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Abstract

In this paper we introduce fuzzy forests, a novel machine learning algorithm for rank-
ing the importance of features in high-dimensional classification and regression problems.
Fuzzy forests is specifically designed to provide relatively unbiased rankings of variable
importance in the presence of highly correlated features, especially when the number of
features, p, is much larger than the sample size, n (p > n). We introduce our imple-
mentation of fuzzy forests in the R package, fuzzyforest. Fuzzy forests works by taking
advantage of the network structure between features. First, the features are partitioned
into separate modules such that the correlation within modules is high and the cor-
relation between modules is low. The package fuzzyforest allows for easy use of the
package WGCNA (weighted gene coexpression network analysis, alternatively known as
weighted correlation network analysis) to form modules of features such that the modules
are roughly uncorrelated. Then recursive feature elimination random forests (RFE-RFs)
are used on each module, separately. From the surviving features, a final group is selected
and ranked using one last round of RFE-RFs. This procedure results in a ranked variable
importance list whose size is pre-specified by the user. The selected features can then be
used to construct a predictive model.

Keywords: random forests, WGCNA, machine learning, R, networks, p > n, big data, variable
selection, variable importance, variable ranking.

1. Introduction

In the era of high-throughput technologies such as multi-color flow cytometry and next gen-
eration sequencing, high dimensional data has become increasingly common in biomedical
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research. However, the ability to generate data has vastly outpaced our ability to analyze
it. In the biomedical sciences as well as the “Omics” fields it is common for the number
of features (p) to be much larger than the number of observations (n), the so-called p > n
problem. This problem is exacerbated by the fact that the features are often highly correlated
and the correlation structure is often unknown a priori.

Identifying important features in this situation has been an area of intense research within the
statistics and machine learning community. While model based feature selection algorithms
such as the least absolute shrinkage and selection operator (LASSO, Tibshirani 1996; Fried-
man, Hastie, and Tibshirani 2010; Hastie, Tibshirani, and Wainwright 2015) or smoothly
clipped absolute deviation (SACD, Fan and Li 2001; Breheny and Huang 2011) may detect
important features in the presence of correlation (Raskutti, Wainwright, and Yu 2010), this
comes at the cost of making parametric assumptions that may not hold in practice.

Random forests are a popular ensemble machine learning algorithm. Random forests are
nonparametric, nonlinear, embarrassingly parallelizable, easy to implement, and have been
described as one of the best “off-the-shelf” classifiers (Dua, Acharya, and Dua 2014). Random
forest variable importance measures (VIMs) offer a flexible alternative to model based feature
selection algorithms (Breiman 2001). While random forest VIMs have demonstrated the
ability to accurately capture the true importance of features in settings where the features are
independent, it is well known that random forest VIMs are biased when features are correlated
with one another (Strobl, Boulesteix, Zeileis, and Hothorn 2007; Strobl, Boulesteix, Kneib,
Augustin, and Zeileis 2008; Nicodemus and Malley 2009).

Fuzzy forests handle correlated features by taking a piecewise approach. We first estimate
the correlation structure of the data and partition the set of features into distinct modules
such that the correlation within each module is high and the correlation between modules
is low. We then use recursive feature elimination random forests (RFE-RF, Diaz-Uriarte
and Alvarez de Andrés 2006) to select the most important features from each module. The
surviving features from each module are combined and one final RFE-RF is then applied,
selecting and ranking the most important ones. The fact that fuzzy forests carry out separate
feature selection algorithms on distinct groups of correlated covariates distinguishes it from
other commonly used random forest based feature selection methods. We believe that fuzzy
forests will be useful to a wide variety of researchers including those in biology, medicine,
psychology, social sciences, and any application in which there is high dimensional data with
correlation.

The general fuzzy forests algorithm allows for the use of a variety of methods for partitioning
the features into distinct clusters. The fuzzyforest (Conn, Ngun, and Ramirez 2019) package
allows the analyst to input their own clustering of the features. Commonly, such a partition
of the features would be derived by considering the correlation matrix of the features.

The particular implementation of the fuzzy forests algorithm given in the R package fuzzyfor-
est also gives the analyst the option of utilizing the functionality of weighted gene coexpression
network analysis via the package WGCNA (Langfelder and Horvath 2008, 2012) to partition
covariates into distinct clusters. WGCNA is a rigorous framework for detecting correlation
networks (Zhang and Horvath 2005). Although WGCNA has been used primarily in genetics,
it has also been applied successfully in contexts such as brain imaging and cancer biology
(Langfelder and Horvath 2008).

The conditional variable importance measures introduced in Strobl et al. (2008) have also been
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proposed as a means for reducing the bias in random forest VIMs. However, the calculation
of conditional variable importance measures is computationally intensive. In this article, we
compare feature selection from random forests, conditional inference forests, and fuzzy forests,
using packages randomForest (Liaw and Wiener 2002), party (Hothorn, Biithlmann, Dudoit,
Molinaro, and Van der Laan 2006; Strobl et al. 2007, 2008), and fuzzyforest, respectively.
We find that fuzzy forests offer a computationally feasible alternative to conditional inference
forests for feature selection in the presence of highly correlated features.

2. Variable importance measures and fuzzy forests

2.1. Motivation for variable importance measures

In this section we introduce basic notation and discuss VIMs. The VIMs that we discuss in
this section describe important aspects of the true regression function and are well-defined
outside of the context of random forests. We assume that our data comes in the form of
n independently and identically distributed (iid) pairs (X,Y) ~ G(xy). Here, X is a p

dimensional feature vector, with vth element X(®), and Y is a scalar outcome. Let Xi(v)
denote the value of the vth feature for the ith subject and let X; = (X-(l), e ,Xi(p))—r be the

1
feature vector for the ith subject. Finally, the distribution of X and the marginal distribution

of X®) are denoted as Gx and G (), respectively.

