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Abstract 

In their 1970 paper titled "Mean and Variance Control Chart Limits Based on a Small Number of 

Subgroups" (Journal of Quality Technology, Volume 2, Number 1, pp. 9-16), Yang and Hillier 

originally derived equations for calculating the factors required to determine second stage short 

run control limits for ) v,X c(  and )s ,X( c  charts. Two issues have restricted the applicability of 

this particular control chart methodology. These are the limited tabulated values of factors Yang 

and Hillier present and no example to illustrate the use of the methodology. This paper addresses 

the first issue by presenting a computer program that accurately calculates the factors regardless 

of the values of the required inputs. An example shows how to incorporate the methodology into 

a two stage short run control charting procedure. The computer program is available at 

http://program.20m.com. 
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1 Introduction 

Several choices exist for estimating a process variance or standard deviation from subgrouped 

data (i.e., data collected from a process as m subgroups, each of size n) for the purpose of 

constructing control charts to monitor the process centering and/or spread. One of these choices 

is based on combining the subgrouped data into a single sample of m⋅n data values. This paper 

denotes the variance and standard deviation calculated from this single sample as  and  

respectively. 

cv cs ,

     Yang and Hillier (1970) originally derived equations for calculating the factors required to 

construct control charts for centering and spread based on X , , and  (Yang and Hillier 

(1970) denote v  and s  as s  and s, respectively) in short run situations. A short run situation is 

one in which little or no historical information is available about a process in order to estimate 

process parameters to begin control charting. Consequently, the initial data obtained from the 

early run of the process must be used for this purpose. According to Hillier (1969), short run 

control charting is necessary in the initiation of a new process, during the startup of a process just 

brought into statistical control again, and for a process whose total output is not large enough to 

use conventional control chart constants. 

cv cs

c c
2

     Integrated into Yang and Hillier's (1970) derivations was Hillier's (1969) two stage theory of 

control charting. In the first stage of the two stage procedure, the initial subgroups drawn from 

the process are used to determine the control limits. The initial subgroups are plotted against the 

control limits to retrospectively test if the process was in control while the initial subgroups were 

being drawn. Once control is established, the procedure moves to the second stage, where the 

subgroups that were not deleted in the first stage are used to determine the control limits for 

testing if the process remains in control while future subgroups are drawn. Each stage uses a 
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different set of control chart factors called first stage short run control chart factors and second 

stage short run control chart factors. 

     Yang and Hillier (1970) derived only second stage short run control chart factor equations for 

) v,X( c  and )s ,X c

cv

(  charts. They gave three reasons for doing this. The main issue is that if the 

process mean is shifting between subgroups while the initial subgroups are being drawn in the 

first stage, then  and  calculated from these initial subgroups would have inflated values. 

This would decrease the ability of the first stage short run control limits calculated using  and 

 to delineate common cause from special cause signals. Also, when constructing second stage 

short run control limits for 

cs

cv

cs

) v,X c(  and )s ,X( c  charts, Yang and Hillier (1970) state that the data 

used must be from an in control process. 

 

1.1 Problem 

Two issues exist with Yang and Hillier's (1970) results for ) v,X( c  and )s ,X( c  control charts 

(see their Tables 7, 8, and 9) that have restricted their applicability. One is that the results in 

these tables are limited, showing second stage short run control chart factors for ) v,X( c  and 

)s ,X( c  charts for n=5 only, 16 values for m (1-10, 15, 20, 25, 50, 100, ∞), α values of 0.001, 

0.002, 0.01, and 0.05 for the X  chart, and α values of 0.001, 0.005, and 0.025 for the  and 

charts both above the upper control limit and below the lower control limit (α is the probability 

of a false alarm). The other issue is that there is no example to illustrate the use of second stage 

short run 

cv cs  

) v,X c(  and )s ,X c(  charts. 
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1.2 Solution and Outline 

This paper addresses both of these issues. It first mentions the distributions of the variance and 

the studentized variance and the roles these two distributions play in the construction of second 

stage short run ) v,X( c  and )s ,X( c  control charts. It then presents a computer program that runs 

in the software Mathcad 8.03 Professional (1998) (or later versions) with the Numerical Recipes 

Extension Pack (1997). The program uses the previously mentioned distributions, the appropriate 

equations from Yang and Hillier (1970), and numerical routines provided by the software to 

accurately calculate the factors for second stage short run ) v,X c(  and )s ,X( c  control charts. 

