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Abstract

This paper briefly describes geostatistical models for Gaussian and non-Gaussian data
and demonstrates the geostatsp and dieasemapping packages for performing inference
using these models. Making use of R’s spatial data types, and raster objects in particular,
makes spatial analyses using geostatistical models simple and convenient. Examples using
real data are shown for Gaussian spatial data, binomially distributed spatial data, a log-
Gaussian Cox process, and an area-level model for case counts.
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1. Introduction

In the past two decades spatial statistics has gradually become a mature and established
branch of statistics with a suite of well defined models and proven inference methodologies
capable of addressing a wide range of practical problems. The capability of R (R Core Team
2014) to store, manipulate, and display spatial data has similarly improved, and as a result
spatial methodologies which were formerly only accessible to the specialist are available to
the wider statistical community. This paper demonstrates model fitting for Gaussian, non-
Gaussian, and point process data using the geostatsp and diseasemapping packages, with R’s
spatial data classes being used to make spatial data analysis simple and the software intuitive.

1.1. Models and methods

Models and theory for Gaussian spatial data were first espoused by Matheron (1962) and
popularized by Cressie (1993). Writing U(s) as the value of a Gaussian random field U at
location s, the basic (stationary) geostatistical model is characterized by the joint multivariate
normal distribution

[U(s1) . . . U(sN )]> ∼ MVN(0,Σ).

http://www.jstatsoft.org/
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The entries of the covariance matrix Σ are determined by a spatial correlation function ρ with

Σij = cov[U(si), U(sj)] = σ2ρ[(si − sj)/φ, θ].

Here φ is a scale parameter controlling the rate at which correlation decays with distance, and
θ is a vector of possible additional parameters (controlling directional effects, for example).
An isotropic process has correlation being a function of distance with ρ[(si−sj)/φ] = ρ0(||si−
sj ||/φ).

Various parametric functions have been used for ρ, and Stein (1999) makes a compelling case
for the Matérn correlation function described in Appendix A. An isotropic process with a
Matérn correlation has a single additional parameter κ controlling the differentiability of the
process. Two additional covariance parameters commonly used refer to geometric anisotropy,
and comprise an angle of rotation indicating a preferred direction and a ratio parameter giving
the ratio of the ranges on the two axes.

The parametrisation of the Matérn is different in each of the geoR (Ribeiro and Diggle 2001),
RandomFields (Schlather, Malinowski, Menck, Oesting, and Strokorb 2015) and geostatsp
packages. The specification of the Matérn in Appendix A, and in use in the geostatsp package,
has the property that when varying κ the correlation at a distance φ stays fairly close to 0.14,
or ρ[(0, φ)/φ, κ] ≈ 0.14. A Matérn with κ = ∞ is a Gaussian density with φ being two
standard deviations. The term ‘practical range’ is used at times to describe φ as defined
here, interpreting φ as a distance beyond which correlation is ‘small’ is a manner analogous
to interpreting the Gaussian density as being ‘small’ beyond two standard deviations.

The anisotropy angle refers to rotation of the coordinates anti-clockwise by the specified
amount prior to calculating distances, which has the effect that the contours of the correlation
function appear rotated clockwise by this amount. The anisotropy ratio is the amount the Y
coordinates are divided by by following rotation, with large values making the Y coordinates
smaller and increasing the correlation in the Y direction (of the rotated coordinates).

Gaussian data

Data Yi observed at location si with covariates X(si) is often modelled with the linear geo-
statistical model (LGM):

Yi|U(si) ∼N(λ(si), τ
2)

λ(si) =µ+ βX(si) + U(si). (1)

Although method-of-moments estimation of the covariance parameters φ, σ and τ is still
common, Stein (1999) makes a thorough argument for using maximum likelihood estimates
(MLEs). Writing ψ = (µ, β, σ, τ, φ), the MLEs ψ̂ are the quantities which maximize the likeli-
hood pr(Y1 . . . YN ;ψ). The Yi are jointly multivariate normal and the likelihood is tractable,
albeit requiring the inversion of an N by N matrix, and numerical optimizers such as the
optim function can be used to find ψ̂.

Spatial prediction usually involves covering the study region with a large number of reg-
ularly spaced points g`; ` = 1 . . . L and mapping estimates of Ū = [U(g1) . . . U(gL)] or
λ̄ = [λ(g1) . . . λ(gL)]. As the model is linear and Gaussian, the conditional distribution [Ū |Y ]
is multivariate normal with closed form expressions for the conditional mean and variance.
The MLEs ψ̂ are used to calculate these expressions, hence the uncertainty in these parameter
estimates is ignored (see Diggle and Ribeiro 2006).
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Non-Gaussian data

When the observed data Yi are non-Gaussian, the model above is extended to the generalized
linear geostatistical model (GLGM) used by Diggle, Moyeed, and Tawn (1998) and further
described in Diggle and Ribeiro (2006). Consider a distribution f (i.e., Binomial or Weibull)
with a mean parameter λ and possibly additional parameters ν. Writing g(·) as a link function
(i.e., log or logit), the GLGM takes the form

Yi|U(si) ∼f [λ(si), ν]

g[λ(si)] =µ+ βX(si) + U(si) (2)

cov[U(si), U(sj)] =σ2ρ[(si − sj)/φ, θ].

The combination of non-Gaussian data and an unobserved latent variable make the likelihood
function intractable and computing the MLEs difficult. Bayesian inference using Markov chain
Monte Carlo (MCMC) algorithms has become the most common method for making statis-
tical inference with GLGMs, as was done in Diggle et al. (1998). Bayesian inference requires
specifying prior distributions for the model parameters µ, β, σ and φ, with the posterior dis-
tributions π(φ|Y ) and π[U(s)|Y ] forming the basis of inference.