In the case of regression, we are interested in modeling the conditional mean of Y given a
feature vector X. We denote this conditional mean as E[Y|X] or f(X). We assume that Y| X
has distribution equal to that of f(X) + €, where Y is continuous and the e are independent
of X and iid with variance o2. In the case of regression, a prediction for a new observation
Xnew would be obtained by evaluating the conditional mean at X,e: f(Xpew)-

For binary classification, we are again interested in modeling the conditional mean of Y given
a feature vector X, however, Y is restricted to take the value 0 or 1. Thus, Y| X is a Bernoulli
trial with mean F[Y|X = x| = P(Y = 1|X = z). In the case of binary classification, the
predicted outcome for a new observation would be 1 if f(X,e) = P(Y = 1| X = Xjpe) > 0.5,
and 0 otherwise. Random forests are also able to handle the case of multi-class classification
(Breiman 2001).

For both classification and regression, we say that feature X(*) is unimportant if E[Y|X]
does not depend on X (). The problem of feature selection requires more than a “black box”
estimate of f(X). It requires an understanding of how f(X) depends on each individual
feature.

If p is low dimensional (p = 1, 2), we can simply plot our estimate of f(X) to understand how
it varies as a function of X. On the other hand, if p is moderate or large, the estimate of f(X)
may be difficult to interpret. This problem of interpretability may be alleviated by assuming

f(X) has a specific parametric form such that f,(X) is known up to a finite dimensional

parameter 7. In the case of linear regression, where f-(X;) =+ > b_, %Xi(v), v is a vector

of regression coefficients and we may measure the importance of one feature versus another by
examining the absolute magnitude of their corresponding coefficients (assuming the features
have all been standardized).

However, we rarely believe that f,(X) = f(X) for some ~. Rather, f,(X) is often thought of
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as a parametric approximation to f(X). Unfortunately, this parametric approximation may
fail to capture salient characteristics of f(X) for a variety of reasons. Notably, f,(X) might
miss important interactions between features, or, in the case of the above linear regression
model, the true f(X) may be nonlinear in such a way that the best linear approximation
fails to capture. In contrast, random forests are nonlinear and nonparametric. Therefore,
the resulting random forest VIMs, defined below, naturally take interactions and nonlinear
structure into account.

We would like to end this section with a discussion of the general goals of feature selection
and how they relate to estimation of VIMs. The ultimate objective of fuzzy forests is to
select a small subset of features such that the selected features will have relatively high VIM
in comparison with the rest of the features. Another potential goal of feature selection is to
select a subset of features with the ultimate goal of predicting outcomes for new observations.
In this latter case, feature selection might be advisable as a means of improving predictive
capabilities (some predictive algorithms may be adversely effected by the presence of unim-
portant features). Using feature selection with the goal of prediction may also be useful if it
is advantageous to reduce the number of measurements taken on each individual.

In the presence of correlation, feature selection methods such as fuzzy forests that are designed
to select features with the highest VIMs may yield different results than feature selection
methods designed to optimize predictive accuracy. For example, suppose two features are
highly correlated and only one feature is important while the other is not. If the goal is
maximizing predictive accuracy, either feature may be selected without adversely effecting
predictive ability. The two features effectively serve as proxies for one another.

2.2. An introduction to random forests

The random forests algorithm is a popular ensemble method that has been applied in the
settings of both classification and regression (Breiman 2001). The random forests algorithm
works by combining the predictions of an ensemble of classification or regression trees. Each
tree is grown on a separate bootstrap sample of the data. The number of trees grown in
this manner is denoted as ntree. The subjects that are not selected in a particular bootstrap
sample are said to be “out of bag.” Roughly one third of subjects will be out of bag for each
tree. These out of bag subjects play the important role of serving as a validation set for
each tree, allowing the user to obtain estimates of the prediction error that are not overly
optimistic.

Call the kth tree fi(X). In the case of regression trees, f(X) = —= ntree £(X). In the

ntree

case of classification, f (X) is the majority vote of the ntree predictions given by fk(X ). Each
tree, by itself, may be highly unstable, leading to highly variable estimates of f(X), however,
by averaging multiple trees over many bootstrap samples, the variance of our estimate for
f(X) may be significantly reduced. The algorithm described thus far is known as bagging
(bootstrap-aggregating). This algorithm is a special case of random forests.

A further element of randomness is introduced by random forests. Before a node in a particular
tree is split, a subset of features is chosen at random. The best splitting rule, derived from
only these randomly selected features, is then used to split the node. The number of randomly
selected features at each stage is commonly called mtry. If miry = p, then random forests
are equivalent to bagging. High values of miry tend to lead to just a few important features
getting selected at the majority of nodes. Lower values of mtry allow more features to play a
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role in the estimation of f(X). In the case of regression, a common default value of mtry is
|p/3] and, in the case of classification, |/p is a common choice (Liaw and Wiener 2002).

Multiple random forest VIMs have been developed. In this article we will exclusively focus on
unscaled random forest permutation VIMs. Random forest permutation VIMs are obtained by
testing how predictive accuracy suffers when the values of an individual feature are randomly
permuted. For example, suppose a particular feature is important in determining the value
of the outcome. Randomly permuting the values of this feature destroys its relationship with
the outcome. Because the connection between this particular feature and the outcome has
been obscured, there should be a subsequent decrease in predictive accuracy when predictions
are made using this permuted data. If there was no relationship to begin with, the predictive
accuracy obtained using the permuted data should be comparable to the predictive accuracy
obtained using the original, unpermuted, data. The random forest permutation VIM measures
the average decline in predictive performance for each feature across multiple trees.

We now describe the calculation of the random forest permutation VIM for the vth feature.
Let OOB C {1,...,n} be the indices for the out of bag sample from the kth tree and
let |OOBy| be the number of out of bag samples. Let m = (mk1,...,7kn) be a random

permutation of QOB and let X; = (XZ-(I), .. ,Xff,iz, .. ,Xi(p))T be the feature vector for the
1th subject where the vth feature has been permuted. In the case of regression, the variable

importance of the vth feature from the kth tree is defined as

Sicoos, Wi — Fe(Xi))? — (yi — fu(Xi))?

