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Abstract

Nonparametric density and regression estimation methods for circular data are in-
cluded in the R package NPCirc. Specifically, a circular kernel density estimation proce-
dure is provided, jointly with different alternatives for choosing the smoothing parameter.
In the regression setting, nonparametric estimation for circular-linear, circular-circular and
linear-circular data is also possible via the adaptation of the classical Nadaraya-Watson
and local linear estimators. In order to assess the significance of the features observed in
the smooth curves, both for density and regression with a circular covariate and a linear
response, a SiZer technique is developed for circular data, namely CircSiZer. Some data
examples are also included in the package, jointly with a routine that allows generating
mixtures of different circular distributions.
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1. Introduction

Statistical methods for circular data analysis have turned out to be the appropriate tools in
many applied fields, such as biology (Batschelet 1981), ecology (Jammalamadaka and Lund
2006), meteorology (Bowers, Morton, and Mould 2000), sociology (Brunsdon and Corcoran
2005), medicine (Mooney, Helms, and Jollife 2003) or biomechanics (Mann, Gupta, Race,
Miller, and Cleary 2003), among others. From a methodological perspective, most of these
applied papers make use of circular descriptive techniques, providing graphical displays of
the data such as rose diagrams, and in some cases, classical parametric inferential tools are
considered, with the von Mises distribution being a cornerstone in this approach.

Modeling circular data distributions by means of parametric families has been covered in
most of the papers in the statistical literature. Comprehensive reviews such as Mardia (1972),
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Fisher (1993), Jammalamadaka and SenGupta (2001) and Mardia and Jupp (2000) present
parametric models such as the aforementioned von Mises, the cardiod, or the wrapped-normal
distributions, among others, jointly with testing procedures for assessing uniformity, such
as Rayleigh’s, Kuiper’s, Rao’s spacing or Watson’s tests. Although being widely used, the
von Mises model is not flexible enough to capture the underlying structure of multimodal,
highly peaked or skewed distributions. Some new parametric models for handling these fea-
tures have been presented by Abe and Pewsey (2011), who introduced circular models with
two diametrically opposed modes, or Jones and Pewsey (2012), who proposed the inverse
Batschelet distribution, accounting for skewness and high kurtosis. The consideration of
mixtures of parametric models may offer a route to capture complex structures, but at the
cost of increasing the number of parameters characterizing the distribution. In this setting
parametric estimation can be done by maximum likelihood arguments using the expectation-
maximization (EM) framework as in Banerjee, Dhillon, Ghosh, and Sra (2005), and model fit
can be approached by means of an information criterion. Nevertheless, the specification of an
appropriate parametric family may not be an easy task.

Nonparametric estimation methods have turned up as an alternative approach, both infer-
entially and as a descriptive tool. Specifically, a kernel density estimation procedure was
proposed by Hall, Watson, and Cabrera (1987), for the general case of spherical data, follow-
ing the ideas of the classical kernel density estimator for linear data (Parzen 1962; Rosenblatt
1956). Although asymptotic properties of this estimator were further studied by Bai, Rao,
and Zhao (1988) and Klemelä (2000), these latter works do not provide a solution for the
most critical issue from a practical point of view: smoothing parameter selection. The use
of cross-validation smoothing parameters is suggested by Hall et al. (1987), in the spherical
context, and for the particular case of circular data, Taylor (2008) derived a rule of thumb
for smoothing parameter selection in circular kernel density estimation. Despite being a
simple procedure, the performance of this rule is extremely poor in some distribution set-
tings involving multimodality, peakedness or skewness, as shown by Oliveira, Crujeiras, and
Rodŕıguez-Casal (2012). Marzio, Panzera, and Taylor (2011) introduced a bootstrap method
with the same purpose, but with unsatisfactory results for small data samples. Recently,
Oliveira et al. (2012) devised a new procedure for selecting the smoothing parameter in cir-
cular kernel density estimation that performs well in distributional scenarios beyond the von
Mises case, and presents better or at least competitive results compared with the previously
proposed selectors.

Regression estimation involving circular variables, as a response or as a covariate, is indeed
an interesting problem. In the available literature, most efforts have been focused on the
development of parametric models. For instance, Presnell, Morrison, and Littel (1998) and
the references therein dealt with a circular response and linear covariates; SenGupta and
Ugwuowo (2006) proposed some asymmetric models accounting for the circular nature of
the covariate and Downs and Mardia (2002) and Kato, Shimizu, and Shieh (2008), among
others, addressed the regression with circular response and covariates. Regression estimation
avoiding the assumption of a specific parametric shape for the regression curve was studied
by Marzio, Panzera, and Taylor (2009) who extended the least squares local polynomial to
the case of d-dimensional circular predictors and real-valued responses; Qin, Zhang, and Yan
(2011a,b) extended nonparametric models to the case when there is one circular predictor
and one or more linear predictors and the response is real-valued, and more recently Marzio,
Panzera, and Taylor (2012) proposed a nonparametric estimator for the regression function
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when the response is circular and the covariate is circular or linear. In the regression setting,
the smoothing parameter can be chosen by cross-validation methods.

Both for density and regression estimation, the smoothing parameter controls the global ap-
pearance of the estimator and its dependence on the sample, and it is well-known that an
unsuitable choice of this value may provide a misleading estimate of the density or the re-
gression curve. Hence, the assessment of the statistical significance of the observed features
through the smoothed curve may be seriously compromised if an undersmoothed or an over-
smoothed estimator is produced. An alternative to circumvent the choice of the smoothing
parameter, and still be able to assess global structure features in the curve, is given by the
SiZer (significative zero crossing of the derivative) method developed by Chaudhuri and Mar-
ron (1999) for the analysis of linear data. The idea behind this technique is to determine
the regions of significant gradients (zero crossing of the derivative) over a range of smooth-
ing values. The SiZer ideas have been adapted to the circular setting, both for density and
circular-linear regression, as proposed by Oliveira, Crujeiras, and Rodŕıguez-Casal (2014a),
by means of the CircSiZer map.

Package NPCirc (Oliveira, Crujeiras, and Rodŕıguez-Casal 2014b) described in this paper is
intended to provide R (R Core Team 2014) users with a comprehensive set of functions for
nonparametric density and regression analysis with circular data. There are other packages
for working with circular data, already available in R but, at the best of our knowledge, none
of them is devoted to nonparametric methods. Some useful references to work in R with
circular data are:

� CircStats (Lund and Agostinelli 2012): This package provides methods for the descrip-
tive and inferential statistical analysis of directional data. It is based on the book
“Topics in Circular Statistics” by Jammalamadaka and SenGupta (2001). Functions
implemented in this package are also available in the circular package.

