
JSS Journal of Statistical Software
December 2017, Volume 82, Issue 11. doi: 10.18637/jss.v082.i11

archivist: An R Package for Managing, Recording
and Restoring Data Analysis Results

Przemysław Biecek
University of Warsaw

Marcin Kosiński
Warsaw University of Technology

Abstract

Everything that exists in R is an object (Chambers 2016). This article examines what
would be possible if we kept copies of all R objects that have ever been created. Not only
objects but also their properties, meta-data, relations with other objects and information
about context in which they were created.

We introduce archivist, an R package designed to improve the management of results
of data analysis. Key functionalities of this package include: (i) management of local
and remote repositories which contain R objects and their meta-data (objects’ properties
and relations between them); (ii) archiving R objects to repositories; (iii) sharing and
retrieving objects (and their pedigree) by their unique hooks; (iv) searching for objects
with specific properties or relations to other objects; (v) verification of object’s identity
and context of its creation.

The presented archivist package extends, in a combination with packages such as
knitr and the function Sweave, the reproducible research paradigm by creating new ways
to retrieve and validate previously calculated objects. These new features give a variety
of opportunities such as: sharing R objects within reports or articles; adding hooks to R
objects in table or figure captions; interactive exploration of object repositories; caching
function calls with their results; retrieving an object’s pedigree (i.e., information about
how the object was created); automated tracking of the performance of considered models,
restoring R packages to the state in which the object was archived.

Keywords: recordable research, reproducible research, data analysis management, data gov-
ernance, meta-data, results management.

1. Introduction

In most of the cases the outcome of the process of data analysis is a set of objects in the form
of statistical models, charts or tables. Three requirements are often superimposed to ensure

http://dx.doi.org/10.18637/jss.v082.i11

2 archivist: Managing, Recording and Restoring Data Analysis Results in R

sufficient quality of such results: They should be reproducible, verifiable and accessible. Re-
producibility means that there is a process that reproduces the results. Verifiability means
that it is possible to check whether the newly generated results are identical to previously
obtained results, and it is possible to check the context of an object’s creation. Accessibility
means that results can be easily accessed for future computer-based processing. Reproducibil-
ity gets increasing attention in the academic literature across various disciplines, see for ex-
ample Peng (2009) for bioinformatics or Koenker and Zeileis (2009) for econometric research
or Drummond (2009) for a more general discussion about differences between replicability
and reproducibility.
The R (R Core Team 2017) ecosystem of packages is equipped with wonderful tools such
as the knitr package (see Xie 2013, 2017) or function Sweave (see Leisch 2002; Rossini and
Leisch 2003) which allow to create reproducible reports or articles. They follow the literate
programming principle, and the R code, its results and its explanations appear together in a
single document. It is assumed that the same input and identical instructions executed on the
same operating system with the same local settings and with identical versions of installed
packages will result in the same output. Under these assumptions knitr or Sweave reports
are sufficient to recreate the previously obtained results.
But there are cases in which it is not convenient to recreate results from scratch, from raw
input. Consider the following situations:

• The input data is large or with limited/restricted access (e.g., for genomic data the raw
input may easily hit few TB).

• Computations take a lot of time or require specialized hardware (e.g., calculations tuned
for graphics processing unit cards).

• Calculations are based on a very specific version of software or require commercial
versions of software or some functions are deprecated or removed over time. It can be
an issue even for open software, e.g., due to rapid development of R, even widely used
packages experience significant changes, like ggplot2 (Wickham 2009) or lme4 (Bates,
Mächler, Bolker, and Walker 2015) in the year 2015.

• Results are generated and processed periodically and you wish to restore and compare
models across all reports.

In such situations it is desirable to retrieve the results that were calculated in the past rather
than reproducing them from scratch. Objects that are backed up can be reused even if
they cannot be reproduced or the reproducibility will be too complex or time consuming.
Alternatively, it may be desired to check whether the reproduced results are the same as
those obtained previously.
An interesting example of such a feature are StatLinks (see OECD 2015) commonly used in
reports prepared by the OECD (Organization for Economic Co-Operation and Development).
In addition to scripts that generate results, most tables and plots that are presented in the
reports are equipped with their own DOIs (digital object identifiers) and web hooks. Through
these links readers may download selected tables and plots, in the Excel format. The xls and
xlsx formats are not ideal as they are proprietary and difficult to read in an automated way.
But for extensive studies it is convenient and faster to access final results in such formats
instead of having scripts that reproduce them.

Journal of Statistical Software 3

If the only result from the data analysis is a single plot, a model or a table, it is easy to
save it in the rda format in R and make it accessible for others. But increasing amounts
of heterogeneous data results in growing complexity of the process of data analysis. The
complexity comes either from data volume, data heterogeneity, numerous steps required for
data preparation, results validation, etc. Moreover, working with data is often a highly
iterative process that generates large amount of partial or final results. For all the above
reasons the management of versions of results becomes a task in itself. Neglecting this process
results in reproducibility debt and may consequently lead to huge additional workload when
it comes to recreation of results. The reproducibility debt is a part of wider category called
technical debt (see Sculley et al. 2014).
It should be noted that the concept of recording and exploring relations between objects is
not new. Potential applications in auditable data analyses were discussed almost 30 years ago
(see Becker and Chambers 1988). What we present in this article may be perceived as the
implementation of some of these concepts. It is now easier due to lower costs of data storage.
The archivist package (Biecek and Kosinski 2017) helps in managing, sharing, storing, linking
and searching for R objects in a platform agnostic way. Its core functionalities allow for many
interesting applications – some of them are presented in Section 2. The archivist package
automatically retrieves the object’s meta-data and creates a rich structure that allows for
easy management of stored R objects. The meta-data covers object properties such as: name,
creation date, class, versions of attached packages, structure and relations between R objects
(as for example, that an object A was used for creation of an object B). All examples presented
here are related to R objects. In Section 3.4 we discuss how this approach can be extended
to other languages.
The rest of the article has the following structure. In Section 2 (Motivation) we introduce
key motivations and use cases behind archivist. In Section 3 (Functionality) we present all
functions available in the package and point out some further directions how this functionality
can be integrated with GitHub, knitr, or be extended to other languages/formats. In Section 4
(Conclusions) we gather some final thoughts related to recordable and restorable research.

2. Motivation
In this section we present key concepts and some use cases behind the archivist package. In
Section 3 we present all functions available in package archivist in a more formal way. First
let us introduce some terminology.

• Artifact – An R object that is saved to the repository. Artifacts are identified by their
MD5 hashes.

• Repository – A collection of artifacts stored as binary files outside of the R session.
Repositories are either local (with a read-write access) or remote (with a read access
only). The API for repositories allow for the following actions: add, delete, read or
search for an artifact with selected tags. In the current version of the archivist package
local repositories are folders in the file system while remote repositories are Git or
Mercurial based repositories. The same mechanism can be used to access repositories
pointed as URL addresses or folders attached to R packages.

4 archivist: Managing, Recording and Restoring Data Analysis Results in R

• MD5 hash – A unique identifier of an artifact. It is a 32-character-long string, which is
the result of the cryptographical hash function MD5 (message digest algorithm 5). Here,
we are using the implementation of the hash function available in the digest package
(see Lucas and Eddelbuettel 2017). In the archivist package MD5 hashes are used as
object hooks.

