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Abstract

The analysis of interaction effects involving genetic variants and environmental expo-
sures on the risk of adverse obstetric and early-life outcomes is generally performed using
standard logistic regression in the case-mother and control-mother design. However such
an analysis is inefficient because it does not take into account the natural family-based
constraints present in the parent-child relationship. Recently, a new approach based on
semi-parametric maximum likelihood estimation was proposed. The advantage of this
approach is that it takes into account the parental relationship between the mother and
her child in estimation. But a package implementing this method has not been widely
available. In this paper, we present SPmlficmem, an R package implementing this new
method and we propose an extension of the method to handle missing offspring geno-
type data by maximum likelihood estimation. Our choice to treat missing data of the
offspring genotype was motivated by the fact that in genetic association studies where
the genetic data of mother and child are available, there are usually more missing data on
the genotype of the offspring than that of the mother. The package builds a non-linear
system from the data and solves and computes the estimates from the gradient and the
Hessian matrix of the log profile semi-parametric likelihood function. Finally, we analyze
a simulated dataset to show the usefulness of the package.

Keywords: early-life outcome, genetic variants, logistic model, missing genotype data, mother-
child pairs, R package.

1. Introduction

We focus on the problem of analyzing interaction effects involving genetic variants and envi-
ronmental exposures on the risk of adverse obstetric and early-life outcomes such as premature
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birth and preeclampsia, and small-for-gestational-age (SGA) neonates. Obstetric and early-
life outcomes involve the mother and her child. Several epidemiological studies suggest that
the fetal susceptibility to environmental factors depends on his or her genotype and on the
genotype of his or her mother (Infante-Rivard 2007). It thus appears important to include
both genotypes as well as the environmental factors as predictors in the same model. Usually,
standard logistic regression is used in the case-mother and control-mother design. However
such analysis is inefficient here because it does not take into account the natural family-based
constraints present in the parent-child relationship (Shi, Umbach, Vermeulen, and Weinberg
2008).

Recently, Chen, Lin, and Hochner (2012) proposed an extension of the approach based on
semi-parametric maximum likelihood estimation. The extension proposed by Chen et al.
(2012) in case-mother and control-mother design is interesting, because it takes into account
both the genotype of the mother and of the child. The parental link between mother and
her child is modeled through the parametric function of the joint distribution of the maternal
and fetal genotype under the assumptions of random mating, Hardy-Weinberg equilibrium
(HWE), and Mendelian inheritance. The distribution of the environmental variables given the
maternal genotype and child genotype is considered as a nuisance parameter in the estimation.
Furthermore, the authors make the assumption that the environmental factors are linked only
to the genetic profile of the mother and not the one of her child, reducing the dimension of
the nuisance parameter and permiting to simplify the likelihood function. In their approach,
they also assume that the totals of case and control mother-child pairs eligible for recruitment
(population totals) are available. The authors show by simulation studies the greater efficiency
of their approach for estimating the association parameters compared to logistic regression.

Chen et al. (2012)’s method is actually appealing because of the wide array of studies of obstet-
ric and early-life outcomes where it can be applied. For example, the study seeking to link SGA
neonates to drinking water disinfection by-products conducted on case-mother and control-
mother pairs from Quebec City (Canada) area (Levallois et al. 2012) or that of Infante-Rivard
(2004), where they used logistic regression to study the modifying effect of genetic variants.
A package implementing this method has not been widely available. In this paper, we present
SPmlficmem (Nguile-Makao and Bureau 2015), an R (R Core Team 2015) package implement-
ing this method and an extension of the method to handle missing offspring genotype data
by maximum likelihood (Allison 2001). The R package is available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=SPmlficmcm.

Our choice of how to treat missing offspring genotype data was motivated by the fact that in
genetic association studies where the genetic data of mother and child are available, there are
usually more missing data on the genotype of the offspring than that of the mother. Parents
may be reluctant to consent to collect saliva and blood samples from their children. And
even with the parent’s consent, it is not easy to get a sufficient sample of saliva from the
children. For example, in a sample of mother-child pairs from the Quebec City area (SGA
cases and controls), among 1719 genotyped mother-child pairs we found on average 1.5% of
missing maternal genotypes and on average 8% of missing offspring genotypes.

