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Abstract

Multi-state models provide a relevant tool for studying the observations of a continuous-
time process at arbitrary times. Markov models are often considered even if semi-Markov
are better adapted in various situations. Such models are still not frequently applied
mainly due to lack of available software. We have developed the R package SemiMarkov
to fit homogeneous semi-Markov models to longitudinal data. The package performs
maximum likelihood estimation in a parametric framework where the distributions of the
sojourn times can be chosen between exponential, Weibull or exponentiated Weibull. The
package computes and displays the hazard rates of sojourn times and the hazard rates
of the semi-Markov process. The effects of covariates can be studied with a Cox propor-
tional hazards model for the sojourn times distributions. The number of covariates and
the distribution of sojourn times can be specified for each possible transition providing
a great flexibility in a model’s definition. This article presents parametric semi-Markov
models and gives a detailed description of the package together with an application to
asthma control.

Keywords: multi-state semi-Markov models, parametric estimation, exponentiated Weibull
distribution, asthma, R.

1. Introduction

In multi-state models of longitudinal data usually a process is assumed to be Markovian that
is that the conditional probability distribution of future states depends only on the present
state, not on the whole sequence of past events. In a discrete-time framework, one can study
models based on Markov chains. For instance, the R (R Core Team 2015) package VLMC
(Maechler 2015) can be used to fit a variable length Markov chain to a discrete time series. In
a continuous-time framework, multi-state models based on Markov processes are often con-
sidered. In various applications, the intensities between states are supposed to be constant
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in time (homogeneity assumption) or piecewise constant (Huszti, Abrahamowicz, Alioum,
Binquet, and Quantin 2012; Saint-Pierre, Combescure, Daurès, and Godard 2003; Aguirre-
Hernàndez and Farewell 2002). A few R packages have been developed to simplify the usage
of multi-state Markov models. The msm package (Jackson 2011) allows to fit homogeneous
Markov or hidden Markov models in continuous-time and discrete-time. Non and semi para-
metric estimation of non homogeneous Markov models or competing risks models are possible
using the mstate package (de Wreede, Fiocco, and Putter 2011). The etm package (Allignol,
Schumacher, and Beyersmann 2011) computes the Aalen-Johansen empirical transition matrix
whereas p3state (Meira-Machado and Pardiñas 2011) focuses on the illness-death model.

A non homogeneous Markov model is well adapted when the process evolution depends on cal-
endar time, age or time since the beginning of the study. However, the memoryless property
implies that the waiting times distributions in a Markov model is exponential. In cases when
this assumption is too restrictive, semi-Markov models can be considered since they involve
distributions of sojourn times as parameters. From a theoretical point of view, several results
are given in Limnios and Oprisan (2001). Non homogeneous semi-Markov models are very
complex and are rarely used in practical situations (Monteiro, Smirnov, and Lucas 2006).
In the homogeneous case, a non parametric estimation of the semi-Markov process hazard
rate can be found in Gill (1980) or in Ouhbi and Limnios (1999). The parametric maximum
likelihood estimation is based on a parametric definition of the sojourn times distributions
(Pérez-Ocón, Ruiz-Castro, and Gàmiz-Pérez 1999). Indeed, the Weibull or the exponenti-
ated (generalized) Weibull distributions are efficient and flexible to fit the ∩ or ∪ shape (of
the hazard rates) common in biology (Foucher, Mathieu, Saint-Pierre, Durand, and Daurès
2005), the life sciences and reliability. Moreover, the parametric model allows to incorporate
covariates in the distribution of sojourn times using a proportional-hazards regression model
(Cox 1972).