The program accepts values for n, m, α for the X  chart, and α for the  and  charts both 

above the upper control limit and below the lower control limit. Consequently, results may be 

obtained for a wide range of applications. The computer program is available at 

http://program.20m.com. 

cv cs

     This paper also presents tables (Tables 1, 2, and 3) showing factors calculated using the 

computer program for the same values of n, m, and α as in Yang and Hillier's (1970) Tables 7, 8, 

and 9, respectively. Implications of these tabulated results are also discussed. An example shows 

how to use second stage short run ) v,X c(  and )s ,X c(  control charts in a two stage short run 

control charting procedure. This paper then concludes with its contributions. 

 

2 Probability Distributions 

2.1 The Distribution of the Variance 
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The distribution of the variance for subgroups of size n sampled from a Normal population with 

mean µ and variance  is given by Pearson and Hartley (1962) as equation (1a) (with some 

modifications in notation): 

2σ
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The value v (the variance) is an independent estimate of  based on 2σ )1n(1 −=ν  degrees of 
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Equation (1b) is the form used in the computer program because it allows for large values of ν1 

(hence large values for n) in the program. The function gammln is a numerical recipe in the 

Numerical Recipes Extension Pack (1997) that calculates the natural logarithm of the gamma (Γ) 

function. 

     The distribution of the variance v with ν1 degrees of freedom is equivalent to a second 

distribution as shown in equation (2): 
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where c is the χ2 distribution with ν1 degrees of freedom (this equivalency is shown in Appendix 

A). Also, percentage points of the distribution of the variance v with ν1 degrees of freedom are 

equivalent to percentage points of the χ2 distribution with ν1 degrees of freedom divided by ν1. 

     The cumulative distribution function (cdf) of the variance v with ν1 degrees of freedom is 

equation (3): 

 

∫=
V  

0  
dv )v(p    )V(P  (3) 

 

The computer program uses equation (3) (with σ=1.0) to determine α-based conventional control 

chart constants for the  and  charts. cv cs

 

2.2 The Distribution of the Studentized Variance 

The distribution of the studentized variance (i.e., the F distribution) for subgroups of size n 

sampled from a Normal population with mean µ and variance  is given by Bain and 

Engelhardt (1992) as equation (4a) (with some modifications in notation): 
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The value f (the studentized variance) is equal to vv ′ , where v′  is a second independent 

estimate of σ  based on ν  degrees of freedom (m is the number of subgroups). 

Equation (4a) may also be represented as equation (4b) (see Appendix A): 
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Equations (4b)-(4d) are used in the computer program because they allow for large values of ν1 

(hence large values for n) and large values of ν2 (hence large values for m and n) in the program. 

     The cdf of the studentized variance )vv(f ′=  with ν1 degrees of freedom for v and ν2 

degrees of freedom for  is equation (5): v′

 

∫=
F  

0  
df )f(p3    )F(3P  (5) 

 

The computer program uses equation (5) to determine second stage short run control chart 

factors for the  and  charts. cv cs
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     As ν2→∞ (i.e., as m→∞) for any n, the distribution of the studentized variance ( )vvf ′=  

converges to the distribution of the variance v (when σ=1.0). This fact is used to derive equations 

to calculate α-based conventional control chart constants for the  and s  charts. cv c

 

3 The Computer Program 

The computer program is in Appendix B. It has five pages, three of which are further divided 

into sections. It should be noted that results from the program are for processes generating parts 

with independent measurements that follow a Normal distribution. 

 

3.1 Mathcad (1998) Note 

It is possible for a section of code in the program to turn red and have the error message 

"Unknown Error". To correct this, delete one character in the red code and type it back in. Click 

the mouse arrow outside of the code. The code should turn black, indicating that the error has 

been eliminated. If not, repeat the procedure (it will eventually correct the problem). 