The integrated nested Laplace approximation (INLA) algorithm of Rue, Martino, and Chopin
(2009) is an alternative to MCMC for performing Bayesian with latent Gaussian models.
MCMC’s principal drawback is the requirement that chains of posterior samples must be
monitored and assessed for convergence and mixing, and obtaining a set of reliable posterior
samples from a MCMC algorithm can be difficult and require a specialized skill set to accom-
plish. INLA is much easier to use in this regard, and although it’s maximisation step and
numerical integration can sometimes require judicious choices of starting values and tuning
parameters it is in general less labor-intensive to use than MCMC.

An additional recent development which has facilitated the implementation of the GLGM
is the Markov random field approximation to the Matérn correlation function developed by
Lindgren, Rue, and Lindström (2011). When the number of spatial locations N is large,
inverting the variance matrix Σ can be time consuming or numerically unstable. Lindgren
et al. (2011) use Gaussian Markov random fields (GMRF’s) to derive a simple expression for
Σ−1 for Matérn correlations using various forms of stochastic partial differential equations.
The geostatsp package makes use of the Matérn approximation of GMRF’s on grids of square
cells with κ = 1 or 2. Although real datasets will rarely be sampled on a square lattice, the
continuous surface U(s) can be well approximated by superimposing a fine lattice over the
study region and assigning each data point to a cell. The fact that many (or most) of the
cells will not have data observed in them is not problematic for INLA. This combination of
INLA with the Markov random field approximation has been to estimate spatial variation in
risk for Lupus in the city of Toronto, Canada from case incident locations by Li, Brown, Rue,
al Maini, and Fortin (2012), and for assessing the effect of cancer risk of ambient radiation
near a nuclear power facility using time-to-event data from a retrospective cohort in Jiang,
Brown, Rue, and Shimakura (2014).

Lindgren et al. (2011) derive a GMRF approximation for the Matérn using an irregular lattice
with triangular basis functions, which has a number of advantages over the grid cell approach.
This approximation is implemented in the INLA software, and incorporation of this feature
into geostatsp is work in progress.
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1.2. Spatial statistics and R

The sp package (see Bivand, Pebesma, and Gómez-Rubio 2013) and raster package (Hijmans
2014) provide an excellent set of facilities for storing, manipulating, and visualising spatial
data. The sp package provides SpatialPointsDataFrame and SpatialPolygonsDataFrame

objects for storing point and polygon data respectively, and are compatible with many of the
standard data formats most geographical information systems (GIS) uses. The raster package
provides similar tools for raster data, which are pixelated images or rectangular lattices. The
rgdal (Bivand, Keitt, and Rowlingson 2014) package provides a set of tools for reading spatial
data from various formats into R, such as ESRI shapefiles for point and polygon data, and
GeoTIFF files for raster data. These three packages (along with spdep, Bivand 2014, and
others) have made R fully compatible with GIS software and R fulfils many of the criteria for
it to be called a GIS in its own right.

The venerable geoR package (see Diggle and Ribeiro 2006) has provided tools for likelihood-
based inference since 2000, and is one of the very few software packages for spatial analysis
which accommodates all of: the Matérn correlation function; covariates; Maximum Likelihood
Estimation; geometric anisotropy; and the Box-Cox transform. Since geoR predates the sp
and raster packages, it has its own spatial data types.

For Bayesian inference, the excellent INLA (Rue, Martino, Lindgren, Simpson, and Riebler
2013) package developed by the authors of Rue et al. (2009) and Lindgren et al. (2011)
implements INLA for a wide variety of models, including spatial Gaussian Markov random
field models. INLA has been designed with flexibility of model specification being a priority,
a job INLA accomplishes to an astonishing degree albeit at the cost rendering some tasks
relatively complex in comparison to other packages. One such example is specifying a Matérn
correlation function, with spatial locations being specified as grid cell indexes rather than
coordinates. A considerable amount of code can sometimes be necessary for converting INLA
results from a spatial model into a format which can be mapped.

The geostatsp package provides a set of user-friendly functions for Gaussian spatial models
and an easy interface to INLA for fitting non-Gaussian models, resulting in a powerful set
of tools for model-based geostatistical analyses in R. Response variables and covariates are
specified with formulas, with data provided as Raster or SpatialPointsDataFrame objects.
The interface to INLA has more complex set of routines underlying it, with observations being
allocated to cells in a Markov random field and linear combinations of parameters and latent
variables for predicted spatial surfaces being defined. The spatial predictions obtained from
these packages are raster objects, making them easy to display and overlay on background
maps.

2. Model-based geostatistics through examples

The geostatsp and diseasemapping packages described in this paper are available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/ and R-Forge at http:

//R-Forge.R-project.org/R/?group_id=312. They both depend on the INLA package
obtainable from http://R-INLA.org/.

http://CRAN.R-project.org/
http://R-Forge.R-project.org/R/?group_id=312
http://R-Forge.R-project.org/R/?group_id=312
http://R-INLA.org/
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Figure 1: Swiss rainfall data (colored blue points and top legend) with elevation (background
colors and bottom legend).

2.1. Maximum likelihood estimation and kriging

The Swiss rainfall dataset (see Diggle and Ribeiro 2006, 5.4.7) is a classic case study in
Gaussian geostatistics. Loading of the geostatsp package and executing data("swissRain")

makes available the following objects: a SpatialPointsDataFrame named swissRain of rain
values at a number of points, a SpatialPolygonsDataFrame named swissBorder of the
border of Switzerland; and a Raster object swissAltitude containing elevation values for
Switzerland. These three objects are plotted in Figure 1.

Using the linear geostatistical model in (1) with these data would have the rainfall mea-
surements being the Yi, elevation values being X(s), and λ(s) as the unknown true rainfall
surface. Either Bayesian or Frequentist inference could be used to fit the model, with the
former possible in a manner similar to the example in the subsequent section. Frequentist
inference is accomplished with the lgm function in the geostatsp package, which in turn calls
likfitLgm for estimating the model parameters and krige for computing conditional means
and variances of U(s) and λ(s). The Swiss rainfall data is fit with the code below.