� circular (Lund and Agostinelli 2013): An extension of the CircStats package, circular
provides functions for the statistical analysis (descriptive statistics, circular models,
tests), graphical representation and some circular datasets.

� CircNNTSR (Fernández-Durán and Gregorio-Domı́nguez 2013): Functions for con-
structing circular distributions based on nonnegative trigonometric sums, estimating
parameters and plotting the constructed densities, are included herein.

� isocir (Barragán and Fernández 2014): This package provides a set of routines for
analyzing angular data subjected to order constraints on a unit circle.

� movMF (Hornik and Grün 2014): Focused on mixtures of von Mises distributions,
this package allows to draw random samples from these models and to proceed with
parameter estimation, by using an EM algorithm.

A specific function for kernel density estimation for circular data, and three functions for
smoothing parameter selection, have been already included in package circular. These selec-
tors are the cross-validation rules proposed by Hall et al. (1987) and the rule of thumb intro-
duced by Taylor (2008). Apart from this, there is no other function for nonparametric regres-
sion estimation and smoothing parameter selection available. From the parametric perspec-
tive, packages circular, CircStats and movMF allow to compute the density function and do
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random generation of mixtures of von Mises distributions but, it is not possible to do the same
with mixtures of different circular distributions. Hence, the functions in NPCirc will comple-
ment other implementations of circular data analysis in three ways. Firstly, in this package,
the circular kernel density estimator with an up-to-date collection of smoothing parameter
selection procedures are included; Nadaraya-Watson and local linear estimators for circular-
linear, linear-circular and circular-circular data, with the corresponding least squares cross-
validations rule for smoothing choice, have been also implemented. Secondly, CircSiZer maps
for density and regression for a circular covariate and a linear response can be also obtained.
Finally, NPCirc contains functions for generating data and obtaining densities of a variety of
circular models, and mixtures of them. Specifically, the collection of circular models presented
in Oliveira et al. (2012), can be directly generated. The package is available from the Com-
prehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=NPCirc.

The structure of this paper is as follows. Section 2 provides a brief overview on kernel density
estimation for circular data, and regression estimation involving circular variables, revising
different smoothing parameter selection procedures in both settings. The CircSiZer map is
also briefly described here. In Section 3, usage of functions and datasets in the package are
described and illustrated. Finally, some remarks are given in Section 4, discussing further
extensions of the package.

2. Nonparametric circular methods

As mentioned in Section 1, classical parametric circular models may not be flexible enough to
capture complex data distributions, and it is in this scenario where nonparametric methods
play an important role. Nevertheless, before presenting the circular kernel density estimator
and, in order to understand its construction, the von Mises distribution and mixtures of
circular distributions are introduced.

The von Mises distribution, vM (µ, κ) (von Mises 1918) is a symmetric unimodal distribution
characterized by a mean direction µ ∈ [0, 2π), and a concentration parameter κ ≥ 0, with
probability density function

f(θ;µ, κ) =
1

2πI0(κ)
exp {κ cos(θ − µ)} , 0 ≤ θ < 2π, (1)

where Ir(κ) denotes the modified Bessel function of order r (see Jammalamadaka and Sen-
Gupta 2001, Section 2.2.4). The mean direction coincides with the mode, whereas the pa-
rameter κ measures the concentration around the mean direction µ in such a way that, as
κ increases, the density peaks higher around µ. As commented before, most of the classical
parametric models are unimodal and symmetric (e.g., von Mises, cardioid, wrapped normal,
wrapped Cauchy, . . . ), except for the wrapped skew-normal (Pewsey 2000) which is asym-
metric.

More flexible models, allowing for multimodality and/or asymmetry, can be obtained by
mixing a finite number M of circular distributions fm, m = 1, . . . ,M , with density

f(θ) =
M∑
m=1

pmfm(θ), with
M∑
m=1

pm = 1, (2)

where pm > 0 is the proportion of the density fm in the mixture. Although mixture models
are useful for constructing distributions that may exhibit complex shapes, this is done at
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the cost of including a possibly large number of parameters, usually estimated by maximum
likelihood arguments. In addition, the selection of the number of density components in the
mixture is another problem, that may be approached by considering some kind of information
criterion such as the Akaike information criterion (AIC).

Next, the circular kernel density estimator will be briefly described, jointly with an overview
of the smoothing parameter selection methods that are included in the NPCirc package.

2.1. Circular kernel density estimation

Given a random sample of angles Θ1,Θ2, . . . ,Θn ∈ [0, 2π) from some unknown circular density
f , the circular kernel density estimator of f is defined as:

f̂(θ; ν) =
1

n

n∑
i=1

Kν(θ −Θi), 0 ≤ θ < 2π,

where Kν is a circular kernel function with concentration ν > 0 (Marzio et al. 2009), being
the smoothness of the estimated curve controlled by this parameter. As a circular kernel, the
von Mises distribution vM (0, ν) (see Equation 1) can be considered. With this specific kernel,
the density estimator is given by:

f̂(θ; ν) =
1

2nπI0(ν)

n∑
i=1

exp {ν cos(θ −Θi)}, 0 ≤ θ < 2π. (3)

Hence, the estimator can be interpreted as a mixture of n random variables with von Mises
distribution, centered in the sample points Θi and with common concentration parameter ν.
A critical issue is the choice of the smoothing parameter ν for Equation 3, with large values
leading to highly variable (undersmoothed) estimators and small values showing an opposite
behavior (oversmoothed curve).

The smoothing parameter is usually selected in order to minimize some error criterion, such
as the mean integrated squared error (MISE, MISE(ν) = E(

∫
(f̂−f)2)). The closed expression

for the asymptotic MISE (AMISE) of the circular kernel density estimator has been derived
by Marzio et al. (2009). When ν →∞ and

√
νn−1 → 0, the AMISE(ν) is given by:

AMISE(ν) =

{
1

16

[
1− I2(ν)

I0(ν)

]2 ∫ 2π

0

[
f ′′(θ)

]2
dθ +

I0(2ν)

2nπ (I0(ν))2

}
, (4)

where f ′′ denotes the second-order derivative of the target density to be estimated, which
measures the curvature of f .

