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Abstract: The selection of component parts and processors, poses an important problem in the design

and planning phases of cellular manufacturing and flexible manufacturing systems. In most real-life

situations, this grouping invariably leads to "bottleneck" parts and processors. In this paper, we deal

with the issue of identifying the minimal number of bottleneck cells (processors or parts) which, when
dealt with either through duplication of processors or subcontracting of parts, win result in perfect

component-processor groupings with no overlap. The potynomialry bounded algorithms used in the

analysis are oriented towards finding minimal cut-nodes in either partition of the bipartite graph.





1. Introduction

In this paper, we discuss the important problem of finding bottleneck marhmrs that arises when

grouping component-processor families. Ideally, in group technology (GT), one would like to find a

dedicated cell of machines which can be grouped, tooled and scheduled as a single unit. Moreover,

one would like to have the least interaction between such units. Our discussion focuses on efficiently

implementing a grouping analysis using existing route sheet information. This approach was first

proposed by (Burbidge, 197S) and has been investigated by several researchers (Basale and Tripathi,

1981; Kusiak, 1984; Chakravaty and Shtub, 1984; Kumar and Vannelli, 1984). The route sheet in-

formation allows one to model the component-processor grouping as a bipartite graph. If the

bipartite graph has several natural groupings; le., disconnected subgraphs, then there are several ef-

ficient algorithms available for identifying the connected components of the given graph (e.g. Harary

1959, I960; Ogbuobiri, et aL, 1970; Zaborsky, etaL, 1982; King 1979, 1982).

However, the majority of real-life component processor groupings (Le. 200 machines and 2000

components) are connected to begin with or have a large grouping which is connected. In this case,

one wishes to find the smallest number of exceptional components which if deleted would disconnect

the graph. This problem is called the tearing problem, which was first investigated by Steward (1962,

1965). This problem can also be approximated by linear transportation problems (Barnes, 1982;

Vannelli, 1984; Kumar and Vannelli, 1984).

A related problem is to find the least number of machines, which if duplicated or if scheduled

properly would also disconnect the network. These machines are appropriately termed bottleneck

machines. Equivalently, one can define the notion of bottleneck components. A bottleneck component

is a component which normally uses a large number of machines to be completed. In this case, it may

be more desirable to have such components completed outside the actual operation; that is. schedule



and process the other components first and leave the bottleneck components last or have bottleneck

components produced by a supplier.

In this paper, we look at the problem of finding the minimal number of bottleneck machines

and/or components while disconnecting the operation into several groups. We show that this problem

is equivalent to finding the minimal cutnodes of a graph while disconnecting the graph into m sub-

graphs having at most k nodes each. We implement and extend a dynamic programming approach

due to Lee, et al (1979) to find bottleneck cells. This algorithm is a heuristic for finding minimal

cutnodes of a graph given that the designer specifies the number of disconnected groups desired, an

upper bound on the number of nodes in each group and a starting node in each group. The interactive

capabilities of the Lee, et al (1979) approach allows the design to consider a variety of good

groupings. In the final analysis, a grouping may be chosen because of other desirable characteristics.

The intent is to give the designer complete flexibility in the design and analysis of such systems. This

is more in the spirit of currently evolving FMS technology.

This paper is divided into six sections. The bottleneck machine problem that arises in

component-processor grouping is described in Section 2. A generalization to the bottleneck cell

problem is introduced. A description of the minimal cutnode problem and its equivalence to the

minimal bottleneck cell problem is given in Section 3. The heuristic used by Lee, et al (1979) is

outlined. A variation of this heuristic is developed for finding minimal bottleneck machines or

equivalently, minimal bottleneck components is given in Section 4. Applications of the derived al-

gorithm are presented in Section 5. Conclusions are drawn in Section 6.

2. Bottleneck Machine Problem in Component-Processor Grouping

In this section, we describe how bottleneck machine problems arise. This notion is generalized

to the bottleneck cell problem, where a cell can be either machines, components, or both. The

equivalence of the bottleneck cell problem and minimal cutnode problem is shown.



A major restriction in the efficient decomposition of the component-processor matrix into com-

pletely disconnected groups is that often a large number of components requires operations by very

few machines. Another restriction is that a large number of machines is required to produce few

components. King (1980) calls the former situation the bottleneck machines problem.

The 5 machine - 5 component example in Figure 1 illustrates the occurrence of bottleneck ma-

chines and components.

machines

1 1 1

2 1

3 1 1 1

4 1 1

5 1 1 1 1 1

A B C D E

components

Figure 1

Observe that if m«/»hinj» 5 did not have to operate on the 5 components and if component E did not

have to be processed by the 5 machines, the network would become completely disconnected. By

deleting row 5 and column 5, the machine-component matrix is disconnected into two mutually dis-

connected networks as in Figure 2.

