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Abstract

Genetic association studies are commonly conducted to identify genes that explain
the variability in a measured trait (e.g., disease status or disease progression). Often,
results of these studies are summarized in the form of a p value corresponding to a test
of association between each single nucleotide polymorphisms (SNPs) and the trait under
study. As genes are comprised of multiple SNPs, post hoc approaches are generally applied
to determine gene-level association. For example, if any SNP within a gene is significantly
associated with the trait at a genome-wide significance level (p < 5 × 10−8), then the
corresponding gene is considered significant. A complementary strategy, termed mixed
modeling of meta-analysis p values (MixMAP) was proposed recently to characterize
formally the associations between genes (or gene regions) and a trait based on multiple
SNP-level p values. Here, the MixMAP package is presented as a means for implementing
the MixMAP procedure in R.

Keywords: genetic association studies, genotype, meta-analysis p values, mixed effects mod-
eling, phenotype, R package, trait.

1. Introduction

Genetic association studies provide an opportunity to investigate the relationships between
complex disease phenotypes and genetic polymorphisms. First stage analysis of data arising
from these studies generally involves characterizing the association between each single nu-
cleotide polymorphisms (SNPs) and a measured trait. For example, in an analysis unadjusted
for covariates where interest lies in modeling a binary measure of disease status, investigators
may perform a Cochran-Armitage trend test. Here each SNP is defined by the number of
variant alleles present. The results of genetic association studies are then summarized by a
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p value for each SNP as a measure of significance of the association with the trait.

Since interest generally lies in characterizing association between genes (or gene regions) and
the trait, where genes are comprised of multiple SNPs, an additional analysis step is required.
One simple approach that is commonly applied, is to declare a gene as significant if at least
one SNP within that gene reaches “genome-wide significance” defined as a p value less than
5× 10−8. This is equivalent to a Bonferroni adjustment based on one million tests.

In a recent manuscript, a complementary strategy was proposed to use summary level data
(p values) to investigate a group of SNPs simultaneously in their association with the trait.
This approach, termed mixed modeling of meta-analysis p values (MixMAP; Foulkes, Matthews,
Das, Ferguson, Lin, and Reilly 2012), has the advantage of identifying genes comprised of
several SNPs that exhibit moderate signals but do not individually reach genome-wide sig-
nificance. MixMAP involves applying a mixed effects modeling framework to transformed
SNP-level p values with random gene level cluster effects. This is a natural framework as
SNPs within the same gene tend to have moderate to high linkage disequilibrium (LD), which
in turn leads to potentially correlated p values. For each gene, the MixMAP package provides
functions that return an empirical Bayes estimate of the corresponding random effect and a
determination of whether the gene exhibits an association with the trait.

This manuscript describes the MixMAP package (Matthews 2015) in R which was developed
to implement the MixMAP approach. Section 2 begins with a detailed description of the
MixMAP procedure. This is followed in Section 3 by an outline of the MixMAP package with
a comprehensive data example. Finally, the manuscript concludes with a brief discussion and
topics for future work in Section 4.

2. The MixMAP approach

MixMAP is designed as a complementary analytic strategy to characterize the association
between a gene (or gene region) comprised of one or more SNPs and a trait. This section
provides a brief overview of the MixMAP approach, while a more complete description and
extensive simulation studies to characterize the method can be found in Foulkes et al. (2012).
The primary inputs to the MixMAP procedure are: (1) a set of p values for single SNP tests
of association for multiple SNPs within and across genes; (2) the SNP name corresponding
to each p value; (3) a mapping of SNPs to genes (or gene regions). For the purpose of this
presentation, the term “locus” is used to refer generally to a gene or gene region in which
there are moderate to high levels of LD among the SNPs. The input p values can be based
on a single cohort study or generated based on a meta-analysis of several genetic association
studies, as is common practice in large-scale investigations.