This article is structured in the following way: In Section 2, we describe Chen et al. (2012)’s
method and the extension that we propose. In Section 3, we present a description of the
package. In Section 4, we present an illustration on simulated data. And we finish by a
discussion in Section 5.


http://CRAN.R-project.org/package=SPmlficmcm

Journal of Statistical Software

2. Mathematical background

In this section, we will review briefly the semi-parametric maximum likelihood method (SML)
proposed by Chen et al. (2012) and an extension of this method to the treatment of missing
offspring genotype data that we propose. In the rest of the paper, we will denote this extension
by SMLMD. Section 2.1 presents the notations, Section 2.2 gives the empirical log-likelihood
function for the complete data with a new parametrization and Section 2.3 presents the
empirical log-likelihood function for missing offspring genotype data.

2.1. Notations

Let Y denote the binary case-control status, GM and G the respective maternal and offspring
genotype, X the vector of environmental variables collected from the mother and G the
set of possible values of the genotype. Data (Y, X, GM, GC) is collected from nq case
mother pairs and ng control mother pairs, which are sampled from N; (N7 > n;j) case
pairs and No (Ny > mng) control pairs. Let n;jm. denote the total number of pairs in
the case-control sample with ¥ = i, X = j, GM = m and G = ¢ and P;jme(B) their
probability with Pjm.(8) = P(Y =i | X = j, GM = m, G = ¢; B) and 6 the log odds
of minor allele frequency (MAF) Under random mating, Hardy Weinberg equilibrium (HW)
and Mendelien inheritance, the joint distribution, P(GM = m, G¢ = ¢) = el (0) P (6),
V(m,c) € GM x G¢ where P,,(§) = P(GM = m; ) represents the mother genotype and
Pm(0) = P(GY = ¢|GM = m; 6) the conditional offspring genotype distribution given

maternal genotype. We denote by Cj,, = > njjmce the number of subjects in the case-control
i, C

sample with X = j and GM = m.

2.2. General semi-parametric maximum likelihood estimation

Let first suppose the data collected on the mother-child pairs (Y, X, GM, GC), has no
missing data. For all subjects in the sample with Y =4, X = j, GM = m and G® = ¢, we
define the following functions: hijme(8, 0) = Pijme(B) Pejm (0) where Pyjmc(8) is derived from
a logistic regression model, and P,,,,(¢) is the conditional distribution of children genotype
given maternal genotype. Let n;jm,. be the number of mother-child pairs having the status
(¢, 4, m, ¢). Chen et al. (2012) make the following assumption that the paternal allele
of offspring genotype is independent from environmental factors, by consequence, P(X =
J1GM =m, GY =¢) =P(X =3 | GM = m) = §j,, and J;,,, satisfies the constraint
> 0jm = 1. The empirical log-likelihood is written:

J

6(6, 0, 5]'!77,) = Z nijmclog(hijmc(ﬁ, 9)) + Z ijlog(dijm(G))

%, ], M, C J,m

+ Z d; log( Z 5]’ hz’jmc(67 Q)Pm(e))] )
i (

j, m, c)EVyxG?

(1)

where V, is the set of observed values of the vector X and the maternal and child genotype
GM and G¢ in the data and d; = N; — n;. For more detail, see Chen et al. (2012). The
semi-parametric likelihood estimator is obtained in the following way:
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Step 1: We estimate d;,, using Lagrange multipliers for the constraints ) d;,, = 1 and we

J
define
d; Py, (0)

Vi, m uim(B, 0) =1 — N (8, OP(Y =)’

(2)

where

N* (8, 6 ZZh

zgmcuzm(ﬁa )

Following Chen et al. (2012) we obtain a closed-form expression for gjm as

Sim = Cim
NGBy 0) Y hijme(B, 0)uim (B, 0)

i, C

Vi, m

We note that the u;, (3, 0),i =0, 1, m € GM constitute a non-linear equation system.
We have

Z hzgmc /87 5]mP ( ) (3)

],mc

and when we plug (SAjm in Equation 3 and we substitute the expression obtained for
P(Y =) in Equation 2, we have the following equation system Vi, m:

d; Py, (0)
N* h
) P
where fjm/(ﬁ, O;u,.) = Zhijm'c(ﬁ7 O)u,, (5,0) and u,» = {u, s i =1, 2}. We

note that, for all ¢, m the &im(ﬂ, 0) are bounded. Chen et al. (2012) define, N, (3, 0) =

uzm(ﬂ: 0) =1 -

, (4)

#{u§ Yu :i}
n

If we denote n4 4y = > Cjp, and p; = , an empirical estimator of P(Y = 1),

J
and n =ng + n1, then we have the inequalities:

GiPn®) 5 0) < 1 - diFm(9)

1 - -~ ~ )
Pillg 4+ Pi(nqmt+ + N —n)

()

with N —n=Ny + N; — (ng+n).