Few R packages have been developed to handle semi-Markov or hidden semi-Markov models.
The mhsmm package (O’Connell and Højsgaard 2011) performs estimation and prediction
for multiple observation sequences in hidden semi-Markov models. The msSurv package
(Ferguson, Datta, and Brock 2012) provides non parametric estimation in semi-Markov models
but covariates are not considered. However, it seems that the parametric approach is not yet
implemented in statistical software. We have developed an R package named SemiMarkov
(Listwon-Krol and Saint-Pierre 2015) which performs parametric estimation in a homogeneous
semi-Markov model. The waiting times distributions can be chosen to be the exponential,
the Weibull, or the exponentiated Weibull distribution. Maximum likelihood estimations of
both, hazard rates of the semi-Markov process and hazard rates of sojourn times can be
deduced. Moreover, the effects of covariates on the process evolution can be studied using a
semi-parametric Cox model for the distributions of sojourn times. The number of states, the
possible transitions between them and the number of covariates affecting each transition can be
chosen in order to fit sparse models adapted to a specific application. Package SemiMarkov is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=SemiMarkov.

The rest of this paper is organized as follows. Section 2 describes the multi-state semi-Markov
models and the parametric maximum likelihood estimation used in the SemiMarkov package.
Section 3 describes the SemiMarkov package whereas the Section 4 illustrates the different
functions included in the package through an example on severe asthma. Conclusions and
possible future extensions of this R package are discussed in Section 5.

http://CRAN.R-project.org/package=SemiMarkov
http://CRAN.R-project.org/package=SemiMarkov
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2. Homogeneous semi-Markov model framework

2.1. Homogeneous semi-Markov process

Let us consider a Markov renewal process (Jn, Tn)n∈N where 0 = T0 < T1 < . . . < Tn < ∞
are the successive times of entry to states J0, J1, . . . , Jn where Jn 6= Jn+1 for all n ∈ N.
The sequence (Jn)n∈N is an embedded homogeneous Markov chain taking values in a discrete
finite state space E with transition probabilities phj = P(Jn+1 = j|Jn = h), n ∈ N. Let
Sn = Tn − Tn−1 be the inter-arrival time for all n ∈ N∗, d ∈ R+ and (h, j) ∈ E × E, the
Markov renewal kernel Qhj(d) satisfies

Qhj(d) = P(Jn+1 = j, Sn+1 ≤ d|J0, . . . , Jn = h, S1, . . . , Sn)

= P(Jn+1 = j, Sn+1 ≤ d|Jn = h). (1)

Let N(t) = sup{n ∈ N : Tn ≤ t, t ∈ R+} be the counting process which counts the total num-
ber of observed transitions during the time interval [0, t]. The process JN(t), which represents
the state of the process at time t, defines a homogeneous semi-Markov process.

The probability distribution function of sojourn times is related to the semi-Markov kernel
through the transition probabilities of the embedded Markov chain,

Fhj(d) = P(Sn+1 ≤ d|Jn = h, Jn+1 = j) =
Qhj(d)

phj
. (2)

Let us suppose that the survival function Ghj(.), the density function fhj(.) and the hazard
rate αhj(.) associated to this probability distribution can be defined. The survival function of
sojourn time in state h is defined by Gh(d) = 1−P(Sn+1 ≤ d|Jn = h) =

∑
j∈E phj(1−Fhj(d)).

The hazard rate of the semi-Markov process corresponds to the probability of transition
towards state j between time d and d+ ∆d, given that the process is in state h for a duration
d

λhj(d) = lim
∆d→0

P(Jn+1 = j, d < Sn+1 ≤ d+ ∆d|Jn = h, Sn+1 > d)

∆d
. (3)

The hazard of the semi-Markov process is related to the hazard rate of the sojourn time, the
survival functions of the sojourn times and the transition probabilities of the Markov chain
by the following relation

λhj(d) =
phjGhj(d)αhj(d)

Gh(d)
, h 6= j, (4)

λhh(d) = −
∑
j 6=h

λhj(d).