The proposal presented by Taylor (2008) for selecting the smoothing parameter is based on
the assumption that the data follow a von Mises distribution with concentration parameter
κ. In this case, the AMISE expression simplifies and the value of the optimal smoothing
parameter, that minimizes AMISE, can be estimated by:

ν̂RT =

[
3nκ̂2I2(2κ̂)

4π1/2I0(κ̂)2

]2/5
, (5)

where κ̂ is obtained by maximum likelihood estimation. This selector performs satisfactorily
in fitting unimodal symmetric distributions, without highly peaked modes but its behavior can
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be dramatically misleading in the presence of antipodal modes and/or skewed distributions,
as shown by Oliveira et al. (2012). The poor performance is sometimes due to the non-
robust estimation by maximum likelihood of the concentration parameter κ, so a modification
of Equation 5 described in Oliveira, Crujeiras, and Rodŕıguez-Casal (2013) consists of the
following procedure:

Step 1. Select α ∈ (0, 1) and find the shortest arc containing α · 100% of the sample data.

Step 2. Obtain the estimated κ̂ in such way that
∫
f(θ, µarc, κ̂)dθ = α where µarc is the

midpoint of the arc computed in Step 1. The integral is computed over the arc
selected in Step 1.

Also based on the AMISE minimization, an alternative route to get a smoothing parameter
value would be to plug-in as reference density a more flexible distribution, instead of the
von Mises model taken by Taylor (2008). For that purpose, a mixture of M von Mises
distributions, vM (µi, κi) with proportions pm > 0, m = 1, . . . ,M can be considered:

g(θ) =
M∑
m=1

pm
exp {κm cos(θ − µm)}

2πI0(κm)
, with

M∑
m=1

pm = 1. (6)

In that case, the proposed plug-in smoothing parameter selector, ν̂PI , is obtained as follows
(see Oliveira et al. 2012, for further details):

Step 1. Based on the sample information, select the number of mixture components M for
the reference distribution.

Step 2. Estimate the parameters in the von Mises mixture (Equation 6), (µ̂m, κ̂m, p̂m), for
m = 1, . . . ,M and compute the integral

∫
(ĝ′′(θ))2dθ. plug-in this quantity in the

AMISE expression (Equation 4) to get ̂AMISE(ν).

Step 3. Minimize ̂AMISE(ν) and obtain ν̂PI .

In Step 1, the selection of the number of mixture components in the reference distribution can
be done by AIC, considering different numbers of mixture components, namely M . Maximum
likelihood estimation via the EM algorithm (Banerjee et al. 2005) is used in Step 2. In Step 3,
an optimization method can be implemented, in order to minimize the ̂AMISE.

Cross-validation rules, as the ones proposed by Hall et al. (1987), are also an alternative
for smoothing parameter selection in circular data problems. The likelihood cross-validation
smoothing parameter ν̂LCV is obtained by maximizing:

LCV(ν) =
n∏
i=1

f̂−i(Θi; ν), (7)

where f̂−i denotes the circular kernel density estimator (Equation 3) leaving out the ith
observation. The least squares cross-validation smoothing parameter is obtained as the value
ν̂LSCV that minimizes:

LSCV(ν) =

∫ 2π

0
f̂2(θ; ν)dθ − 2

n

n∑
i=1

f̂−i(Θi; ν). (8)
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Oliveira et al. (2012) showed that ν̂LCV provides reasonable results except for highly peaked
distributions and, in general, it is more stable that ν̂LSCV.

Finally, Marzio et al. (2011) introduced a bootstrap method for choosing the smoothing
parameter. The idea is to take the value that minimizes the bootstrap version of MISE,
which has a closed expression when the von Mises kernel is used. The main drawback of this
method is that the function to minimize has a global minimum at ν = 0 leading to a uniform
circular estimate, regardless of the true underlying model. In practice, this will lead to a
search for a local minimum, which may pose a problem especially for small samples.

2.2. Circular kernel regression estimation

Kernel regression estimation with circular response and/or covariate are revised in this section.

Nonparametric regression for a circular covariate and a linear response

Let {(Θi, Yi), i = 1, . . . , n} denote a random sample from (Θ, Y ) a circular and a linear ran-
dom variable, respectively. The relation between these variables may be explained by a
regression model such as

Yi = f(Θi) + εi, i = 1, . . . , n, (9)

where f denotes now the regression function and εi are real-valued random variables with
zero mean and variance σ2 and independent of the Θis. The local circular-linear regression
estimates for f(θ) and f ′(θ) are given by f̂(θ; ν) = â and f̂ ′(θ; ν) = b̂, where

(â, b̂) = arg min
(a,b)

n∑
i=1

Kν(θ −Θi) [Yi − (a+ b sin(Θi − θ))]2 (10)

(see Marzio et al. 2009, for further details). As for density estimation, in Equation 10,
ν > 0 is the smoothing parameter and Kν is a circular kernel function with concentration ν.
Usually, a von Mises kernel with concentration parameter ν is considered. If the regression
function is locally approximated by a constant instead of using a trigonometric polynomial,
the Nadaraya-Watson estimator for circular-linear data is obtained:

f̂CNW(θ; ν) =

∑n
i=1 YiKν(θ −Θi)∑n
i=1Kν(θ −Θi)

. (11)

For both Equations 10 and 11, the smoothing parameter ν controls the degree of smoothing.
Large values of ν lead to undersmoothed estimations of the regression curve, tending to an
interpolation of the data. On the other hand, small values of ν result in a global averaging,
oversmoothing the local features in the data. A simple and widely used procedure for smooth-
ing parameter selection in the regression setting is least squares cross-validation, choosing ν
as the value minimizing:

CV(ν) =
1

n

n∑
i=1

[
Yi − f̂−i(Θi)

]2
, (12)

where f̂−i is the leave-one-out estimator for the regression function, for i = 1, . . . , n. This will
be the method implemented in NPCirc for selecting the smoothing parameter in regression
fitting, both for local linear and Nadaraya-Watson estimators.
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Nonparametric regression for a circular response

Let {(∆i,Φi), i = 1, . . . , n} denote a random sample from (∆,Φ), where Φ is a circular random
variable and ∆ will denote a linear or circular random variable. Following Marzio et al. (2012),
the relation between these variables may be explained by a regression model such as

Φi = [f(∆i) + εi] (mod2π), i = 1, . . . , n,

where the random angles εi have zero mean direction, finite concentration, and are indepen-
dent of the ∆is.

