,m, d).
Density: p · dnorm(x,m, d) + (1− p) · dnorm(x).
Generation: U = runif(0, 1); if(U < p) x = rnorm(m, d); else x = rnorm(0, 1).
Expectation: mp.
Variance: (1− p)(1 + pm2) + pd2.

32. Truncated normal: TruncN (a, b).
Density: exp(−x2/2)√

2π(Φ(b)−Φ(a))1l[a ≤ x ≤ b].
Generation: Z = rnorm(0, 1); while(Z < a or Z > b) Z = rnorm(0, 1); x = Z.
Expectation: φ(a)−φ(b)

Φ(b)−Φ(a) .

Variance: 1 + aφ(a)−bφ(b)
Φ(b)−Φ(a) −

(
φ(a)−φ(b)
Φ(b)−Φ(a)

)2
.

33. Normal with outliers: Nout(a).
Density: undefined.
Generation: a ∈ {1, 2, 3, 4, 5}; x = rnorm(0, 1) with a outliers.
Expectation: 0.
Variance: 1.

34. Generalized exponential power: GEP(t1, t2, t3).
Density: if |x| ≥ z0: p(x; γ, δ, α, β, z0) ∝ e−δ|x|γ |x|−α(log|x|)−β; if |x| < z0:
p(x; γ, δ, α, β, z0).
Generation: see function law34.cpp in PoweR.
Expectation: undefined.
Variance: undefined.

35. Exponential : Exp(λ).
Density: f(x) = λe−λx for x ≥ 0.
Generation: rexp( 1

λ).
Expectation: 1

λ .
Variance: 1

λ2 .

36. Asymmetric Laplace: ALp(µ, b, k).
Density: for x ≤ µ: f(x) =

√
2
b

k
1+k2 exp

(
−
√

2
bk |x− µ|

)
; for x > µ:

f(x) =
√

2
b

k
1+k2 exp

(
−
√

2k
b |x− µ|

)
.

Generation: µ+ b log
(

runif(n)k
runif(n)1/k

)
/
√

2.



40 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Expectation: µ+ b ·
( 1
k − k)√

2
.

Variance: b2 1 + k4

2k2 .

37. Normal-inverse Gaussian: NIG(α, β, δ, µ).
Density: αδK1(α

√
δ2+(x−µ)2)

π
√
δ2+(x−µ)2 eδγ+β(x−µ); γ =

√
α2 − β2; K1: Bessel function of the second

kind.
Generation: see rnig() in package fBasics. Expectation: µ+ βδ

γ . Variance: δα2

γ3 .

38. Asymmetric power distribution: APD(θ, φ, α, λ).
Density: dens.
Generation: gen.
Expectation: θ + Γ( 2

λ)
Γ( 1

λ)(1− 2α)δ−
1
λ ; δ = 2αλ(1−α)λ

αλ+(1−α)λ .

Variance: φ2[Γ
(

3
λ

)
Γ
(

1
λ

)
(1− 3α+ 3α2)− Γ2

(
2
λ

)
(1− 2α)2]/[Γ2

(
1
λ

)
δ

2
λ ].

39. Modified asymmetric power distribution: modAPD(θ1, θ2, µ, σ).
Density:

g(x) = σ−1 (δθ/2)1/θ2

Γ(1 + 1/θ2) exp

−( 2σ−1(δθ/2)1/θ2

1 + sign(x− µ)(1− 2θ1) |x− µ|
)θ2


where θ = (θ1, θ2)T is the vector of parameters, 0 < θ1 < 1, θ2 > 0 and

δθ = 2(θ1)θ2(1− θ1)θ2

(θ1)θ2 + (1− θ1)θ2
.

Generation: µ+ σ21/θ2
[
(1l{U > θ1} − θ1)(Gθ2,1/δ)1/θ2

]
.

Expectation: µ+ 21.0/θ2σΓ(2/θ2)(1− 2θ1)δ−1/θ2/Γ(1/θ2)
Variance: 22/θ2σ2(Γ(3/θ2)Γ(1/θ2)(1−3θ1+3θ2

1)−(Γ(2/θ2))2(1−2θ1)2)δ−2/θ2/(Γ(1/θ2))2.

Remark A.1.

• These are the references associated with some indices of statistics. 12: Kallenberg and
Ledwina (1997), 13: Quesenberry and Miller (1977), 14: Quesenberry and Miller (1977)
Bates (1955), 15,16: Quesenberry and Miller (1977), 17: Johnson (1949), 18: Kallenberg
and Ledwina (1997), 19: Kallenberg and Ledwina (1997), 20: Kallenberg and Ledwina
(1997), 21: Azzalini (2005), 22: Kallenberg and Ledwina (1997), 23: Coles (2001), 24:
Nadarajah (2005), 25: Chambers, Mallows, and Stuck (1976), 26: Coles (2001), 27:
Castillo, Hadi, Balakrishnan, and Sarabia (2005), 28: Coles (2001), 29: Feller (1968,
1971), 30: Leone, Nelson, and Nottingham (1961), 31,32,33: Romão et al. (2010),
34: Desgagné and Angers (2005), 36: Kotz, Kozubowski, and Podgórski (2001), 37:
Atkinson (1982), 39: Desgagné and Lafaye de Micheaux (2016).