R> names(swissRain)

[1] "ID" "rain"

R> names(swissAltitude)

[1] "CHE_alt"

R> swissFit <- lgm(rain ~ CHE_alt, swissRain, grid = 120,

+ covariates = swissAltitude, shape = 1, fixShape = TRUE, boxcox = 0.5,

+ fixBoxcox = TRUE, aniso = TRUE)

R> names(swissFit)
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Estimate Std. error CI 0.025 CI 0.975 Estimated

(Intercept) 4.86 1.29 2.32 7.39 true
Elev’n per 1000m 0.28 0.37 −0.45 1.01 true

range, km 0.06 0.03 0.11 true
sdNugget 0.95 0.73 1.24 true

anisoAngleDegrees 37.00 31.74 42.27 true
anisoRatio 7.48 3.94 14.19 true

shape 1.00 false
boxcox 0.50 false

sdSpatial 2.97 1.89 4.68 true

Table 1: Swiss rainfall parameter estimates, standard errors and confidence intervals obtained
from a linear geostatistical model and the lgm function.

[1] "predict" "param" "varParam" "optim"

[5] "data" "model" "summary"

The data and covariates arguments contain the data required for fitting the model, with
the fixed effects βX(s) specified by formula. The variables listed in formula refer to names
in either the swissRain or swissAltitude objects, and are not the names of the objects
themselves. Variables in the right hand side of formula can refer to either: the name of a
vector of values contained in the data argument; the name of a layer in a Raster object
(a single layer, brick or stack) passed as covariates; or the name of one of the elements
if covariates is a list of Raster objects. The latter is useful when covariate rasters have
different resolutions and projections. If a covariate is a column in data, it will not be included
in the predicted values for λ(s).

The argument grid = 120 specifies that spatial prediction should be done on a raster with
120 cells in the X dimension, with this raster having square cells covering the bounding box
of swissRain. The grid argument can alternatively be supplied as a Raster object. A
Matérn spatial correlation function with shape parameter fixed at 1 and a Box-Cox trans-
form with parameter fixed at 0.5 (a square-root transform) are used. The aniso = TRUE

argument allows for geometric anisotropy in the correlation function. Additional function ar-
guments are param and parscale, starting values and parameter scaling values passed from
lgm to likfitLgm and ultimately the numerical optimizer optim. The Swiss data has spa-
tial locations expressed in a UTM projection, with coordinates in metres and consequently
a spatial range parameter likely to be in the hundreds of thousands. The default scaling of
1 in optim would be ineffective and arguments on the order of param = c(range = 10^5)

and parscale = c(range = 10^4) are in order. The default starting value and scale which
likfitLgm sets for the range parameter are 1/20 and 1/200 of the diagonal distance of the
bounding box of data.

The swissFit object produced by lgm is a list with elements including predict, a RasterStack
of spatial predictions and standard errors, and summary, a table of parameter estimates
and confidence intervals. Table 1 shows the summary component, with the range parame-
ter converted to kilometres. The standard deviation parameters σ and τ are displayed in
the sdSpatial and sdNugget rows respectively. Confidence intervals for the covariance pa-
rameters are derived from the observed information matrix, and will be missing if any of the
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(a) Predicted rainfall E(λ(s)|Y ) (b) Exceedance probabilities pr(λ(s) > 30|Y )

Figure 2: Conditional expectations and probabilities obtaind from fitting a linear geostatistical
model to the Swiss rainfall using the lgm function.

estimated parameters are on a boundary. Notice the ‘Estimated’ column indicating that the
Matérn shape parameter and Box-Cox transformation parameter were not estimated from the
data.

Spatial predictions of the rainfall surface λ(s) and the spatial random effect U(s) are contained
in the RasterStack element of swissFit$predict, which has the following layers:

R> names(swissFit$predict)

[1] "space" "random" "predict.boxcox"

[4] "krigeSd" "predict"

Using the notation in (1), these layes are (in the order given above): the predicted fixed effects
µ̂ + β̂X(s); the kriged random effects E[U(s)|Y ]; the predicted rainfall surface E[λ(s)|Y ] on
the Box-Cox transformed scale; the prediction standard deviation sd[U(s)|Y ]; and predicted
rainfall on the natural scale E{[αλ(s) + 1]1/α|Y } with α being the Box-Cox transformation
parameter. Figure 2a shows the predicted rainfall values (on the natural scale), and results
from the command plot(swissFit$predict[["predict"]]). Notice the strong direction-
ality is consistent with an angle of rotation of 37◦ and a ratio of the major to minor axes
of 7.5.

Figure 2b shows the conditional probabilities that rainfall exceeds 30mm, computed with

R> exc30 <- excProb(swissFit, 30, nuggetInPrediction = TRUE)

The excProb function uses pnorm with means from the predict.boxcox layer and standard
deviations from krigeSd, calculating probabilities of exceeding the Box-Cox transform of
30. The nuggetInPrediction argument can be set to TRUE to compute probabilities of new
observations Yi exceeding a threshold, with FALSE specifying exceedance probabilities for λ(s).

The data component of swissFit provides all the values necessary for further analysis such as
conditional simulation or re-estimation of model parameters. This SpatialPointsDataFrame
contains all covariates X(si), observed data Yi, and residuals Yi −X(si)β̂ (the latter on the
Box-Cox transformed scale if appropriate). Conditional simulation is required for making
inference on non-linear functions of the latent process (such as total area above a threshold),
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and is advisable when making inference on the latent process with a Box-Cox transformed
model. Using a wrapper for the RFsimulate function in RandomFields, a sample from the
conditional distribution [U |Y ] is obtained with

R> oneSim <- geostatsp::RFsimulate(model = swissFit$param,

+ data = swissFit$data["resid"], err.model = swissFit$param["nugget"],

+ x = raster(extent(swissRain), nrow = 10, ncol = 10))

As a final note on the Gaussian geostatistical model, consider the comparison between the
geoR package (see Diggle and Ribeiro 2006) and geostatsp below. The code below estimates
the shape and Box-Cox parameters for an isotropic model. Notice the specification of scaling
factors for parameters myscale, given as a control argument.