2.2. Sojourn times distribution

Let us assume that distributions of sojourn times belong to a parametric family. The simplest
model is obtained using the exponential distribution E(σhj), for which the hazard rate is
constant over time (corresponding to the Markov case) and is related to a single positive
parameter σ,

αhj(d) =
1

σhj
, ∀d ≥ 0. (5)
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The Weibull distribution (Weibull 1951), which generalizes the exponential one, is often used
in practical applications. Indeed, the Weibull distribution with two parameters W(σhj , νhj)
is well adapted to deal with various shapes of monotone hazards,

αhj(d) =
νhj
σhj

(
d

σhj

)νhj−1

, (6)

where σhj > 0 is a scale parameter and νhj > 0 is a shape parameter. The exponentiated
Weibull distribution EW(σhj , νhj , θhj) (Mudholkar and Srivastava 1993) with an additional
shape parameter θhj > 0 is very useful to fit ∪ and ∩ shapes of hazard rates

αhj(d) =
θhj

νhj
σhj

(
d
σhj

)νhj−1
exp

(
−
(

d
σhj

)νhj) [
1− exp

(
−
(

d
σhj

)νhj)]θhj−1(
1−

[
1− exp

(
−
(

d
σhj

)νhj)]θhj) . (7)

These three distributions which allow to fit various shapes of the hazard ratio are nested: a
EW(σhj , 1, 1) is equivalent to a W(σhj , 1) which is equivalent to a E(σhj). The Wald test can
be used to test each parameter and evaluate the relevance of a given distribution.

2.3. Parametric maximum likelihood estimation

In a parametric framework, distributions of sojourn times are supposed to belong to a class of
parametric functions. For each transition, the distribution (which depends on a finite number
of parameters) can be specified using either the hazard rate αhj(·), the density fhj(·) or the
cumulative distribution function Fhj(·).
The likelihood function associated to a single semi-Markov process can be written as

L =

[
N∏
n=1

pJn−1JnfJn−1Jn(Sn)

]
× [GJN (U)]δ , (8)

where N is the total number of observed transitions between two different states, U denotes
the duration between the time of the last observation and TN the time of the end of the
study. The indicator δ is equal to 1 if the last sojourn time U is right-censored by the end
of the study. Indeed, the last duration and the last arrival state are unknown unless the
process entered an absorbing state (δ = 0). When an observation is right-censored (δ = 1),
the survival function of the sojourn times is taken into account. The first part of Equation 8
involves the density function and the probabilities of the Markov chain; it corresponds to the
contribution of the observed transitions.

Consider that each individual i = 1, . . . , k, is associated to a semi-Markov process (JNi(t), t ≥
0) with Ni(t) = sup{n ∈ N : T in ≤ t, t ∈ R+}. Equation 8 can be used to compute
each individual contribution to the likelihood Li. The full likelihood L is the product of all
individual likelihood contributions Li.

2.4. Cox proportional model

The influence of covariates on the sojourn times distributions can be studied using a Cox
proportional regression model (Cox 1972). Let Zhj be a vector of explanatory variables and
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βhj a vector of regression parameters associated to the transition from state h to state j. The
hazard rate is defined by

αhj(d|Zhj) = αhj0(d)exp(β>hjZhj), d ≥ 0, h, j ∈ E, h 6= j, (9)

where α0(d) denotes the baseline hazard defined in Section 2.2.

In this model, the regression coefficients can be interpreted in terms of relative risk. As
in the Cox model, time-dependent covariates can be considered assuming that the value of
the covariate is constant between two consecutive events. Let us mention that the previous
notation allows to consider different sets of covariates for each transition. It is then possible
to consider sparse models with only significant regression parameters.

3. The SemiMarkov R package

3.1. Package description

The SemiMarkov package was developed to analyze longitudinal data using multi-state semi-
Markov models. The main function semiMarkov of the package computes the parametric
maximum likelihood estimation in the homogeneous semi-Markov model introduced in Sec-
tion 2.

Format of data

A data set asthma is included in the SemiMarkov package. This cohort study (longitudinal
data) of severe asthmatic patients can be analyzed using multi-state semi-Markov models.
The data frame to be used in the function semiMarkov must be similar to the asthma data:
a table in long format (one row per transition and possibly several rows by individual) that
must contain the following information

1. id: The individual identification number.

2. state.h: State left by the process.

3. state.j: State entered by the process.

4. time: Sojourn time in state.h.