VIM (v) = "GO, : (1)

The random forest permutation VIM for the vth feature is defined as

ket VIMy(v)

VIM(U) - ntree

(2)

We note that a number of other VIMs are in common use. The randomForest package imple-
ments two type of VIMs. randomForest implements the permutation based VIM discussed
above. It also implements a VIM based on the mean decrease in “impurity” in the child
nodes after splitting a node on a particular feature. The measure of impurity will depends on
whether classification or regression trees are being used. For example, in the case of regres-
sion, the within-node variance is a measure of impurity. For classification, the Gini-index is
the default measure of node impurity.

In the package party, an additional VIM, called the conditional VIM is implemented. The
conditional VIM, developed in Strobl et al. (2008), has been shown to reduce the bias in
random forest VIMs, however, calculation of the conditional VIM is computationally quite
expensive, particularly when the sample size is large.

We summarize a number of VIMs and feature selection methods in Table 1 below. There is
a distinction between VIMs and feature selection methods. VIMs alone only give a ranking
of the features in terms of their importance. Once VIMs have been calculated, the resulting
ranking can then be used for feature selection. Thus, VIMs may play the central role in
a feature selection procedure. For example, calculating random forest VIMs and keeping
the VIMs that rank in the top 5% defines a feature selection procedure. The fuzzy forests
algorithm is a more complex feature selection procedure that relies on the calculation of VIMs.
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Method Type Nonparametric R package
Permutation importance VIM T randomForest /party
Mean decrease in node impurity VIM T randomForest
Conditional VIM VIM T party

Fuzzy forests FS T fuzzyforest

LASSO FSand VIM F glmnet

SCAD FS and VIM F ncvreg

Table 1: Popular VIM and feature selection (F'S) methods.

Nicodemus, Malley, Strobl, and Ziegler (2010) present a clear discussion of the nature and
source of bias in random forest permutation VIMs. In this article, Nicodemus et al. (2010)
conduct a simulation study in which the true model is linear with a group of positively
correlated important features and a group of independent important features. They find
in this simulation study that permutation VIMs favor the group of correlated features as
the correlated features have higher marginal correlation with the outcome compared to the
independent features. They find this bias to be comparable to the bias observed in the
context of linear models. Just as univariate regressions of the outcome on each feature would
favor the correlated important features, the permutation VIMs favor the correlated important
features. However, the permutation VIMs’ bias, while present, is somewhat smaller than that
of univariate regressions.

It is worthwhile noting that the correlation of features alone does not guarantee heavily biased
permutation VIMs. For example, as demonstrated in Nicodemus et al. (2010), in a null model,
a model in which none of the features are important for the outcome, the resulting permutation
VIMs are not particularly biased. Correlation of features will induce bias in the VIMs if the
correlation structure induces marginal correlations that do not reflect the importance of the
features.

2.3. A brief review of WGCNA

In genetics, statistical network models play a significant role in uncovering important regula-
tory mechanisms or processes. WGCNA, first developed to detect networks of highly corre-
lated genes, has seen great success in many biological applications. The R package WGCNA
is a robust and well-documented implementation of the WGCNA framework (R Core Team
2019; Langfelder and Horvath 2008) that was originally designed to detect correlation net-
works in the context of genetics. Despite the acronym, WGCNA has been used extensively
outside of the context of gene expression data. For example, it has seen use in the analysis
of fMRI data (Mumford, Horvath, Oldham, Langfelder, Geschwind, and Poldrack 2010). We
believe that WGCNA has fairly wide applicability as, at its core, it relies on an application
of hierarchical clustering methods to functions of the correlation matrix.

We expect that researchers already familiar with the WGCNA package will easily adopt the
fuzzy forests algorithm and we expect that newcomers to WGCNA will be able to make good
use of WGCNA'’s fine documentation and tutorials. WGCNA takes in the matrix of features
and uses the correlation structure to partition the features into distinct groups such that the
correlation between features in the same group is large and the correlation between features
in separate groups is small. In the context of WGCNA, these groups of features are called
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modules. WGCNA constructs a network of features, each feature representing one node, via
the correlation matrix of features. It determines modules based off of this network.

Formally, the user first specifies a similarity matrix with (u,v)th entry s,, = S(X®, X®))
for features u and v. The function S(X®, X)) is called the similarity function and often

takes values between 0 and 1. Common similarity functions include |®(X @), X(®))| and
(1+ Corr(X™, X()))/2 (Zhang and Horvath 2005), where Corr(X®, X)) is the sample
correlation between features u and v.

This similarity matrix is then transformed into an adjacency matrix A = [ay,] via an adjacency
function ay, = a(syy). The adjacency function determines how similarities translate into
properties of the network. The hard threshold function, denoted by signum(sy,, ), where 7
is defined to be the threshold, is the simplest choice of adjacency function: if s, > 7 then
Qyy = Signum(Syy, 7) = 1, otherwise a,,, = 0. Nodes are either classified as connected or
unconnected. In practice, a soft-thresholded network is often more plausible than a hard-
thresholded one. The power function a,, = s°, is a common choice of soft-thresholding
adjacency function. Large values of 8 yield behavior closer to a hard-thresholded network.
Setting S = 1 is equivalent to using the similarity function. Once an adjacency function is
calculated, a hierarchical clustering tree algorithm is used to define the clusters of features.

It is common to apply this hierarchical clustering algorithm to the topological overlap matrix
rather than the adjacency matrix. The topological overlap between two nodes is defined as

Quv + Ay (3)
min{cy, ¢y} + 1 — ayy’

Wyy =

where quy = > 0_ Qurary and ¢, = > b_; ay, is the connectivity of the uth feature (Horvath
2011) . The topological overlap between two nodes can be high even if a,,, is low. This occurs
when the two nodes are strongly connected to the same set of nodes. Use of the topological
overlap matrix rather than the adjacency matrix may lead to more distinct modules (Zhang
and Horvath 2005).

In many biological contexts, it is suspected that only a few features are highly connected. This
prior knowledge leads to the scale-free criterion for determining which value of 8 to select.
A network is said to have generalized scale-free topology if r(c,) cg, or, equivalently,
logo(r(cy)) o< logio(cy) (Zhang and Horvath 2005), where 7(c,) is the frequency function for
the connectivity and S is a non-negative real number. If the scale-free topology criterion is
suspected to hold, one should select a value of 3 such that the R? between log,o(r(c,)) and
logo(cy,) is high.