R> swissRain$alt <- raster::extract(swissAltitude, swissRain)

R> library("geoR")

R> swiss2 <- as.geodata(swissRain, data.col = "rain", covar.col = "alt")

R> myscale <- c(range = 1000, shape = 1, boxcox = 1, nugget = 0.1)

R> geoRres <- likfit(swiss2, ini.cov.pars = c(1, 10000), kappa = 0.2,

+ trend = ~alt, lambda = 0.5, fix.lambda = FALSE, fix.nugget = FALSE,

+ fix.kappa = FALSE, lik.method = "REML", message = FALSE,

+ control = list(parscale = myscale[c("range", "nugget", "shape",

+ "boxcox")]))

The same model is fit with lgm with:

R> swissFit2 <- lgm(rain ~ CHE_alt, swissRain, grid = 90,

+ covariates = swissAltitude, shape = 0.2, fixShape = FALSE,

+ boxcox = 0.5, reml = TRUE, fixBoxcox = FALSE, parscale = myscale)

The two sets of parameter estimates are comparable, as shown below.

(Intercept) CHE_alt range nugget boxcox shape variance

geostatsp 6.57 0.000153 54820 0 0.592 0.959 14.4

geoR 6.63 0.000160 52900 0 0.595 1.005 14.5

2.2. Generalized linear geostatistical models

The Loaloa data (see Diggle and Ribeiro 2006, 7.6.4) shown in Figure 3 contains the locations
of villages where subjects were tested for a tropical disease, with the (binomially distributed)
number of positive samples and total sample size being recorded. These data are accessible
with data("loaloa") in the geostatsp package, which contains a SpatialPointsDataFrame

(named loaloa), and raster images for elevation (elevationLoa), vegetation index (eviLoa)
and land type (ltLoa). Land type is shown as background values in Figure 3.

The generalized linear geostatistical model from (2) would be suitable for these data with f
being a binomial distribution and g being a logit link function. The surface X(s) is multi-
variate and have values for land type, vegetation index, and elevation. The model can be fit
to these data using the glgm function in the geostatsp package.
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Land type

Evergreen broadleaf forest

Woody savannas

Cropland/natural vegetation

Permanent Wetlands

Savannas

Croplands

Mixed forests

Figure 3: Village locations in the Loaloa dataset ( ◦ ) with land type shown as background
colors.

As there is more than one covariate, the three rasters containing covariates are grouped
together in a list. The elevation covariate is to be fit as a linear effect with a change point
at 750m, with two variables elLow and elHigh being the negative and positive portions of
elevation data minus 750. These two rasters are created with

R> elevationLoa <- elevationLoa - 750

R> elevLow <- reclassify(elevationLoa, c(0, Inf, 0))

R> elevHigh <- reclassify(elevationLoa, c(-Inf, 0, 0))

Land types with a very small number of observations are merged with more populated land
types, with: savannas (9) changed to woody savannas (8); wetlands (5) and mixed forests
(11) changed to forest (2); and croplands (12) and urban areas (13) changed to crop/natural
mosaic (14).

R> rcl <- rbind(c(9, 8), c(5, 2), c(11, 2), c(12, 14), c(13, 14))

R> ltLoaRe <- reclassify(ltLoa, rcl)

R> levels(ltLoaRe) = levels(ltLoa)

The following code creates the corresponding list of rasters, note that they may have different
extents, resolutions or projections.

R> covList <- list(elLow = elevLow, elHigh = elevHigh, land = ltLoaRe,

+ evi = eviLoa)

The call to glgm appears below. As with lgm, spatial predictions will be made on a grid as
specified by the grid argument. It can be specified as a raster object though in this case
a square grid with 150 cells in the X direction is used. The Markov random field implicitly
assumes U(s) takes values of zero outside of the study region, and this effect can be partially
negated by adding a buffer (in this case of 50km) around the study region where U(s) will
be evaluated but the values in these cells are not returned. Variables listed in the formula

argument can be contained in either the first argument or in covariates. The number of
samples taken per village is passed as the Ntrials argument, and the y variable in the formula
is the number of positive samples. The argument shape specifies the (fixed) shape parameter
κ of the Matérn correlation function.
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Mean 0.025 quantile 0.975 quantile

(Intercept) −2.18e+ 00 −3.50e+ 00 −8.62e− 01
factor(land)Woody savannas −4.38e− 01 −7.92e− 01 −8.92e− 02
factor(land)Cropland/natural −2.57e− 01 −5.91e− 01 7.20e− 02
evi 2.63e− 04 −7.88e− 06 5.35e− 04
elHigh −3.55e− 03 −4.88e− 03 −2.18e− 03
elLow 2.74e− 03 1.45e− 03 3.94e− 03
range 4.22e+ 04 2.67e+ 04 6.46e+ 04
sd 9.88e− 01 7.80e− 01 1.25e+ 00

Table 2: Posterior expectations and quantiles of model parameters obtained by fitting a
generalized linear geostatistical model to the Loaloa dataset using the glgm function.

R> names(loaloa)

[1] "N" "y" "villageID"

R> loaFit = glgm(formula = y ~ factor(land) + evi + elHigh + elLow,

+ data = loaloa, grid = 150, covariates = covList, family = "binomial",

+ Ntrials = loaloa$N, shape = 1, buffer = 50000,

+ priorCI = list(sd = c(0.2, 4), range = c(20000, 5e+05)))

Bayesian inference requires prior distributions, and the priors for the spatial covariance pa-
rameters are specified by the priorCI argument. Prior 95% intervals for σ and φ are specified,
and glgm creates gamma priors for the precision 1/σ2 and scaled range parameter φ/δ (with
δ being the cell size) having the 95% intervals specified. Priors other than the gamma are
possible (though currently unimplemented in geostatsp). The INLA methodology requires
priors to be continuous, but are otherwise unrestricted. The INLA software specifies that pri-
ors are set for log precisions, with prior distributions available including the log-gamma and
normal. Incorporating additional priors into INLA or geostatsp would be relatively straight-
forward. Priors for the remaining parameters can be specified with inla arguments such as
control.fixed = list(prec.intercept = 0.01).