• U means a Uniform(0, 1) distribution, E is an Exponential distribution, U and E are
independent.



Journal of Statistical Software 41

• S is for a law independent from U such that P[S = 0] = P[S = 1] = 1/2.

• Z stands for the Gaussian law and Gp represents the Gamma(1/p, p) law while Gp,1
stands for the Gamma(1/p, 1) law.

• Average Uniform law is also called Bates(k, a, b). In Quesenberry and Miller (1977), it
is AveUnif(k + 1, 0, 1).

• We go from Generalized Pareto(µ, σ, ξ) to Pareto(a, k) by letting µ = k, ξ = a−1 and
σ = ka−1.

• We go from Generalized Pareto(µ, σ, ξ) to a shifted Pareto by letting µ = 0, ξ = 1/2
and σ = 1/2.

• We go from JSU (µ, σ, ν, τ) to JSB(g, d) by letting τ = d, ν = −g, σ = c−1

=
[
(ed2 − 1)(ed2 cosh(2g/d) + 1)/2

]−1/2
and µ = −

√
ed2 sinh(g/d).

• We go from GED(µ, σ, p) to GED(λ) by letting µ = 0, p = λ and σ = 1
λ1/λσ

with
Cλ =

√
Γ(3λ−1)/Γ(λ−1).

• Variance of VUnif (j) is given by:

VAR(Yj) = 1
12(j + 1)−

1
4 + 1

(j + 1)!

j+1∑
k=0

(−1)k
(
j + 1
k

)
·

{
(−1)j+1 kj+2

(j + 1)(j + 2) − sign(k − j + 1
2 )

(
j + 1

2 − k
)(j+1) [ 1

j + 2

(
j + 1

2 − k
)

+ k

j + 1

]}
.

where sign(0) = −1.

B. Tests

Table 4 contains a list of non-normality tests included in the package. The order of presen-
tation is chronological. It also contains references to definitions of these tests.
Table 5 contains a list of uniformity tests as well as associated references.
Table 6 contains a list of tests for the Laplace distribution. It also contains references to
definitions of these tests.



42 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Test Reference
1 Lilliefors K − S Lilliefors (1967)
2 Anderson-Darling AD∗ D’Agostino and Stephens (1986)
3 Zhang-Wu ZC Zhang and Wu (2005)
4 Zhang-Wu ZA Zhang and Wu (2005)
5 Glen-Leemis-Barr PS Glen, Leemis, and Barr (2001)
6 D’Agostino-Pearson K2 D’Agostino and Pearson (1973, 1974)
7 Jarque-Bera JB Jarque and Bera (1987)
8 Doornik-Hansen DH Doornik and Hansen (2008)
9 Gel-Gastwirth RJB Gel and Gastwirth (2008)
10 Hosking TLmom Hosking (1990)
11 Hosking T (1)

Lmom Hosking (1990)
12 Hosking T (2)

Lmom Hosking (1990)
13 Hosking T (3)

Lmom Hosking (1990)
14 Bontemps-Meddahi BM3−4 Bontemps and Meddahi (2005)
15 Bontemps-Meddahi BM3−6 Bontemps and Meddahi (2005)
16 Brys-Hubert-Struyf TMC−LR Brys, Hubert, and Struyf (2008)
17 Bonett-Seier Tw Bonett and Seier (2002)
18 Combination of TMC−LR & Tw Brys et al. (2008), Bonett and Seier (2002)
19 Cabana-Cabana TS,l Cabaña and Cabaña (1994)
20 Cabana-Cabana TK,l Cabaña and Cabaña (1994)
21 Shapiro-Wilk W Shapiro and Wilk (1965)
22 Shapiro-Francia W ′ Shapiro and Francia (1972)
23 modified Shapiro-Wilk W̃ Rahman and Govindarajulu (1997)
24 D’Agostino D D’Agostino (1971)
25 Filliben r Filliben (1975)
26 Chen-Shapiro CS Chen and Shapiro (1995)
27 Zhang Q Zhang (1999)
28 Zhang Q−Q∗ Zhang (1999)
29 Barrio-Cuesta Albertos-Matran-Rodriguez BCMR del Barrio et al. (1999)
30 Coin β2