• Tag – An attribute of an artifact. Tags are represented as character strings; they
usually have the following structure: key:value. An artifact may have many tags, even
with the same key. Some tags are automatically derived from artifacts, others may be
added manually. Tags may be referred as meta-data of artifacts as they describe either
properties of artifacts (e.g., class, name, date of creation) or relations between artifacts
(e.g., being a part of, being a result of).

The archivist package manages R objects outside the R session. It stores binary copies of R
objects in rda files and provides easy access for seeking and restoring these objects based on
time stamps, classes or other properties.
But, why would anybody like to store copies of R objects? Let us imagine the following use
cases:

• A data scientist creates a report or an article and would like to provide access to results
presented in the article. Typically, these results are presented as plots, tables or models.
Apart from including these results in the report or article in a human-readable form,
it may be beneficial to be able to restore a given result in a machine-readable form
for further processing. Having a possibility to retrieve an R plot or table, one can
perform some further transformation of it. The opportunity to retrieve a regression
model enables additional residual validation or the application of the model to new
data. The archivist package creates a hook to a copy of an R object which restores the
object in a remote R session. Such hooks are short one-line instructions and can be
embedded in figure or table captions.
An example report that illustrates this use case is available at http://bit.ly/1nW9Cvz.
A part of it is presented in Figure 1. The report is created with the use of the knitr
package. It contains both R code and its results in the form of tables and plots created
with the ggplot2 package (see Wickham 2009). In addition, there are also hooks to
selected results. These hooks allow to restore a given plot or table directly in a local R
session. Hooks of such a form restore for example a ‘gg’ object in an R session:

R> archivist::aread(paste0("pbiecek/Eseje/arepo/",
+ "65e430c4180e97a704249a56be4a7b88"))

• A team of data scientists is working for some time on a forecasting model. During
a certain period of time a large set of competing models is created. The team needs
a tool that stores all models with additional meta-data, such as model performance,
information which data was used for model training and testing. The archivist package
creates a shared repository which can be used for storing models along with their meta-
data and provides an API for searching objects with specific meta-data. The example
below reads all objects of class ‘lm’, calculates a BIC score for them and sorts objects
with respect to these scores.

http://bit.ly/1nW9Cvz

Journal of Statistical Software 5

Figure 1: A part of a knitr report given at http://bit.ly/1nW9Cvz that uses the
addHooksToPrint function that automatically adds archivist hooks to all objects of a given
class. Objects can be accessed either by copying highlighted aread instructions to R or by
clicking the link.

R> library("archivist")
R> models <- asearch("pbiecek/graphGallery", patterns = "class:lm")
R> modelsBIC <- sapply(models, BIC)
R> sort(modelsBIC)

990861c7c27812ee959f10e5f76fe2c3 2a6e492cb6982f230e48cf46023e2e4f
39.05577 67.52735

0a82efeb8250a47718cea9d7f64e5ae7 378237103bb60c58600fe69bed6c7f11
189.73593 189.73593

7f11e03539d48d35f7e7fe7780527ba7 c1b1ef7bcddefb181f79176015bc3931
189.73593 189.73593

0e213ac68a45b6cd454d06b91f991bc7 e58d2f9d50b67ce4d397bf015ec1259c

http://bit.ly/1nW9Cvz

6 archivist: Managing, Recording and Restoring Data Analysis Results in R

Figure 2: A screenshot from a Shiny application hosted under the link https://cogito.
shinyapps.io/archivistShiny. The archivist hook is included below each plot.

243.49450 243.49450
18a98048f0584469483afb65294ce3ed

396.16690

• Results are generated in a remote R process, like for example with a Shiny application.
The archivist package saves created R artifacts in an URL repository.
See for example Figure 2 that presents a screenshot from the Shiny application https:
//cogito.shinyapps.io/archivistShiny. All plots generated by this application are
stored in an archivist repository and may be accessed with hooks presented below plots.
Following a line downloads a single plot directly to the local R session:

R> archivist::aread(paste0("https://cogito.shinyapps.io/",
+ "archivistShiny/arepo/0c6af69086fc9b32fc993ec17e065775"))

3. Functionality
The key functionality of the archivist package is to manage copies of R objects, called artifacts,
stored as binary files. Artifacts are stored in collections called repositories. Properties of
artifacts and relations between artifacts are described by their tags.
The typical lifetime of the repository is presented in Figure 3. The local repository is cre-
ated with the createLocalRepo function. It can be set as a default repository so that
calls of the other archivist functions can be simplified. Once the repository is created, new

https://cogito.shinyapps.io/archivistShiny
https://cogito.shinyapps.io/archivistShiny
https://cogito.shinyapps.io/archivistShiny
https://cogito.shinyapps.io/archivistShiny

Journal of Statistical Software 7

Figure 3: Overview of the most important functions related to a life-cycle of a repository and
an artifact.

R objects can be archived with the saveToLocalRepo function or can be removed with
the rmFromLocalRepo function. Artifacts can be restored from the repository with the
loadFromLocalRepo function. One can also get all objects that match given criteria with
the function named searchInLocalRepo. Both functions have wrappers called aread and
asearch, respectively, with the simplified and shorter interface. To summarize what kind of
artifacts are in the repository one can use summaryLocalRepo or showLocalRepo functions.
The repository can be removed with the deleteLocalRepo function.
Table 1 presents all functions available in the archivist package. These functions are divided
into four core groups:

• Functions for repository management. In this group there are functions used to create
a new empty repository, to create a repository as a copy of an existing local or GitHub
repository, to backup an entire repository into a single zip file, to present summary
statistics of objects stored in the repository and to delete the existing repository.

• Functions for saving artifacts to a repository, loading artifacts from a repository and
removing artifacts from a repository. Functions that show relations between artifacts,
present artifacts’ history or context in which they were created.

• Functions for searching for artifacts within a repository. Artifacts may be accessed
through date of creation, a tag or a list of tags.

• Other features that do not fit previous categories.

8 archivist: Managing, Recording and Restoring Data Analysis Results in R

Local Remote
Repository managment createLocalRepo

setLocalRepo setRemoteRepo
deleteLocalRepo
showLocalRepo showRemoteRepo
summaryLocalRepo summaryRemoteRepo
zipLocalRepo zipRemoteRepo
copyLocalRepo copyRemoteRepo

Artifacts management saveToLocalRepo
rmFromLocalRepo
loadFromLocalRepo loadFromRemoteRepo
aread aread
asession asession
aformat aformat
ahistory
%a%

Artifacts’ exploration searchInLocalRepo searchInRemoteRepo
asearch asearch
shinySearchInLocalRepo

Extensions restoreLibs
atrace
addHooksToPrint
createMDGallery

Table 1: The list of functions available in the archivist package (version 2.1).

In Sections 3.1–3.4 each group of these functions is presented separately.

3.1. Repository management

A repository is a collection of artifacts and their meta-data. In this section you will find a list
of functions for repository management (used to create a new empty repository, create a copy,
present summary statistics or delete an existing repository).
Technically, a repository is a directory with the following structure (see Figure 4).