Step 2: We solve the non-linear system in Equation 4. We denote by U, (5, 6) the solution
of the non-linear system, we plug 6, as well as U;n (3, 6) in Equation 1 to obtain the
log profile likelihood:

(B, 0, um (B, 0)) =

g g , P (0)
JZ; an]mclog(hz]mc(ﬂa 0)) + jzmjcgmlog (N;L(ﬁ, 0) fim(B, 0, al-m)>

ty

P,

dilog{ZN* (3. 0 Zf]m @, 9 ) hijm (B, 9)}]- (6)
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Let 7y = (Bo, 50) be initial values of the parameters n = (3, ) obtained respectively
by the modified logistic regression of Chen et al. (2012) and the following equation:

YN, O i o
;;n—i%logP(G =my, G° =cy; 0)=0. (7)

Finally, an estimate of the parameter n is obtained by the following formula:

L 2w\ o
n="1o— {817877(n0)} 6Tn(??o)- (8)

Note that the variance of 7 is estimated by the gradient and the inverse of the Hessian
matrix of the log profile likelihood evaluated at point 7). In numerical computations of
the gradient, we have checked that keeping the U, (5, ) fixed to the solution for the
specified values of 8 and 6 or resolving them at each evaluation of /P leads to nearly
identical values. We have therefore implemented the analytical gradient of the log profile
likelihood function ¢P for fixed values of @y, (3, #). The Hessian matrix is computed
numerically from the gradient.

2.3. Generalization to missing offspring genotype data

Let (Y, X, GM, G®) be the data collected on the mother-child pairs where we suppose
that the genotype of a subset of children is missing at random (Little and Rubin 2002), as
missingness is allowed to depend on case-control status and maternal genotype. We suppose
that the missing offspring genotype data are completely at random. From the total sample,
we constitute two sub-samples that we denote by S}, for the complete data and S7,,, for
the missing offspring genotype data. If we examine the non-linear system of the complete
data in Equation 4, we notice that the system is completely defined through the information
(i, 7, m). The offspring genotypes in the sample are not required because the system is
written with a summation over all possible values of the offspring genotype compatible with
the maternal genotype. Consequently, the non-linear system with missing offspring genotype
data stays identical to the one for the complete data. Starting from the likelihood function
of Equation 6 for the complete data, ¢’ can be written the following way:

where
”17(57 0) = Z Nijme 108(hijme(8, 0))
1, 7, m, C
and (8, 0, Uim(B, 0)) is equal to the remaining terms of the right-hand side of Equation 6.
The function ¢(8, 6) is completely defined only if we observe n;jm. in the study sample.
However, we only need the totals for each combination of (i, j, m) in the study sample to
define the function ¢5(3, 0, U;m (B, 0)). As a consequence, the missing offspring genotype
data modify the likelihood function of Equation 6 only within the function #(3, ). For all
(¢, 4, m), we denote by nijm = Y. Mijme the number of mother-child pairs in the samples
&

with Y =i, X = j, GM = m and where the offspring genotype is observed. We denote also
for all (¢, j, m), Mijm the number of mother-child pairs in the sample with ¥ =i, X = j,
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GM = m and where the offspring genotype is missing. The log profile semi-parametric
likelihood function with summation over missing offspring genotype is written:
where

Zzlj(ﬁ, 0) = Z Tjjm log (Z hijmc(n)) :

iy g, m ceG

This quantity represents the modification brought by the missing offspring genotype data to
the likelihood function. The log profile semi-parametric likelihood is then written:

lp(57 97 azm(n)) = Z Nijme IOg(hijmc(n)) + Z ﬁijm log( Z hz]mc(n))
ijmeeS} o ijmeS?,,, ceGM

P (0)
N?%(U)fjm(% U (n))

+ Zij log(

im

2

)

o g{ m Ny (n) ; fjm(n, am(n))hwm(ﬁ)}] .

