
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4836833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

330

3335
[067 COPY 2

STX

FACULTY WORKING
PAPER NO. 1067

Efficient Algorithms for Grouping

Component — Processor Families

K. Ravi Kumar
Anthony Vannelli

jHE LIBRARY. OF. JHE

SEP 1 8 1984

College of Commerce and Business Administration

3ureau of Economic and Business Research
university of Illinois, Urbana-ChamDaign

BEBR
FACULTY WORKING PAPER NO. 1067

College of Commerce and Business Administration

University of Illinois at Urbana-Champaign

August 1984

Efficient Algorithms for Grouping Component-Processor Families

K. Ravi Kumar, Assistant Professor
Department of Business Administration

Anthony Vannelli
University of Toronto

Digitized by the Internet Archive

in 2011 with funding from

University of Illinois Urbana-Champaign

http://www.archive.org/details/efficientalgorit1067kuma

Efficient Algorithms for Grouping Component - Processor Families

K. Ravi Kumar
Department of Business Administration

University of Illinois

at Champaign-Urbana

Champaign, Illinois 61820

Anthony Vannelli

Mathematical Sciences Department

IBM Thomas J. Watson Research Center

Yorktown Heights, NY 10511

and

Department of Industrial Engineering

University of Toronto

Toronto, Ontario M25 1A4

Abstract

The problem of grouping pact families is very important in the implementation of

Group Technology and Flexible Manufacturing System concepts. In this paper, we opt

to use existing routing sheet information to derive the component-processor groups.

The actual grouping is done by modelling the problem as an optimal k-decomposition

of weighted networks. Algorithms which are suitable for computer implementation

and large problems are developed to find an initial solution and for refining this

solution. Bounds on algorithm performance are constructed to give an estimate of the

quality of the generated solution. A numerical example illustrates these new techni-

ques.

1. Introduction

The trend in product preferences is towards more customization and in terms of

manufacturing priorities, this implies smaller batch sizes (Reich, 1983). The conven-

tional approach in meeting such requirements is to utilize functional or process layouts.

However, statistical analysis indicate that such job shops have low machine utilization

rates and very high waiting times. A more efficient means of satisfying small batch

priorities is needed to alleviate the productivity lag in this sector of the manufacturing

industry, which comprises approximately 75% of all manufacturing.

Two technologies, which seek to solve this problem, are Group Technology (GT)

and Flexible Manufacturing Systems (FMS). They are similar in that they seek to

manufacture small lot sizes (in fact, a lot size of 1 in FMS) of "parts of similar

process, of somewhat dissimilar materials, geometry and size" (Mitrafanov, 1959).

They differ in that GT is conceptually a dedicated cell of machines: grouped, tooled

and scheduled as a unit while FMS seems to strive for flexibility in currently manufac-

tured products and those that may arise in the future. Also FMS is aimed at total

computer control while GT is satisfactorily implemented in a worker-machine environ-

ment.

Despite their differences, both GT and FMS share a common design problem -

identification of those "parts of similar process" implying both components and

processor types that will make up a GT cell or an FMS (Kusiak, 1984). The original

approaches to this problem were based on two different philosophies:

a) analyze a classified and coded data base of parts which reflect design shape,

engineering features as well as methods of manufacture (Hyde, 1981)

1

b) analyze a route sheet data base which reflects the existing methods of manufac-

ture of parts currently being produced (Burbidge, 1975).

Clearly a) is a more global approach but it suffers due to the fact that classification

and coding can take thousands of man-hours without producing any productivity gains

in the short run. On the other hand, b) could be implemented quite easily but has

been criticized because it "simply perpetuates existing, often, poor practices" (Hyde,

1981).

Our own contention is that for productivity purposes, b) should be implemented

for short-term gains and should be thought of as an intermediate step in the implemen-

tation of a). The criticism that existing practices are bad may be unfounded and the

redesign, once the classification and coding is complete, may be quite simple

(especially if the original grouping was a good approximation). Also the productivity

gains, with some form of grouping, through reduced set-up times, material handling

and waiting times, may be large enough to underwrite the classification and coding

projects as well as final redesigns.