A nonparametric estimator of the regression function f at a point δ (which may be real or
circular) can be written as,

f̂(δ) = atan2 [ĝ1(δ), ĝ2(δ)] ,

where the function atan2 [y, x] returns the angle between the x-axis and the vector from the
origin to (x, y) and

ĝ1(δ) =
1

n

n∑
i=1

sin(Φi)W (∆i − δ) and ĝ2(δ) =
1

n

n∑
i=1

cos(Φi)W (∆i − δ)

with W being a local weight.

Following Marzio et al. (2012), both for a circular or a linear covariate, kernel weights and local
linear weights can be considered yielding the Nadaraya-Watson and local linear estimators,
respectively. For the case of a circular covariate, the kernel weights are given by taking a
circular kernel as weight function and the local linear weights are given by

W (∆i − δ) = n−1Kν(∆i − δ)


n∑
j=1

Kν(∆j − δ) sin2(∆j − δ)

− sin(∆i − δ)
n∑
j=1

Kν(∆j − δ) sin(∆j − δ)

 ,
where Kν denotes a circular kernel and ν is the smoothing parameter. For the case of a linear
covariate, the kernel weights are given by taking a linear kernel as weight function and the
local linear weights are given by

W (∆i−δ) = n−1Kh(∆i−δ)


n∑
j=1

Kh(∆j − δ)(∆j − δ)2 − (∆i − δ)
n∑
j=1

Kh(∆j − δ)(∆j − δ)

 ,
where Kh denotes a linear kernel and h is the smoothing parameter. By default, kernels
in NPCirc are von Mises distributions vM (0, ν) for the circular case and N(0, h2) for linear
variables.

In both cases, circular or linear covariate, a smoothing parameter (ν or h) must be chosen
which may be selected by minimizing one of the following cross-validation functions:

CV(τ) = −
n∑
i=1

cos
(
Φi − f̂−i(∆i)

)
, (13)
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CV(τ) =
1

n

n∑
i=1

d2
(
Φi, f̂−i(∆i)

)
, (14)

where τ denotes the smoothing parameter (ν or h depending on the case) and d
(
Φi, f̂−i(∆i)

)
=

min(|Φi − f̂−i(∆i)|, 2π − |Φi − f̂−i(∆i)|). By default, the first option will be the method im-
plemented in NPCirc for selecting the smoothing parameter.

2.3. CircSiZer map

From a practical perspective, the concerns about the requirement of an appropriate smooth-
ing value for constructing a density or regression estimator may discourage the use of the
aforementioned kernel techniques. Indeed, exploring the estimators at different smoothing
levels, by trying a reasonable range between oversmoothing and undersmoothing, will pro-
vide a thorough perception of the data structure. This idea may be seen as directly feasible
by constructing such estimators, but significance of the observed features in the smoothed
curve, like peaks and valleys, must be statistically assessed. As proposed by Chaudhuri and
Marron (1999), this can be done by studying the zero crossings of the derivative, providing
the SiZer map for linear data, and this procedure has been adapted to the circular framework
by Oliveira et al. (2014a), via the CircSiZer map included in NPCirc, both for density and
circular-linear regression.

In order to assess the statistical significance of features such as peaks and valleys, CircSiZer
seeks confidence intervals for the scale-space version f ′(θ; ν) ≡ E(f̂ ′(θ; ν)), where f is the
density or the regression function. A possible way to get such intervals is by means of the
“bootstrap t” approach, as detailed in Oliveira et al. (2014a). The output of this procedure
is a graphical display, the CircSiZer map, which reflects the statistical significance of f ′(θ, ν)
with θ ∈ [0, 2π) and ν varying along a range of values. The CircSiZer map is a circular color
plot where the performance of the estimated curve for each given value of the smoothing
parameter ν is represented by a color ring, in such way that the different colors will allow to
identify peaks and valleys. The construction is as follow: for each pair (θ, ν), the curve at
a smoothing level ν is significantly increasing (decreasing) if the confidence interval is above
(below) 0, so that the corresponding map location is colored blue (red). If the confidence
interval contains 0, the curve at the smoothing level ν and at the angle θ does not present a
statistically significant slope and it is colored in purple. Regions where there are not enough
data to make statements about significance are gray colored. Gray locations are determined
according to the estimated effective sample size (see Oliveira et al. 2014a, for details in its
calculus). The appearance of the CircSiZer map will be clear in the examples presented in
the next section.

3. NPCirc package

In this section, a detailed description of NPCirc’s capabilities is provided. The complete list
of functions and datasets available in NPCirc, with a brief explanation of each of them, can
be seen in Table 1. First, some comments will be made about the datasets included in the
package. Functions related to mixture circular models generation and circular kernel density
estimation will be described later. Finally, usage of functions for circular-linear, circular-
circular and linear-circular regression will be commented. Both for density and circular-linear
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Dataset Description

cross.beds1 Cross-beds azimuths (I)
cross.beds2 Cross-beds (II)
cycle.changes Cycle changes
dragonfly Orientation of dragonflies
periwinkles Snail movements data
speed.wind, speed.wind2 Wind speed and wind direction data
temp.wind Temperature and wind direction data
wind Wind direction data

Function Description

circsizer.density CircSiZer for density
circsizer.regression CircSiZer for regression
circsizer.map Plot a CircSiZer map
dwsn Density function of a wrapped skew-normal distribution
rwsn Random generation from a wrapped skew-normal

distribution
dcircmix Density function of mixtures of circular distributions
rcircmix Random generation from mixtures of circular

distributions
kern.den.circ Nonparametric circular kernel density estimation
kern.reg.circ.lin Nonparametric circular-linear regression
kern.reg.circ.circ Nonparametric circular-circular regression
kern.reg.lin.circ Nonparametric linear-circular regression
bw.CV Cross-validation for density estimation
bw.boot Bootstrap method
bw.pi Plug-in rule
bw.rt Rule of thumb
bw.reg.circ.lin Cross-validation for circular-linear regression
bw.reg.circ.circ Cross-validation for circular-circular regression
bw.reg.lin.circ Cross-validation for linear-circular regression
S3 plot method for Plot circular regression
‘regression.circular’ objects
S3 lines method for Add a plot for circular regression
‘regression.circular’ objects

Table 1: Summary of NPCirc package contents.

regression estimation, functions for obtaining the CircSiZer maps will be also presented.