The rows must be grouped by individuals and ordered chronologically within groups. By
definition of a semi-Markov model the waiting times must be known. Therefore, transitions
between the same states are not possible. If such transitions are observed, the row must be
combined with the next transition to obtain a transition from state h to state j with h 6= j.
The last sojourn time of a semi-Markov process is observed only when the process enters an
absorbing state. In other cases, the final state and the last sojourn time is unknown due to
the right-censoring process. In such case, it is only known that the censored sojourn time
is greater than the last observed sojourn time (in practice, the last observed sojourn time is
deduced from the date of the end of the study). A censored transition can be specified by a
transition from h to h (so that such transitions are distinct from the rest of the transitions).
One can also identify the unknown arrival state using the argument cens. The data set may
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also include additional explanatory variables (for instance, some individual’s characteristics).
The values of these covariates must be given for each individual and for each transition in
order to take fixed or time-dependent covariates into account (one value for each row of the
data frame data).

Functions description

Following is a brief description of the package functions.

� table.state: Computes a frequency table counting the number of observed transitions
in the data set.

� param.init: Defines default or specified initial values of the parameters.

� semiMarkov: Computes the parametric maximum likelihood estimation of multi-state
semi-Markov models.

� hazard: For any object of classes ‘semiMarkov’ and ‘param.init’, the function com-
putes the values of the hazard rate of sojourn times or the values of the hazard rate of
the semi-Markov process for a given vector of times.

� summary and print: Summary and printing methods for objects of classes ‘semiMarkov’
and ‘hazard’.

� plot: Plot method for objects of class ‘hazard’.

Sojourn times distribution

The parametric estimation in homogeneous semi-Markov models is based on the specification
of the sojourn times distribution. The following distributions are available in the package
SemiMarkov: exponential ("E", "Exp" or "Exponential"), Weibull ("W" or "Weibull") and
exponentiated Weibull ("EW", "EWeibull" or "Exponentiated Weibull"). If the logical value
TRUE is given then the default is the Weibull distribution. These distributions are nested
when the appropriate parameters are equal to 1 (see Section 2). The estimations of the
distribution parameters are given with standard deviations and p values of the Wald test (H0 :
Θhj = 1 is the default null hypothesis). One can then evaluate, for instance, the relevance
of the exponentiated Weibull distribution in comparison to the Weibull or the exponential
distribution.

Multi-state model definition

The multi-state approach requires to define the states of the process and to specify the struc-
ture of the model (the number of states and the possible transitions between them). The
function table.state returns a matrix which gives the number of observed transitions in the
data set. This function can help to define the argument mtrans required in the semiMarkov

and the hazard functions. The square matrix mtrans includes information on possible tran-
sitions and on the distributions of waiting times. The element hj of the matrix mtrans is
either a logical value FALSE (when the transition from h to j is not possible) or a character
representing the sojourn time distribution. According to semi-Markov models, the diagonal
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State 2  

Sub-optimal control 

State 1  

Optimal control 

State 3  

Unacceptable control 

Figure 1: The three states model used for asthma control evolution.

elements of mtrans are all equal to FALSE. Note that only the transitions specified in mtrans

will be considered in the analysis. In case of the three-state model described in Figure 1 where
the sojourn times associated to each transition are Weibull distributed, the matrix mtrans

will be defined as follows

R> mtrans

[,1] [,2] [,3]

[1,] "FALSE" "W" "W"

[2,] "W" "FALSE" "W"

[3,] "W" "W" "FALSE"

The argument states is a character vector used to define the names of states, possible values
are those included in the data’s columns state.h and state.j.

Covariates

The effect of covariates on the process evolution can be investigated considering a Cox propor-
tional hazards model for the hazard rates of waiting times. A set of covariates can be specified
using the argument cov. The argument cov_tra is used to indicate which covariates affect
which transitions: cov_tra is a list of vectors where the kth vector provides the transitions
affected by the kth covariate. The elements of these vectors can only consist of transitions
specified in the argument mtrans. For instance, let us consider a three states model where
all transitions between states are possible (Figure 1) and let us suppose that a covariate
named Cov1 affects all transitions leaving state 1 whereas a second covariate named Cov2

affects the transitions leaving state 2: in this case, the arguments to be passed in the func-
tion must be respectively cov = data.frame(Cov1, Cov2) and cov_tra = list(c("12",