 

3.2 Page 1 

The first page of the program has the data entry section. The program requires the user to enter 

the following values: α_Xbar (α for the X  chart), α_vcu (α for the  or s  chart above the 

UCL), α_vcl (α for the  and  chart below the LCL), m (number of subgroups), and n 

(subgroup size for the 

cv c

cv cs

)c v,X(  or )s ,X c(  charts). If no lower control limit on the  or s  chart 

is desired, the entry for α_vcl should be left blank (do not enter zero). Before a value can be 

entered, the cursor must be moved to the right side of the appropriate equal sign. This may be 

cv c
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done using the arrow keys on the keyboard or by moving the mouse arrow to the right side of the 

equal sign and clicking once with the left mouse button. 

     The program is activated by paging down once the last entry is made. When using Mathcad 

8.03 Professional (1998), paging down is not allowed while a calculation is taking place. 

However, starting with Mathcad 2000 Professional (1999), the user is allowed to page down to 

the output section of the program (explained later) after the last entry is made. 

 

3.3 Page 2 

Page 2 of the program begins with section 2.1. The value TOL is the tolerance. The calculations 

that use this value will be accurate to twelve places to the right of the decimal. The population 

standard deviation σ is set equal to one to achieve the convergence of the distribution of the 

studentized variance )vv( ′f =  with ν1 degrees of freedom for v and ν2 degrees of freedom for 

 (see equation (4b)) to the distribution of the variance v with ν1 degrees of freedom (see 

equation (1b)) as ν2→∞ (i.e., as m→∞) for any n. The equations for ν1 and ν2 were given 

earlier in relation to equations (1a) and (4a), respectively. 

v′

     Page 2, section 2.2 of the program has the equations for the distribution of the variance v with 

ν1 degrees of freedom and its cdf, both given earlier as equations (1b) and (3), respectively. The 

last part of page 2 is section 2.3 of the program. The code in this section determines vB10 and 

vB9, the (1-α_vcu) and α_vcl percentage points, respectively, of the distribution of the variance 

v with ν1 degrees of freedom. The values vB10 and vB9 are used to determine the α-based 

conventional upper and lower control chart constants, respectively, for the  and s  charts. The 

roots of the equations DUCL(V) and DLCL(V) are vB10 and vB9, respectively, and are 

determined using zbrent (a numerical recipe in the Numerical Recipes Extension Pack (1997) 

cv c
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that uses Brent's method to find the roots of an equation). The subprograms Vseed1 and Vseed2 

generate seed values seedB10 and seedB9, respectively, for Brent's method. 

     The subprogram Vseed1 works as follows. Initially,  and  are set equal to 0.01 and 0.02, 

respectively.  and  result from evaluating DUCL(V) at V  and , respectively. The while 

loop begins by checking if the product of  and  is negative. If so, the root for DUCL(V) 

lies between 0.01 and 0.02. If not,  and  are incremented by 0.01.  and  are 

recalculated and if their product is negative, the root for DUCL(V) lies between 0.02 and 0.03. 

Otherwise, the while loop repeats. Once a root for DUCL(V) is bracketed, the bracketing values 

are passed out of the subprogram into the 

0V 1V

00A 1A 1V

A

0A

1V

2

1A

0V 0 1A

1×  vector seedB10 to be used by Brent's method to 

determine vB10. The subprogram Vseed2 works similarly to construct the  vector seedB9 to 

be used by Brent's method to determine vB9, except the starting value is 0.000001. 

1×2

 

3.4 Page 3 

Page 3 of the program begins with section 3.1. It has the equations for the distribution of the 

studentized variance )vv( ′f =  with ν1 degrees of freedom for v and ν2 degrees of freedom for 

 and its cdf, both given earlier as equations (4b)-(4d) and (5), respectively. v′

     Section 3.2 contains the calculations required to determine fB10, the (1-α_vcu) percentage 

point of the distribution of the studentized variance ( )vvf ′=  with ν1 degrees of freedom for v 

and ν2 degrees of freedom for . The value fB10 is used to determine the second stage short 

run upper control chart factor for the  and s  charts. The subprogram Fseed1 generates the 

seed value seed1 for Brent's method or for root (root is a numerical routine in Mathcad (1998) 

that uses the Secant method to determine the roots of an equation). Either root-finding method 

v′

cv c
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determines the root fB10 of D1(x). Both Brent's method and the Secant method are given 

because one may not work when the other one does. If Brent's method fails (which is signified in 

Mathcad (1998) by the code turning red), type fB10 on the left side of the equal sign in equation 