3.1. Data description

NPCirc includes some classical datasets, as those ones collecting cross-beds angles or ani-
mal orientation data, and some original ones, on temperature and wind data measurements.
Specifically, the dataset cross.beds1 corresponds to azimuths of cross-beds in the Kamthi
river (India). Originally analyzed by SenGupta and Rao (1966) and included in Table 1.5
in Mardia (1972), the dataset collects 580 azimuths of layers lying oblique to principal ac-
cumulation surface along the river, these layers being known as cross-beds. Another dataset
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containing cross-beds measurements is cross.beds2. This dataset, presented in Fisher (1993),
includes 104 measurements of Chaudan Zam large bedforms from Himalayan molasse in Pak-
istan. Animal orientation is another classical example of circular data. Batschelet (1981)
presents orientation of 213 dragonflies with respect to the sun’s azimuth. These data are
gathered in dragonfly. Finally, the dataset periwinkle contains the distances and direc-
tions moved by small blue periwinkles after relocation. These data are given in Table 1 of
Fisher and Lee (1992).

With respect to the original datasets in this package, the dataset cycle.changes includes
350 observations which correspond to the hours where the temperature (in Celsius degrees) at
ground level changes from positive to negative and viceversa from February 2008 to December
2009 in periglacial Monte Alvear (Argentina). The speed.wind dataset consists of hourly
observations of wind direction and wind speed (in m/s) in winter season (from November
to February) from 2003 until 2012 on the Atlantic coast of Galicia (NW-Spain). Data are
registered by a buoy located at longitude −0.210E and latitude 43.500N in the Atlantic ocean
and have been downloaded from the Spanish Portuary Authority (http://www.puertos.es/).
The speed.wind2 dataset, analyzed in Oliveira et al. (2014a), is a subset of speed.wind

which is obtained by taking the observations with a lag period of 95 hours in order to obtain
uncorrelated observations. Dataset temp.wind, analyzed in Oliveira et al. (2013), consists
of observations of temperature and wind direction during the austral summer season 2008–
2009 (from November 2008 to March 2009) in Vinciguerra (Tierra del Fuego, Argentina).
Finally, the wind dataset contains hourly observations of the wind direction, from May 20
to July 31, 2003 inclusive, measured in a weather station in Texas. These data are part
of a larger dataset taken from the Codiac data archive (station C28 1), available at http:

//data.eol.ucar.edu/codiac/dss/id=85.034. The full dataset contains hourly resolution
surface meteorological data from the Texas Natural Resources Conservation Commission Air
Quality Monitoring Network.

Some of the datasets will be used for illustrating the functions in the package.

3.2. Illustrations for density estimation

Before showing the circular kernel density estimator and the performance of the smoothing
parameter selection methods, functions dcircmix and rcircmix will be described. Func-
tion dcircmix computes the density function of a circular distribution (circular uniform, von
Mises, cardioid, wrapped Cauchy, wrapped normal, wrapped skew-normal) or the density of a
mixture of these distributions. Function rcircmix allows for random generation from a circu-
lar distribution or from a mixture of circular distributions. Both functions have an argument
called model which allows to specify a model among the ones considered in Oliveira et al.
(2012). Throughout this work, random samples will be generated by fixing set.seed(2013),
so the results can be reproduced by the user. For example, the density function of Model 18
defined in Oliveira et al. (2012) on a grid of 500 points between 0 and 2π can be obtained by:

R> t <- circular(seq(0, 2 * pi, length = 500))

R> f18 <- dcircmix(x = t, model = 18)

and 100 random deviates from the same model can be obtained by:

R> data18 <- rcircmix(n = 100, model = 18)

http://www.puertos.es/
http://data.eol.ucar.edu/codiac/dss/id=85.034
http://data.eol.ucar.edu/codiac/dss/id=85.034
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Figure 1: Left panel: density function (solid line) of the Model 18 from Oliveira et al. (2012)
and a random sample of size n = 100 (dots on the circle). Right panel: density function (solid
line) of the mixture model 0.5 · vM (0, 5) + 0.5 ·WSN (π, 1, 10) and a random sample of size
n = 100 (dots on the circle).

Note that argument x must be an object of class ‘circular’ (see Lund and Agostinelli 2013).

Both the model density curve and the random sample are plotted in Figure 1 (left panel).
Functions from the circular package allow to plot the sample over a circle and the circular
density as shown in the following lines

R> plot(data18, shrink = 1.2)

R> lines(t, f18, shrink = 1.2, lwd = 2)

which provide Figure 1 (left panel).

Apart from the predefined models from Oliveira et al. (2012), the density function or a random
sample from any mixture model can be obtained by using the same functions by specifying the
distributions that participate in the mixture through argument dist and the parameters of
each distribution by means of argument param. For example, a mixture with equal proportions
of a von Mises vM (0, 5) and a wrapped skew-normal WSN (π, 1, 10) can be obtained with the
code:

R> fmix <- dcircmix(x = t, model = NULL, dist = c("vm", "wsn"),

+ param = list(p = c(0.5, 0.5), mu = c(0, pi), con = c(5, 1),

+ sk = c(0, 10)))

and random deviates from the same model can be obtained by:

R> datamix <- rcircmix(100, model = NULL, dist = c("vm","wsn"),

+ param = list(p = c(0.5, 0.5), mu = c(0, pi), con = c(5, 1),

+ sk = c(0, 10)))

The corresponding density function and random sample are shown in Figure 1 (right panel).

Function kern.den.circ

Function kern.den.circ computes the circular kernel density estimator with von Mises kernel
(Equation 3), for the data sample specified by argument x (the object is coerced to class
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‘circular’) and with a smoothing parameter included in argument bw. Unless the argument
t is provided, the estimator is computed over a grid of points specified by arguments from, to
and len with default values, from = circular(0), to = circular(2 * pi) and len = 250.
If no value of the smoothing parameter is provided by the user the circular kernel estimator
is computed with the value of the smoothing parameter selected by the plug-in rule. The
output of this function is an object of class ‘density.circular’ (see Lund and Agostinelli
2013) whose underlying structure is a list containing the following components among others:
data, the original dataset; x, the points where the density is estimated; y, the estimated
density values; bw, the smoothing parameter used.