Formally, let Li represent the ith locus, i = 1, 2, . . . , N , and let Li = (si1, . . . , sini) where sij is
the jth SNP in locus i. In a typical genetic association study, a p value is calculated for each
sij . MixMAP begins by ranking the set of all M(=

∑N
i=1 ni) p values and then applying an

inverse normal transformation. The result of this transformation is expressed as yk = Φ−1(rk)
where rk = k

M+1 , k is the rank of the SNP, and Φ−1(·) is the inverse of the cumulative density
function for a standard normal. A mixed effects models is then fit of the form:

yi = Xiβ + Zibi + εi, (1)

where yi = (yi1, . . . , yini)
> is a vector of transformed p values (yk’s) for the ith location and
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Step 1: Transformation. p values resulting from univariate analysis in a genetic association study
are ranked and used to calculate rk. In turn, the rk are transformed to normality to produce yk.

Step 2: Mixed Modeling. Using the yk as the dependent variable, a mixed effects model is fitted
with a fixed intercept and random intercepts for each locus.

Step 3: Prediction. Empirical Bayes estimates and one-sided prediction intervals are created for
each locus with a correction for multiple loci.

Step 4: Locus Selection. Loci are selected as statistically meaningful if the upper limit of the
corresponding prediction interval is less than 0.

Figure 1: The MixMAP algorithm.

the matrix Xi is the corresponding matrix of covariates. Zi is a vector of 1’s of length ni and
bi is used to model the latent effect of the ith location. By assumption, we also have that
bi ∼ N(0, σ2b ), εi ∼ N(0, Iniσ

2) and bi ⊥ εi, where Ini is an ni × ni identity matrix.

The values of interest here are the collection of estimates of bi for i = 1, . . . , N , corresponding
to the gene-level effects. In this case, the best linear unbiased estimator for bi is:

E(bi|yi) = σ2bJ
>
niΣ
−1
i (yi −Xiβ̂), (2)

where Σi = COV(yi) = σ2bJniJ
>
ni + σ2Ini and Jni is a vector of 1’s of length ni. The quantity

b̂i, referred to as the empirical Bayes estimator of bi, is found by replacing σb and Σi in Equa-
tion 2 with corresponding restricted maximum likelihood (REML) estimates. The prediction
variance for the ith locus is given by:

VAR(b̂i − bi) = σ2b − σ4bJ>niΣ
−1
i

[
Ini −Xi(X

>Σ−1X)−1X>i Σ−1i

]
Jni (3)

where X = (X>1 , . . . ,X
>
N )> and Σ is a block diagonal matrix whose diagonal elements are the

matrices Σ1, . . . ,ΣN .

When the number of clusters, N , is large VAR(b̂i−bi) ≈ VAR(bi|yi). Since the default variance
returned by the lmer function in the R package lme4 (Bates, Maechler, and Bolker 2015) is
given by VAR(bi|yi) this can be used in this setting. Here, one is interested in detecting locus
effects that are smaller than zero. This is of interest because it is the large negative values
of locus effects that correspond to smaller p values. Therefore, one-sided prediction intervals
are constructed for each region with the upper limit for the (1 − α)% prediction interval for
bi expressed as:

b̂i + z(1−α)

√
VAR(b̂i − bi). (4)

As multiple prediction intervals are being created, a correction is applied, and α is replaced
with α∗ = α/N where again N is the number of genes. A summary step-by-step procedure
is provided in Figure 1 and the procedure described in this section is implemented in the
function mixmapPI.

2.1. Testing framework
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While prediction intervals are a commonly used framework for estimating random effects, in
this context, the width of the prediction interval will approach zero as the number of SNPs
within a gene gets large. Therefore, rather than constructing a prediction interval which
uses the VAR(b̂i − bi) as the variance the prediction interval, we also provide an alternative
method using a hypothesis testing framework. This method is less sensitive to the number
of SNPs within a gene. Formally, the test of interest is H0 : µi = 0 where bi ∼ N(µi, σ

2
b ) for

i = 1, . . . , N . This test is used because E(b̂i) = Ey[E(bi|y)] = E(bi) = µi, implying that b̂i is
an unbiased estimator of µi. As a result, the test statistic for the ith gene is defined as:

Ui = b̂i/
√
VAR(b̂i),

where

VAR(b̂i) ≈

 niσ
2
b

σ2

ni
σ + 1

σ2
b

 = λiσ
2
b .