(11)

Remark: Tthe distribution of the offspring genotype is conditional on the mother genotype
and not on the covariate values, and so is the missingness probability factoring out of the
likelihood. We apply the same steps as in Section 2.2 to obtain the parameter estimates.

3. Package description

The R package SPmlficmem (semi-parametric mazimum likelihood for interaction in case-
mother control-mother) implements the method of general semi-parametric maximum likeli-
hood estimation for the complete data and data with missing offspring genotype. It contains
one main function for the user: Spmlficmcm() performing the analysis for the complete
data and data with missing offspring genotype. This function uses two auxiliary functions:
Est.Inpar() to compute the initial values of the parameters (3,6) and of the non-linear
system, and Nlsysteq() to build the non-linear system. Finally the function Spmlficmem()
solves the non-linear system, builds the log profile likelihood and its gradient and computes
the parameter estimates as well as the estimates of their standard errors. In this section, we
describe the main functions and the estimation steps.

3.1. Main arguments of the functions

All functions use the main arguments described below and some functions use optional argu-
ments. The main arguments are:

e formula: The model formula.

e N: A numeric vector of length two giving the number of eligible controls and cases in the
population (N = (NO, N1)). If this information is unavailable, it is possible to specify
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the disease population prevalence in the argument p instead of N. In that case, N1 is set
equal to 5 n1, in order to avoid observing N1 < n1 when prevalence is small. We then
set NO = <=PN1.

e gnma: A character variable representing the name of the maternal genotype.

e gnch: A character variable representing the name of the child genotype.

e start: Vector of the initial values of the model parameters.

e data: A data frame in long format containing the following variables:

— id: Identity of the mother-child pairs.
— outc: Binary case-control status.
— gnma: The maternal genotype.

— gnch: The offspring genotype.

Remark: In the formula, the variables coding the maternal and child genotypes can differ
from the gnma and gnch variables representing the number of minor alleles. This allows for
instance to code dominant or recessive effects.

3.2. Description of the main function

Spmlficmem() is the function used to estimate the regression parameters and the minor allele
frequency (3, ) via generalized semi-parametric maximum likelihood estimation. It uses the
following steps:

Step 1:

Step 2:

Step 3:

Obtaining initial values for the parameters

The main function calls Est.Inpar() to compute initial values for the parameters,
which takes the optional argument typ to distinguish the data with missing offspring
genotype (2) and the complete data (1). Est.Inpar () uses logistic regression (glm())
to estimate By (initial value of 8) and Equation 7 to estimate 6y (initial value of 6).
To resolve Equation 4 the nleqslv() function from the nlegslv package (Hasselman
2015) is called. We choose the Broyden method of global strategies such as line search
and trust region. In particular we use the Broyden method because this method often
shows superlinear convergence towards a solution (Dennis and Schnabel 1983). The
same function computes the initial values of the relevant non-linear system using
Equation 5.

Construction of the non-linear system

Spmlficmem() calls the function Nlsysteq() to build the non-linear system of Equa-
tion 4. It must be noted that the number of equations depends on the number of
distinct maternal genotypes. The function uses the nleqslv() function of the nlegslv
package and initial values to solve the non-linear system.

Determining the log profile likelihood and estimation of parameters

In this last step, Spmlficmem() determines and evaluates the log profile likelihood
function of Equation 6 or 11 and its gradient, and computes the Hessian matrix
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numerically from the gradient. The method described in Equation 8 is then applied
to evaluate the parameter estimates.

Spmlficmem() returns an object containing as components the solution of the non-linear
system, the matrix of the estimates with their standard errors, the variance-covariance matrix
from the sample, the log likelihood function and the value of the log likelihood function
assessed at the estimated parameters.

Remark: It is important to verify the following arguments: The data frame data must not
contain missing values on the covariates such as environmental factors. The maternal and
offspring genotypes must be coded as number of minor alleles carried by the individual. The
missing offspring genotype data should be coded as NA.

4. Tllustrations

In this section, we present an illustration of the use of the SPmlficmcm package on simulated
data. We use the functions include in package SPmlficmem to generate the data according
to the model equation formula.