• A backpack.db file which contains an SQLite database. The database contains two
tables with a structure presented in Figure 5. The table named artifact contains ar-
tifacts’ MD5 hashes and basic information about the artifacts. The table called tag
contains artifacts’ tags. Since both artifacts and tags may be added into the database
an unspecified number of times, each tag and artifact has one or more time points – one
for each attempt to artifact or tag archiving to the repository.

• A subdirectory called gallery storing the artifacts. Artifacts are stored as separate
files. The names of the files start with the MD5 hashes of the corresponding artifacts.
Extensions correspond to formats in which artifacts are saved. The current implemen-
tation for R stores artifacts in the rda format, but it can be easily extended to handle
other formats. Additionally, also an artifact’s miniature is saved. For plots the default

Journal of Statistical Software 9

Figure 4: The structure of an example arepo repository. It contains the database with objects’
meta-data stored in an SQLite file backpack.db and a subfolder gallery with binary copies
of R objects and their miniatures.

Figure 5: The entity-relationship diagram that presents the structure of tables: artifact and
tag, summarizing the relations between artifacts. The SQLite database with both tables is
stored in the backback.db file in the repository.

format for miniatures is a raster file with png extension, for other objects it is a text
file with txt extension (e.g., for data frames it contains the first few rows).

A repository may be accessed in two ways.

• Local – In this case the repository is identified by its path in the local file system. The
repository is in read-write mode. If the file system is shared (e.g., a shared file system
on a HPC cluster, a Dropbox directory, a mounted folder on a Network File System, a
Secure Shell Filesystem, etc.) multiple users may read and write into the repository at
the same time.

• Remote – Currently package archivist supports GitHub and BitBucket repositories, but
it can be easily extended to support any Git or Mercurial repository, see Section 3.1. The
repository is identified by its type (GitHub/BitBucket), a user name and the repository
name. The repository is accessible in read-only mode. Multiple users can read from
such a repository at the same time. In order to write to a remote repository one
should either synchronize a local directory with a GitHub/BitBucket account or use the
archivist.github package, which is archivist’s first extension (see Kosinski and Biecek
2016).

10 archivist: Managing, Recording and Restoring Data Analysis Results in R

The logic behind this is as follows. Depending on the user’s needs it is possible to create
a single repository per project or per group of projects or keep all artifacts ever created
in a single repository. Since (i) a local repository is accessible even without an Internet
connection, (ii) the access is faster and (iii) there is both read and write access, it is easier
to work with local repositories, which are just a directory identified by its path. If the user
wants to share a repository with artifacts with a general public then he or she can publish
the local repository on GitHub or Bitbucket or make it available as a subdirectory of an R
package.

Creation of a new empty repository

The createLocalRepo function creates a new local repository. The repoDir argument points
to a directory that will be used as a repository root. The directory will be created if it does
not exist. The default = TRUE argument marks the newly created repository as the default
one.
The directory may be specified either by a global or local path. The example below will create
a repository named arepo in the current working directory.

R> repo <- "arepo"
R> createLocalRepo(repoDir = repo, default = TRUE)

Deletion of an existing repository

The deleteLocalRepo function deletes all artifacts, miniatures, the database with meta-data
and the directory identified by the repoDir argument.

R> repo <- "arepo"
R> deleteLocalRepo(repoDir = repo)

Copying artifacts from other repositories

Functions copyLocalRepo and copyRemoteRepo copy selected artifacts from either a local or
remote (GitHub or BitBucket) repository into a local repository. Artifacts to be copied are
identified by their MD5 hashes.
In the example below the artifact identified by hash 7f3453331910e3f321ef97d87adb5bad is
copied along with its meta-data from the remote GitHub repository pbiecek/graphGallery
to the local repository arepo.

R> repo <- "arepo"
R> createLocalRepo(repoDir = repo, default = TRUE)
R> copyRemoteRepo(repoTo = repo,
+ md5hashes = "7f3453331910e3f321ef97d87adb5bad",
+ user = "pbiecek", repo = "graphGallery", repoType = "github")

Functions zipLocalRepo and zipRemoteRepo download all artifacts and create a single zip
archive.

Journal of Statistical Software 11

Showing repository’s statistics
A repository is a collection of artifacts and their meta-data. Functions summaryLocalRepo and
summaryRemoteRepo summarize basic statistics about artifacts in the repository. Functions
showLocalRepo and showRemoteRepo list all MD5 hashes and artifact meta-data.
Functions show*Repo take an argument method which may be either "tags" (the result is
a data frame with artifact’s tags) or "md5hashes" (default, the result is a data frame with
artifact’s MD5 hashes).
In the previous example we copied a single artifact from a GitHub repository to a local one.
The artifact is copied with its tags. In the example below we list all the tags within this
single-artifact repository.

R> showLocalRepo(repoDir = repo, method = "tags")

artifact tag createdDate
1 7f3453331910e3f321ef97d87adb5bad format:rda 2016-12-31 15:50:59
2 7f3453331910e3f321ef97d87adb5bad name:pl1 2016-12-31 15:50:59
3 7f3453331910e3f321ef97d87adb5bad class:gg 2016-12-31 15:50:59
4 7f3453331910e3f321ef97d87adb5bad class:ggplot 2016-12-31 15:50:59
5 7f3453331910e3f321ef97d87adb5bad labelx:Sepal.Length 2016-12-31 15:50:59
6 7f3453331910e3f321ef97d87adb5bad labely:Petal.Length 2016-12-31 15:50:59
7 7f3453331910e3f321ef97d87adb5bad date:2016-12-31 2016-12-31 15:50:59
8 7f3453331910e3f321ef97d87adb5bad session_info:0c32.... 2016-12-31 15:50:59
9 7f3453331910e3f321ef97d87adb5bad format:png 2016-12-31 15:51:00

In the example below the function summaryLocalRepo is used to list summaries of artifacts
in the repository called graphGallery which is attached to the archivist package. One can
find information about dates on which artifacts were added, classes of artifacts and the total
number of artifacts in the repository.

R> summaryLocalRepo(repoDir =
+ system.file("graphGallery", package = "archivist"))

Number of archived artifacts in Repository: 7
Number of archived datasets in Repository: 3
Number of various classes archived in Repository:

Number
lm 3
data.frame 2
summary.lm 1
gg 2
ggplot 2
Saves per day in Repository:

Saves
2016-02-07 5
2016-02-08 13
2016-03-04 3
2016-12-31 4

12 archivist: Managing, Recording and Restoring Data Analysis Results in R

Setting a default repository

In most of the cases we work with one repository per project. In such cases it is convenient to
set a default local or remote repository. It can be done with setLocalRepo or setRemoteRepo
functions. Look at the example below.

R> setRemoteRepo(user = "pbiecek", repo = "graphGallery",
+ repoType = "github")
R> setLocalRepo(repoDir =
+ system.file("graphGallery", package = "archivist"))

After setting a default repository, one can use the following functions:

• saveToLocalRepo,

• loadFromLocalRepo, loadFromRemoteRepo,

• rmFromLocalRepo,

• searchInLocalRepo, searchInRemoteRepo,

without specification of repoDir or user/repo/branch/subdir/repoType arguments.
For example, the instruction below will add the iris data frame to the default local repository.