The result of the glgm function is a list with elements: inla for the raw results from INLA;
parameters containing parameter prior and posterior distributions; and raster containing
the posterior means of the random effects and fitted values. Table 2 contains posterior means
and quantiles of the model parameters, taken from the object loaFit$parameters$summary.

The component loaFit$raster is a RasterStack with posterior means, standard devia-
tions, and quantiles for the random effects U(s) and the predicted values on the link scale
g[λ(s)]. The posterior means of λ(s) are contained in the layer "predict.invlogit". Fig-
ures 4a and b involve the commands plot(loaFit$raster[["predict.invlogit"]]) and
plot(loaFit$raster[["random.mean"]]). Figures 4c and d show the prior and posterior
distributions of σ and φ.

Markov chain Monte Carlo (MCMC) methods are an alternative (and more established)
method for fitting spatial models to non-Gaussian data. The geoRglm (Christensen and
Ribeiro 2002) package provides an excellent set of functions for fitting generalized linear geo-
statistical models with MCMC, with Matérn correlation functions and geometric anisotropy
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Figure 4: Posterior means for spatial surfaces and posterior distributions of model parameters
obtained from the glgm function.

being available. MCMC is more labor intensive and computationally intensive to use than
INLA, but is able to produce joint posterior samples. The geoRglm package does not use
the GMRF approximation, which has advantages and disadvantages. Geometric anisotropy is
straightforward withouth the GMRF approximation, and non-integer shape parameters can
be used. Readers unfamiliar with MCMC methods are advised to skip ahead to Section 2.3,
as the following paragraphs will presuppose a good deal of familiarity with MCMC.

The first step before fitting the Loaloa model using geoRglm is to create a new geodata

object, copying over the values of the covariates extracted from the rasters by glgm.

R> library("geoRglm")

R> loaNoMissing <- loaloa[as.integer(rownames(loaFit$inla$.args$data)), ]

R> loa2 <- as.geodata(loaNoMissing, data.col = "y")

R> loa2$covariate <- loaFit$inla$.args$data[,

+ c("evi", "elLow", "elHigh", "land")]

R> loa2$covariate$evi <- loa2$covariate$evi - 4000

Next, the model and prior distributions are specified. The model.glm.control function spec-
ifies the fixed effects portion of the model and the Matérn correlation. The prior for the range
parameter is taken from the glgm output, though notice the difference in parametrisations
for the range by factor of

√
8.

R> model.10 <- model.glm.control(kappa = 1, cov.model = "matern", trend.d =

+ trend.spatial(~ 1 + elLow + elHigh + evi + factor(land), loa2))

R> phiSeq <- seq(1 * 1000, 100 * 1000, len = 1001)

R> phiValues <- approx(loaFit$param$range$prior, xout = phiSeq * sqrt(8))$y
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Figure 5: Trace plots for MCMC samples obtained from fitting the Loaloa data with the
geoRglm package. Shown are traces for three chains (red, green, grey lines) and as the
posterior mean (blue solid line) and 2.5% and 97.5% quantiles obtained from glgm.

R> phiValues <- phiValues/sum(phiValues)

R> prior.10 <- prior.glm.control(sigmasq.prior = "sc.inv.chisq",

+ df.sigmasq = 1.5, sigmasq = 0.5, phi.prior = phiValues,

+ phi.discrete = phiSeq)

Control parameters for the MCMC run are created next. The number of iterations, thinning
and burn-in, and scaling parameters are specified by mcmc.control,

R> mcmc.10 <- mcmc.control(S.scale = 0.004, n.iter = 4e+05,

+ S.start = raster::extract(loaFit$raster[["random.mode"]],

+ loaNoMissing), phi.start = 40 * 1000/sqrt(8), phi.scale = 10,

+ thin = 1000, burn.in = 10000)

R> mcmc.10$S.start[is.na(mcmc.10$S.start)] <- 0

The MCMC run is accomplished with the binom.krige.bayes function. The code below
defines a function to run a single chain, and subsequently runs three chains in parallel. Trace
plots for three of the model parameters are show in Figure 5, along with the posterior means
and quantiles from INLA. The lack of mixing in the range parameter, despite thinning by
a factor of 1000, gives an indication of the perseverance and skill often required when using
MCMC for spatial problems.

R> oneChain <- function(phiMult) {

+ set.seed(100 * phiMult)

+ mcmc.10$phiStart = mcmc.10$phiStart * phiMult

+ binom.krige.bayes(loa2, units.m = loaNoMissing$N,

+ model = model.10, prior = prior.10, mcmc.input = mcmc.10,

+ output = output.glm.control(messages = FALSE))

+ }

R> library("parallel")

R> test.10 <- mccollect(list(mcparallel(oneChain(0.8)),

+ mcparallel(oneChain(1)), mcparallel(oneChain(1.2))))
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Figure 6: Murder locations in Toronto, Canada (1990–2013) with median household income
in 2006 (background colors).

2.3. Log-Gaussian Cox processes

The log-Gaussian Cox process (LGCP) is closely related to the GLGM and is a model suitable
for describing the data on murder locations in the city of Toronto, Canada in Figure 6.
These data are from the years 1990 to 2013 and appear in the Toronto Star newspaper
(http://www.thestar.com/news/crime/torontohomicidemap.html). The murder dataset
in geostatsp contains these locations, as well as raster images for median household income
(torontoIncome), population density (torontoPdens), and ambient light (torontoNight).