For a sample of 200 data from Model 7 from Oliveira et al. (2012), the circular kernel density
estimator can be obtained as follows:

R> data7 <- rcircmix(200, model = 7)

R> est7 <- kern.den.circ(x = data7, t = NULL, bw = 20, from = circular(0),

+ to = circular(2 * pi), len = 250)

R> est7

Call:

kern.den.circ(x = data7, t = NULL, bw = 20, from = circular(0),

to = circular(2 * pi), len = 250)

Data: data7 (200 obs.); Bandwidth 'bw' = 20

x y

n : 2.500e+02 Min. :0.01046

Min. :-3.129e+00 1st Qu.:0.04689

1st Qu.:-1.558e+00 Median :0.12702

Median : 0.000e+00 Mean :0.16015

Mean :-1.959e-14 3rd Qu.:0.26730

3rd Qu.: 1.558e+00 Max. :0.42007

Max. : 3.129e+00

Rho : 4.000e-03

R> names(est7)

[1] "data" "x" "y" "bw" "n" "kernel"

[7] "call" "data.name" "has.na"

The print method for ‘density.circular’ objects from package circular uses the output of
kern.den.circ to provide summaries of the estimation, as can be seen in the example.

The graphical display of the estimator is shown in Figure 2. Circular and linear representations
are displayed in left and right panels, respectively. The solid black line is the true underlying
density and the red curve is the circular kernel density estimator. These plots are obtained
by using the plot methods for ‘density.circular’ objects from package circular. A lines

method for ‘density.circular’ objects from package circular can be also used for adding
other estimates to the plot.
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Figure 2: Circular (left panel) and linear (right panel) representation of the circular kernel
density estimator with ν = 20 (red line) of a sample of size 200 from Model 7 in Oliveira et al.
(2012) and true density (black line).

The value of the parameter bw in function kern.den.circ can also be selected by some of
the other rules defined in Section 2.1. The available procedures for choosing the smoothing
parameter will be described below. The main argument in all the functions is the data from
which the smoothing parameter is to be computed, denoted by x. As before, the object is
coerced to class ‘circular’.

Function bw.boot implements the bootstrap procedure proposed by Marzio et al. (2011). The
minimum of the bootstrap MISE is obtained by using the optimize function from package
stats, which searches the minimum in the interval specified by arguments lower and upper

(default values are 0 and 50, respectively) and with accuracy specified by tol (default: tol

= 0.1). The integral is approximated by a sum of np = 500 terms.

R> bw.boot(x = data7)

[1] 14.68244

Cross-validation smoothing parameters for density estimation are computed by function bw.CV.
The cross-validation rule to be used, LSCV or LCV, will be specified by argument method,
taking LCV as default. When the LSCV smoothing parameter is computed, the integral term
in Equation 8 is calculated using the Simpson’s rule (through an internal function) and so,
the argument np will be used. As before, the minimum/maximum is searched with optimize

according to arguments lower, upper and tol.

R> bw.CV(x = data7, method = "LCV")

[1] 16.47961

R> bw.CV(x = data7, method = "LSCV")
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[1] 15.91682

Function bw.pi implements the von Mises scale plug-in rule defined by Steps 1–3 in Sec-
tion 2.1. Two options are available: fix the number of components in the mixture (denoted
by M in Equation 2) by specifying argument M:

R> bw.pi(x = data7, M = 3)

[1] 26.4165

or select the number of components by AIC (default option):

R> bw.pi(x = data7, outM = TRUE)

[1] 25.86334 2.00000

Argument outM = TRUE indicates that the function also returns the number of components
in the mixture. Again, the integral term is approximated by the Simpson’s rule and the
minimum is searched by using the function optimize.

Finally, the selector proposed by Taylor (2008) for density estimation is computed by function
bw.rt. This selector is based on an estimation of the concentration parameter of a von Mises
distribution. The concentration parameter can be estimated by maximum likelihood (robust
= FALSE):

R> bw.rt(x = data7, robust = FALSE)

[1] 0.1919247

or by the robustified procedure described before, by setting robust = TRUE. In this case, the
argument alpha must be also specified:

R> bw.rt(x = data7, robust = TRUE, alpha = 0.5)

[1] 2.218956

Function circsizer.density

The CircSiZer map for density estimation is provided by circsizer.density. The main
arguments in this function are x, the angle data sample (object of class ‘circular’) and
bws, a grid of positive smoothing parameters. Other arguments can be fixed: ngrid, integer
indicating the number of equally spaced angles between 0 and 2π where the estimator is evalu-
ated (default: ngrid = 250); alpha, the significance level for assessing increasing/decreasing
patterns (default: alpha = 0.05); B, the number of bootstrap samples to estimate the stan-
dard deviation of f̂ ′(θ; ν) (default: B = 500); log.scale, logical indicating if the values of
the smoothing parameter are transformed to − log10 scale; and display, logical indicating
if the CircSiZer map is plotted. This function returns an object of class ‘circsizer’ whose
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Figure 3: Density for Model 14 from Oliveira et al. (2012) (left panel) and CircSiZer map
for kernel density estimator (right panel) based on 100 simulated data (dots over the circle).
Peaks and valleys are identified by clockwise blue-red and red-blue patterns, respectively.

underlying structure is a list containing the following components: data, the original dataset;
ngrid, the number of equally spaced angles where the derivative of the circular kernel density
estimator is evaluated where the density is estimated, bw, a vector of smoothing parameters
(given in − log10 scale if log.scale = TRUE); log.scale, logical indicating if − log10 scale
is used for constructing the CircSiZer map; CI, a list containing three matrices where each
row corresponds to a value of the smoothing parameter and each column corresponds to an
angle: a matrix with lower limits of the confidence intervals, a matrix with the upper limits
of the confidence intervals and a matrix with the effective sample size for each pair smoothing
parameter-angle; and col, matrix containing the colors for plotting the CircSiZer map. As
for the previous matrices, each entry contains the corresponding color for a pair of smoothing
parameter-angle.

The CircSiZer map in Figure 3 is obtained with the following code lines:

R> data14 <- rcircmix(100, model = 14)

R> circsizer14 <- circsizer.density(data14, bws = seq(0, 100, by = 5),

+ ngrid = 250, alpha = 0.05, B = 500, log.scale = TRUE, display = TRUE)

R> names(circsizer14)

[1] "data" "ngrid" "bw" "log.scale" "CI" "col"

[7] "call" "data.name"

As noted before, in a CircSiZer map (see Figure 3), blue color indicates locations where
the curve is significantly increasing; red color shows where it is significantly decreasing and
purple indicates where it is not significantly different from zero. Thus, for a given smoothing
parameter, a significant peak can be identified when a region of significant positive gradient is
followed by a region of significant negative gradient (i.e., blue-red pattern), and a significant
trough by the reverse (red-blue pattern), taking as sense of rotation the direction marked by
the arrow. Values of the smoothing parameter are indicated along the radius, transformed
to − log10 scale for log.scale = TRUE (default option). Hence, in Figure 3, the multimodal
structure of the Model 14 from Oliveira et al. (2012) is clearly brought out by the CircSiZer
map.
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If display = FALSE, the CircSiZer map is not produced. However, the CircSiZer map can be
plotted later by using the function circsizer.map whose main argument must be an object
of class circsizer. This function allows to edit the graph by specifying the arguments type,
zero, clockwise, title, labels, label.pos, rad.pos and raw.data which allow to indicate
the zero of the plot, the sense of rotation, the title, the labels and their position, the position
of the radial lines and if the original data is plotted. For the above example, the code

R> circsizer.map(circsizer14, type = 4, zero = pi/2, clockwise = TRUE,

+ raw.data = TRUE)

provides the CircSiZer map but edited in another way (see Figure 3, right panel).