(6): 

 

[ 1seed , )vcu_1()1seed(3P root α−−= ] (6) 

 

     The subprogram Fseed1 begins by generating values for  and .  and  result from 

evaluating P3(F) at F  and , respectively. The while loop continually increments  and  by 

delta1 and evaluates P3(F) at these two values until  becomes greater than (1-α_vcu) for the 

first time, at which point  will be less than (1-α_vcu). When this occurs, P3(F) is equal to (1-

α_vcu) for some value F between  and . An initial guess for this value is determined using 

linterp (a numerical routine in Mathcad (1998) that performs linear interpolation) and stored in 

Fguess. The initial guess is passed out of the subprogram as seed1. 

0F 1F 0A 1A

0 1F

0

0F 1F

1A

A

0F 1F

 

3.5 Page 4 

Page 4 of the program begins with section 4.1. The code in this section is used to determine fB9, 

the α_vcl percentage point of the distribution of the studentized variance ( vvf ′= )  with ν1 

degrees of freedom for v and ν2 degrees of freedom for v′ . The value fB9 is used to determine 

the second stage short run lower control chart factor for the  and  charts. The subprogram 

Fseed2 generates the seed value seed2 for Brent's method or for root. Either root-finding method 

determines the root fB9 of D2(x). Both Brent's method and the Secant method are given because 

cv cs
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one may not work when the other one does. If Brent's method fails, type fB9 on the left side of 

the equal sign in equation (7): 

 

( 2seed , vcl_)2seed(3P root α−= )  (7) 

 

     The subprogram Fseed2 begins by generating values for  and .  and  result from 

evaluating P3(F) at F  and , respectively. The while loop continually increments  and  by 

delta2 and evaluates P3(F) at these two values until  becomes greater than α_vcl for the first 

time, at which point A  will be less than α_vcl. When this occurs, P3(F) is equal to α_vcl for 

some value F between  and . An initial guess for this value is determined using linterp and 

stored in Fguess. The initial guess is passed out of the subprogram as seed2. 

0F 1F 0A 1A

0 1F 0F 1F

1A

0

F0 1F

     On page 4, section 4.2 of the program, the function qt(adj_α, ν2) in Mathcad (1998) 

determines the critical value crit_t for a cumulative area of adj_α under the Student's t curve with 

ν2 degrees of freedom. The value crit_t is used to determine first and second stage short run 

control chart factors for the X  chart. The function qnorm(adj_α, 0, 1) in Mathcad (1998) 

determines the critical value crit_z for a cumulative area of adj_α under the standard Normal 

curve. The value crit_z is used to determine the conventional control chart constant for the X  

chart. 

     The last part of page 4 is section 4.3 of the program. This section contains the equations for 

calculating the factors required to determine second stage short run control limits for ) v,X( c  and 

)s ,X( c  charts from Yang and Hillier (1970). It also has the equations for calculating 
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conventional control chart constants for ) v,X( c  and )s ,X( c  charts. The notation used is defined 

below. 

 

• A52: the second stage short run control chart factor for the X  chart 

• A5: the conventional control chart constant for the X  chart (the equation for A5 may be 

obtained by taking the limit of A52 as m→∞ (i.e., as ν2→∞) for any n) 

• B102: the second stage short run upper control chart factor for the v  chart c

• B10: the α-based conventional upper control chart constant for the  chart (the equation for 

B10 may be obtained by taking the limit of B102 as m→∞ (i.e., as ν2→∞) for any n) 

cv

• B92: the second stage short run lower control chart factor for the  chart cv

• B9: the α-based conventional lower control chart constant for the  chart (the equation for 

B9 may be obtained by taking the limit of B92 as m→∞ (i.e., as ν2→∞) for any n) 

cv

• B102sqrt: the second stage short run upper control chart factor for the  chart cs

• B10sqrt: the α-based conventional upper control chart constant for the  chart (the equation 

for B10sqrt may be obtained by taking the limit of B102sqrt as m→∞ (i.e., as ν2→∞) for any 

n) 

cs

• B92sqrt: the second stage short run lower control chart factor for the  chart cs

• B9sqrt: the α-based conventional lower control chart constant for the  chart (the equation 

for B9sqrt may be obtained by taking the limit of B92sqrt as m→∞ (i.e., as ν2→∞) for any n) 

cs
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3.6 Page 5 

The last page of the program has the output. The five values entered at the beginning of the 

program are given, as well as the values for ν1 and ν2. The control chart factors are broken down 

into second stage and conventional. To copy results into another software package (like Excel), 

follow the directions from Mathcad's (1998) help menu or highlight a value and copy and paste it 

into the other software package. When highlighting a value with the mouse arrow, place the 

arrow in the middle of the value, depress the left mouse button, and drag the arrow to the right. 