"13"), c("21", "23")). The interpretation of the regression coefficients in terms of rela-
tive risks (as in the Cox model) can help to quantify the effect of covariates and to understand
the process evolution. For each estimation of regression coefficients, standard deviation and
p value of the Wald test (H0 : βhj = 0 is the default null hypothesis) are given.
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Initial values

The optimization procedure used in the maximum likelihood estimation requires definition
of initial values of the parameters: the distribution parameters, the transition probabilities
and the regression coefficients associated to the covariates. Default values are equal to 1
for the distribution parameters, and 0 for the regression coefficients. The initial transition
probabilities are calculated by simple proportions: the number of observed transitions from
state h to state j divided by the total number of observed transitions from state h. The
function param.init can be used to define specific initial values of the parameters. An object
of class ‘param.init’ can then be given as argument in the semiMarkov and hazard functions.
The total number of parameters depends on: the number of states, the possible transitions,
the chosen distributions and the covariates.

3.2. Parametric maximum likelihood estimation

The semiMarkov function

The main function semiMarkov estimates the parameters of a multi-state homogeneous semi-
Markov model using parametric maximum likelihood estimation. Several R packages are
needed to run the function. The package numDeriv (Gilbert and Varadhan 2015) that allows
to approximate the Hessian matrix of second derivatives for the estimated parameters. The
package MASS (Venables and Ripley 2002) is used to obtain the inverse of the Hessian matrix.
The maximization of the likelihood function is performed using non-linear optimization based
on the augmented Lagrange multiplier method implemented in the function solnp from the R
package Rsolnp (Ghalanos and Theussl 2014). Indeed, we have to face an optimization with
constraints since sums of the probabilities associated to transitions leaving the same states
are all equal to 1 (the sums in rows of the transition matrix).

The following arguments are used in the function semiMarkov: arguments related to the data
(data, cov), arguments related to the model (states, mtrans, cov_tra, cens) and initial
values (dist_init, proba_init, coef_init). Default values are defined for the distributions
of waiting times and for the initial values. The function semiMarkov returns an object of class
‘semiMarkov’ which recalls the chosen model, gives information on the optimization method
and provides the parameter estimates together with their standard deviations. For each
regression parameter β and distribution parameter σ (or ν or θ), the function SemiMarkov

also provides the Wald test statistic and p value associated to a given null hypothesis which can
be specified using argument Wald_par. The default null hypothesis for regression coefficients
is the absence of association (H0 : β = 0) whereas the default null hypothesis for distribution
parameters is H0 : σ = 1. The Wald test for the transition probabilities is less useful and is
not performed.

Some arguments related to the optimization procedure can also be specified in the function
semiMarkov and passed further to the function solnp. Indeed, the function solnp allows to
define constraints on the model’s parameters. The arguments ineqLB and ineqUB can be used
in the semiMarkov function to impose respectively lower and upper bounds on the parameter
estimates. The argument eqfun can be used to define constraints of type par1 = a × par2

where a is a constant and par1 and par2 are two parameters. Note that it is only possible to
specify constraints between the same type of parameters (distribution parameters, transition
probabilities or regression coefficients).
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The hazard function

The hazard rate of sojourn time and the hazard rate of the semi-Markov process can be
deduced from the parameters and the distributions of sojourn times using Equation 9 and
Equation 3, respectively. The function hazard computes vectors of hazard rates values using
either the estimates included in an object of class ‘semiMarkov’ or the specific values defined
by an object of class ‘param.init’. The argument type is used to choose the type of hazard
rate: alpha for the hazard rates of waiting times and lambda for the hazard rates of the
semi-Markov process.

The hazard function returns the values of the hazard rates associated to a vector of times. By
default, the hazard rates are calculated for a vector of ordered times of length 1000 where the
starting value is equal to 0 and the ending value is determined by the longest sojourn times.
The length of the vector, its starting and ending values can be specified by the user. One
can also enter a whole vector of times, for instance, the different values of the sojourn times
observed in the data. If covariates are used in the model, the hazard rates can be obtained for
given values of the covariates using the argument cov: for time-fixed covariates a single value
is needed whereas a vector of values is required for time-dependent covariates. By default, all
covariate values are set equal to 1. Note that the function hazard does not require to specify
the model or the distributions. Indeed, this information is already included in the objects of
class ‘semiMarkov’ or ‘param.init’.