3.3. Illustration for regression estimation

For regression estimation with circular variables, NPCirc includes the following functions:
kern.reg.circ.lin, kern.reg.circ.circ and kern.reg.lin.circ which allow to com-
pute the local linear and Nadaraya-Watson estimators for circular-linear, circular-circular
and linear-circular data, respectively. NPCirc also includes three functions for computing the
cross-validation smoothing parameter in each case: bw.reg.circ.lin, bw.reg.circ.circ

and bw.reg.lin.circ. Finally, circsizer.regression allows to obtain the CircSiZer map
for the regression setting when the covariate is circular and the response is linear.

Functions kern.reg.circ.lin, kern.reg.circ.circ and kern.reg.lin.circ

Functions kern.reg.circ.lin, kern.reg.circ.circ and kern.reg.lin.circ implement
the local linear estimator and the Nadaraya-Watson estimator for circular-linear data (circular
covariate and linear response), circular-circular data (circular covariate and circular response)
and linear-circular data (linear covariate and circular response), respectively. The arguments
in these functions are: x, the vector of data for the independent variable; y, the vector of
data for the dependent variable; t, the points where to evaluate the estimator; bw, the value
of the smoothing parameter to be used; method, a character string giving the estimator to
be used. This must be one of "LL" for local linear estimator or "NW" for Nadaraya-Watson
estimator. These functions return an object of class ‘regression.circular’ with a list
structure containing, among others, the following components: data the original dataset; x,
the points where the regression function is estimated; y, the estimated values; and bw, the
smoothing parameter used.

For each function, the value of the smoothing parameter can be set manually or can be
obtained by calling (default option) the functions bw.reg.circ.lin, bw.reg.circ.circ and
bw.reg.lin.circ, respectively. These functions provide the least squares cross-validation
smoothing parameter for the Nadaraya-Watson and local linear estimators. For circular-
linear data, the smoothing parameter is selected as the value that minimizes Equation 12.
For circular-circular and linear-circular regression, minimization of Equations 13 or 14 provide
smoothing parameters, the method in Equation 13 being the default option. The arguments
x, y and method of this function have the same meaning as before.

Functions kern.reg.circ.lin and bw.reg.circ.lin are illustrated with the wind.speed

dataset. The Nadaraya-Watson and local linear estimators for a regression model of wind
speed over wind direction are shown in Figure 4 (left panel), in red and green lines respectively.
Estimators are obtained with the code:
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R> data("speed.wind2", package = "NPCirc")

R> dir <- speed.wind2$Direction

R> vel <- speed.wind2$Speed

R> nas <- which(is.na(vel))

R> dir <- circular(dir[-nas], units = "degrees")

R> vel <- vel[-nas]

R> bw.reg.circ.lin(dir, vel, method = "LL")

[1] 9.058419

R> bw.reg.circ.lin(dir, vel, method = "NW")

[1] 12.6612

R> estLL <- kern.reg.circ.lin(dir, vel, method = "LL"); estLL

Call:

kern.reg.circ.lin(x = dir, y = vel, method = "LL")

Data: dir (199 obs.); Bandwidth 'bw' = 9.058

x y

n : 2.500e+02 Min. :4.265

Min. :-1.793e+02 1st Qu.:6.927

1st Qu.:-8.928e+01 Median :7.557

Median : 0.000e+00 Mean :7.302

Mean :-6.647e-13 3rd Qu.:8.286

3rd Qu.: 8.928e+01 Max. :9.221

Max. : 1.793e+02

Rho : 4.000e-03

> estNW <- kern.reg.circ.lin(dir, vel, method = "NW"); estNW

Call:

kern.reg.circ.lin(x = dir, y = vel, method = "NW")

Data: dir (199 obs.); Bandwidth 'bw' = 12.66

x y

n : 2.500e+02 Min. :3.836

Min. :-1.793e+02 1st Qu.:7.062

1st Qu.:-8.928e+01 Median :7.712

Median : 0.000e+00 Mean :7.521

Mean :-6.647e-13 3rd Qu.:8.382

3rd Qu.: 8.928e+01 Max. :9.419

Max. : 1.793e+02

Rho : 4.000e-03
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Figure 4: Left and center: linear and circular representations of the Nadaraya-Watson estima-
tor (red line) and local linear estimator (green line) with cross-validation smoothing parameter
for wind speed (m/s) with respect to wind direction. Right: CircSiZer map for circular-linear
regression for wind speed (m/s) with respect to wind direction.

The objects (estNW and estLL), of class regression.circular, contain useful information
such as the original data, the fitted values or the smoothing parameter. This information
is used in the print method for ‘regression.circular’ objects to show summaries of the
fitted model and in the plot and lines methods for ‘regression.circular’ objects, which
allow to plot the regression estimates. The following code lines produce the plots represented
in Figure 4 (left and center):

R> plot(estNW, plot.type = "line", points.plot = TRUE, lwd = 2, line.col = 2,

+ xlab = "direction", ylab = "speed (m/s)")

R> lines(estLL, plot.type = "line", lwd = 2, line.col = 3)

R> res <- plot(estNW, plot.type = "circle", points.plot = TRUE,

+ labels = c("N", "NE", "E", "SE", "S", "SO", "O", "NO"),

+ label.pos = seq(0, 7 * pi/4, by = pi/4),

+ zero = pi/2, clockwise = TRUE, lwd = 2, line.col = 2, main = "")

R> lines(estLL, plot.type = "circle", plot.info = res, lwd = 2,

+ line.col = 3)

If plot.type = "line", a linear representation of the estimator is obtained. The periodicity
can be appreciated by joining the extremes of the lines. A circular representation can be
produced by setting plot.type = "circle".