2.4. The fuzzy forests algorithm

The fuzzy forests algorithm is an extension of random forests designed to obtain less bi-
ased feature selection in the presence of correlated features. In this section, we describe the
algorithm. First we give a summary of the procedure.

In the first step of fuzzy forests, the features are partitioned into distinct groups or modules,
such that the correlation of features within modules is high and the correlation of features
between modules is low. Our package, fuzzyforest, facilitates the use of WGCNA to determine
the modules although it is possible to use alternative methods to partition the features. Once
features have been subdivided into distinct modules, fuzzy forests eliminates features in two
steps: a screening step and a selection step. In the screening step, RFE-RF is used on each
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Begin with all features

Cluster features into distinct modules such that
correlation within modules is high.

Module 1 Module 2 . . . . Module m-1 Module m

Use RFE-RF within modules to retain top k% of
features from each module (k=keep_fraction).
(Screening Step)

Module 1 Module 2 . . . . Module m-1, Module m
Survivors Survivors Survivors Survivors

Surviving features are
combined into one data set.

Data set with only
surviving features

Use RFE-RF on surviving features.
Keep top k% (k=keep_fraction).
(Selection Step)

Selected Features

Figure 1: Flow chart of fuzzy forests algorithm.

module to eliminate the least important features within each module. In the selection step,
a final RFE-RF is used on the surviving features.

A detailed explication of RFE-RF is given below. RFE-RF sequentially eliminates features
with the lowest VIMs until a pre-specified percentage of features remain. By sequentially
eliminating the least important features, RFE-RF is able to better focus on determining
which features are the most important.

The screening step of fuzzy forests achieves two goals. First, it reduces the number of features
that have to be analyzed at one time. Second, the finite sample bias caused by correlated
features is alleviated. In Nicodemus and Malley (2009), it is observed that unimportant
features that are correlated with an important feature are more likely to be chosen at the
root of tree than uncorrelated important features. The high importance of these unimportant
correlated features comes at the cost of the important uncorrelated features. When we analyze
each module separately, features in different groups are no longer competing against one
another.

In biological applications, modules might represent different biological components or de-
mographic information about the subjects. By carrying out RFE-RF on the features that
survived the screening step, the selection step effectively allows these systems to interact with
one another. A flow chart of the fuzzy forests algorithm is given in Figure 1.



Journal of Statistical Software 9

We now provide a detailed description of the screening step and RFE-RF. Denote the set of
modules by P = {Py,...,P,}. Let p; = |P] so that >}, p; = p, where m is the number of
modules. For each element of the partition, P;, RFE-RF is used to screen out unimportant
features.

We now describe the RFE-RF procedure in the context of screening features in a particular
partition P;. At the start of the procedure, a random forest is fit using all of the features in
P, and the least important features are then eliminated. For example, the features with VIM
in the bottom 25% might be dropped. Call the reduced set of features in P}, after this first
random forest, Pl(l). A second random forest is then fit using only features in Pl(l). The least
important features from this latest random forest are then eliminated leading to a further
reduced set of features PI(Q) C Pl(l) C P;. The subset obtained after iteration ¢ is denoted as

Pl(t) and let pl(t) be the number of features in Pl(t). Features are eliminated in this manner
until a user-specified stopping criteria is reached. For example, features may be eliminated
until 5% of the original features in P; remain.

The user must specify a few tuning parameters at the screening step. First, the user must
specify what fraction of features are to be dropped after each step of the RFE-RF. We call this
fraction the drop fraction. The user must also specify a stopping criteria. In fuzzyforest
the user specifies what fraction of the original p; features, in each module P;, to retain.
This fraction is called the keep fraction. The first time the number of features drops
below keep_ fraction-p;, the RFE-RF stops and the top |keep_fraction - p;| features are

selected. More precisely, for the first iteration ¢ such that pgt) < keep_ fraction-p;, we retain

the top |keep_fraction - p;| features from Pl(t_l),

For each RFE-RF, mtry and ntree must be appropriately selected. Since the number of
features varies across the forests, mtry and ntree must be a function of the current number
of features. Suppose we are at iteration ¢ and are about to fit a random forest to obtain

Pl(tH) C Pl(t), in the case of regression, fuzzyforest sets mtry = {pl(t) -mtry_factor/ 3J. For

classification, fuzzyforest sets mtry = {\/ pl(t) -mtry_ factor|. In both cases, mtry_factor

must be specified by the user, with the default being 1. The parameter ntree must be set
high enough to be able to pick up the effects of important variables, however if ntree is set
too high, the iterative series of random forests takes longer to fit. The package fuzzyforest sets
ntree = max(min_ntree, Lpl(t) 'ntreeifactorJ ), where min_ ntree is a minimal number of
trees grown for each forest and ntree_ factor allows the number of trees to increase with

the number of features.

The final step consists of one last RFE-RF to allow for interactions between features in
different modules. Note that a separate choice of drop_fraction, mtry factor, min tree,
and ntree_ factor may be used for the final selection step. The user specifies how many
features to keep in the final selection step. If certain features are, a priori, known to be
important (perhaps demographic characteristics), fuzzyforest allows the user to let these
features skip the initial round of screening.

Finally, we compare the RFE-RF procedure described above to the RFE-RF procedure
described in Diaz-Uriarte and Alvarez de Andrés (2006) and implemented in the package
varSelRF (Diaz-Uriarte 2007). In the procedure presented in Diaz-Uriarte and Alvarez de
Andrés (2006), Diaz-Uriarte and Alvarez de Andrés (2006) prefer that the VIMs not be recal-
culated at each iteration, with the intent of preventing overfitting. In the RFE-RF procedure
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described above, permutation VIMs are calculated at each iteration. This is because we
wanted to allow the ranking of VIMs to change as unimportant features are dropped. The
ultimate focus of fuzzy forests is to select features with the highest ranking VIMs. We do
note that varSelRF does allow for the option of recalculating VIMs at each iteration and an
RFE-RF procedure in which VIMs were calculated at each iteration was proposed by Jiang
et al. (2004). Classification as opposed to regression also appears to be the primary focus of
the RFE-RF procedure in varSelRF.