This will ensure just the numerical value of the result is copied and pasted. 

 

4 Tables of Factors 

Tables 1, 2, and 3 were generated using the computer program. These tables replicate the results 

given by Yang and Hillier (1970) in their Tables 7, 8, and 9, respectively, thus validating the 

 

Table 1.  Values of A52 and A5 for n=5 
α_Xbar 

m 0.001 0.002 0.01 0.05 
1 5.44563 4.53672 2.91189 1.75598
2 2.61861 2.35346 1.78001 1.23903
3 2.13812 1.95580 1.53723 1.10756
4 1.94170 1.78970 1.43047 1.04651
5 1.83486 1.69837 1.37021 1.01110
6 1.76766 1.64054 1.33146 0.98794
7 1.72147 1.60062 1.30442 0.97160
8 1.68776 1.57139 1.28448 0.95945
9 1.66208 1.54907 1.26915 0.95005
10 1.64185 1.53146 1.25701 0.94257
15 1.58282 1.47989 1.22117 0.92032
20 1.55419 1.45479 1.20357 0.90928
25 1.53728 1.43993 1.19311 0.90269
50 1.50405 1.41067 1.17239 0.88957
100 1.48772 1.39626 1.16214 0.88304
∞ 1.47157 1.38199 1.15195 0.87652
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Table 2.  Values of B92, B92sqrt, B9, and B9sqrt for n=5 
α_vcl 

0.001 0.005 0.025 
m B92 B92sqrt B92 B92sqrt B92 B92sqrt 
1 0.01871 0.1368 0.04319 0.20782 0.10412 0.32267 
2 0.02063 0.14363 0.04731 0.21750 0.11230 0.33511 
3 0.02130 0.14595 0.04875 0.22078 0.11516 0.33935 
4 0.02164 0.14711 0.04948 0.22244 0.11661 0.34149 
5 0.02185 0.14782 0.04993 0.22344 0.11750 0.34278 
6 0.02199 0.14829 0.05022 0.22411 0.11809 0.34364 
7 0.02209 0.14863 0.05044 0.22459 0.11852 0.34426 
8 0.02217 0.14888 0.05060 0.22495 0.11884 0.34472 
9 0.02222 0.14908 0.05073 0.22523 0.11909 0.34509 
10 0.02227 0.14924 0.05083 0.22545 0.11929 0.34538 
15 0.02241 0.14971 0.05113 0.22613 0.11989 0.34625 
20 0.02249 0.14995 0.05129 0.22646 0.12019 0.34669 
25 0.02253 0.15009 0.05138 0.22667 0.12037 0.34695 
50 0.02261 0.15038 0.05156 0.22707 0.12074 0.34747 
100 0.02266 0.15052 0.05165 0.22728 0.12092 0.34774 
∞ 0.02270 0.15067 0.05175 0.22748 0.12110 0.34800 

 