1

2

nacbjnes 3

4

A B C D

1 1

1

1 1

1

components

Figure 2

This observation allows us to generalize such operations.



Definition 2.1: A set of machines and components wfaose deletion from the network yields dis-

connected networks is called a bottleneck cell set. If the bottleneck cell set contains only machines,

then this set is a bottleneck machine set. A bottleneck component set is defined analogously.

As a consequence of Definition 2.1, one would like to find the smallest number of ma<»hin»5

and/or components whose deletion disconnects the network. In addition, the designer may wish to

control the number and size of the resulting disconnected networks. Thus, one would like to find the

minimal bottleneck cells satisfying these system constraints.

Definition 12: A minimal bottleneck cell set is the smallest (in cardinality) bottleneck cell set

whose deletion disconnects a machine-component representation into m disconnected subnetworks,

each having at most k machines and components.

The importance of the minimal bottleneck cell set is that is quantifies bow far an operation is from

being disconnected. A small minimal bottleneck cell set implies that it is easy to disconnect the op-

eration; a large set implies that the existing operation may be difficult to disconnect.

Finally, an important consideration in completing the analysis is to determine what is to be done

with the minimal bottleneck cells themselves. One action that may be taken with bottleneck machines

is to duplicate or buy the necessary bottleneck machines to disconnect the components produced by

the bottleneck machine. For instance, in Figure 1, one bottleneck machine #5 can process compo-

nents A and B while another machine #5 can process components C and D. This is shown in Figure

3.



machines

1 1 1

2 1

5(1) 1 1

3 1 1

4 1

5(2) 1 1

components

Figure 3

The advantages of more efficient scheduling and decentralized operations usually outweigh the cost

of the extra machines in the long run.

For bottleneck components, a different approach is used. If a component requires too many op-

erations on it to make it economically viable, then it may be more useful to "buy the parts instead of

making them" as Burbidge (1977) suggests. The Japanese, in their automotive industry, have

excelled in the use of subcontractors, using many more than their U.S. competitors while retaining

quality and low cost characteristics. For example, in Figure 1, component E may be produced by a

subcontractor.

3. Relating Bottleneck Cell Problems to Cutnode Problems

In this section, we describe an existing algorithm for finding minimal cutnodes of a graph subject

to disconnecting the graph into m subgraphs having an upper bound k on the number of nodes in

each subgraph. We show that this problem is equivalent to finding the minimal bottleneck cell set



Consider the 0-1 matrix representation of the bipartite graph having p nodes connected to c

nodes, where ay » 1, if node i is connected to node j. Given that the maximum number of rows and

columns in each group is k, then the minimal cutnode problem is equivalent to permuting the rows

and columns of A into a bordered block diagonal matrix A where the number of rows and columns in

the border of A is minimized.

A*

*!•!

I A2,a,+|

o '",r-iJ
m-1,1 3»*l,! ttf *m+*,m I *»«,»<

1

Figure4

This formulation is equivalent to finding the minimal bottleneck cell set. Let p denote the

number of processors or machines and c denote the number of components. Let A be zp x c matrix

where

*0

if processor j operates on componentj

otherwise.

Then, the minimal cutnodes of A equals the minimal bottleneck cell set

Finding the minimum cutnodes in a graph is known to be an NP-complete problem. However,

an efficient heuristic described in Lee, et at (1982) has proven useful in approximating minimal

cutnodes in several unrelated problem areas. This algorithm attempts to find the minimal cutnode set

for m subgraphs having a constraint size k and an initial starting point in eacb subgraph. We present

it here for completeness.

We begin with the following definition.



Definition 3.1 Let A be a subset of the nodes of a graph G - (V, £). The boundary node set

T(A) is the set of nodes in Kn Ac which are connected to nodes in A. Given the node sets

\A V A2, ... t Am ], the uncommon boundary node set r"U,) is the subset of ru,) such that if

v c TU,), then f i KAj), j*L

Algorithm 1

Step 1: Given that the number of nodes N in a network and a node size constraint k for each

subnetwork, calculate the minimal number of subnetworks given by

-ft1
]

s - L

—

jc—J > •

where [(N — l)/K] indicates the closest integer no smaller than (N — l)/K.

Step 2: For m subnetworks, do Steps 3-6. Initially, m — m.

Step 3: Choose m initial nodes, one for each subnetwork.

Step 4: Form a boundary node set for each subnetwork such that the removal of the set isolates

the subnetwork from the rest of the whole network. Any node contained in more than

two boundary node sets becomes a member of the cutset and it is removed from the list

of boundary nodes.

Step 5: Select a node from each boundary node set and add it to the corresponding subnetwork

such that the number of nodes of the resulting boundary node set decreases maximally

or increases minimally.

Step 6: Repeat Steps 4-5 until every node is assigned to a subnetwork or cutset



Step 7: Repeat Steps 3-6 to find the best solution. If a solution not violating the constraint is

found, stop. Otherwise, increase m by 1 and go to Step 2.