3.3. Showing results

An object of class ‘semiMarkov’ contains the data description, the considered model and
the results of the maximum likelihood estimation that may be displayed using the summary

or print method for ‘semiMarkov’ objects. The summary and print methods for ‘hazard’
objects provide the type of hazard rates, the vector of times and the associated values of
hazard rates. An object of the class ‘hazard’ can be plotted using the corresponding plot

method. For each transition, the function generates a plot representing one or more (up to
ten) hazard rates.

4. Application to asthma control data

A follow-up study of severe asthmatic patients was conducted in France between 1997 and 2001
by ARIA (Association pour la Recherche en Intelligence Artificielle). Adult asthmatics were
prospectively enrolled over a 4-year period by a number of French chest physicians. The data
reflects the real follow-up of patients consulting at varied times according to their perceived
needs. At each visit, several covariates were recorded and asthma was evaluated using the
concept of control scores (Saint-Pierre, Bourdin, Chanez, Daures, and Godard 2006). The
control scores can be used to define the subject’s state at each consultation. The considered
model to study the evolution of asthma consists of three transient states (Figure 1): the
optimal control (State 1), the sub-optimal control (State 2) and the unacceptable control
(State 3).

A random selection of 371 patients with at least two visits (data asthma) is included in the
package SemiMarkov. A total of 557 transitions between states are observed and no deaths
are reported. Together with the control scores at each time, three covariates are included
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in the data: severity (disease severity: coded 1 if severe, 0 if mild-moderate asthma), BMI
(body mass index: 1 if BMI ≥ 25, 0 if BMI < 25) and sex (1 if men, 0 if women). The
data frame asthma contains one row per transition. The rows corresponding to the same
subject are grouped and ordered chronologically. The columns of the asthma data are: the
patient identification number (id), the state left by the process (state.h), the arrival state
(state.j), the sojourn time in state state.h (time) and binary covariates (Severity, BMI,
Sex). Note that the variable BMI is a time-dependent covariate.

R> library("SemiMarkov")

R> data("asthma", package = "SemiMarkov")

R> head(asthma)

id state.h state.j time Severity BMI Sex

1 2 3 2 0.15331964 1 1 0

2 2 2 2 4.12320329 1 1 0

3 3 3 1 0.09582478 1 1 1

4 3 1 3 0.22997947 1 1 1

5 3 3 1 0.26557153 1 1 1

6 3 1 1 5.40725530 1 1 1

There are no absorbing states in the considered model (Figure 1). The last sojourn time is
then right-censored. Its value is the time between the last visit and the date of the end of the
study. A censored observation is identified by a transition into the same state. In such case,
the value of state.h is equal to the value of state.j and the value of time is the censored
sojourn time.

R> table.state(asthma)

$table.state

1 2 3

1 152 95 44

2 112 116 71

3 115 120 103

$Ncens

[1] 371

In a primary analysis, the data are stratified according to the values of the covariates. The
effect of covariates and the proportional hazard assumption can be evaluated by representing
the hazard rates in each stratum. In a second step, a proportional model can be considered to
study the effect of covariates. For instance, one can consider a model with BMI as covariate
and the Weibull distribution for the waiting times.

R> states <- c("1", "2", "3")

R> mtrans <- matrix(FALSE, nrow = 3, ncol = 3)

R> mtrans[1, 2:3] <- c("W", "W")

R> mtrans[2, c(1, 3)] <- c("W", "W")

R> mtrans[3, c(1, 2)] <- c("W", "W")
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R> BMI <- as.data.frame(asthma$BMI)

R> fit <- semiMarkov(data = asthma, states = states, mtrans = mtrans,

+ cov = BMI)

The semiMarkov function provides estimations of parameters of the waiting times distribu-
tions, the standard deviations, the confidence intervals and the Wald test statistics (H0 :
θhj = 1). One can observe that the coefficient ν23 associated to the transition from state 2
to state 3 is not significantly different from 1. The exponential distribution can then be used
instead of the Weibull distribution for this transition.