The LGCP (see Møller, Syversveen, and Waagepetersen 1998) is a spatial point process model
with the event locations {Pi; i = 1 . . . N} being independently distributed conditional on a
random log-Gaussian spatial random field λ(s). Allowing for a vector of covariates X(s) at
location s (in this case light, income, and population density), a LGCP model for the murder
locations is

{Pi; i = 1 . . . N}|U(·) ∼Poisson process[λ(·)]
log[λ(s)] =µ+X(s)β + U(s)

cov[U(si), U(sj)] =σ2Matérn(||si − sj ||/φ;κ).

Using a Gaussian Markov random field approximation for U(s), with U(s) being piecewise
constant, reduces the inferential problem to modelling the count of points within cells with
a Poisson distribution. An improved methodology for fitting LGCP’s, using the previously
mentioned triangular bases on an irregular lattice, is available in INLA (see Rue et al. 2013).
Currently this method is not implemented in geostatsp, and the results below use the GMRF
on a square lattice.

The lgcp function in geostatsp operates very similarly to glgm. A list of covariates is first
created, with income, population density, and ambient light transformed so as to make them
roughly symmetrically distributed.

R> covList <- list(loginc = log(torontoIncome), logpop = log(torontoPdens),

+ loglight = log(torontoNight))

Next, the lgcp function is called. Here murder is a SpatialPoints object, and the locations
themselves are the response. The model formula is one sided, specifying the covariates. The

http://www.thestar.com/news/crime/torontohomicidemap.html
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Mean 0.025 quantile 0.975 quantile

(Intercept) −5.07 −9.80 −0.31
log(income) −1.32 −1.73 −0.92
log(pop’n) 0.76 0.63 0.90
log(light) 0.74 0.51 0.97
range 649.55 480.39 860.58
sd 0.83 0.71 0.94

Table 3: Posterior means and quantiles of model parameters obtained from fitting the murder
data with lgcp.

(a) E(λ(s)|Y ) in cases/km2 (b) E(U(s)|Y )

Figure 7: Posterior means of spatial surfaces obtained from fitting the Toronto murder data
with the lgcp function.

remainder of the arguments are as in glgm, and as with glgm arguments can be passed directly
to INLA.

R> murderFit <- lgcp(formula = ~loginc + logpop + loglight, data = murder,

+ grid = 150, covariates = covList, shape = 2, buffer = 4000, priorCI =

+ list(range = c(400, 10000), sd = c(0.02, 2)), border = torontoBorder)

Parameter posterior distributions are shown in Table 3. The raster component of the re-
sults contains posterior distributions for U(s) and log[λ(s)], with the posterior mean of λ(s)
contained in murderFit$raster[["predict.exp"]] and plotted in Figure 7.

As with the generalized linear geostatistical model in the previous section, MCMC is an
alternative to using INLA for LGCP’s which avoids many of INLA’s limitations. The most
accessible software for using MCMC with LGCP’s is the lgcp package described in Taylor,
Davies, Rowlingson, and Diggle (2013). As was noted before, MCMC is more computationally
intensive and labor intensive than INLA, and requires more than a moderate amount of
specialist knowledge to use reliably. One situation where MCMC is required is the case where
the point location data are not directly observable. Taylor, Davies, Rowlingson, and Diggle
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(a) Observed (b) Expected

Figure 8: Case counts for Larynx cancer in Kentucky.

(2015) show how the lgcp package allows for LGCP’s to be a latent variable in a hierarchical
model, with the LGCP inference nested within a data augmentation algorithm.

2.4. The Besag York and Mollié model

The final model which will be demonstrated is the Besag, York, and Mollié (1991) model
(BYM), useful for modelling disease case counts in polygons. Figure 8a shows the number of
Larynx cancer cases in each county of Kentucky in a single year, and Figure 8b shows the
count that should be expected given the population of each age and sex group in the counties
and the US national rates for Larynx cancer. As the case count in a county is often zero or
one, the Standardized Mortality Ratio (observed divided by expected) would be expected to
be a poor estimator of underlying risk and a spatial random effects model with a Poisson-
distributed response variable would be more useful. The BYM model models the case count
Yi of region i, given the expected count Ei and covariates Xi, as

Yi ∼Poisson(Eiλi)

log(λi) =µ+Xiβ + Ui

Ui =Wi + Vi

Vi ∼i.i.d. N(0, τ2)

Wi|{Wj ; j 6= i} ∼N(mean{Wj ; j ∼ i}, σ2/|j ∼ i|)

Here W follows a Markov random field model on the irregular lattice of regions, with j ∼ i
referring to regions i and j being neighbors (sharing a common boundary line). Including
the spatially independent term V in the model allows for flexibility in the spatial dependence
of U , with τ being larger than σ resulting in a rough surface and σ being larger creating a
smoother surface.

The kentucky dataset in the diseasemapping package contains a SpatialPolygonsDataFrame

of the counties of Kentucky, and includes the population by age and sex group and the
proportion of individuals living in poverty. The larynx object is a case file, with one row per
individual with larynx cancer in a single year and a variable denoting their county of residence.
The cancerRates and getSMR functions in diseasemapping can be used to generate observed
and expected counts for each county with the following code. The observed counts and
expected counts are shown in Figure 8.
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Mean 0.025 quantile 0.975 quantile

µ 0.11 −0.38 0.61
poverty 0.01 −0.02 0.03
σ 0.19 0.08 0.42
τ 0.20 0.08 0.41

Table 4: Posterior means and 95% credible intervals for model parameters obtained from
fitting the Kentucky cancer data with the bym function.

(a) E[λ(s)|Y ] (b) pr[λ(s) > 1.35|Y ]

Figure 9: Posterior means and probabilities obtained from fitting the the Kentucky larynx
cancer data with the bym function.

R> library("diseasemapping")

R> data("kentucky")

R> larynxRates <- cancerRates("USA", year = 1998:2002, site = "Larynx")

R> kentucky <- getSMR(kentucky, larynxRates, larynx, regionCode = "County")

The bym function performs Bayesian inference function for the BYM model. It takes as it’s
arguments the SpatialPolygonsDataFrame containing the regional boundaries and variables,
as well as the model formula and the prior 95% intervals for σ and τ .