In this paper, we will discuss some aspects of efficiently implementing the

grouping analysis using existing route sheet information. Specifically we will model

the methodology of grouping components and processors as a network decomposition

problem, and devise algorithms which aim at producing "good" solutions to the

problem. We also give methods to evaluate bow good the solutions are by construct-

ing bounds on the optimal solution. These algorithms can be efficiently implemented

for very large data sets, as is usually the case in such analysis, typically 2000 compo-

nents on 100 processors. In Section 2, we formulate the network model for the

component-processor grouping. An algorithm to obtain a good initial solution to the

problem is described in Section 3. In Section 4, we devise an efficient algorithm which

-2-

seeks to improve the initial solution. A numerical example illustrates this new ap-

proach in Section 5 and Section 6 contains concluding remarks.

2. Component-Processor Grouping and the Network Decomposition Model

Burbidge (1975) proposes Production Flow Analysis as a technique to implement

GT. Within this analysis, there is a phase, called Group Analysis, which takes the

matrix of components (or packs of components) and processors needed by the compo-

nents and tries to rearrange this matrix such that block diagonalization (or approxi-

mately so) is achieved. For example consider Figure 1 which records the routing

requirements of 4 packs consisting of 7 parts. Pack 1, which is just one part, requires

machines A and C which pack 2, consisting of three parts, requires machines 8 and D.

This processor/pack information is depicted, in Figure 2, in matrix form with packs as

rows and machines as columns. Looking at this matrix, we can see packs 1 and 3

require only machines A and C while packs 2 and 4 need only machines B and D.

Thus, a family grouping of packs and machines is possible in which each pack in the

family can be processed by the group of machines in that family. This can be seen in

Figure 3, where we have exchanged rows 2 and 4 and also columns B and C, to create

a partition of the original matrix into diagonal blocks. Each block represents a family

consisting of packs and machines, with each pack of parts being processed using only

the machines in this family. Any off-diagonal entry, after this block diagonalization

process, represents interdependencies of the processing of a pack in one family with

the machines in another family. And, of course, the idea is to minimize the interde-

pendencies.

f^cks Part Numbers Machines Required
1 5 A, C
2 10, 15, 20 B, D
3 25 D
4 30 C

Figure 1

Machines

Packs

1

2

3

4

B C
m

Figure 2

Machines

Packs

1

4

3

2

5

Figure 3

4 -

A variety of researchers have found that the process of block diagonalization is

not easy to implement on a computer. Burhidge (1975) points out that it is compara-

tively simple to find the families for a small sample using "pattern recognition,

application of production know-how and intuition. It has proved surprisingly difficult

to find a method suitable for the computer,...". Groover (1980) recognizes that "this

is the most subjective and most difficult step in production flow analysis, yet it is the

most crucial step in the procedure". El-Essawy and Torrance (1972) indicate that this

grouping process requires "an unjustifiably sophisticated procedure." Also, in real

world situations, the problem size can be very large, a typical value being 1400 parts

on 150 machines. The use of computers become increasingly necessary and efficient

algorithms even more so.

Very few attempts to grapple with this problem of grouping components and

processors have taken an analytical approach. King (1979, 1980) uses a Rank Order

Clustering (ROC) algorithm, while McCormick et al. (1972) use a sub-optimization

procedure on a restricted quadratic assignment model. King and Nakomchai (1982)

briefly review the approaches to this problem and extend the ROC algorithm to

perform more efficiently on the computer, regarding storage and CPU time. A major

problem in their algorithm is identification of bottleneck machines - this step is quite

arbitrary but is very crucial to the development of subsequent grouping. Also, the

methods discussed above do not take into account the annual volume of production

that is required of each component on the processor Le. the material handling cost- In

their formulations, each component is equally important in terms of cost irrespective of

volume.

We formulate this problem as an optimal k-decomposition problem in graph

theoretic terms. Instead of looking at block diagonalizations of matrices, we will,

-*-

equivalency, look at decompositions of networks. For example. Figure 4 represents

the same information as Figures 1 and 2 but in network form. Also, Figure S repre-

sents the block diagonalized matrix Figure 3, which implies that the optimization

problem can also be formulated as : find a decomposition of the packs/machines

network such that there are minimal dependencies between the sub-networks.

Pa

Figure 4

Pr

Figure 5

In network theory terms, let G — (K,£) be an undirected graph, where V is the

set of vertices (or nodes) and E is the set of edges (or arcs). In this case, let

K— {Pa'Pr) wnere ?a k t*ie sel °* Pac'15 °* P31^ e-8- ^^^ products, subassemblies,

spare parts and PR is the set of processes e.g. beat treatment, deburring, painting.