2.5. A justification for the fuzzy forests algorithm

The screening of features within distinct modules is motivated by the following heuristic ob-
servations concerning the theoretical properties of VIMs. As noted previously, correlation
between features can cause bias because the correlation structure can induce high marginal
correlation between features and the outcome that do not reflect the importance of the fea-
tures. This is particularly problematic when important features are correlated with one
another. In this case, the marginal correlation between these features and the outcome will
be greatly amplified by the correlation, causing the permutation VIMs to ignore or underrate
the independent and important features.

Intuitively, dividing features into distinct, correlated modules and carrying out feature selec-
tion within each module provides an advantage because the correlation structure within a
module is relatively uniform. Although the correlation within a module is high, the uniform
nature of the correlation structure is not expected to lead to particularly misleading VIMs.
Importantly, feature selection on the independent features is unaffected by feature selection
on the correlated features. In the following discussion, we formally define the parameter being
estimated by permutation VIMs and we discuss conditions under which the VIMs calculated
within a module are equivalent to VIMs calculated using the full set of features.

The estimation of VIMs is formally investigated by Van der Laan (2006). The random forest
VIM is discussed in Gregorutti, Michel, and Saint-Pierre (2017) and Zhu, Zeng, and Kosorok
(2015). Intuitively, the random forest VIM of the vth feature measures how much f(X;)

changes when the vth entry of Xj, XZ-(U), is replaced by an independent realization, XZ(U),
generated with distribution G y ). Formally, the random forest permutation VIM of feature
v estimates the following parameter:

VIM(v) = E(F(X, . x™ L xPy - px ™ X0 x P2, (4)

The above expression deserves further explanation. First, note that the expression is the
same for all choices of index, i, because the (X;,Y;) are iid with distribution G(x y). Next
note that f is fixed and the expectation is with respect to the random variables X; =
(XZ»(I), e ,XZ-(U), . ,Xl-(p)) and )N(z-(v). The random vector X; has distribution Gx and XZ»(U),

generated independently of X;, has distribution Gy (). If the value of f(X;) changes greatly

when Xi(v) is replaced by Xi(v), it implies that the vth feature is important. In the case where
F(X) = 70 + 3P_; %X ™ is a linear model, with standardized features (Var(Xi(v)) =1),
VIM (v) = 272.

Let G p() denote the joint distribution of the features in the module PO and let XPY ~ Gpw-
In general, the conditional expectation, E[A|B], of one random variable A with respect to
another random variable, B, is defined as the function h(B) that minimizes E[(A — h(B))?]
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or, written more compactly, argminy, E[(A — h(B))?]. When random forests are fit using only
the features in module P®, the estimated regression function converges to

argmin, E[(Y — h(XP(l>))2] — argming, B[(f(X) + ¢ — h(XP(l)))Q]
= argminy Bl + 2¢(/(X) — h(X") + (F(X) = h(x 7))’

= argmin, E[(f(X) — h(XP(l)))Q]

(
]
(6)

= argmin, E[2¢(£(X) — h(XT")) + (f(X) - (X)) (7)
(8)

= B[f(Xx)|x""]. (9)

Note that E[2¢(f(X) — h(XPm))] = 0 because € is independent of X and has mean 0.

Assume that features in separate modules X P (1), L XP ) are independent and suppose that

f(X) =20 fi(X P m). The form of the regression function, f(X), allows for interactions
within modules but no interactions between modules. We now demonstrate that if we fit
random forests using only the features in P(!), we are no longer estimating E[Y|X] = f(X),
instead we are estimating

m m
O] () ) @ ()
E[f(x)| X"V =Y Bl XTY = a(xXPY) 3 Ex o [T (10)
J=1 J#l
As a result, the VIMs obtained by fitting a separate random forest to each module PO are
equal to the VIMs obtained by fitting a random forest using the full set of features.

This is seen by the following argument:
E[Y|x""] = argmin, B[(Y — h(X™"))? (11)
= argmin, B[{(Y — /(X)) = (h(X"") = F(0)}. (12)
This last term equals:

argmin, {E[(Y — £(X))%] = 2E[(Y — f(X))(R(XT") = f(XO))] + E[(R(XT") = £(X))?}. (13)

Now, the first of the above expectations does not depend on h. The second expectation equals
0:

E[(Y — F(X))(A(XPY) = £(X))] = EIE[(Y — FO)RXPY) = fX)X]] (14)
— E[(M(XP") = F(X))E[(Y — F(X)|X]]  (15)
=0. (16)

This leaves only the third expectation remaining. Thus, E[Y\XP“)] = argminhE[(h(XP<l)) -
f(X))?]. By the definition of conditional expectation, this last term equals E[f(X)|X P (f)].
Note that by the independence of the modules, we have E|f; (XP(” ) |XP(Z>] =FEx [f; (XP(]) )]
for all j # [. This yields Equation 10.

Suppose feature v is in partition P%), the VIM obtained by fitting a random forest to only
those features in P is estimating the following quantity:

VIM*(v) = B(A(X™ o x™ L xUy - x W x )2, (17)

K3 3
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Here, Xf’“ is the kth element of partition P). As in Equation 4, Xi(v) and X'i(v) are iid from
G x . We see from this equation that VIM*(v) = VIM(v) if the true regression function is
additive across modules and if the modules are independent of each other. If our assumptions
are met, the VIMs obtained by analyzing each module separately are asymptotically the same
as those that would have been obtained if VIMs were obtained by analyzing all features at
once.

These observations suggest that if we assume strict additivity and independence of the mod-
ules, then obtaining VIMs from each module separately should suffice. However, if these
assumptions are not met, the VIMs obtained by analyzing each module separately are, in
general, different than the VIMs obtained by fitting a single random forest on all of the fea-
tures at once. We stress that the above derivation depends on the additivity assumption and
the assumption of independence of modules.