Table 3.  Values of B102, B102sqrt, B10, and B10sqrt for n=5 
α_vcu 

0.001 0.005 0.025 
m B102 B102sqrt B102 B102sqrt B102 B102sqrt 
1 53.43583 7.30998 23.15450 4.81191 9.60453 3.09912 
2 12.56032 3.54405 7.95589 2.82062 4.71808 2.17211 
3 8.62232 2.93638 5.99841 2.44916 3.89191 1.97279 
4 7.26546 2.69545 5.26809 2.29523 3.55871 1.88645 
5 6.58924 2.56695 4.88978 2.21129 3.37936 1.83830 
6 6.18626 2.48722 4.65908 2.15849 3.26744 1.80761 
7 5.91931 2.43296 4.50388 2.12223 3.19098 1.78633 
8 5.72965 2.39367 4.39240 2.09581 3.13544 1.77072 
9 5.58805 2.36391 4.30848 2.07569 3.09329 1.75877 
10 5.47833 2.34058 4.24303 2.05986 3.06020 1.74934 
15 5.16706 2.27312 4.05527 2.01377 2.96418 1.72168 
20 5.02090 2.24074 3.96598 1.99148 2.91794 1.70820 
25 4.93605 2.22172 3.91381 1.97834 2.89073 1.70022 
50 4.77249 2.18460 3.81250 1.95256 2.83751 1.68449 
100 4.69365 2.16648 3.76331 1.93992 2.81148 1.67675 
∞ 4.61671 2.14865 3.71506 1.92745 2.78582 1.66908 
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Figure 1.  A52 and A5 for α_Xbar=0.001 and n=5 

 

accuracy of the program. However, when similarly rounded, some of the results in Tables 1, 2, 

and 3 differ from their respective counterparts in Yang and Hillier's (1970) Tables 7, 8, and 9 in 

the last decimal place shown by one and, in a few cases, two digits. This may be due to the 

programming style and/or software used to generate Tables 1, 2, and 3. 

     Figure 1 is a plot of A52 and A5 for α_Xbar=0.001, n=5, and m: 1, 2, …, 10. It indicates that 

if one were to construct X  charts using conventional control chart constants when ten or less 

subgroups of size five (i.e., a combined sample of 50 or less data values) are available to estimate 

the process mean and standard deviation, the upper and lower control limits would not be wide 

enough, resulting in a higher probability of a false alarm. 

     Figure 2 is a plot of B92sqrt and B9sqrt for α_vcl=0.001, n=5, and m: 1, 2, …, 10. It indicates 

that if one were to construct s  charts using conventional control chart constants when ten or less c
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Figure 2.  B92sqrt and B9sqrt for α_vcl=0.001 and n=5 
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Figure 3.  B102sqrt and B10sqrt for α_vcu=0.001 and n=5 
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subgroups of size five are available to estimate the process standard deviation, the lower control 

limit would not be wide enough, resulting in a higher probability of a false alarm. 

     Figure 3 is a plot of B102sqrt and B10sqrt for α_vcu=0.001, n=5, and m: 1, 2, …, 10. It 

indicates that if one were to construct  charts using conventional control chart constants when 

ten or less subgroups of size five are available to estimate the process standard deviation, the 

upper control limit would not be wide enough, resulting in a higher probability of a false alarm. 

cs

     A common rule of thumb is that 20 to 30 subgroups of size four or five are necessary to use 

conventional control chart constants for constructing control limits. The results in Tables 1, 2, 

and 3 and the interpretations of Figures 1, 2, and 3 indicate that this rule may not be applicable to 

) v,X( c  and )s ,X c(  control charts. Quesenberry (1993) also investigated the validity of the 

common rule of thumb and concluded that )1n(400 −  subgroups are needed for the X  chart 

before conventional control chart constants may be used. However, for all practical purposes, the 

computer program eliminates the need for these and similar rules. 

 

5 A Numerical Example 

Consider the data in Table 4 obtained from a process requiring short run control charting 

techniques (assume α_Xbar=0.0027, α_vcu=0.005, and α_vcl=0.001). This example will be 

worked two ways, the first with ) v,X c(  control charts and the second with )s ,X c(  control 

charts. 

 

5.1 )v ,X( c  Control Charts 
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Table 4.  A Numerical Example 
Subgroup 1X  2X  3X  4X  X  R 

1 1.17 1.14 1.20 1.18 1.17250 0.06000 
2 1.38 1.29 1.36 1.44 1.36750 0.15000 
3 1.20 1.21 1.30 1.14 1.21250 0.16000 
4 1.40 1.40 1.21 1.43 1.36000 0.22000 
5 1.12 1.20 1.61 1.34 1.31750 0.49000 

Averages 1.28600 0.21600 
Revised Averages 1.27813 0.14750 

vc 0.01184  

sc 0.10881 
 

For first stage short run control charting, we use the appropriate factors for R) ,X(  charts from 

Elam and Case (2001) (R is the range of a subgroup). For m=5 and n=4, the following first 

stage short run control chart factors for R) ,X(  charts are obtained from Table A4 in Appendix 