4.1. Simulation

Simulation parameters

We generate the data respecting the constraint between offspring genotype and maternal
genotype. Firstly, we generate genotype data (GM, G) for a cohort of Nampte = 20000
mother-child pairs and consider two continuous covariates X1 and X2, which are correlated
with GM. Given the values of (GM, GY, X1, X2), we generate a binary disease outcome outc
from a logistic regression model with the following covariate effects: the log odds of the MAF
0.3, 8 =¢(—0.916, 0.857, 0.588, 0.405, —0.693, 0.488) corresponding respectively to the coef-
ficients of the following terms X1, X2, gm, gnch, X1 : gnch, X2 : gm and the intercept —2.23,
in a simulation scenario describing the main and interaction effect of (GM, G¢, X1, X2).
We solve for the value of the intercept parameter so that the resultant phenotype prevalence,
P(outc = 1), is around 6% in the simulation. We then sample n; = 327 case pairs and
ng = 1232 control pairs from the cohort. We mainly report results when the MAF is 0.3
and both GM and G are coded as the number of minor alleles. Secondly, we create another
database from the first, introducing an average 9% of missing offspring genotype data and run
the analysis summing over missing offspring genotypes. We repeat this process B = 500 times
to create 500 complete samples and 500 samples containing the missing offspring genotypes
data.

Stmulated database

In the following code, we use the function FtSmlrmCMCM() to generate a dataset with envi-
ronment factors that are continuous variables. M represents the size of the population, rho is
the disease prevalence and N is a vector containing the number of affected and unaffected sub-
jects in the population. On the last line, n mother-child pairs are sampled with the function
SeltcEch(), where n= n0 + nl.
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library("SPmlficmcm")
set.seed(13200)
M <- 20000
fl <- outc ~ X1 + X2 + gm + gnch + X1 : gnch + X2 : gm
theta <- 0.3
beta <- c¢(-0.916, 0.857, 0.588, 0.405, -0.693, 0.488)
interc <- -2.23
vpo <- ¢(3, 4)
vprob <- c¢(0.35, 0.55)
vecorr <- c(2, 1)
Dataf <- FtSmlrmCMCM(f1, M, theta, beta, interc, vpo, vprob, vcorr)
rho <- table(Dataf["outc"]) [2]/20000
N <- c(dim(Dataf [Dataf["outc"] == 0, J)[1],
dim(Dataf [Dataf["outc"] == 1, J)[1])
n0 <- 1232; nl1 <- 327
DatfEl1 <- SeltcEch("outc", nl, n0O, "obs", Dataf)

Creation of the complete and missing data

The following code creates the sample with complete data (DatfEmd) and the full sample
including subjects with missing offspring genotype (DatfEcd) from the full sample with com-
plete data DatfE1.

R>
R>
+

R>
R>

DatfE <- DatfEl1

DatfE[["gnch"]] [sample(c(0, 1), dim(DatfE)[1], replace = TRUE,
prob = c(0.91, 0.09)) == 1] <- NA

DatfEcd <- na.omit (DatfE)

DatfEmd <- DatfE

Results for the data created

R> DatfEcd[26:30, ]

obs outc X1 X2 gm gnch
18546 29 1 3 2 1 0
195251 30 1 2 1 1 0
9488 31 10 1 0 0
5429 32 1 0 0 O 1
5026 33 1 3 2 1 0
R> DatfEmd[26:30, ]

obs outc X1 X2 gm gnch

16275 26 1 0 0 O NA
16570 27 1 1 1 0 0
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15788 28 1 1 1 0 0
18546 29 1 3 2 1 0
196251 30 1 2 1 1 0

We created 9% missing data with the sample function. Each database is a data.frame con-
taining 6 columns. Column 1 represents the number of the mother-child pair; the next three
columns represent the binary response variable and two continuous environmental variables.
The last two variables represent respectively the maternal genotype and the offspring geno-
type. Both genotypes are coded as number of minor alleles. We have finally two databases,
DatfEmd that contains the missing data on the offspring genotype and DatfEcd that contains
only the pairs with complete data. Firstly, we show the use of the two mains functions of
the package, thereafter we compare the results of three estimators obtained respectively by
logistic regression, the SML approach and the SMLMD approach.

4.2. Estimation of parameters

Estimation of parameters without missing data

On the first line, we give the model equation, then we apply the function Spmlficmem() to
estimate the parameters on the sample with complete data.