R> setLocalRepo(repoDir = repo)
R> data("iris", package = "datasets")
R> saveToRepo(iris)

Another option for setting a default value for an argument is the function aoptions(). It
sets the default value for any argument that is used by package archivist. For example the
instruction below sets the default value for repoType to "github".

R> aoptions("repoType", "github")

3.2. Artifact management

An artifact is an R object with its meta-data. Artifacts are stored in repositories. Key
functions for artifact management are functions for saving, loading and removing artifacts
from a repository.

Saving an R object into a repository

The saveToLocalRepo function saves any R object into the selected repository. It stores in
the repository both the object and its tags. Some tags and some meta-data are extracted
in an automated way. The saveToLocalRepo function recognizes the class of the artifact
and extracts tags typical for that class. It is possible to add support for a new class of
objects or change list of tags extracted for selected classes, just extend the generic function
extractTags(). Table 2 lists classes that are recognized in the current version of the package
and lists tags that are derived automatically from objects of a given class. For other classes
the following attributes are extracted: name, creation time and MD5 hash.

Journal of Statistical Software 13

Artifact’s class Tags
‘lm’ date, name, class, coefname, rank, df.residual
‘survfit’ date, name, class, strata, type, n, conf.type, conf.int
‘ggplot’ date, name, class, labelx, labely
‘twins’ date, name, class, ac
‘partition’ date, name, class, objective, memb.exp, coeff, k.crisp, conv,

clus.avg.widths, avg.width
‘qda’ date, name, class, terms, N, lev, counts, prior, ldet
‘lda’ date, name, class, N, lev, counts, prior, svd
‘htest’ date, name, class, alternative, method, data.name, null.value,

statistic, parameter, p.value, intervals, estimate
‘data.frame’ date, name, class, varname
‘summary.lm’ date, name, class, sigma, df, r.squared, adj.r.squared, fstatistic,

fstatistic.df
‘glmnet’ date, name, class, dim, nulldev, npasses, offset, nobs
default date, name, class

Table 2: Tags that are automatically extracted from objects depending on the object’s class.
See ?Tags for more details.

The saveToLocalRepo function takes at least two arguments: artifact which is the R object
to be saved and repoDir which is a path to the local repository. The process of adding an R
object to the repository triggers a chain of actions listed below. By setting some arguments
of saveToLocalRepo to FALSE some of these actions may be skipped.

• The name of the object is derived and stored as the object’s tag name:xxx. It may be
useful when searching for an object. One can search for all objects that had a specific
name with asearch(pattern = "name:iris").

• An MD5 hash is calculated for the object with the use of the digest package. Then the
object is saved as a binary file named xxx.rda where xxx is the MD5 hash with the use
of the save function.

• If there is any dependent object, it is saved separately to the repository (e.g., for objects
of class ‘gg’ or ‘lm’ the data slot is extracted from the object and saved separately.
Additionally a tag relationWith:xxx is added, where xxx is the MD5 hash of the
dataset).

• The current session info, with the list of versions of attached packages, is saved to the
repository. The session info is linked to the artifact. The link is a tag of the form
sessionInfo:xxx, where xxx stands for the MD5 hash of the object with the session
info.

• A set of tags is extracted automatically and these tags are saved to the repository. See
Table 2 for the list of tags that are automatically derived. Tags extracted for a given
class are defined by the generic extractTags function.

• Additional tags specified by a user (with the userTags argument) are saved to the
repository as well.

14 archivist: Managing, Recording and Restoring Data Analysis Results in R

• A miniature for the object is created – for plots it is a png file while for data frames or
models it is a text description of the object.

The following example creates a plot of the class ‘gg’ and saves the object into the repository.
Plots created with the use of the ggplot2 package are objects and can be serialized in the same
way as any other R object (see Wickham 2009). A hash of the recorded object is returned. In
the example below it is 11127cc6ce69a89d11d0e30865a33c13. By default, the related data
object is also saved. In this case the dependent object is the dataset iris which is saved with
the hash ff575c261c949d073b2895b05d1097c3.

R> library("ggplot2")
R> repo <- "arepo"
R> pl <- qplot(Sepal.Length, Petal.Length, data = iris)
R> saveToLocalRepo(pl, repoDir = repo)

[1] "ba0a98d60f951aeb17d6edce1aba6852"
attr(,"data")
[1] "ff575c261c949d073b2895b05d1097c3"

The function saveToLocalRepo extracts additional tags such as the name of the original object
(here: name:pl), its class (class:gg), labels on the x- and y-axes (labelx:Sepal.Length)
and the MD5 hash of the data object. These tags are listed if we use showLocalRepo function
on the repository.

R> showLocalRepo(repoDir = repo, "tags")

artifact tag createdDate
1 7f3453331910e3f321ef97d87adb5bad format:rda 2016-12-31 15:50:59
2 7f3453331910e3f321ef97d87adb5bad name:pl1 2016-12-31 15:50:59
3 7f3453331910e3f321ef97d87adb5bad class:gg 2016-12-31 15:50:59
4 7f3453331910e3f321ef97d87adb5bad class:ggplot 2016-12-31 15:50:59
5 7f3453331910e3f321ef97d87adb5bad labelx:Sepal.Length 2016-12-31 15:50:59
6 7f3453331910e3f321ef97d87adb5bad labely:Petal.Length 2016-12-31 15:50:59
7 7f3453331910e3f321ef97d87adb5bad date:2016-12-31 2016-12-31 15:50:59
8 7f3453331910e3f321ef97d87adb5bad session_info:0c32.... 2016-12-31 15:50:59
9 7f3453331910e3f321ef97d87adb5bad format:png 2016-12-31 15:51:00
10 ff575c261c949d073b2895b05d1097c3 format:rda 2017-10-10 19:23:25
11 ff575c261c949d073b2895b05d1097c3 name:iris 2017-10-10 19:23:25
12 ff575c261c949d073b2895b05d1097c3 class:data.frame 2017-10-10 19:23:25
13 ff575c261c949d073b2895b05d1097c3 varname:Sepal.Length 2017-10-10 19:23:25
14 ff575c261c949d073b2895b05d1097c3 varname:Sepal.Width 2017-10-10 19:23:25
15 ff575c261c949d073b2895b05d1097c3 varname:Petal.Length 2017-10-10 19:23:25
16 ff575c261c949d073b2895b05d1097c3 varname:Petal.Width 2017-10-10 19:23:25
17 ff575c261c949d073b2895b05d1097c3 varname:Species 2017-10-10 19:23:25
18 ff575c261c949d073b2895b05d1097c3 date:2017-10-10 2017-10-10 19:23:25
19 2a7ed5f72bb851c8a497df45b7dd9b82 format:rda 2017-10-10 19:23:25
20 ff575c261c949d073b2895b05d1097c3 session_info:2a7e.... 2017-10-10 19:23:25