The arc set £ contains all the interconnections between node set PA and node set PR

where each arc (i,j) represents the requirement (at least, currently) of processor j for

pack L

A k-decomposition of the graph G is obtained by deleting edges of G to obtain k

disconnected subgraphs G
i
- (V

it £,), i — 1,2,..., k, and each of the vertices of G is

contained in exactly one of the node sets K
{
. Then, an optimal k-decomposition of a

graph G is a k-decomposition that minimizes the weight on the interconnections (or

edges) between the k subgraphs (Vannelli and Vidyasagar, 1984). The factor k

remains under management control and could be a policy variable. For instance,

k - 1 would not partition the graph at all while a large k (in comparison to the total

number of nodes) will tend to partition the graph very finely. In the first case, the

number of interdependencies is zero while in the latter, it will be quite high. So, there

is a trade-off to be made between the number of groups in the decomposition and the

amount of interdependencies.

To mathematically model the problem given a fixed k, let

0, if node i is not in subgraph j

: if node i is in subgraph j.

Then,

k

2 x
fj
- 1, V i - 1,2,..., n

-7>-

implying that each node (and there are n of them in total Le. {# of elements in PA] +

{# of elements in PR] - n) can only be in one subgraph.

Also, one could add a congestion constraint which restricts the cumber of nodes

in each subgraph; Le., :

/ < 2 x
ij * •• V J " 1 '2-' k -

We can represent each arc of subgraph p (j> - 1,2^.., A:) by the node product

(x^ • XjJ). Then, arc (Lj) is in subgraph p if and only if x^ — x^ — 1. Let a^ be the

volume of component i that has to be processed through processor j (or even the profit

or productivity potential associated with i and j). We can now represent the sum of all

the arcs that belong within the k subgraphs by

*-l n T k

i-i y-i+i L/>»i J

Note that maximizing this quantity is equivalent to minimizing the sum of the interde-

pendencies of the k weighted subgraphs.

The optimal k-decomposition problem can now be stated as:

l»l y-/'+l p»\

k

S t £ Xij" * Vi" 1 '2— »
"

/-I

/<2 *yS«. vy- 1.2 *

jr«-0 or 1.

(1)

8-

This is the 0-1 quadratic programming problem with linear constraints which is

referred to as the quadratic assignment problem by King and Nakomchai (1982) and

this formulation is considered difficult to solve, since it is an NP-complete problem.

In the next two sections we develop algorithms to solve approximations of (1). A

starting k-decomposition and improved k-decomposition are found by these techni-

ques. We also develop bounds that convey how good the solution generated is, which

is a factor that other analytical approaches have failed to consider.

3. A Heuristic Technique for Decomposing Undirected Graphs

In this section, we develop an algorithm for approximating the global solution of

the optimal k-decomposition problem (1). A modification of an eigenvector approach

introduced by Barnes (1982b) is used to accomplish this.

Barnes formulates an algorithm for approximating the optimal k-decomposition

problem with fixed subgraph size.

it— 1 n . k

Max 2 2 (2 a
u
x* x

jp)
i.l Jmi+l V=l

(2)

k

s.t. 2 x
tf
- 1, Vi- 1,2,..., n

2 xij- mj>
v ->- ia--*

k

x„-0 or 1, J «/*.
/l

The algorithm is a two-step procedure which first finds the k largest eigenvalues

^]£^2- — -^A an<^ tneu* corresponding eigenvectors u, of the admittance matrix A

(Cullum and Donath, 1974). An approximation of problem (2) is then found by

-9-

solving the transportation problem

Max 2 2 (7=f)
X
*

(3)

»

^ x
(j
- m

7
. V y - 1,2,..., k

'v^O-

Lawler (1976) shows that problem (3) is solved in 0(n) time in the worst case.

However, this situation rarely arises in practice.

We now proceed to develop an algorithm for approximating the solution of

problem (1). We begin by first constructing upper and lower bounds on the number

of edges cut, E
c
for problem (1). Define

E
u
— sum of weighted edges cut by a k -decomposition

then, E
C
<EU .