R> kBYM <- bym(formula = observed ~ offset(logExpected) + poverty, data =

+ kentucky, priorCI = list(sdSpatial = c(0.1, 5), sdIndep = c(0.1, 5)))

The result has a component for the INLA results (inla), the parameter posterior distributions
(parameters), and a SpatialPolygonsDataFrame with the spatial results. The posterior
means and quantiles of the parameters are given in Table 4, obtained from
kBYM$parameters$summary.

Figure 9a shows the posterior mean of relative risk λi and can be produced with
spplot(kBYM$data, "fitted.exp"). Figure 9b shows that posterior probability that each
county has a cancer rate more than 30% in excess of the US national rates, obtained by
numerically integrating the marginal posterior using the and is computed from the marginal
posterior distributions inla provides. The excProb function called below performs the inte-
gration using the trapz function in the pracma package (Borchers 2014).

R> kBYM$data$excProb <- excProb(kBYM$inla$marginals.fitted.bym, log(1.3))
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(a) σ (b) β (c) µ

Figure 10: Histograms of posterior samples (black bars) obtained from fitting the Kentucky
cancer data with OpenBUGS (black bars), along with posterior densities from the bym function
(blue lines).

Fitting the BYM model is much less computationally intensive than is the case for LGCP’s
and the GLGM, and MCMC has a long history of being used with the BYM model (see
Gilks, Richardson, and Spiegelhalter 1996). OpenBUGS (Sturtz, Ligges, and Gelman 2005)
is a flexible and popular tool for running MCMC, and is able to fit the BYM model. The
glmmbugs and R2OpenBUGS packages (see Brown and Zhou 2010; Sturtz et al. 2005) can
be used to fit the BYM model with a minimum amount of effort, providing a simple interface
between R and OpenBUGS . First, model files are prepared and starting values computed.
The priors argument creates gamma priors for the standard deviation parameters which
are not entirely dissimilar from the priors used by the bym function. The glmmBUGS function
requires priors to be specified for standard deviations, though it would be possible to edit the
model file manually to set a posterior for the precision parameter in order to replicate INLA’s
results.

R> library("spdep")

R> kAdjMat <- poly2nb(kentucky, row.names = as.character(kentucky$County))

R> library("glmmBUGS")

R> kBYMbugs <- glmmBUGS(observed + logExpected ~ poverty,

+ data = as.data.frame(kentucky), effects = "County", family = "poisson",

+ spatial = kAdjMat, modelFile = "kentuckyBYM.txt", initFile = "kInit.R",

+ priors = c(SDCountySpatial = "dggamma(5.46,42,0.555)",

+ SDCounty = "dggamma(5.46,42,0.555)"))

Second, starting values loaded. The file kInit.R contains code for a function to generate
random starting values, and users are encouraged to edit this file prior to sourcing it.

R> startingValues <- kBYMbugs$startingValues

R> source("kInit.R")

Finally, OpenBUGS is run.

R> library("R2OpenBUGS")

R> kResult <- bugs(kBYMbugs$ragged, inits = getInits,

+ model.file = "kentuckyBYM.txt", parameters = names(getInits()),

+ n.chain = 3, n.iter = 1000, n.burnin = 200, n.thin = 200)
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Figure 10 shows marginal posterior distributions for three of the model parameters. The
spatial variance parameter has a slightly different posterior from bym, due to the differences
in the prior distribution.

2.5. A short simulation study

This section aims to illustrate the ease with which spatial simulation studies can be carried
out using the geostatsp package. Gaussian data is simulated and inference is carried out both
with Maximum Likelihood Estimation using the likfit function, and Bayesian inference
using glgm.

Before simulating data, spatial covariates must be created and model parameters specified.
The following code defines two simple covariates as sloping north to south and east to west
respectively on a square area measuring 10 units across.

R> covariates <- brick(xmn = 0, ymn = 0, xmx = 10, ymx = 10,

+ ncols = 200, nrows = 200, nl = 2)

R> values(covariates)[, 1] <- rep(seq(0, 1, len = nrow(covariates)),

+ ncol(covariates))

R> values(covariates)[, 2] <- rep(seq(0, 1, len = nrow(covariates)),

+ rep(nrow(covariates), ncol(covariates)))

R> names(covariates) <- c("cov1", "cov2")

Next, a spatial covariance structure is specified with σ = 2, φ = 2.5, τ = 1/2 and κ = 2 is
specified.

R> myModel <- c(intercept = 0.5, variance = 2^2, nugget = 0.5^2,

+ range = 2.5, shape = 2, cov1 = 0.2, cov2 = -0.5)

The RFsimulate function in geostatsp, a wrapper for the function of the same name in
RandomFields (Schlather et al. 2015), is used to simulate a U(s) surface as a raster with the
same resolution and dimension as cov1. An intercept and the two covariates are added to
create a λ(s).

Next, points in the study region are simulated at random. Observations at these locations
are created by extracting values of λ(s) and adding random normal noise with standard
deviation 0.5.

R> Npoints <- 50

R> myPoints <- SpatialPoints(cbind(runif(Npoints, 0, 10),

+ runif(Npoints, 0, 10)))

R> myPoints <- SpatialPointsDataFrame(myPoints,

+ as.data.frame(extract(covariates, myPoints)))

R> myPoints$fixed <- myModel["intercept"] + drop(as.matrix(data.frame(

+ myPoints))[, names(covariates)] %*% myModel[names(covariates)])

R> myPoints$U <- RFsimulate(myPoints, model = myModel)$sim1

R> myPoints$y <- myPoints$fixed + myPoints$U + rnorm(length(myPoints),

+ 0, sqrt(myModel["nugget"]))

MLEs are computed with geostatsp’s lgm function,
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Figure 11: True parameters values ( — ) , Bayesian ( — ) and maximum likelihood ( — )
parameter estimates ( — ) and 95% confidence limits ( - - - ).