Functions kern.reg.circ.circ and bw.reg.circ.circ are illustrated with the wind dataset.
The circular-circular regression estimator is used to model the wind direction at noon, based
on the wind direction at 6 a.m. (see Marzio et al. 2012). The argument option indicates
the cross-validation function to be used for selecting the smoothing parameter. If option =

1 (default option), then the criterion in Equation 13 is considered whereas if option = 2,
Equation 14 is used:

R> data("wind", package = "NPCirc")

R> wind6 <- circular(wind$wind.dir[seq(7, 1752, by = 24)])

R> wind12 <- circular(wind$wind.dir[seq(13, 1752, by = 24)])
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Figure 5: Representation on the torus (left panel) and linear representation (right panel) of
Nadaraya-Watson (red line) and local linear (green line) estimators for wind directions at
noon with respect to wind directions at 6 a.m.

R> bw.reg.circ.circ(wind6, wind12, method = "LL", option = 1,

+ lower = 0, upper = 20)

[1] 2.834813

R> bw.reg.circ.circ(wind6, wind12, method = "NW", option = 1, lower = 0,

+ upper = 20)

[1] 5.482274

R> bw.reg.circ.circ(wind6, wind12, method = "LL", option = 2, lower = 0,

+ upper = 20)

[1] 2.252278

R> bw.reg.circ.circ(wind6, wind12, method = "NW", option = 2, lower = 0,

+ upper = 20)

[1] 6.080389

R> estNW <- kern.reg.circ.circ(wind6, wind12, t = NULL, bw = 6.1,

+ method = "NW")

R> estLL <- kern.reg.circ.circ(wind6, wind12, t = NULL, bw = 2.25,

+ method = "LL")

For circular-circular regression, the estimates can be plotted on a torus, by setting plot.type

= "circle" with the following code:

R> plot(estNW, plot.type = "circle", points.plot = TRUE, line.col = 2,

+ lwd = 2, points.col = 1, units = "degrees")

R> lines(estLL, plot.type = "circle", line.col = 3, lwd = 2)
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Figure 6: Representation on the cylinder (left panel) and linear representation (right panel)
of the Nadaraya-Watson (red line) and local linear (green line) estimators for the periwinkle

data.

yielding the left plot in Figure 5. It should be noted that this is a 3D plot that can be rotated to
explore the characteristics of the fitted curve. To produce this graphic, packages misc3d (Feng
and Tierney 2008) and rgl (Adler, Murdoch et al. 2014) are needed. Nevertheless, a linear
representation is also possible (plot.type = "line"). The linear plot of the observations at
6 a.m. and noon, together with the Nadaraya-Watson and local-linear estimators are shown
in Figure 5 (right) which have been obtained with the following code lines:

R> plot(estNW, plot.type = "line", points.plot = TRUE, line.col = 2, lwd = 2,

+ xlab = "Wind direction at 6 a.m.", ylab = "Wind direction at noon")

R> lines(estLL, plot.type = "line", line.col = 3, lwd = 2)

Finally, functions kern.reg.lin.circ and bw.reg.lin.circ are illustrated with the dataset
periwinkle. In this case, the linear-circular estimators are used to model the angles with
regard to the distance moved:

R> data("periwinkles", package = "NPCirc")

R> dist <- periwinkles$distance

R> dir <- circular(periwinkles$direction, units = "degrees")

R> bw.reg.lin.circ(dist, dir, method = "NW", option = 1, lower = 0,

+ upper = 50)

[1] 21.24758

R> bw.reg.lin.circ(dist, dir, method = "NW", option = 2, lower = 0,

+ upper = 50)

[1] 21.50279

R> estNW <- kern.reg.lin.circ(dist, dir, t = NULL, bw = 21.25,

+ method = "NW")

R> estLL <- kern.reg.lin.circ(dist, dir, t = NULL, bw = 200, method = "LL")
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For linear-circular regression, the estimates can be plotted on a cylinder (see Figure 6, left
panel), by setting plot.type = "circle" with the following code:

R> plot(estNW, plot.type = "circle", points.plot = TRUE, line.col = 2,

+ lwd = 2, points.col = 2)

R> lines(estLL, plot.type = "circle", line.col = 3, lwd = 2)

A linear representation of the estimators is shown in Figure 6 (right panel).

Function circsizer.regression

The function circsizer.regression provides the CircSiZer map for regression, considering
a circular covariate and a linear response. The first arguments for this function are x, the
data for the circular covariate and y, the data for the dependent linear variable y. The
remaining arguments are the same as for function circsizer.density. If argument bws is
not specified (bws = NULL), a CircSiZer map for regression is, by default, computed for two
values of the smoothing parameter. These two values are selected according to the value of
the smoothing parameter provided by the corresponding least squares cross-validation rule
and the parameter adjust (by default adjust = 2). Thus, the CircSiZer map is obtained for
the values bw/adjust and bw * adjust.

Figure 4 (right panel) shows the CircSiZer map for exploring the relation between wind speed
as a response and wind direction as a covariate, obtained with the code:

R> circsizer <- circsizer.regression(dir, speed, bws = seq(10, 60, by = 5),

+ display = FALSE)

R> circsizer.map(circsizer, type = 1, zero = pi/2, clockwise = TRUE)

In the CircSiZer map, it can be seen that wind speed increases when wind direction comes
from NE and S-SW and winds from SE are not frequent at all, this fact being reflected by
the gray colored area.

As for the density setting, the output of the function circsizer.regression can be provided
as the first argument of function circsizer.map in order to obtain a new CircSiZer map.

4. Conclusion and extensions

In this paper, the NPCirc package for performing nonparametric density and regression esti-
mation with circular data in R is described, illustrating its performance with simulated and
real data examples. Thus, the package NPCirc contains functions for computing the nonpara-
metric kernel circular density estimator and circular-linear, circular-circular and linear-circular
regression estimators, which provide several useful tools for analyzing circular data without
imposing parametric constraints. Moreover, for choosing a smoothing parameter, different
selectors, both for density and regression, have been revised and a graphical tool has been
proposed in order to avoid the smoothing parameter selection and explore the estimators at
different smoothing levels.

Circular data appear in a variety of disciplines and so, this package can be of interest to
nonparametric practitioners of different scientific fields.
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In this current version, package NPCirc includes nonparametric methods based on the von
Mises kernel. Different kernels or even, another kind of smoothers such as periodic splines
could be considered in order to extend the package.
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