R> fit$table.dist

$Sigma

Type Index Transition Sigma SD Lower_CI Upper_CI Wald_H0 Wald_test

1 dist 1 1 -> 2 9.384 2.42 4.64 14.13 1.00 12.01

2 dist 2 1 -> 3 0.418 0.08 0.26 0.58 1.00 51.54

3 dist 3 2 -> 1 5.014 1.25 2.57 7.46 1.00 10.36

4 dist 4 2 -> 3 0.714 0.12 0.49 0.94 1.00 6.06

5 dist 5 3 -> 1 2.233 0.53 1.20 3.26 1.00 5.51

6 dist 6 3 -> 2 0.498 0.08 0.34 0.65 1.00 41.07

p_value

1 0.0005

2 <0.0001

3 0.0013

4 0.0138

5 0.0189

6 <0.0001

$Nu

Type Index Transition Nu SD Lower_CI Upper_CI Wald_H0 Wald_test

1 dist 7 1 -> 2 0.531 0.05 0.44 0.63 1.00 95.79

2 dist 8 1 -> 3 1.18 0.14 0.90 1.46 1.00 1.65

3 dist 9 2 -> 1 0.51 0.04 0.43 0.59 1.00 142.11

4 dist 10 2 -> 3 1.048 0.10 0.86 1.24 1.00 0.25

5 dist 11 3 -> 1 0.499 0.04 0.42 0.58 1.00 161.12

6 dist 12 3 -> 2 0.931 0.06 0.81 1.06 1.00 1.14

p_value

1 <0.0001

2 0.1990

3 <0.0001

4 0.6171

5 <0.0001

6 0.2857

The regression coefficients associated with BMI can be analyzed using the Wald test statistics
(H0 : βhj = 0). For instance, the estimate of the coefficient associated to the transition from
state 3 to state 1 is significantly different from 0 (β = −0.447, p = 0.028). It means that a
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BMI ≥ 25 decreases the risk of leaving the unacceptable state to enter the optimal control
state.

R> fit$table.coef

> fit$table.coef

Type Index Transition Covariates Estimation SD Lower_CI Upper_CI Wald_H0

1 coef 1 1 -> 2 Beta1 -0.27808218 0.22 -0.72 0.16 0.00

2 coef 2 1 -> 3 Beta1 -0.87827431 0.35 -1.57 -0.19 0.00

3 coef 3 2 -> 1 Beta1 0.03216304 0.19 -0.35 0.41 0.00

4 coef 4 2 -> 3 Beta1 -0.11151373 0.27 -0.64 0.41 0.00

5 coef 5 3 -> 1 Beta1 -0.61127841 0.20 -1.00 -0.22 0.00

6 coef 6 3 -> 2 Beta1 -0.23912937 0.21 -0.65 0.17 0.00

Wald_test p_value

1 1.55 0.2131

2 6.27 0.0123

3 0.03 0.8625

4 0.17 0.6801

5 9.43 0.0021

6 1.32 0.2506

The effect of BMI on the hazards of waiting times and on the hazards of the semi-Markov
process can also be evaluated using the hazard and plot functions (Figure 2).

R> plot(hazard(fit, cov = 0), hazard(fit, cov = 1), transitions = "13")

R> plot(hazard(fit, cov = 0, type = "lambda"), hazard(fit, cov = 1,

+ type = "lambda"), transitions = "13", legend.pos = c(3.75, 0.119),

+ cex = 0.8)

Finally, multivariate models can be considered. However, the number of parameters can
quickly be too large compared to the size of the data set (due to the complex form of the
waiting times distributions and to the number of covariates under study). The optimization
method can then fail to reach convergence. It is therefore important to consider sparse models
using adapted distributions and keeping only the regression coefficients significantly different
from 1. One can also specify the null hypothesis of the Wald test using argument Wald_par.
In the following example, the null hypothesis are the nullity of distribution parameters and
the regression coefficients are equal to −1.