R> f1 <- outc ~ X1 + X2 + gm + gnch + X1 : gnch + X2 : gm
R> Rsnm <- Spmlficmcm(fl, N, "gm", "gnch", DatfEcd, 1)
R> round(Rsnm[["Uim"]], digits = 3)

The results shown below include first the solution Uy, of the non-linear system, second the
estimates of parameters, third the variance-covariance matrix, and fourth the value of the

likelihood function evaluated at the parameter estimates.

[1] 0.063 0.063 0.060 0.146 0.147 0.144
R> round(Rsnm[["MatR"]], digits = 3)

Estimate Std.Error

Intercept -2.229 0.109
X1 -0.741 0.224
X2 0.749 0.163
gm 0.137 0.494
gnch 0.604 0.176
X1l:gnch -0.790 0.117
X2:gm 0.616 0.162
theta -0.840 0.036

R> round(Rsnm[["Matv"]], digits = 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.01181 -0.00474 -0.00841 0.00102 -0.01204 0.00496 0.00377 0.00083
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[2,] -0.00474 0.05016 -0.01003 -0.09002 0.00645 -0.00321 0.00229 -0.00008
[3,] -0.00841 -0.01003 0.02668 0.00899 -0.00176 0.00231 -0.01145 0.00003
[4,] 0.00102 -0.09002 0.00899 0.24450 -0.00631 0.00098 -0.03220 -0.00053
[5,] -0.01204 0.00645 -0.00176 -0.00631 0.03114 -0.01392 0.00488 -0.00079
[6,] 0.00496 -0.00321 0.00231 0.00099 -0.01392 0.01367 -0.00731 0.00021
[7,] 0.00377 0.00229 -0.01145 -0.03220 0.00488 -0.00731 0.02635 -0.00007
[8,] 0.00083 -0.00008 0.00003 -0.00053 -0.00079 0.00021 -0.00007 0.00130

R> Rsnm[["Value_loglikh"]]
[1] -17897.71

We also illustrate the use of the function with specification of the disease prevalence p, as-
suming N is unknown. Coefficient estimates and standard errors changed little. When varying
N while keeping the disease prevalence p = % constant, we observed that the coefficient
estimates were insensitive to the value of N, but the standard errors of the coefficient esti-
mates decreased slightly with N (data not shown). It is thus preferable to underestimate N
and slightly overestimate standard errors than the opposite. Also, setting N too large leads

to numerical errors.

R> prev <- N[2] / sum(N)

R> Rsnm2 <- Spmlficmcm(fl, gmname = "gm", gcname = "gnch", DatfE = DatfEcd,
+ typ = 1, p = prev)

R> round (Rsnm2$Uim, digits = 3)

[1] 0.086 0.087 0.082 0.200 0.201 0.197
R> round(Rsnm2[["MatR"]], digits = 3)

Estimate Std.Error

Intercept -2.229 0.110
X1 -0.741 0.224
X2 0.749 0.163
gm 0.137 0.495
gnch 0.604 0.176
X1l:gnch -0.790 0.117
X2:gm 0.616 0.162
theta -0.840 0.036
R> Rsnm2$N

[1] 13099 1470

Estimation of the parameters (with missing data)

We use the function Spmlficmem() with the option typ equal to 2 to estimate the model
parameters on the missing data. The following code gives the solution Uy, of the non-linear
system, the parameter estimates, the variance-covariance matrix, the log-likelihood function
and the log-likelihood function evaluated at the parameter estimates.
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R> Rswm <- Spmlficmcm(fl, N, "gm", "gnch", DatfEmd, 2)
R> round(Rswm[["Uim"]], digits = 3)

[1] 0.063 0.063 0.060 0.146 0.147 0.144

R> round(Rswm[["MatR"]], digits = 3)

Estimate Std.Error

Intercept -2.223 0.105
X1 -0.815 0.219
X2 0.758 0.156
gm 0.165 0.482
gnch 0.613 0.176
X1l:gnch -0.797 0.116
X2:gm 0.680 0.154
theta -0.847 0.035