It is also desirable to estimate how far Eu
is from E

c
. One would like to construct

a lower bound on Ec
in this case. Donath and Hoffman (1973) construct a simple

lower bound on E
c
for problem (2). Consider the matrix A, where

n

10-

and calculate the k largest eigenvalues of A; that is, A
1
>X

2
>...>A

Jk
. A lower bound on

1 * -
£, is —- 2 X: m, (Donath and Hoffman, 1973). Thus, Ee can always be bounded

c 2 i.i '

for problem (1) by

-1 J \imi<Ee
<Em. (4)

* i-l

The upper and lower bounds (4) on E
c

allow us to investigate the optimal

k -decomposition problem (1). Note that one fixes the number of nodes that belong to

each subgraph in the number of nodes that belong to each subgraph in the optimal

k -decomposition problem (2). Since one does not know a priori the number of nodes

to be fixed in each subgraph, a local optimum of problem (1) may be found by solving

all the transportation problems (3) where

r>mj>m
2
>... Mk-t

k

X m,-/! (5)

iml

m^Q, m
i

integer.

Clearly, this approach is unsuitable for problems containing many m/s satisfying (5).

However, the lower bound on E
c
given in (4) allows us to develop a more tractable

procedure for approximating the solution to problem (1). Note that the optimal

11

solution of problem (1) is bounded by

Min -1 £ Km*
z

i-i

S.L «>'«i>'n2>...>m
jk
>/

(7)

k

2 m,.-/t

m^O, m
f

integer.

The solution of problem (7) can be obtained in greedy fashion as the following result

shows (Vannelli, 1984).

Theorem 1: The optimal solution of problem (7) is

m
i
— Minim^. "»

;
>'w

(+ i,
«>mj>m

2
>...m

A
>r*

(8)

i-i *

and V m
j
m* rt~

Ĵ
mj^ *or l ™^»^"* !»•••» 1

where m
k + l

- /.

Proof: We prove this result by contradiction. Assume that we can find

{mf. I - 1,2,..., k] such that m>m
1
>m

2
>...>m

k
>t and

-1 2 m,A,.<-l J w'X/.

««i
z

i-i

where the mfs are obtained using formula (8). Letting X, - -— \
f
, we have

*

2 (m'-rrtj) A, >

12 -

and

k

By (9), there exists t e {k, k - 1,..., 1} such that

m
(
—m

(
> 0.

In addition, we claim

m*-m,.>0 V I - 1,2 /. (10)

To show that (10) is true, assume that m
;
—

m

f
<0 for some i e \\, 2,..., t—l}. Then,

there exists a partition \m
t

} such that

m\. » rrtj
, + 1 for some j e {I, 2,..., /- 1}

•• • -

••
m, — m, otherwise

This implies m
(
has not been chosen according to (8). Therefore

1
• » *

Since Xj<X
2
<...< XA , then

t k

2 (m'-m,) X, < - 2 (J"*-"1 ;) X,.

i-l m/+ l

We have a contradiction.

Problem (7) is easily solved in the optimal 2 -decomposition case. Since the

largest eigenvalue of A is Xj — 0, m2
is chosen to be the smallest integer value greater

than or equal to / and satisfying m^ + m
2

n. This result shows that the best

- 13-

weighted cut decomposes the graph into one large subgraph and one smaller one. In

general, we find that the solution of problem (7) by (8) yields a weighted cut which

decomposes the original graph into an equal number of large and small subgraphs

containing almost « and / nodes respectively.

The previous discussion leads to the following heuristic technique for solving

problem (1) and for obtaining bounds on E
c

.

Algorithm 1

Step 1: Choose the number of desired subgraphs k, an upper bound « and lower

bound / on subgraph size.

Step 2: Solve problem (7) by formula (8) to obtain «>mj>m
2
>... >m k

>?

Step 3: Find the k largest eigenvalues Aj<X
2 ^ — ^^jk an(^ corresponding eigenvec-

tors u. of the admittance matrix A. A local optimum for problem (1) is

found by solving the one transportation problem

k It y H.

Min

(ID

-2 S(-7^)*f

s.t. 2 x
u - l v ' - |A—"

/-I

*,;><>•

Step 4: Upper and lower bounds on the sum of the edges cut E
c

for problem (1)

- 14

are

2
,-,

where £M(mj^..,mA) is the sum of the edges cut by the k-decomposition

solution obtained by solving problem (11) and \
]
>X

2 >..-XJk
are the k

largest eigenvalues of A.

Tighter bounds on Ec
for problem (1) can be obtained in (Barnes, 1982a).