The null hypothesis is then rejected if Ui > Cα,i. If Cα,i is defined to be Cα,i = z(1− α
N
) then

this equates to a Bonferroni corrected control of the family-wise error rate. This procedure is
implemented in the function mixmapTest.

3. Implementation in the MixMAP package

MixMAP is an R (R Core Team 2015) package that is freely available from the Comprehensive
R Archive Network (CRAN) at http://CRAN.R-project.org/package=MixMAP and that al-
lows for gene-level association analysis based on p values from an association study, and can
be installed on any operating system that has R installed. The MixMAP package relies on the
lme4 package to implement the mixed models necessary in some of the MixMAP functions.
The primary functions in the MixMAP are mixmapPI, which implements the MixMAP algo-
rithm summarized in Section 2, and mixmapTest, which implements the procedure described
in Section 2.1. In order to use the mixmapPI or mixmapTest functions, the user must provide
a data frame with the following five variables: SNP name, gene name, chromosome number,
base pair coordinate, and p value. Both mixmapTest and mixmapPI output an object of class
‘MixMAP’ that has associated methods of summary and plot.

3.1. Global Lipids Gene Consortium (GLGC) data

The MixMAP package is illustrated in an application using meta-analysis results derived
from several independent studies of approximately 100, 000 individuals in the Global Lipids
Gene Consortium (GLGC; Teslovich et al. 2010). These data are freely available at http:

//www.broadinstitute.org/mpg/pubs/lipids2010/. For the purpose of this presentation,
we focus on a subset of 31, 825 SNPs in 2, 960 genes that are also on the ITMAT-Broad-
CARe (IBC) 50K SNP array data and can be uniquely mapped to a gene, as described in
Foulkes et al. (2012). The trait under study is low-density lipoprotein cholesterol (LDL-C),
a known causal risk factor for cardiovascular disease. Each p value contained in the data set
corresponds to a test of association between LDL-C and a specific SNP, after adjusting for
appropriate covariates, as described in Teslovich et al. (2010). These p values, along with
the mapping of SNPs to genes, serve as the primary input to the mixmapTest function as
illustrated in the following section.

http://CRAN.R-project.org/package=MixMAP
http://www.broadinstitute.org/mpg/pubs/lipids2010/
http://www.broadinstitute.org/mpg/pubs/lipids2010/
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3.2. Application of MixMAP

The first step after installing the MixMAP package is for the user to load the package as
follows:

R> library("MixMAP")

The package contains example data named MixMAP_example. This file contains all of the
information needed to be run through the mixmapPI function, namely SNP name, gene name,
chromosome number, base pair coordinate, and p value. Notably, the chromosome number
and base pair coordinate are required for the associated plot function. If these data are not
available, empty columns can be added to the input data frame, and the mixmapTest function
will still work appropriately. The data are loaded as follows:

R> data("MixMAP_example", package = "MixMAP")

Inspecting the first ten rows confirms that all of the necessary columns are present for these
data to be read directly into the mixmapTest function:

R> head(MixMAP_example, 10)

MarkerName Gene Chr Coordinate GC.Pvalue

1 rs10 CDK6 7 92221824 0.04027

2 rs10000405 CORIN 4 47411638 0.50130

3 rs10000679 VEGFC 4 177907958 0.11950

4 rs10000850 NMU 4 56195135 0.55470

5 rs1000113 IRGM 5 150220269 0.39400

6 rs1000115 EDG2 9 112834321 0.43150

7 rs10001190 WFS1 4 6335534 0.39640

8 rs10002743 WFS1 4 6327482 0.15830

9 rs1000329 KLF2 19 16310517 0.06940

10 rs10004126 NPY1R 4 164462801 0.60340

Note that the variable name for the column containing the SNP name is "MarkerName". This
is different than the default ("SNP") and will need to be explicitly stated in the mixmapTest

function. This is also true of the other variable names in this file. The mixmapTest function
is applied as follows:

R> MixOut <- mixmapTest(MixMAP_example, pval = "GC.Pvalue",

+ snp = "MarkerName", chr = "Chr", coord = "Coordinate", gene = "Gene")

The user can specify the α level used in the hypothesis testing framework. This is indicated by
alpha in the mixmapTest function and by default alpha = 0.05. The current implementation
of mixmapTest divides this number by the total number of genes to arrive at the effective level
of α for each test.