R> fitMLE <- lgm(y ~ cov1 + cov2, myPoints, grid = 10,

+ covariates = covariates, shape = 1, fixShape = TRUE)

R> fitMLE$summary["range", "estimate"]

[1] 3.51

Bayesian posteriors computed with geostatsp’s glgm:

R> fitBayes <- glgm(formula = y ~ cov1 + cov2, data = myPoints,

+ grid = 30, buffer = 3, covariates = covariates, shape = 1,

+ priorCI = list(range = c(0.15, 10), sd = c(0.1, 10)))

R> fitBayes$parameters$summary["range", "mean"]

[1] 2.47

Note the data are simulated with shape parameter κ = 2 and the fitted model deliberately
misspecified κ = 1. Also, the Markov random field approximation uses a significantly coarser
grid than the data are simulated on (30 cells across versus 100).

Figure 11 shows the parameter estimates for 12 simulations. Figure 11a contains the posterior
mean and 95% credible interval for the first β coefficient obtained from Bayesian inference,
and the MLE and 95% confidence interval obtained from Frequentist inference. Notice the
estimates and intervals are nearly identical. Figure 11b shows the Bayesian posterior mean
and credible interval for the range parameter φ along with the MLE. Confidence intervals
for the range are not produced by lgm. The MLE and the posterior mean differ, sometimes
substantially, but tend to identify the true value despite κ being misspecified.

3. Discussion

The geostatsp and diseasemapping packages remove much of the drudgery involved in fitting
spatial random effects models with INLA (Rue et al. 2013) or geoR (Diggle and Ribeiro
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2006). The creation of the lattice for the Markov Random Field in INLA in particular is time
consuming to code, and translation of INLA results to maps and interpretable parameters
is not always straightforward. The use of Raster objects for covariates and default values
able to accommodate UTM spatial coordinates (with values in the thousands or hundreds of
thousands) do away with the need to modify and reformat data prior to its analysis.

These packages provide a mechanism for fitting geostatistical models using R spatial data
types: SpatialPointsDataFrames, SpatialPolygonsDataFrames, and Rasters. The advan-
tage of working with these data types in place of matrices and vectors of coordinates is
two-fold. First, data from various sources can be easily downloaded and included in these
analyses. NASA provides a wide variety of satellite data, including elevation and vegetation
indices, which can be loaded into R using the raster package. Census data are often available
as Shapefiles which can be read using rgdal . Much of the geographic data from sources such as
these have coordinates in a longitude-latitude projection, and geostatistical analyses involving
Euclidean distances require coordinates on a metre-based (or UTM) projection. Converting
coordinates is easily accomplished with the spTransform and projectRaster functions, and
many additional functions in the sp and raster packages are available for data manipulation
and processing.

A second advantage accruing from the use of R spatial objects is the ease with which re-
sults can be exported to GIS software or plotted with background map images in R. The
maps presented in this paper have required projecting the result to a longitude-latitude co-
ordinate reference system with the projectRaster function, downloading background layers
from Openstreetmap.org with the mapmisc package, and obtaining city names and locations
with geonames. While it is possible to improve on the maps presented here using GIS soft-
ware, code for R generated maps can be incorporated in Sweave and knitr scripts thereby
allowing any manual GIS map creation to be reserved for final drafts of documents.

The geostastp package could be improved by incorporating several more of the facilities in
INLA and work towards this is ongoing. Replacing the grid of square cells in the MRF
approximation with the irregular lattices in Lindgren et al. (2011) would increase speed and
accuracy of the approximation, though spatial predictions could still be made on rasters and
the inner workings of the approximation could remain hidden from the user. The INLA
software allows for non-parametric effects of covariates, it would be possible to specify non-
parametric effects in glgm though they would not as of yet be included when making spatial
predictions. Also, INLA can fit a variety of spatio-temporal models and a simple user-friendly
interface to fitting spatio-temporal data would certainly be possible.
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A. Matérn correlation

There are several parametrisations of the Matérn correlation function, and the range param-
eter in lgm and glgm corresponds to φ in

ρ(h;φ, κ) =
1

Γ(κ)2κ−1

(√
8κ||h||
φ

)κ
Kκ

(√
8κ||h||/φ

)
.

Γ(·) is a gamma function and Kκ is a modified Bessel function of the second kind of order κ.

Figure 12 shows plots of the Matérn for various values of κ and all with φ = 1. Notice that,
with the possible exception of κ = 0.1, the correlations intersect (more or less) at ||h|| = 1.
A not inaccurate interpretation of the range parameter φ in this parametrization is it is the
distance beyond which correlation is both fairly small (< 0.14), and decaying fairly slowly
regardless of the shape parameter κ.

The geostatsp package has a matern function which implements the parametrization above,
though it may be helpful to consider the function below. Figure 12 is produced with this
code.

R> mymatern <- function(u, phi, kappa) {

+ uscale <- sqrt(8 * kappa) * u/phi

+ res <- (1/(gamma(kappa) * 2^(kappa - 1))) * uscale^kappa *

+ besselK(uscale, kappa)

+ res[u == 0] <- 1

+ res

+ }

Wikipedia (2013) and the ‘matern’ model in the RandomFields package define the range
parameter as φ1 = φ/2. Diggle and Ribeiro (2006), the geoR package, and the whittle

model in RandomFields have a range parameter φ2 = φ/
√

8κ. It is also common to define the
Matérn with a scale parameter in place of the range, with the scale parameter being α = 1/φ2.
Lindgren et al. (2011) use either the scale α or the range φ. The Range parameter produced
by inla is φδ, with δ being the length of the sides of the grid cells, as confirmed below.
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Figure 12: Matérn correlation functions with φ = 1 and various values of the shape parame-
ter κ
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R> c(loaFit$inla$summary.hyperpar["Range for space", "mode"] *

+ xres(loaFit$raster), loaFit$par$summary["range", "mode"])

[1] 38489 38489
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