4. Improving an Existing It-Decomposition

In general, a k-decomposition obtained by Algorithm 1 will not be optimal, even

locally. For such a partition, it may be possible to decrease Eu(m J
,...,m k) by inter-

changing nodes in the k subgraphs. Kernighan and Lin (1970) describe an 0{n 2
)

routine for performing this. However, this technique assumes that the subgraph sizes

remains fixed and that only two subgraphs are considered at one time. This can be

very limiting when applied to the bounded subgraph constraints considered in problem

(1).

In general, one would like to know if it is possible to interchange subsets of the k

subgraphs to decrease the number of interconnections between subgraphs. In this

section, we describe a new technique for performing this sequence of interchanges.

We take advantage of the bipartite graph structure of GT to accomplish this. The new

k-decomposition improvement method is solved in polynomial time. A linear transpor-

tation problem is again solved at each step.

An improved k-decomposition of the existing k-decomposition is generated as

follows. For each row element i e PA , let s(ij) denote the sum of the elements in

row i that are in subgraph Si. If row i is in the pth subgraph, then let a(i) — s(i,p).

- 15-

We now calculate the change in the sum of the interconnections that result in moving

node i in subgraph S to subgraph S., j+p. Equivalently, we calculate the net gain in

off-diagonal elements in moving row i in block p to block j. This is done by

Note that lR (iJ)<0 implies that by moving node i to subgraph S., the number of

interconnections Eu is reduced by hR (ij). Since the graph representation of GT is a

bipartite graph, we can determine which nodes can be moved to other subgraphs so

that the existing k-decomposition is improved by keeping the columns fixed. This is

obtained by solving the following problem

k m
rowmin(0- Min J J M'V)*,y

Jml f-1

k

s.t. 2 x
or- *• v ' " u m(m " \ pA D

(12)

2 X
ij
< m-m

JR
(t), V;- 1,2,...,*

««1

*i£°

where rrtjR (f) is the number of nodes in PR that are in subgraph 5 at iteration /. A

similar procedure can be found for the columns of B. Letting A
c

(i'v/) represent the net

gain in off-diagonal elements in moving column i in block p to block j, we can deter-

mine which nodes can be moved to other subgraphs so that the existing k-

decomposition is improved by keeping the rows fixed. In this case, we solve the linear

16

transportation problem

k n

colmin(0- Min J 2 V'VXk,;/

S.L J J./y
- 1, V I - U^,|»(« - | P* |) .

(13)

n

i-1

->^°

where m^(/) is the number of nodes in PA that are in subgraph 5 • at iteration /.

Note that problems (12) and (13) are easy to solve transportation problems.

Alternating row and column changes, which most decrease the number of interconnec-

tions are performed at each iteration. After a finite number of steps, no improvement

will be possible and a local optimum is obtained. The constraints imposed on prob-

lems (12) and (13) assume that the bounded subgraph constraints of problem (1) are

satisfied We tie these ideas together in the following algorithm.

Algorithm 2

Step 0: / - 1

Step 1: Given a It-decomposition {S[
f ^

,..., SJf^}, determine its matrix B representa-

tion. Calculate

lR (iJ) A net gain in interconnections in moving row i to subgraph 5J
'

A
c (; J) A net gain in interconnections in moving column i to subgraph 5,

Step 2: Solve problems (12) and (13).

Step 3: Calculate min {rowmin(0, colmin(/')} - c(/). If c(t) - 0, go to Step 6.

-17-

Step 4: If c(f) - rowmin(/)<0, use solution of problem (12) to permute the

appropriate rows of B, otherwise permute the appropriate columns of B.

Step 5: / *- I + 1

Go to Step 1.

Step 6: The new cut is Eu + Z c(t) The best local k-decomposition is

Algorithm 2 is illustrated on the following example.

Example 4.1

Consider the following 7-node example.

Figure 6

We seek the optimal 2-decomposition where / - 2 and * - 4 in problem 1. Assume

that the initial 2 -decomposition is:

S\" - {1,4,7} and S^ - {2,3,5,6}

Step 1:

18

Step 2:

Step 3:

Step 4:

Step 5:

Step 1:

B-

7 5 6

<

OM
ljo

~i i V \

1
J

a r o o i -n
A*" L-i i o oj

The solution of problem (12) is to interchange rows 1 and 4. The solution

of problem (13) is to move column 2 to S
\

l)

rowmin (1) — -2

colmin (1) »

c(l) - -2.