The mixmapTest function returns an object of class ‘MixMAP’. Objects of this class contain
4 slots: output, num.genes.detected, detected.genes, and lme.out. The output slot
contains a data frame with one row for each gene in the input. The columns include the
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corresponding empirical Bayes estimates of the random gene-level effects (postEst), the esti-
mated posterior variance (var), the upper limit of the prediction interval (predUpper), and
the number of SNPs in the specified gene (snpCount), as well as the given chromosome num-
ber (chr) and base pair location (coordinate). The last three columns include the MixMAP
p value (MixMAP_pvalue), the Bonferroni adjusted MixMAP p value and the false discovery
rate adjusted q value (MixMAP_qvalue). The first 10 rows of the output slot are displayed
below for the GLGC data example:

R> MixOut@output[1:10, 1:7]

gene postEst var predUpper snpCount chr coordinate

1 2-Sep -0.06846933 0.07968001 1.1019438 2 2 241902668

2 A1BG 0.46195614 0.12994785 1.9566390 5 19 63548943

3 A2BP1 0.24109712 0.04844600 1.1537244 1 16 6221176

4 A2M -0.09204013 0.04844600 0.8205872 1 12 9123535

5 AADAT 0.22986746 0.04844600 1.1424948 1 4 171001659

6 AAK1 0.10022170 0.04844600 1.0128490 1 2 69558474

7 AANAT -0.04405343 0.15982268 1.6135617 9 17 71966263

8 ABCA1 -0.53210492 0.21774161 1.4026912 121 9 106690664

9 ABCA12 0.15313878 0.04844600 1.0657661 1 2 215548659

10 ABCA2 -0.49472047 0.12994785 0.9999624 5 9 139031804

The num.genes.detected slot contains an integer vector of length two with the first ele-
ment containing the number of genes that were selected as statistically meaningful (number
detected) and the second containing the total number of genes included in the analysis
(total number of genes). For the GLGC data, we have:

R> MixOut@num.genes.detected

number detected total number of genes

7 2960

The third slot in a ‘MixMAP’ object is called detected.genes and contains similar information
as the output slot, but only for the subset of genes that were selected by the MixMAP algo-
rithm. Along with the information provided in the output slot (i.e., empirical Bayes estimates,
posterior variances, upper limit of prediction intervals, etc.), this data frame contains the SNP
name with the smallest p value within each selected gene, the probit rank-transformed value
related to the smallest p value in the selected gene, and several additional summary measures
of the p values within the selected gene. Finally, the last slot, lmer.out, contains the output
from the mixed model fit. For the GLGC data, this is given by:

R> MixOut@lmer.out

Linear mixed model fit by REML ['lmerMod']

Formula: probit.rank.transform ~ 1 + (1 | geneTemp)

Data: datTemp

REML criterion at convergence: 86755.17
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Random effects:

Groups Name Std.Dev.

geneTemp (Intercept) 0.4736

Residual 0.9022

Number of obs: 31825, groups: geneTemp, 2960

Fixed Effects:

(Intercept)

-0.03679

Objects with class ‘MixMAP’ have methods summary and plot available for use. The summary

method displays the number of genes detected and the total number of genes analyzed as well
as the top ten MixMAP detected genes based on the upper limit of the prediction interval.
For the GLGC data, application of the summary method to a ‘MixMAP’ object yields:

R> summary(MixOut)