Journal of Statistical Software 15

21 ff575c261c949d073b2895b05d1097c3 format:txt 2017-10-10 19:23:25
22 6fe8adcd552bb4e600995721e372a747 format:rda 2017-10-10 19:23:25
23 6fe8adcd552bb4e600995721e372a747 name:pl 2017-10-10 19:23:25
24 6fe8adcd552bb4e600995721e372a747 class:gg 2017-10-10 19:23:25
25 6fe8adcd552bb4e600995721e372a747 class:ggplot 2017-10-10 19:23:25
26 6fe8adcd552bb4e600995721e372a747 labelx:Sepal.Length 2017-10-10 19:23:25
27 6fe8adcd552bb4e600995721e372a747 labely:Petal.Length 2017-10-10 19:23:25
28 6fe8adcd552bb4e600995721e372a747 date:2017-10-10 2017-10-10 19:23:25
29 7616dbc1a5dc0f6ad443685642385356 format:rda 2017-10-10 19:23:25
30 6fe8adcd552bb4e600995721e372a747 session_info:7616.... 2017-10-10 19:23:25
31 ff575c261c949d073b2895b05d1097c3 format:rda 2017-10-10 19:23:25
32 ff575c261c949d073b2895b05d1097c3 format:txt 2017-10-10 19:23:25
33 ff575c261c949d073b2895b05d1097c3 relationWith:6fe8.... 2017-10-10 19:23:25
34 6fe8adcd552bb4e600995721e372a747 format:png 2017-10-10 19:23:26

By default, for each artifact also its context, i.e., session info, is saved. It can be accessed
with the function asession(). See the example below. Such additional information may be
very useful if we cannot replicate previous results and we are in the need of recovering the
exact versions of important packages, which can be done with the restoreLibs function.

R> asession("ff575c261c949d073b2895b05d1097c3")

Session info --
setting value
version R version 3.4.1 (2017-06-30)
system x86_64, linux-gnu
ui X11
language en_US:en
collate en_US.utf8
tz Europe/Vienna
date 2017-10-10

Packages --
package * version date source
archivist * 2.1.2 2016-12-31 CRAN (R 3.4.1)
base * 3.4.1 2017-07-20 local
...

Serialization of an object creation event into a repository

The archivist package provides a new operator %a% that works as the extended pipe operator
%>% from the magrittr package (see Bache and Wickham 2014, for more details). In addition,
it saves the resulting object to the default archivist repository together with the function call
and its parameters. The default repository should be set first, see the setLocalRepo function
for instructions how to do this. With this functionality it is possible to trace function calls
and extract pedigree for some artifacts.

16 archivist: Managing, Recording and Restoring Data Analysis Results in R

R> library("archivist")
R> createLocalRepo("arepo", default = TRUE)
R> library("dplyr")
R> iris %a% dpyr::filter(Sepal.Length < 6) %a%
+ lm(Petal.Length ~ Species, data = .) %a% summary() -> tmp

How to recreate an object’s history? The function ahistory extracts the chain of calls that
leads to the selected object. As an argument one can specify either an object’s value or its
MD5 hash. The value of the ahistory function is a data.frame with two columns – the first
contains the function calls while the second contains the MD5 hashes of partial results.
In the example above, a chain of three operations converts the input iris dataset into the
tmp object. The dplyr package (see Wickham, François, Henry, and Müller 2017) has to be
loaded first since the function filter is used in this example. The following lines present the
chain of consecutive transformations that are recorded in the repository.

R> ahistory(tmp)
R> ahistory(md5hash = "050e41ec3bc40b3004bc6bdd356acae7")

iris [ff575c261c949d073b2895b05d1097c3]
-> filter(Sepal.Length < 6) [d3696e13d15223c7d0bbccb33cc20a11]
-> lm(Petal.Length ~ Species, data = .) [6776c3a99b5946919800a99355814d24]
-> summary() [aeef256796b6b21c4058ef3a5fb993fd]

In order to restore an object’s pedigree all partial results must be saved in a repository. So
this option will work only for objects created by a chain of calls that use the %a% operator.

Loading an object from a repository

To read an object from a repository we may consider the following four scenarios.

(1) We know the object’s MD5 hash and the object is in a local directory.

(2) We know the object’s MD5 hash and the object is in a remote repository, i.e., on GitHub
or BitBucket.

(3) We do not know the hash but we know some properties of the object so we need to find
it first by its tags. The object is in a local repository.

(4) As above, but the object is in a remote repository.

If we know the MD5 hash of the requested artifact, we can directly load the object from the
repository and in this section we are going to show how this can be done. If we do not know
the MD5 hash, then we need to use one of the search* functions presented in Section 3.3.
Functions loadFromLocalRepo and loadFromRemoteRepo read artifacts from either local or
remote repositories. The local repository is defined by a path to its root; a remote repository
is defined by its type (currently "github" (default) or "bitbucket"), the user name, the
repository name and a subdirectory within the repository. In both functions the argument
value specifies whether the function should return the object by value (value = TRUE) or it
should load the object into the namespace with its original name (value = FALSE).

Journal of Statistical Software 17

For the purpose of this example we have created a repository graphGallery and added two
objects to it: a plot and a regression model. The repository is available both on GitHub
(see https://github.com/pbiecek/graphGallery) and within the archivist package (see
the graphGallery directory). Note, that the repository contains more objects. The two that
are used in examples below have the following hashes:

7f3453331910e3f321ef97d87adb5bad
2a6e492cb6982f230e48cf46023e2e4f

The full MD5 hash of an artifact is a 32-character-long string but it is enough to set only
the first few characters. In the example below it is enough to use the "7f34533" prefix to
load an artifact with the "7f3453331910e3f321ef97d87adb5bad" hash. There is only one
artifact with prefix "7f34533" in its MD5 hash. If there are more, all that match the prefix
are returned. Note that one should not use this feature unless one is sure that new objects
with colliding hashes will not be added. For small repositories conflicts are unlikely even for
using only the first five characters, but be careful when using this feature.
The two following instructions retrieve an R object from GitHub, load it into an R session
and make it accessible for further processing. In this case it is a ggplot2 object so after being
loaded the print function is triggered and a plot is generated (see Figure 6). Note that by
default GitHub is assumed, but this may be changed with the parameter repoType.

R> loadFromRemoteRepo("7f3453331910e3f321ef97d87adb5bad",
+ repo = "graphGallery", user = "pbiecek", value = TRUE)
R> loadFromLocalRepo("7f34533",
+ system.file("graphGallery", package = "archivist"), value = TRUE)

The aread function is a wrapper over loadFromRemoteRepo with a more compact form.
Shorter instructions and shorter code snippets might be placed in a figure or table caption.
The single line below reads an object with the 7f34533... hash from the graphGallery
GitHub repository that is owned by the pbiecek user.

R> archivist::aread("pbiecek/graphGallery/7f3453331910e3f321ef97d87adb5bad")

The following instructions retrieve the same R object but this time from the graphGallery
repository attached to the archivist package. Note that the default repository is set first with
the setLocalRepo function.

R> library("archivist")
R> setLocalRepo(system.file("graphGallery", package = "archivist"))
R> aread("7f3453331910e3f321ef97d87adb5bad")

The use of MD5 hashes as object identifiers has some advantages. In some use cases we
may be restricted to use only models approved by some authority. For example, due to some
hypothetical regulatory issues in production it might be advisable to use only a specific version
of a model (such as a credit scoring model or some forecasting model).
In the archivist package all objects have their cryptographical hash calculated with the MD5
algorithm. One can use the digest function to validate the object’s MD5 hash at any moment.

https://github.com/pbiecek/graphGallery

18 archivist: Managing, Recording and Restoring Data Analysis Results in R

●●
●

●
●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

● ●
●●

●
●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

2

4

6

5 6 7 8
Sepal.Length

P
et

al
.L

en
gt

h Species
●

●

●

setosa

versicolor

virginica

Figure 6: Object with the hash 7f3453331910e3f321ef97d87adb5bad available in the repos-
itory called graphGallery of the GitHub user pbiecek and in the archivist package. It may
be retrieved with the aread function.