Permute rows 1 and 4 of B

7 5 6

B-

— —

1

1

T V"
1

_ —

l <—2. Go to Step 1.

.(2) (2)
{3,4,7}, S^'- { 1,2,5,6}

A*" Li 1 o oj

Step 2: No rows or columns can be moved by solving (12) and (13)

Step 3: c(2) - 0. Go to Step 6.

Step 6: The new cut is £2
-2 - 3-2 - 1 and s[2) - {3,4,7} s£2) - { 1,2,5,6} is a

local optimal 2-decomposition satisfying problem (1) with « — 4, I — 2.

19-

5. A Numerical Example

The most difficult aspect of implementing Algorithms 1 and 2 is to determine the

linear coefficients of the transportation problems. This is accomplished in Algorithm 1

by finding the k largest eigenvalues and their corresponding eigenvectors. In the case

of very large sparse symmetric matrices (dimension 2000 or greater), an available

FORTRAN code (Cullum and Willoughby, 1984b) allows one to handle such prob-

lems. An APL code called PUSH is currently being used to find the linear coefficients

$R (iJ) and b
c
(i,j) for any partition {s[

f)
,..., S[e)

) in Algorithm 2.

We illustrate the use of Algorithms 1 and 2 on the following 23 machine by 20

pack GT problem given in Figure 7 (Groover, 1980). We attempt to find an optimal

2-decomposition of this problem where « — 29 and I — 14. We solve problem (3) to

decompose the graph into two subgraphs containing 19 and 24 nodes. This yields the

matrix representation B
1
(20 edges cut). This is shown in Figure 8. Using Algorithm

2, machines 4, 16, 19 and 20 are moved to subgraph S
2

yielding matrix representation

B (14 edges cut). Finally, note that pack 42 can be moved to subgraph S
2

yielding 13

edges cut; see Figure 9. We can bound the number of edges cut, E
c
by Algorithm 1

6 < E
c
< 13.

20

Components

1

i

2

3

4
5

6
7
8

9
10

11
12
13
14
15
16
17
18
19
20
21
22
23

24 25 26 27 28 29 3Q 31 32 33 34 35 36 37 38 39 40 HI 42 43

Figure 7

l l 4

1

1

1 1

1

1 1

1

l 5

6

1 1

1

1

1

1

1

1 1 1 l 7

8

9

1 1 1 13
1

1

1

1

1

1

l

l

l

l

l

l

i

14
16
17
19
20

1 i l l l 1 "l" 1 " l 1 ~r i" 1

1

1 l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l i

i

i

i

i

2

3

10
11
12

1

1

1

1

l

l

l

l

l

l l l

l

l

l

l

l

i

i

i i 15
18
21

1 l

l

l l

l

l l l

l

l i

i

i 22
23

25 30 33 34 39 uQ 42 24 26 27 28 29 31 32 35 36 37 38 41 43

20 edges cut

Figure 8

U
c
2
u

21 -

"l 11,1 1

1 1

I 1 1 1 1 1
'

l

1 1
'

1 1 '

II ll

1 1 1

1 I .1
, f VI i i i i i i * * 1

1 ,1 111,111 1 11
1 1'1 11 111 1111 1

1 1 111
1 l'll 111 111 11

! Ill
11' 1 1111

li 1 1

1 '
1111 1 1

1 'ill 111 11 1111 1 1

5

6
7

8

9

13
14
17
1

2

3
u

10

11
12
15
16
18
19
20
21
22
23

25 30 33 34 39 4fJ 42 24 26 27 28 29 31 32 35 36 37 38 41 43

13 edges cut

Figure 9

6. Conclusions

One of the fundamental design problems faced, when a manufacturing plant is

deciding to implement the new technologies of flexible manufacturing systems or group

technology, is the question of what parts to produce on which machines. In this paper,

using the philosophy of production flow analysis (Burbidge, 1975), we have modelled

the grouping of parts/packs and machines as a weighted bipartite graph decomposition

problem.

While this formulation is an NP-complete problem, we have developed a two

phase polynomially bounded algorithm for approximating the optimal solution. Phase

one approximates the original graph partitioning problem by an easily solved linear

transportation problem. The output of this algorithm is to be viewed as a good

starting solution to the grouping problem, which can be improved by the phase two

-22

algorithm. The phase two algorithm takes advantage of the bipartite graph structure of

the GT problem to accomplish this- Both these algorithms have been designed with

the large-scale nature of these problems in mind, and are easily implemented on

computers.