R> round(Rswm[["Matv"]], digits = 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0.01092 -0.00427 -0.00743 0.00100 -0.01201 0.00491 0.00306 0.00076
[2,] -0.00427 0.04818 -0.00962 -0.08686 0.00634 -0.00313 0.00232 -0.00007
[3,] -0.00743 -0.00962 0.02444 0.00843 -0.00165 0.00227 -0.01025 0.00004
[4,] 0.00100 -0.08686 0.00843 0.23188 -0.00619 0.00095 -0.02872 -0.00050
[5,] -0.01201 0.00634 -0.00165 -0.00619 0.03098 -0.01372 0.00476 -0.00074
[6,] 0.00491 -0.00313 0.00227 0.00095 -0.01372 0.01349 -0.00726 0.00020
[7,] 0.00306 0.00232 -0.01025 -0.02872 0.00476 -0.00726 0.02357 -0.00008
[8,] 0.00076 -0.00007 0.00004 -0.00050 -0.00074 0.00020 -0.00008 0.00122

R> Rswm[["Value_loglikh"]]
[1] -19027.6

Here again disease prevalence can be specified when N is unknown, with little change to the
coefficient estimates and standard errors.

R> Rswm2 <- Spmlficmcm(fl, gmname = "gm", gcname = "gnch", DatfE = DatfEmd,
+ typ = 2, p = prev)
R> round (Rswm2$Uim, digits = 3)

[1] 0.086 0.087 0.082 0.200 0.201 0.197

R> round(Rswm2[["MatR"]], digits = 3)
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Model Standard SML SMLMD
Terms True Est. Std.error Est. Std.error Est. Std.error
Intercept —2.230 —1.367 0.126 —2.229 0.109 —2.223 0.105
X1 —-0.916 —0.769 0.226 —0.741 0.224 —0.815 0.219
X2 0.857 0.740 0.164 0.749 0.163 0.758 0.156
gm 0.588 0.171 0.501 0.137 0.494 0.165 0.482
gc 0.405 0.565 0.183 0.604 0.176 0.613 0.176
X1:gc —0.693 —0.788 0.121 —0.790 0.117 —0.797 0.116
X2:gm 0.488 0.640 0.167 0.616 0.162 0.680 0.154
theta —0.847 - — —0.840 0.036 —0.847 0.035

Table 1: Comparison of results of three methods on the simulated data. Standard: refers to
logistic regression. SML: semi-parametric maximum log-likelihood method (no missing data).
SMLMD: semi-parametric maximum log-likelihood method (missing data).

Estimate Std.Error

Intercept -2.223 0.106
X1 -0.815 0.220
X2 0.758 0.156
gm 0.165 0.482
gnch 0.613 0.176
X1l:gnch -0.797 0.116
X2:gm 0.680 0.154
theta -0.847 0.035
R> Rswm2$N

[1] 13099 1470

Using the same data, we applied logistic regression with the same equation, we computed the
standard errors of the estimates and we compared them to the other two estimates. The results
are reported in Table 1. When we compare the SML approach with the standard approach
(logistic regression) on one simulated sample, we notice an amelioration i.e., a reduction of
variance and the estimates are nearer to the true values. These results corroborate the results
of Chen et al. (2012). Indeed Chen et al. (2012) showed that using the SML approach when
the assumption is satisfied reduces the variance on average by 30%. When using the SMLMD
approach, we again observed a reduction of the standard errors of the estimates. To confirm
this error reduction and validate the properties of the semi-parametric maximum likelihood
estimator, we assessed the following quantities: the bias, the mean square error (MSE), the
empirical variance (Vp,), the mean estimated variance and the confidence interval coverage
for the two approaches (SML and SMLMD) on B = 500 replicates of the generated data.
We removed 20 replicates where we observed negative variances and/or coefficient estimates
beyond 3 median absolute deviations (scaled to estimate the standard deviation) from the
median for both methods. The results are reported in Table 2. Tables 3 and 4 show the
empirical covariances and the mean estimated covariances.