One can also call an object from a repository by its MD5 hash. Having a list of MD5 hashes
of allowed objects one can validate their identity.
In the example below the downloaded regression model is digested to confirm its identity.

R> setLocalRepo(system.file("graphGallery", package = "archivist"))
R> model <- aread("2a6e492cb6982f230e48cf46023e2e4f")
R> digest::digest(model)

"2a6e492cb6982f230e48cf46023e2e4f"

Removal of an object from a repository

To remove an artifact from a repository one can use the rmFromLocalRepo function.
In the example below the artifact 92ada1e052d4d963e5787bfc9c4b506c and all its tags are
removed from the repository called repo.

R> rmFromLocalRepo("7f3453331910e3f321ef97d87adb5bad", repoDir = repo)

A list of artifact’s hashes that should be removed may be obtained with the search* function.
The example below searches for all artifacts older than 30 days and removes them from the
repo repository.

R> obj2rm <- searchInLocalRepo(list(dateFrom = "2010-01-01",
+ dateTo = Sys.Date() - 30), repoDir = repo)
R> rmFromLocalRepo(obj2rm, repoDir = repo, many = TRUE)

Journal of Statistical Software 19

It is also possible to remove many artifacts with one call. Broader examples of this function
are explained in the package manual page accessed from R with ?rmFromLocalRepo.

3.3. Search for an artifact and explore the repository

One of the advantages of the archivist package is the automated derivation of artifact’s tags
and meta-data. It is useful when one wants to find previously calculated results in a large
collection of R objects. Relations between artifacts are useful when we want to process the
structure dependencies between artifacts. Below we present a list of functions for searching
for artifacts on the basis of their properties.

Search in a local or remote repository

If we do not know the MD5 hashes of artifacts that are of our interest, we can find them with
the use of the search* functions.
Searching within a local repository and a remote repository is very similar. Functions
searchInLocalRepo or searchInRemoteRepo differ only in the way in which the repository
is specified.
In both functions the pattern argument may be either a tag (name, class, varname or other)
or a date period in which the artifact was created. Hashes of all artifacts that meet all criteria
(i.e., were created within a given time interval or have a given tag attached) are returned.
For example, the following command retrieves MD5 hashes of all objects of the class ‘gg’ from
the pbiecek/graphGallery repository.

R> searchInLocalRepo(pattern = "class:gg",
+ repoDir = system.file("graphGallery", package = "archivist"))

[1] "7f3453331910e3f321ef97d87adb5bad" "369227e67f9164dcbe934dadf2b53cc2"

To get a list of artifacts created within a given date range one can use the following instruction.

R> searchInLocalRepo(pattern = list(dateFrom = "2016-01-01",
+ dateTo = "2016-02-07"),
+ repoDir = system.file("graphGallery", package = "archivist"))

[1] "d9313a0de3e2980201a8971e3384ff26" "ff575c261c949d073b2895b05d1097c3"
[3] "2a6e492cb6982f230e48cf46023e2e4f" "93ecfdf1436932e2860c6dbdf2abc2ad"
[5] "afb2550d0f886f0cf3b050f04c5cd4f8"

The searchInLocalRepo and searchInRemoteRepo functions allow to use more than one
searching criterion. The additional argument intersect specifies if the resulting objects
have to meet all or any of the search criteria.

R> searchInLocalRepo(pattern = c("class:gg", "labelx:Sepal.Length"),
+ repoDir = system.file("graphGallery", package = "archivist"))

[1] "369227e67f9164dcbe934dadf2b53cc2" "7f3453331910e3f321ef97d87adb5bad"

20 archivist: Managing, Recording and Restoring Data Analysis Results in R

These two functions return MD5 hashes of artifacts. In order to load these artifacts from the
repository one needs to use either the loadFrom*Repo or aread functions. Since both oper-
ations are usually performed together (search for MD5 hashes of artifacts by their tag/load
artifacts with given MD5 hashes), one can use the asearch function which retrieves MD5
hashes and returns a list with values of artifacts that meet all selected criteria.

Retrieval of a list of R objects with given tags

When working in a team or for a longer period of time, one produces a lot of partial results
and it becomes harder and harder to trace what kind of analyses were conducted in the past
and where are the results.
The archivist package extracts meta-data from R objects in the very same moment they are
archived in a repository. For many researchers objects are so valuable, due to their pedigree
and meta-data, that they can be regarded as artifacts. Having such additional meta-data it
is easier to search for previously generated partial results, e.g., by specifying what kind of
model with which variables we are looking for.
For example, the code below retrieves all objects of class ‘lm’ with the Sepal.Length variable
from within a list of independent variables. In this repository only two artifacts (here ‘lm’
models) match both conditions.
The following instruction searches within the default local repository.

R> setLocalRepo(system.file("graphGallery", package = "archivist"))
R> models <- asearch(patterns = c("class:lm", "coefname:Sepal.Length"))

Below is the code that searches within the GitHub repository.

R> models <- asearch("pbiecek/graphGallery",
+ patterns = c("class:lm", "coefname:Sepal.Length"))
R> lapply(models, coef)

$`18a98048f0584469483afb65294ce3ed`
(Intercept) Sepal.Length

-7.101443 1.858433

$`2a6e492cb6982f230e48cf46023e2e4f`
(Intercept) Sepal.Length Speciesversicolor Speciesvirginica
-1.7023422 0.6321099 2.2101378 3.0900021

The following instruction retrieves all artifacts of the ‘gg’ class (created with package ggplot2)
with label Sepal.Length on the x-axis. Two objects are returned as a result. They are plotted
together by the grid.arrange function from the gridExtra package (see Auguie 2017).

R> plots <- asearch(patterns = c("class:gg", "labelx:Sepal.Length"))
R> length(plots)

[1] 2

Journal of Statistical Software 21

●●
●

●
●

●

●
●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●
●

● ●
●●

●
●

●
●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

2

4

6

5 6 7 8
Sepal.Length

P
et

al
.L

en
gt

h Species
●

●

●

setosa

versicolor

virginica

●●
●

●
●

●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●

●
●

●●
●
●

● ●
●●

●
●

●
●

●
●

●
●●●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

● ●
●

●

●
●

●
●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●
●

●
●

●

2

4

6

5 6 7 8
Sepal.Length

P
et

al
.L

en
gt

h

Species ● ● ●setosa versicolor virginica

Figure 7: There are two objects of the class ‘gg’ with annotation Sepal.Length on the x-axis
in the GitHub pbiecek/graphGallery repository. All objects in a repository that meet a set
of conditions may be retrieved with the asearch function. Instructions how to extend the
list of tags are given in Section 3.2.