Number of Genes Detected: 7

Total Number of Genes: 2960

Top Genes:

gene postEst snpCount MixMAP_pvalue MixMAP_pvalue_BonferroniAdjusted

2 CELSR2 -2.413384 23 2.085455e-08 6.172946e-05

4 LDLR -2.022771 28 2.817066e-06 8.338515e-03

7 SORT1 -1.982453 28 4.309764e-06 1.275690e-02

1 APOB -1.971705 49 7.984146e-06 2.363307e-02

3 FADS1 -1.837134 9 2.159791e-06 6.392981e-03

6 PVRL2 -1.812226 16 1.124855e-05 3.329572e-02

5 MYBPHL -1.769987 10 6.404506e-06 1.895734e-02

MixMAP_qvalue

2 6.172946e-05

4 2.779505e-03

7 3.189225e-03

1 3.938845e-03

3 2.779505e-03

6 4.756532e-03

5 3.791467e-03

Finally, the plot method associated with a ‘MixMAP’ object will produce a Manhattan-style
plot. Here the x-axis represents the base pair location on the specified chromosome and
shading is used to distinguish chromosomes. The y-axis represents the maximum of 0 and
the absolute value of the empirical Bayes estimate of the gene level random effect. For the
example provided, we have:

R> png("ManhattanMixMAP.png", width = 6.83, h = 5, units = "in", res = 300,

+ pointsize = 6)

R> plot(MixOut)

R> dev.off()
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Figure 2: Manhattan style plot for GLGC data.

The resulting plot is illustrated in Figure 2. Colors for the genes in alternating chromosomes
can be controlled with the col.genes option. The option controlling the color of the detected
gene is col.detected and col.text controls the color of the text that displays the gene name
for detected genes. This labeling can be suppressed by specifying display.text = FALSE.

4. Discussion

This article presents the R package MixMAP, which can be used to implement the algo-
rithm for mixed modeling of meta-analysis p values. The package includes the mixmapPI and
mixmapTest functions, producing output of the class ‘MixMAP’, and methods associated with
this class include plot and summary. The plot method for objects of class ‘MixMAP’ produces
a Manhattan-style plot for visualizing the results of the MixMAP procedure. The MixMAP
package uses S4 methods and classes.

Extensions to the MixMAP procedure will include alternative approaches to defining a sig-
nificance threshold. In the present application, a Bonferroni correction is applied to account
for the number of genes for which a prediction interval is generated. Current research sug-
gests reasonable control of the false discovery rate using this threshold under moderate effect
sizes in simulation studies based on the distribution of SNPs and genes in IBC array data
(Foulkes et al. 2012). Further extensions, however, may be required to apply to data aris-
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ing from genome-wide association or deep sequencing studies involving a larger number of
genes and/or greater coverage within a gene. Additionally, the MixMAP package could be
extended to allow for control of potential confounding variables that may lead a gene to be
falsely detected.

Further extensions of the MixMAP package will also allow users to read in files that are
created as output from R functions that perform GWAS analysis directly, such as GenABEL
(GenABEL Project Developers 2013). This would allow users to perform the original testing
in R and seamlessly perform the MixMAP algorithm all within the R environment. Finally,
extensions of the MixMAP algorithm to the mixture modeling setting are currently being
developed. This would allow the model to reflect a more accurate version of the true distri-
bution of the p values, without requiring a first stage ranking, and may result in better levels
of detection of genes that are truly associated with the trait of interest.

The MixMAP tool presented herein is intended to complement existing approaches to char-
acterizing gene level association. In the example provided, SNPs are grouped into genes
(regions) of moderate to high linkage disequilibrium (LD), defined loosely as a measure of
correlation between SNPs. Alternatively, a group of SNPs could be defined by a pathway
or a gene set, as described in Subramanian et al. (2005). To emphasize, the algorithm im-
plemented in this package is flexible with respect to choice of grouping and an alternative
clustering variable can be input into the algorithm in place of gene.

Finally, in many scenarios where it is desirable to use the MixMAP procedure, SNPs must
be mapped to some grouping, often genes. This in itself is not necessarily a trivial task in
and of itself. ANNOVAR (Wang, Li, and Hakonarson 2010) is a useful piece of software for
annotating SNPs to genes that allows users to annotate genes based on gene definitions (i.e.,
RefSeq, UCSC, ENSEMBL, GENCODE).
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