If there are interactions between features in different modules, the VIMs calculated within
modules will be asymptotically biased. However, under the circumstances that the most
important VIMs in each module are also the features that are most likely to be heavily involved
in interactions between modules, carrying out feature selection on each module separately
should still allow for the selection of important features.

The final RFE-RF, applied at the selection step serves to relax this restrictive additivity
assumption, allowing for interactions between features that were found to be important within
modules. However, it is important to note that when features from separate modules are
combined, the potential for bias due to correlation between features is reintroduced. Thus,
the estimated VIMs may still be biased and must be interpreted with caution.

While the implicit assumptions underlying fuzzy forests are strict, we point out that random
forests, as well as conditional inference forests may also demonstrate bias. In the case of ran-
dom forests, as discussed above, the simulation results of Strobl et al. (2008) and Nicodemus
et al. (2010) suggest that random forests will be unbiased if the marginal correlations between
features and the outcome largely reflect the true VIMs. We believe that this is an even more
stringent assumption than the assumptions made in Section 2.5. We believe that fuzzy forests
will have less biased feature selection properties than random forests because the conditions
under which random forest feature selection is roughly unbiased are even more stringent than
fuzzy forests. The simulations carried out below also demonstrate that feature selection using
conditional permutation VIMs can also demonstrate bias.

3. The fuzzyforest package

The package fuzzyforest has two functions for fitting fuzzy forests. The first is wff, the second
is £f. The function wff automatically carries out a WGCNA analysis on the features. Then
it uses these newly derived modules as input to fuzzy forests. The WGCNA analysis is carried
out via the blockwiseModules function, from the package WGCNA.

The second function £f assumes that the features have already been partitioned into separate
modules. For example, it may be advantageous to use hierarchical clustering directly on the
correlation matrix and to cut the tree by visual inspection via calls to hclust and cutree
in the stats package. This procedure may give the user more flexibility in which distance
metric to use and in how to cluster the features. The package pvclust calculates p-values to
assess the uncertainty in clusters of features and can be used to find a stable clustering of the
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features. Another common use case for £f is to carry out the fuzzy forests algorithm using
the output of WGCNA, thereby allowing more customization of options for WGCNA.

A number of tuning parameters must be specified before fuzzy forests can be run. These
tuning parameters are organized into separate control objects. Tuning parameters related to
WGCNA are specified with an S3 object of type WGCNA_control. Similarly, tuning parameters
related to the screening step and the selection step are specified through objects of type
screen_control and select_control.

We demonstrate the workings of fuzzyforest with an analysis of a data set concerning gene
expression in liver tissue in female mice. The data set can be found in the tutorial website for
WGCNA: https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/Tutorials/. The number of mice is 131 and the number of genes is 3,600. We examine
how the expression of these genes correlates with the weight(g) of the mice. In the following
code, the data set is called Liver_Expr.

R> weight <- Liver_Expr[, 1]
R> expression_levels <- Liver_Expr[, -1]

We first use WGCNA to select the power that leads to a network with approximately scale-
free topology. We set 5 = 6 (/3 is equivalent to power in the code below) and set other tuning
parameters for WGCNA in the following call. Note that the resulting number of modules can
be sensitive to minModuleSize.

R> WGCNA_params <- WGCNA_control (power = 6, minModuleSize = 30,
+ TOMType = "unsigned", reassignThreshold = 0, mergeCutHeight = 0.25,
+ numericLabels = TRUE, pamRespectsDendro = FALSE)

Then we set tuning parameters for the selection step and the screening step:

R> mtry_factor <- 1

R> drop_fraction <- .25

R> number_selected <- 10

R> keep_fraction <- .05

R> min_ntree <- 5000

R> ntree_factor <- 5

R> final ntree <- 5000

R> screen_params <- screen_control(drop_fraction = drop_fraction,
+ keep_fraction = keep_fraction, min_ntree = min_ntree,

+ mtry_factor = mtry_factor, ntree_factor = ntree_factor)

> select_params <- select_control(drop_fraction = drop_fraction,
+ number_selected = number_selected, min_ntree = min_ntree,

+ mtry_factor = mtry_factor, ntree_factor = ntree_factor)

Finally, we use wff to fit fuzzy forests to the data set.
R> wff_fit <- wff(expression_levels, weight, WGCNA_params = WGCNA_params,

+ screen_params = screen_params, select_params = select_params,
+ final _ntree = final_ntree, num_processors = 1)


https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
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Figure 2: The height of the bars represents the proportion of features in each module. The
proportion of each bar colored in red represents the proportion of features that are selected
within each module.
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The function wff returns an object of type fuzzy_forest. Objects of this type have the
usual generic methods. The function print prints the selected features as well as module
memberships. The function predict(fuzzy_forest, new_data) takes in a data.frame or
matrix and produces predictions based on the selected features. The generic predict method
for fuzzy forests produces a vector of predicted values for the set of observations in the data
set used to fit fuzzy forests or, if a new, independent data set is provided as the value of
the argument new_data, predicted values for observations in the new data set. Although
the fuzzy forests algorithm was designed with feature selection in mind, it is possible to fit
random forests using the selected features and to use the resulting model for prediction.

A data.frame with the selected features can be obtained by accessing feature_list from
the fuzzy_forest object.

> wff_fit$feature_list

feature_name variable_importance module_membership

4  MMT00026944 6.451356 6
3  MMT00019254 6.265534 6
7  MMT00067823 4.438564 3
1 MMTO00006001 4.148521 3
9  MMT00074983 3.515628 7
6 MMT00065159 3.150476 3
8  MMT00070342 3.032299 3
2  MMT00015534 2.959381 6
5 MMT00061313 2.770847 3
10 MMTO0078732 2.605921 6
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Before the analysis is run, the user selects the desired number of important features as the
end output of fuzzy forests. The number of features selected can be thought of as a tuning
parameter. The predictive accuracy on a validation set can then be used to determine the
optimal number of features to select.

As it is often useful to ascertain which modules are contributors to the signal of the outcome,
we create a visual representation of all modules and the distribution of important features
across the modules. The function modplot yields a visual display of which modules are
important. The height of the bars represents what percentage of the total p features fall
into a particular module. The area of the bar which is red represents the percentage of each
module that is selected by fuzzy forests. Applying the function modplot to the object wff_fit
above, we obtain the graph in Figure 2.