R> library("gridExtra")
R> do.call(grid.arrange, plots)

The result of these instructions is presented in Figure 7.

Interactive search in a local repository
For local repositories, it is also possible to explore the repository interactively with the
shinySearchInLocalRepo function. This function launches a Shiny application (see Chang,
Cheng, Allaire, Xie, and McPherson 2017) which is dynamically created and which allows for
interactive specification of tags and sorting criteria. See Figure 8 with an example screenshot
of this application.
In the text box area one can specify tags that filter out objects presented on the right panel.
Only miniatures of objects that meet all these criteria are presented. Additionally, the in-
struction sort:key sorts the artifacts along the key. For example, use "sort:createdDate"
to sort miniatures along the date of creation of the object.

R> arepo <- system.file("graphGallery", package = "archivist")
R> shinySearchInLocalRepo(arepo)

22 archivist: Managing, Recording and Restoring Data Analysis Results in R

Figure 8: Screenshot of a Shiny application produced by the shinySearchInLocalRepo func-
tion. The application helps in searching for artifacts with given tags within a selected repos-
itory.

3.4. Extensions

The archivist package is designed as a multi-purpose manager of objects. In this section we
present some specific extensions.

Archiving all results of a specific function

The trace() function from the base package allows to insert a specific instruction to the body
of a selected function. It can be used for example to call the saveToLocalRepo() function at
the end of a selected function.
In the example below we modify the lm() function so that after each execution the created
‘lm’ model is automatically added to the default local repository allModels.

R> library("archivist")
R> createLocalRepo("allModels", default = TRUE)
R> atrace("lm", "z")

Tracing function "lm" in package "stats"

R> lm(Sepal.Length ~ Sepal.Width, data=iris)

Tracing lm(Sepal.Length ~ Sepal.Width, data = iris) on exit

Call:
lm(formula = Sepal.Length ~ Sepal.Width, data = iris)

Journal of Statistical Software 23

Coefficients:
(Intercept) Sepal.Width

6.5262 -0.2234

R> sapply(asearch("class:lm"), BIC)

42fcf77af2c40f70c445cbba513aeabd
381.0236

Integration with the knitr package

The knitr package is a tool that transforms a mixture of R code and descriptions in natural
language into a md, html or pdf report. Moreover the produced report contains results
generated by the included R code. On the one hand the reader knows that the presented
results are generated by presented code. On the second hand the author does not waste time
on coping the results, since they are automatically included in the output. Results included in
a report are usually plots or tables. In such form they cannot be loaded from the pdf/html file
directly to R. The archivist package records objects and makes them easier to access through
local, GitHub or BitBucket repositories.
The function addHooksToPrint combines these two tools. A call to this function should be
included in the beginning of a knitr report. It creates a new print method for classes specified
by the class argument. These functions save objects to the repository and add corresponding
hooks to the report after every attempt to print the object. Hooks are short instructions on
how the recorded objects can be accessed.
An example is presented in the report given at http://bit.ly/1nW9Cvz. Part of this report
is presented in Figure 1. In the beginning there is the code snippet presented below. It
automatically adds hooks to the html report for all objects of classes ‘ggplot’ or ‘data.frame’.

R> addHooksToPrint(class = c("ggplot", "data.frame"), repoDir = "arepo",
+ repo = "Eseje", user = "pbiecek", subdir = "arepo")

As a result, just before each plot, there are automatically hooks created to corresponding
objects, e.g.,

archivist::aread("pbiecek/Eseje/arepo/24ea7c04b861083d4bf56eee1c5a17b7")

These hooks serve also as links to the corresponding R objects.
The biggest advantage of this integration is that a single call to addHooksToPrint is needed
to enrich the knitr report in archivist hooks for all interesting objects.

Gallery of artifacts in the repository

The information about artifacts is stored in an SQLite database in the backpack.db file. The
createMDGallery function creates a single Markdown file with a gallery of all artifacts in the
repository.
Such a gallery, if saved as file named readme.md, will automatically list all artifacts with
miniatures and tags in the GitHub web portal user interface. See an example gallery at

http://bit.ly/1nW9Cvz

24 archivist: Managing, Recording and Restoring Data Analysis Results in R

Figure 9: A part of the gallery at http://bit.ly/1Q62Tpz created with function
createMDGallery. The gallery presents hooks, miniatures and list of tags for each artifact in
the repository.

http://bit.ly/1Q62Tpz. This gallery was created with the following instruction. A part of
the result is presented in Figure 9.

R> createMDGallery("arepo/readme.md", repo = "Eseje", user = "pbiecek",
+ subdir = "arepo", addMiniature = TRUE, addTags = TRUE)

Support for other repositories, other languages and other formats
The current implementation of package archivist supports local, GitHub and BitBucket repos-
itories. The package is implemented in R and saves artifacts in the rda format.
In order to support other repositories one can extend the function getRemoteHook. It is
used internally by other archivist functions to generate URL addresses to files in remote

http://bit.ly/1Q62Tpz
http://bit.ly/1Q62Tpz

Journal of Statistical Software 25

repositories. In order to support other repositories it is enough to extend this function.
All meta-data related to artifacts is stored in an SQLite database in the file backpack.db.
This database can be accessed from other languages. Objects are stored as files and can be
added in different formats. Each artifact has an additional tag format:xxx that specifies in
which format the artifact is saved and an artifact can be saved in more than one format.
Currently artifacts are stored as rda files. In order to save objects in other formats, like json
or csv, it is enough to extend the saveToLocalRepo function. In order to load objects from
other formats it is enough to overload the loadFromLocalRepo and loadFromRemoteRepo
functions.

Restoring older versions of packages

In some cases, in order to use an artifact it is not enough to restore it. A good example of this
problem are objects of the ‘gg’ class created with the ggplot2 package. The structure of ‘gg’
objects is different in package ggplot2 in version 1.0, different in version 2.0 and different in
version 2.1. It means that even if we have restored an object that was created with package
version 2.0 we will not be able to use the plot function for this object if one uses the ggplot2
package version 2.1 or 1.0.
To use the object we need to downgrade or upgrade the ggplot2 package to the version
2.0. This is possible with the restoreLibs function. For a given hash of an artifact the
restoreLibs function restores its session_info and reinstalls required packages with ver-
sions attached during the artifact’s archiving. Packages can be reinstalled in the new directory,
not to affect the default R libraries.
For example, the 600bda83cb840947976bd1ce3a11879d object was created with package gg-
plot2 version 2.0. The asession() function checks versions of packages that were then
attached.

R> asession("pbiecek/graphGallery/arepo/600bda83cb840947976bd1ce3a11879d")

...
Formula 1.2-1 2015-04-07 CRAN (R 3.1.3)
ggplot2 2.0.0 2015-12-16 Github (hadley/ggplot2@11679cd)
gridExtra * 2.0.0 2015-07-14 CRAN (R 3.2.0)

...

Here the ggplot2 package had version 2.0 and was installed from GitHub. The restoreLibs()
function reinstalls all packages from the proper repositories (here GitHub) with their proper
versions (here commit 11679cd).

R> restoreLibs("pbiecek/graphGallery/arepo/600bda83cb840947976bd1ce3a11879d")

After that one can load and plot the ‘ggplot’ object since the structure of the ‘gg’ object is
compatible with the installed packages.