Given that these algorithms may not be optimal, we have derived bounds on the

optimal solution which indicates how good these algorithms perform. This allows the

users to decide whether to seek a better solution. Also imbedded in our algorithms is

the flexibility for users to perform sensitivity analysis on the number of groups that

may be decided.

Further issues that have to be dealt with in this line of research are the conse-

quences of the bottleneck machines (those that are needed by more than one group)

and efficient methods to analyze the costs of perfect decomposition or decoupling of

these groups. These problems are currently being investigated.

23 -

References

Barnes, E.R., "Partitioning, Spectra and Linear Programming", Proceedings of
the 25th Anniversary Waterloo Conference in Combinatorics, (June 1982).

Barnes, E.R., "An Algorithm for Partitioning the Nodes of a Graph", SIAM J.

of Algebraic Discrete Methods, 3, pp. 541-550 (1982).

Burbidge, J.L., The Introduction of Group Technology, Halsted Press, John
Wiley and Sons, New York; Chapter 9 (1975).

Cullum, J. and Dooath, W.E., "A Block Lancos Algorithm for Computing the

q Algebraically Largest Eigenvalues and a Corresponding Eigenspace of

Large, Sparse, Real Symmetric Matrices", Proc. of the 1974 IEEE Confer-

ence on Decision and Control, pp. 505-509 (1974).

Cullum, J. and Willougbby, R.A., Lancos Algorithms for Large Symmetric

Matrices, Volume 1, Birkhouser, Boston, (to appear 1984).

Donath, W.E. and Hoffman, A.J., "Lower Bounds for the Partitioning of

Graphs", IBM J. Res. and Dev., 17, pp. 420-425 (1973).

El-Essawy, LF.K. and Torrance, J., "Component Flow Analysis: An Effective

Approach to Production Systems", Production Engineer, 51, 165 (1972).

Groover, MP., Automation, Production Systems and Computer-Aided Manufac-

turing, Prentice-Hall, Englewood Cliffs, N.J.; Chapter 18 (1980).

Hyde, W.F., Classification, Coding and Data Base Standardization, Marcel

Dekker Inc., New York; Chapter 7 (1981).

Kemighan, B.W. and T in, S., "An Efficient Heuristic Procedure for Partition-

ing Graphs", Bell Systems Tech. J., 49, pp. 291-307 (1970).

King, J.R., "Machine-Component Group Formation in Group Technology",

Fifth International Conference on Production Research, pp. 40-44 (1979).

, "Machine-Component Grouping in Production Flow Analysis:

An Approach Using a Rank Order Clustering Algorithm", Int. J. Prod.

Res., 18, 213 (1980).

and Nakorncbai, V., "Machine-Component Group Formation in

Group Technology: Review and Extension", Int. J. Prod. Res., 20, 117

(1982).

Kusiak, A., "The Pact Families Problem in Flexible Manufacturing Systems",

Working Paper # 06/84, DepL of Industrial Engineering, Technical

University of Nova Scotia (1984).

Lawler, E.L., Combinatorial Optimization: Networks and Matroids, Holt, Rine-

hart and Winston, New York, 1976.

24

McCormick, W.T., Schweitzer, P.J. and White, T.E., "Problem Decomposition

and Data Recognition by a Clustering Technique", Oper. Res., 20, 993

(1972).

Mitrafanov, S.P., The Scientific Principles of Group Technology, Leningrad

(1959); translated by the National Lending Library, (1966).

Reich, R., "The Next American Frontier", Fortune, pp. 97-108, March (1983).

Vannelli, A., "Approximating a Class of Graph Decomposition Problems by

Linear Transportation Problems", T1MS/ORSA Meeting, San Francisco,

May (1984); IBM Research Report RC 10584 (S47380), June (1984).

Vannelli, A. and Vidyasagar, M, "Three Approximate Solution Techniques for

the Optimal k-Decomposition Problem", International Conference on

Systems, Man and Cybernetics, Bombay, India (1984).

25-

HECKMAN
BINDERY INC.

JUN95
K i t pi™? N. MANCHESTER,
Bound -To -PlcasC

|ND|ANA 46962