4. Simulations

In this section we demonstrate the performance of fuzzy forests in a number of simulation
scenarios. These simulations are designed to compare fuzzy forests to random forests and
conditional inference forests when the features are correlated. We carry out two simulations.
In the first simulation, data is generated from a linear model. In the second simulation, data
is generated from a nonlinear model. For random forests, feature selection is carried out
by selecting the features with top 10 permutation VIMs. For conditional inference forests,
feature selection is carried out by selecting the features with top 10 conditional VIMs. The
first simulation is closely related to the simulations given in Nicodemus et al. (2010) and
Strobl et al. (2008), the key distinction being that the simulation below includes additional
“noise” features that are unrelated to the outcome.

In all simulations, X; is generated from a multivariate normal distribution. The error terms,
€;, are normal with mean 0 and standard deviation 0.5. The marginal distribution of each
feature is standard normal. Features are subdivided into distinct modules. The correlation
between features in different modules is 0. If the features in a module are correlated with
one another, the correlation between features within the same module is set to 0.8. In each
simulation, features in the final module are independent of each other (i.e., with correlation
0).

For the simulation from a linear model, we carry out two simulation scenarios. For the first
scenario, the number of parameters p is set to 100. In this scenario, there are 4 modules.
The features in the 4th module are independent of each other and of the features in the
other modules. The features in the other three modules are correlated with one another.
Namely, {XM ..., x®)} {x@0) X6V and {XOCV .. X)) constitute 3 distinct
modules each containing 25 features. The final module is {X (7). .. X (1001 Tn this scenario,
Y, = Xl-—r v + ¢; and among the correlated features we have v = 79 = 5 and vy3 = 2. Among
the group of independent features, y76 = 77 = 5 and 778 = 2. All other elements of v are set
to 0. In addition, the intercept term, ~g, is set to O.

To evaluate the feature selection performance, we compute the proportion of times the non-
zero features were selected over 100 simulation runs. The results are displayed in Figure 3.
For random forests and conditional inference forests the results of this simulation are largely
in line with the results from Nicodemus et al. (2010) and Strobl et al. (2008). Random

forests is much less likely to select independent covariates than conditional inference forests.
Fuzzy forests select important features with slightly lower frequency than conditional inference
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Figure 3: Fuzzy forests are compared to random forests with p = 100 and n = 100. The height
of each point represents the proportion of times each feature was selected in 100 simulations.
X1, X5, X3, X76, X77, and X7g are important features. All other features were not important.
X1, X5, and X3 are correlated features. X, is correlated with X, X5, and X3 but is not
important. X9 is independent but is not important. X, Xo X7, and X77 all have the same
importance. X3 and Xrg, equally important, have lower importance than the other important
features.

forests, however its performance is generally comparable.

In the second scenario for the linear model, we have the same setup as before except we
increase p to 1,000 while leaving n at 100. The group of correlated features now contains
900 features, grouped into the following modules:{X 1), ... X100}~ £x(801)  x(900)}
Again, the correlation between features in the same module is 0.8. The correlation of features
from different modules is 0. The remaining module, {X S (1’000)}, consists of inde-
pendent features. Once again, 73 = 42 = 5 and 3 = 2. The first 3 independent features are
also non-zero: ygo1 = Y02 = 5 and ygp3 = 2. As seen in Figure 4, when p = 1,000, random
forests permutation VIMs largely ignore the independent features.

For the second simulation in which data was generated from a nonlinear model, we set p = 100
and let n vary from 250 to 500. The correlation structure in this simulation is identical
to correlation structure described above for the linear simulation with p = 100. The true
regression model,

f(X) = X1+ Xo+2.92X1 X5+ V15X35 + Xi’ 4+ X7g + X97 + 3.74 X7 X77 + V15 X753 + X;’Q,
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Feature Selection Performance n=100, p=1,000
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Figure 4: Fuzzy forests are compared to random forests with p = 1,000 and n = 100. The
height of each point represents the proportion of times each feature was selected in 100
simulations. X7, X9, X3, X901, X902, and Xgp3 are important features. All other features were
not important. X7, Xo, and X3 are correlated features. Xy is correlated with X7, Xo, and X3
but is not important. Xgg4 is independent but is not important. X, X2, Xgo1, and Xggo all
have the same importance. X3 and Xgg3, equally important, have lower importance than the
other important features.

was designed such that the true VIM for each of the features upon which f depends are
approximately equal to 30 (the true VIMs were calculated via Monte Carlo simulations).
Therefore all of the features should be selected with equal probability.

For the nonlinear scenario with n = 250, we were able to compute VIMs for random forests
and fuzzy forests, as well as conditional VIMs. For the scenario with n = 500, we were unable
to compute conditional VIMs as the computational burden was too great. In our experience,
the computational burden of calculating conditional VIMs increases more quickly with the
sample size as opposed to the number of covariates.

The results of the first nonlinear scenario are displayed in Figure 5. First of all, note that
none of the methods select features with equal probability, even within modules. In general,
the features that are part of interaction terms (X1, Xo, X7, and X77), are chosen with lower
probability than the other 4 important features. All of these tree-based method have more
difficulty detecting interactions in comparison to the linear and cubic terms, even conditional
inference forests.

17
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Feature Selection Performance n=250, p=100
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Figure 5: Fuzzy forests are compared to random forests with p = 100 and n = 250. The height
of each point represents the proportion of times each feature was selected in 100 simulations.
X1, X0, X3, Xy, X76, X77, X7s, and X79 are important features. All other features were not
important. X, X9, X3, X4 are correlated with one another. Xj is correlated with X, Xo,
X3, X4 but is not important. Xgg is independent and not important.

As in the first nonlinear simulation scenario, the correlated features are favored over the
independent features. In particular, although both X5 and Xgp have VIM of 0, X5 is selected
with higher probability. Random forests are most heavily biased in favor of the correlated
features and were largely unable to detect the interacting features X7 and X77. Fuzzy
forests perform slightly worse than both random forests and conditional inference forest on
the correlated features, however, they perform comparably to conditional inference forests
on the independent features. Overall, conditional inference forests seem to yield the best
performance.