R> aread("pbiecek/graphGallery/arepo/600bda83cb840947976bd1ce3a11879d")

26 archivist: Managing, Recording and Restoring Data Analysis Results in R

4. Conclusions
The goal of a data analysis is not only to answer a research question based on data but also to
collect findings that support that answer. These findings usually take the form of a table, plot
or regression/classification model and are usually presented in articles or reports. Such objects
are mostly well presented graphically, but they are hard to recreate back in a computer.
In this paper we have presented the R package archivist, which implements the logic of
recordable research. The archivist package stores R objects in repositories. The data scientist
may share obtained results with other users, create hooks to models and then embed these
hooks in articles, reports or web applications. One may also search within a repository and
look for artifacts with given properties or relations with other artifacts. One may also validate
the object’s identity or derive its pedigree.
Repositories may be shared among team members or between different computers or systems.
Statistical models or plots may be stored in a single repository which simplifies the object
management.
In this article we have also presented some use cases for the archivist package, such as:
hooks for R objects that can be embedded in reports or articles, interactive searching within
repository or retrieving object’s pedigree.

Acknowledgments
Thanks go to Ross Ihaka, Łukasz Bartnik, Cezary Chudzian and two anonymous reviewers
for valuable discussions and comments on the idea of recordable research and early versions
of this paper. We would like to thank Witold Chodor for his great contributions to the
development of this package. The package archivist was initiated as an open project in the
company iQor Polska sp. z o.o..

References

Auguie B (2017). gridExtra: Miscellaneous Functions for grid Graphics. R package version
2.3, URL https://CRAN.R-project.org/package=gridExtra.

Bache SM, Wickham H (2014). magrittr: A Forward-Pipe Operator for R. R package version
1.5, URL https://CRAN.R-project.org/package=magrittr.

Bates D, Mächler M, Bolker B, Walker S (2015). “Fitting Linear Mixed-Effects Models Using
lme4.” Journal of Statistical Software, 67(1), 1–48. doi:10.18637/jss.v067.i01.

Becker RA, Chambers JM (1988). “Auditing of Data Analyses.” SIAM Journal on Scientific
and Statistical Computing, 9(4), 747–760. doi:10.1137/0909049.

Biecek P, Kosinski M (2017). archivist: An R Package for Managing, Recording and Restor-
ing Data Analysis Results. R package version 2.2, URL https://CRAN.R-project.org/
package=archivist.

Chambers JM (2016). Extending R. Chapman and Hall/CRC.

https://CRAN.R-project.org/package=gridExtra
https://CRAN.R-project.org/package=magrittr
http://dx.doi.org/10.18637/jss.v067.i01
http://dx.doi.org/10.1137/0909049
https://CRAN.R-project.org/package=archivist
https://CRAN.R-project.org/package=archivist

Journal of Statistical Software 27

Chang W, Cheng J, Allaire JJ, Xie Y, McPherson J (2017). shiny: Web Application Frame-
work for R. R package version 1.0.5, URL https://CRAN.R-project.org/package=shiny.

Drummond C (2009). “Replicability is Not Reproducibility: Nor is it Good Science.” In
Proceedings of the Evaluation Methods for Machine Learning Workshop at the 26th ICML.

Koenker R, Zeileis A (2009). “On Reproducible Econometric Research.” Journal of Applied
Econonometrics, 24(5), 833–847. doi:10.1002/jae.1083.

Kosinski M, Biecek P (2016). archivist.github: Tools for Archiving, Managing and Shar-
ing R Objects via GitHub. R package version 0.2.2, URL https://CRAN.R-project.org/
package=archivist.github.

Leisch F (2002). “Dynamic Generation of Statistical Reports Using Literate Data Analysis.”
In W Härdle, B Rönz (eds.), Compstat 2002 – Proceedings in Computational Statistics, pp.
575–580. Physika-Verlag, Heidelberg. doi:10.1007/978-3-642-57489-4_89.

Lucas A, Eddelbuettel D (2017). digest: Create Cryptographic Hash Digests of R Objects. R
package version 0.6.12, URL https://CRAN.R-project.org/package=digest.

OECD (2015). StatLink. The Organisation for Economic Co-Operation and Development.

Peng R (2009). “Reproducible Research and Biostatistics.” Biostatistics, 10(3), 405–408.
doi:10.1093/biostatistics/kxp014.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rossini A, Leisch F (2003). “Literate Statistical Practice.” Working Paper 194.

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M
(2014). “Machine Learning: The High Interest Credit Card of Technical Debt.” In SE4ML:
Software Engineering for Machine Learning (NIPS 2014 Workshop). URL http://static.
googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf.

Wickham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.

Wickham H, François R, Henry L, Müller K (2017). dplyr: A Grammar of Data Manipulation.
R package version 0.7.4, URL https://CRAN.R-project.org/package=dplyr.

Xie Y (2013). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton.

Xie Y (2017). knitr: A General-Purpose Package for Dynamic Report Generation in R.
CRAN. R package version 1.17, URL https://CRAN.R-project.org/package=knitr.

https://CRAN.R-project.org/package=shiny
http://dx.doi.org/10.1002/jae.1083
https://CRAN.R-project.org/package=archivist.github
https://CRAN.R-project.org/package=archivist.github
http://dx.doi.org/10.1007/978-3-642-57489-4_89
https://CRAN.R-project.org/package=digest
http://dx.doi.org/10.1093/biostatistics/kxp014
https://www.R-project.org/
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf
http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43146.pdf
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=knitr

28 archivist: Managing, Recording and Restoring Data Analysis Results in R

Affiliation:
Przemysław Biecek
Faculty of Mathematics, Informatics, and Mechanics
University of Warsaw
Banacha 2, 02-097 Warsaw, Poland
E-mail: Przemyslaw.Biecek@gmail.com

Marcin Kosiński
Faculty of Mathematics and Information Science
Warsaw University of Technology
Koszykowa 75, 00-662 Warsaw, Poland
E-mail: M.P.Kosinski@gmail.com

Journal of Statistical Software http://www.jstatsoft.org/
published by the Foundation for Open Access Statistics http://www.foastat.org/
December 2017, Volume 82, Issue 11 Submitted: 2015-09-24
doi:10.18637/jss.v082.i11 Accepted: 2017-01-09

mailto:Przemyslaw.Biecek@gmail.com
mailto:M.P.Kosinski@gmail.com
http://www.jstatsoft.org/
http://www.foastat.org/
http://dx.doi.org/10.18637/jss.v082.i11

	Introduction
	Motivation
	Functionality
	Repository management
	Creation of a new empty repository
	Deletion of an existing repository
	Copying artifacts from other repositories
	Showing repository's statistics
	Setting a default repository

	Artifact management
	Saving an R object into a repository
	Serialization of an object creation event into a repository
	Loading an object from a repository
	Removal of an object from a repository

	Search for an artifact and explore the repository
	Search in a local or remote repository
	Retrieval of a list of R objects with given tags
	Interactive search in a local repository

	Extensions
	Archiving all results of a specific function
	Integration with the knitr package
	Gallery of artifacts in the repository
	Support for other repositories, other languages and other formats
	Restoring older versions of packages

	Conclusions