III of Elam and Case (2001): A21=0.77660, D41=2.11840, and D31=0.11338. UCL(R), LCL(R), 

UCL( X ), and LCL( X ) are calculated as follows: 

 

45757.021600.011840.2R41D)R(UCL =⋅=⋅=  

02449.021600.011338.0R31D)R(LCL =⋅=⋅=  

45375.121600.077660.028600.1R21AX)X(UCL =⋅+=⋅+=  

11825.121600.077660.028600.1R21AX)X(LCL =⋅−=⋅−=  

 

The range for subgroup five (R=0.49000) is above UCL(R). Find, investigate, and remove from 

the process the special cause (or causes) that created this out of control point, delete subgroup 

five, recalculate averages (shown as the Revised Averages in Table 4), and reconstruct first stage 

control limits (this approach is from Hillier’s (1969) example). For m=4 and n=4, the following 
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first stage short run control chart factors for R) ,X(  charts are obtained from Table A4 in 

Appendix III of Elam and Case (2001): A21=0.78832, D41=2.07041, and D31=0.11848. Revised 

UCL(R), LCL(R), UCL( X ), and LCL( X ) are calculated as follows: 

 

30539.014750.007041.2R41D)R(UCL =⋅=⋅=  

01748.014750.011848.0R31D)R(LCL =⋅=⋅=  

39441.114750.078832.027813.1R21AX)X(UCL =⋅+=⋅+=  

16185.114750.078832.027813.1R21AX)X(LCL =⋅−=⋅−=  

 

Since none of the remaining values plot out of control (i.e., control has been established), the 

next step is to construct second stage control limits using the following second stage short run 

control chart factors for ) v,X( c  charts for m=4 and n=4 (these were obtained using the computer 

program): A52=2.00485, B102=6.47604, and B92=0.00785. UCL( ), LCL( ), UCL(cv cv X ), and 

LCL( X ) are calculated as follows: 

 

07668.001184.047604.6v102B)v(UCL cc =⋅=⋅=  

000093.001184.000785.0v92B)v(LCL cc =⋅=⋅=  

49628.110881.000485.227813.1s52AX)X(UCL c =⋅+=⋅+=  

05998.110881.000485.227813.1s52AX)X(LCL c =⋅−=⋅−=  

 

These control limits may be used to monitor the future performance of the process. 
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5.2 )s ,X( c  Control Charts 

First stage control charting may be performed in the same manner as it was for the ) v,X( c  

control chart example. To construct second stage control limits, we use the following second 

stage short run control chart factors for )s ,X c(  charts for m=4 and n=4 (these were obtained 

using the computer program): A52=2.00485, B102sqrt=2.54481, and B92sqrt=0.08861. 

UCL( ), LCL( ), UCL(cs cs X ), and LCL( X ) are calculated as follows: 

 

27690.010881.054481.2ssqrt102B)s(UCL cc =⋅=⋅=  

00964.010881.008861.0ssqrt92B)s(LCL cc =⋅=⋅=  

49628.110881.000485.227813.1s52AX)X(UCL c =⋅+=⋅+=  

05998.110881.000485.227813.1s52AX)X(LCL c =⋅−=⋅−=  

 

These control limits may be used to monitor the future performance of the process. 

 

6 Conclusions 

This paper makes important contributions to the area of short run control charting. By using the 

computer program, those involved with quality control in industry will, for the first time, be able 

to obtain theoretically precise control chart factors to determine control limits for ) v,X( c  and 

)s ,X( c  charts regardless of the subgroup size, number of subgroups, and α values. This 

flexibility is valuable in that process monitoring will no longer have to be adjusted to use the 
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limited results previously available in the literature. Furthermore, as already mentioned, the 

computer program eliminates the need for rules stating how many subgroups are enough before 

conventional control chart constants may be used. Also, it provides a valuable reference for 

anyone interested in anything having to do with ) v,X( c  and )s ,X c(  control charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 23Appendix A: Derivations

Show: The distribution of the variance v with ν1 degrees of freedom may be represented as 

follows: 
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Show: 22
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Show: The distribution of the studentized variance ( )vvf ′=  with ν1 degrees of freedom for v 

and ν2 degrees of freedom for  may be represented as follows: v′
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