The results of the second scenario with n = 500 are displayed in Figure 6. As previously
mentioned, calculation of conditional VIMs are computationally too burdensome. In this
scenario, both random forests and fuzzy forests are able to select the correlated interacting
features with higher probability (fuzzy forests, with smaller probability). Fuzzy forests also
improve in its ability to select the independent interacting features with n = 500, while
random forests are still largely unable to select these features.
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Feature Selection Performance n=500, p=100
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Figure 6: Fuzzy forests are compared to random forests with p = 100 and n = 500. The height
of each point represents the proportion of times each feature was selected in 100 simulations.
X1, X0, X3, Xy, X76, X77, X7s, and X79 are important features. All other features were not
important. X3, X9, X3, X, are correlated features. X5 is correlated with X, Xo, X3, X4 but
is not important. Xgg is independent but is not important.

5. Application

We demonstrate an application of fuzzyforest by using it to discover immunologic profiles
that predict if an HIV patient will be able to control the virus without antiretroviral therapy
(ART). An immunologic controller is defined as a patient able to achieve undetectable levels of
the virus (< 50 copies/ml) without ART. Similarly, an immunologic responder is an aviremic
patient, on ART, with sustained undetectable levels of the virus and CD4+ T cell counts
above 350 cells/mm?3.

In this dataset there were 125 immunologic responders, 92 controllers (n = 217), and 313
features (p = 313). The features are derived from flow cytometry measurements. Flow
cytometry may be used to measure the presence of various markers on the surface of a cell. The
presence of up to 14 cell surface markers was measured. This yields up to 2'* possible binary
combinations of markers, however, not all of these combinations were available. These markers
assess immunological factors such as T cell maturation, activation, dysfunction, senescence,
antigen-specificity and proliferation.

Features derived from flow cytometry measurements typically describe what proportion of
cells in a sample display a subset of the aforementioned 14 markers. The presence of a
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Figure 7: The following plot shows that 8 is the smallest power such that the scale free
topology criterion is approximately met.

cell surface marker is denoted by + and the absence of the marker is denoted by —. For
example, one feature may measure the proportion of all lymphocytes in a sample that are
CD4 positive (CD4+). A second feature may measure the proportion of lymphocytes that
display both CD4 and CD38 (CD4+CD38+). Because the group of CD44-CD38+ T cells is
nested within the group of CD4+ T cells, the proportion of lymphocytes that are CD4+ will be
positively correlated the proportion of lymphocytes that are CD4+CD38+. The nested nature
of different subgroups of lymphocytes leads to high levels of correlation between features.

For some markers, mean florescence intensity, a continuous measure of the extent to which a
cell displays a particular marker, was also measured using flow cytometry.

We used WGCNA to partition the features into modules. We used the scale-free topology
criterion to determine the power of the adjacency function. We set 5 = 8 based on the elbow
of the curves in Figure 7. We found 11 modules. Each modules is identified with a color. The
choice of color is chosen randomly with the exception of the grey module. The grey module
consists of features that are independent of the other modules. In our analysis, the largest
module was the grey module with 140 features. It is commonly the case that the grey module
is larger than the other modules. The smallest module, purple, was of size 10.
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Figure 8: The height of the bars represents the proportion of features in each module. The
proportion of each bar colored in red represents the proportion of features that are selected
as important within each module.

We used the resulting module memberships as input to the function ff. Because of the
small size of the modules we set keep_fraction to 0.25. We tested multiple values for
number_selected. The ranking of features was robust to settings of this parameter. We
display the results when selecting 10 features.

The strongest predictors of virologic control without ART were HIV GAG-specific response
and immune activation; see Figure 9. The immune systems of the controllers are highly reac-
tive to proteins specific to HIV, i.e., gag. The selection of cell surface markers such as PD-1
suggests that controllers may have a higher percentage of T cells that may be dysfunctional.
It is notable that, while controllers had overall higher levels of immune activation (Hunt et al.
2008), they had lower activation in CD4+ central memory cells (Ramirez et al. 2016), as seen
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Figure 9: The following plot displays the importance of the top 10 selected features after
fitting fuzzy forests. The variables are ranked from top to bottom. Red features indicate that
controllers have higher values for the feature compared to responders. Black features indicate
that responders have lower values for the feature compared to controllers.

in the feature ranked 2nd. These results are consistent with the nature of HIV pathogene-
sis. Indeed, it has been shown that limited infection of the central memory compartment is
associated with lack of disease progression even in individuals who have detectable viremia
(Klatt et al. 2014).

6. Discussion

In this article we have presented the fuzzy forests algorithm as an extension of random forests
that can provide less biased feature selection in the presence of correlation between features
in a computationally feasible manner, especially when p > n. Under these conditions, fuzzy
forests are expected to outperform random forests. We found that, as expected, random
forest VIMs were biased in favor of correlated features. Indeed when p = 1,000 while n =
100, random forests essentially ignored the independent variables that were important in
the true model whereas fuzzy forests found them. The fuzzy forests algorithm is useful for
screening large numbers of features or when it is desirable to find the most important features
contributing to the signal.
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We introduced an implementation of fuzzy forests in the fuzzyforest package. The fuzzyforest
package has two functions for fitting the fuzzy forests algorithm. The first implementation,
wff automatically carries out a WGCNA analysis to partition the features into separate
modules. These modules are then used by fuzzy forests for feature selection. The second
implementation, £f lets the user determine how features should be partitioned before fuzzy
forests is used for feature selection.

We then used fuzzy forests to investigate immunologic phenotypes of patients who can control
the virus without antiretrovirals. The set of important features was stable with respect to
mtry factor and other tuning parameters. The set of features found by fuzzy forests is
biologically plausible and in part confirms findings from in vivo and other clinical studies,
suggesting that fuzzy forests found the true underlying signal. It is expected that fuzzy forests
will be useful in a wide variety of applications from gene studies, to flow cytometry to other
studies where the data has high correlation and many potential predictors.
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