The MSE and empirical variance of the coefficient estimates for the mother genotype gm and
the covariates X1 and X2 are slightly reduced when making use of the entire dataset, as

13
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SPmlficmem:
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Model SML SMLMD

Terms Bias MSE V.,(7) V(@) P(fe CI9%) Bias MSE V..,(7) V(7) P(7e CI95)
Intercept  —0.007 0.013  0.013  0.011 0.923 —0.007 0.013 0.013 0.011 0.925
X1 0.008 0.063 0.063  0.053 0.938 0.009 0.060  0.061  0.049 0.925
X2 —0.015 0.034 0034  0.027 0.925 —0.016 0.032  0.032  0.025 0.908
gn 0.014 0269 0269 0.256 0.938 0.010 0261 0262 0.232 0.946
gnch 0.018 0.039  0.039  0.032 0.935 0.017 0.039  0.038  0.032 0.933
X1:gnch —0.019 0.017 0.017  0.014 0.933 —0.018 0.017 0.016 0.013 0.931
X2:gm 0.000 0.036 0.036  0.027 0.917 0.002 0.033  0.033  0.025 0.925
theta 0.000 0.001  0.001  0.001 0.938 0.000 0.001  0.001  0.001 0.927

Table 2: Comparison of results of two methods on the simulated data (B = 480 replicates where estimation succeeded). MSE: mean
square error, V: estimated variance, V¢py: empirical variance, P(7) € C'195): 95% confidence interval coverage, SML: semi-parametric

maximum likelihood method (no missing data), SMLMD: semi-parametric maximum likelihood method (missing data).
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—-0.006 —-0.008 0.001 —-0.011 0.005 0.004  0.001

—0.003 —-0.010 -0.097 0.006 —0.003 0.002  0.000

—-0.010 —-0.016 0.009 -0.002 0.003 —0.012 0.000

COV(H,7) = —-0.002 -0.105 0.017 —0.006 0.002 —-0.032 —-0.001
’ —-0.014 0.003  0.000 —0.004 —-0.014 0.005 —0.001

0.006 —0.001 0.002 —-0.001 -0.018 —0.007  0.000

0.004 -0.001 -0.014 -0.035 0.008 —0.010 0.000

0.001  0.000 0.000 -0.001 -0.001 0.000  0.000

Table 3: Comparison of the empirical covariance vs. mean covariance for the SML method
computed on B = 480 samples where estimation succeeded. The empirical covariances are
under the diagonal and mean estimated covariances are above.

-0.004 -0.008 0.001 —0.011 0.005 0.003  0.001

—0.002 —-0.009 -0.088 0.006 —0.003 0.002  0.000

—0.010 —-0.016 0.008 —0.002 0.003 —0.011 0.000

COV(R, 7) = -0.002 -0.102 0.017 —-0.006 0.002 —0.029 -0.001
’ —0.014 0.004 0.000 —0.005 —0.014 0.005 —0.001

0.006 —0.002 0.002 0.000 —0.017 —0.007  0.000

0.003  0.000 —-0.013 -0.034 0.008 —0.010 0.000

0.001  0.000  0.000 —-0.001 0.000 0.000 0.001

Table 4: Comparison of the empirical covariance vs. mean covariance for the SMLMD method
computed on B = 480 samples where estimation succeeded. The empirical covariances are
under the diagonal and mean estimated covariances are above.

Number SML SMLMD SML SMLMD
of terms n = 1441 n = 1559 n =342 n =393
3 3.3 3.9 3.1 3.3
4 4.2 4.6 3.8 4.1
) 4.6 2.5 3.2 3.5
6 5.6 5.6 4.1 4.6

Table 5: Computing time expressed in seconds. n: sample size.

expected. The estimates were unbiased and the mean estimated variance of the coefficient
estimates was slightly below the empirical variance, and confidence interval coverage was close
to or slightly below the nominal 95% level. Some covariances are also estimated closer to 0
than the empirical value.

Computing times are reported in Table 5. In summary the computing time depends on the
number of terms in the formula and the size of the sample.
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5. Discussion

Package SPmlficmem implements the semi-parametric maximum likelihood estimation for
case-mother control-mother designs, allowing for missing offspring genotype. This method is
important in studies where we want to determine the role of a polymorphism in interaction
with the mother exposure to an environmental factor on obstetric and early-life outcome
risk. Indeed these models permit to take into account the correlation between the maternal
genotype and offspring genotype under the assumptions of Hardy-Weinberg equilibrium and
Mendelian inheritance. The statistical properties of the estimates were satisfactory, although
a slight underestimation of the empirical variance by the variance estimate led to a slight
undercoverage of the confidence intervals. SPmlficmem has been made available on CRAN.
This package executes the computation relatively quickly. We hope that this package will
encourage applied researchers to use this type of modeling, as it provides a relevant way to
study gene-environment interactions in case-mother and control-mother designs.
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