R> SEV <- as.data.frame(asthma$Severity)

R> fit2 <- semiMarkov(data = asthma, cov = data.frame(BMI, SEV),

+ states = states, mtrans = mtrans, cov_tra = list(c("13", "31"),

+ "23"), Wald_par = c(rep(0, 12), rep(-1, 3)))

Constraints on the lower and upper bounds for parameters can be specified. For instance,
the estimation of the regression coefficient associated to transition from state 1 to state 2 can
belong to [−0.2, 0.2] whereas the regression coefficient associated to transition from state 2 to
state 3 can belong to [−0.1, 0.1].
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Figure 2: The hazard rate of waiting time (left) and the hazard rate of the semi-Markov
process (right) for the transition 13 for BMI = 0 (black line) and for BMI = 1 (red line).

R> fit3 <- semiMarkov(data = asthma, cov = BMI, states = states, mtrans =

+ mtrans, ineqLB = list(c("coef", 1, -0.2), c("coef", 4, -0.1)),

+ ineqUB = list(c("coef", 1, 0.2), c("coef", 4, 0.1)))

The definition of arguments ineqLB and ineqUB requires three elements: the type of pa-
rameters ("dist", "proba" or "coef"), the index of the parameter (can be identified from
the semiMarkov output) and the lower (or upper) bound. One can also impose equality
constraints on the parameters. It is of particular interest to suppose that two (or several)
distribution parameters or regression coefficients are equal. In the following example, the
second distribution parameters associated to transition from state 1 to state 2 and and from
state 2 to state 1 are equal to each other.

R> fit4 <- semiMarkov(data = asthma, cov = BMI, states = states, mtrans =

+ mtrans, eqfun = list(c("dist", 7, 9, 1)))

The definition of argument eqfun requires four elements: the type of parameters ("dist","proba"
or "coef"), the index of the first parameter (can be identified from the semiMarkov output),
the index of the second parameter and a constant a such that par1 = a×par2. In the following
example it is supposed that the regression coefficients associated to transition from state 2 to
state 1, from state 2 to state 3 and from state 3 to state 2 are equal to each other.

R> fit5 <- semiMarkov(data = asthma, cov = BMI, states = states, mtrans =

+ mtrans, eqfun = list(c("coef", 3, 4, 1), c("coef", 3, 6, 1)))

Note that additional constraints on transition probabilities must be chosen with caution since
these parameters are already subject to constraints induced by the model definition. Indeed,
the probability must obviously belong to [0, 1] and the sum of the probabilities in the same
row of the transition matrix must be equal to one (the last probability of a given row is not
estimated but deduced from the others). Therefore, no additional constraints related to these
probabilities are permitted.
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5. Discussion

Semi-Markov multi-state models are proven to be very useful in various applications. They
are extensions of Markov models in which the evolution of a process is independent from time
spent in a state between two consecutive events. Such an assumption is too stringent in some
applications. In such case, semi-Markov models are of great interest for modeling the sojourn
(waiting) times distributions. However, the implementation of such approach is complex and
there are barely any packages or macros to adjust such models. The SemiMarkov package
allows to fit parametric homogeneous semi-Markov models by maximizing the likelihood. The
choice of waiting times distributions, in particular the exponentiated Weibull distribution,
allows to fit various shapes of hazard rates functions. An advantage of the parametric approach
is the possibility to study the effects of covariates via a proportional hazard model. In order
to obtain sparse models adapted to the process of interest, the user can choose the number of
covariates and the distributions of waiting times for each transition. Some extensions of the
SemiMarkov package could be of interest. For instance, the package could be updated to deal
with more waiting times distributions. The methodology can be adapted to include random
effects in order to deal with the correlation between subjects. Interval censored data could also
be analyzed using a penalized likelihood approach (Foucher, Giral, Soulillou, and Daures 2010)
or using an estimation method with piecewise constant hazard rates (Kapetanakis, Matthews,
and Hout 2012). The optimization step is a crucial point and needs to be investigated.
Indeed, the multi-state approach is often limited by the number of parameters with several
covariates. The adaptation of methods dealing with high dimensional data to the multi-state
model framework is of high interest as well.
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