3 Coin (2008)
31 Epps-Pulley T ∗(α) Epps and Pulley (1983)
32 Martinez-Iglewicz In Martinez and Iglewicz (1981)
33 Gel-Miao-Gastwirth RsJ Gel, Miao, and Gastwirth (2007)
34 Zhang Q∗ Zhang (1999)
35 Desgagné-Lafaye de Micheaux-Leblanc P1 Desgagné et al. (2009)
36 Desgagné-Lafaye de Micheaux-Leblanc P2 Desgagné et al. (2009)
37 Desgagné-Lafaye de Micheaux-Leblanc S2 Desgagné and Lafaye de Micheaux (2016)
38 Desgagné-Lafaye de Micheaux-Leblanc K2 Desgagné and Lafaye de Micheaux (2016)
39 Desgagné-Lafaye de Micheaux-Leblanc XAPD Desgagné and Lafaye de Micheaux (2016)
40 Desgagné-Lafaye de Micheaux-Leblanc Desgagné et al. (2013)
41 Spiegelhalter S Spiegelhalter (1977)

Table 4: List of non-normality tests.



Journal of Statistical Software 43

Test Reference
63 Kolmogorov Dn Kolmogorov (1933)
64 Cramér-von Mises W 2

n Anderson and Darling (1954)
65 Anderson-Darling A2

n Anderson and Darling (1954)
66 Durbin Cn Durbin (1969)
67 Kuiper Kn Brunk (1962)
68 Hegazy-Green T1 Hegazy and Green (1975)
69 Hegazy-Green T2 Hegazy and Green (1975)
70 Greenwood G(n) Greenwood (1946)
71 Quesenberry-Miller Q Quesenberry and Miller (1977)
72 Read-Cressie 2nIλ Read and Cressie (1988)
73 Moran M(n) Moran (1951)
74 Cressie L(m)

n Cressie (1978)
75 Cressie S(m)

n Cressie (1979)
76 Vasicek H(m,n) Vasicek (1976)
77 Swartz A∗(n) Swartz (1992)
78 Morales Dn,m(φλ) Morales, Pardo, Pardo, and Vajda (2003)
79 Pardo Em,n Pardo (2003)
80 Marhuenda Tλn,m Marhuenda, Marhuenda, and Morales (2005)
81 Zhang ZA Zhang (2002)
82 Zhang ZC Zhang (2002)

Table 5: List of uniformity tests.

Test Reference
42 Anderson-Darling A2 Yen and Moore (1988)
43 Cramér-von Mises W 2 Yen and Moore (1988)
44 Watson U2 Puig and Stephens (2000)
45 Kolmogorov-Smirnov

√
nD Puig and Stephens (2000)

46 Kuiper V Puig and Stephens (2000)
47 Meintanis T (1)

n,a - MO Meintanis (2004)
48 Meintanis T (1)

n,a - ML Meintanis (2004)
49 Meintanis T (2)

n,a - MO Meintanis (2004)
50 Meintanis T (2)

n,a - ML Meintanis (2004)
51 Choi-Kim TVm,n Choi and Kim (2006)
52 Choi-Kim TEm,n Choi and Kim (2006)
53 Choi-Kim TCm,n Choi and Kim (2006)
54 Desgagné-

Lafaye de Micheaux-Leblanc
Ĝn

Desgagné, Lafaye de Micheaux, and Leblanc (2014)

55 Rayner-Best V3 Rayner and Best (1989)
56 Rayner-Best V4 Rayner and Best (1989)
57 Langholz-Kronmal K1 Langholz and Kronmal (1991)
58 Kundu T Kundu (2005)
59 Gulati Z Gulati (2011)
60 Gel K Gel (2010)
61 Lafaye de Micheaux LM Desgagné et al. (2014)

Table 6: List of tests for a Laplace distribution.



44 PoweR: Monte Carlo Simulations for Goodness-of-fit Tests in R

Affiliation:
Pierre Lafaye de Micheaux
Departement de Mathématiques et Statistique
Université de Montréal
Montreal, Canada
E-mail: lafaye@dms.umontreal.ca
URL: http://biostatisticien.eu/

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/

February 2016, Volume 69, Issue 3 Submitted: 2013-08-27
doi:10.18637/jss.v069.i03 Accepted: 2015-01-27

mailto:lafaye@dms.umontreal.ca
http://biostatisticien.eu/
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v069.i03

	Introduction
	Monte Carlo simulations for goodness-of-fit tests
	Theoretical background on hypothesis tests
	Monte Carlo computations
	Presenting results

	Using PoweR
	Preliminaries
	Distributions in PoweR
	Goodness-of-fit test statistics in PoweR
	Perform a test
	Monte Carlo p values
	Perform a simulation study using a script
	Critical values
	Power
	Plots

	Using user-defined densities and tests coded in R
	The graphical user interface (GUI)

	Extending PoweR
	Adding a law
	Adding a test statistic
	Adding an example in the GUI

	Conclusion
	Distributions
	Tests