Example 3J

As an illustration of Algorithm 1, consider the following 5 node example given in Figure 5.

Figure5

Suppose K - 3

Stepl:m-[(5- l)/3] - 2.

Step 2: For two subnetworks, m » 2.

Step 3: Choose nodes 1 and 2 as respective starting nodes.

Step 4: Let

T(A) — boundary node set of A

T"(A) — uncommon boundary node set of A

HUD -{3, 5}



r({2})-{4,5}

Thus, node 5 is a cutnode since

r"ai}) - {3}

r"({2}) - {4}

Step 5: Add nodes 3 and 4 to {1} and {2} respectively.

r"({l,3})-l"U2,4})-*

Step 6: All vertices are assigned, node 5 is the only minimal catnode.

Several properties of Algorithm 1 make it useful for grouping component-processor families.

First, this heuristic is polynomially bounded. If v is the average number of edges attached to any

node in the graph G - (V, £), then it can be shown that the algorithm requires 0{ v"*) storage and

0(vm k>g(v'n)) running time. Since many component-processor networks are sparse, the average

number of edges v and the number of groups m tend to be small.

Second, the initial starting points or seeds may be chosen from several practical considerations.

Burbidge (197S, pp. 184-187) uses the "nuclear synthesis" method for grouping. The nucleus that

he uses can be considered as the initial starting point in Algorithm 1. Alternatively, the physical

characteristics of the components and/or processing features may be used to identify starting points.

For example, circular and rectangular parts are more likely found in different groupings. Lathes and

shaping machines exhibit the same behavior.



4. Finding Minimal Bottleneck Machines Only

Algorithm 1 allows the designer to find minimal bottleneck cell sets; however, in many instances

the designer may wish to find only minimal bottleneck machine sets or bottleneck component sets.

In the first case, he may wish to investigate the possibility of duplicating the smallest number of ma-

chines to disconnect his operation. In the latter case, he may wish to find the smallest number of

components to subcontract outside and still disconnect the operation. Allowing the marhin^ to be

one set of nodes in a bipartite graph and the components to be the other set of nodes, the graph is

depicted in Figure 6.

m-MACHlNES ft-COMPOMEMTS

Figure 6

Unlike Algorithm 1 which does not distinguish between machine and component nodes, we wish to

find the minimal cutnodes from only one set of nodes in a bipartite graph.

To accomplish this we generalize the notion of an edge between machines. Note that two ma-

chines m
1
and nu are linked only through components

10



MACHINES

COMPONENTS

Figure 7

Thus we modify Algorithm 1 to choose cutnodes from one and only one set of nodes of the bipartite

graph as follows. Algorithm 2 deals with the case of minimal bottleneck machine cell sets. A similar

algorithm can be derived for bottleneck components.

Algorithm 2

Step 1: As in Algorithm 1, define

A'w«n — number of machines

JKnnn - upper bound on martiinrs in each group

Choose corresponding number of initial groups ffu,, where

'"man
r *m,n-n

"
L *~n J'

Step 2: Same as in Algorithm 1

Step 3: Choose rn^^ initial machines. Assure that selected machines are not linked through

components. Add all the components attached to these machines.

11



Step 4: Same as in Algorithm 1. Note that only marhm* nodes are chosen at this stage.

Step 5: Select a marhrnr node from each boundary node set and add it to the corresponding

subnetwork such that the number of nodes of the resulting uncommon boundary node

set is decreased maximally or increased minimally. If two boundary machine nodes are

linked by a component, then only one of them may be added to the existing sets. Add

the remaining component nodes attached to machine nodes that have just been added

to m sets.

Note: This last operation along with the restriction that no two machine nodes have a

common component are added to each network assure that cutnodes are only machine

nodes.

Step 6: Same as in Algorithm 1.

Step 7: Same as in Algorithm 1.

Algorithm 2 is illustrated on the following example

Example 4.1. Consider the 5 component, 4 machine example given in Figure 8.

COMPONENTS MACHINES

Figure 8

12



LetA^-2, AUn-"*

Stepl.m^- [^-7^] "

Step 3: Choose machines 6 and 7 as initial machines. Note they are not linked by components.

Attach components 1, 4 to machine 6 and components 2, 3 10 machine 7.

Step 4: T({6, 1, 4}) - {8} - r"({6, 1, 4})

r({7,2,3})-{9}-r"({7,2,3})

Step 5: Since machines 8 and 9 are linked by component 5, choose to add only one to the ex-

isting sets, say machine 8. Thus the existing sets are augmented to

{6,1,4,8,5}, {7,2,3}

Step 6: The minimal bottleneck machine is machine 9.

Algorithm 2 has an additional important feature. Since the number of machines is small in real-

life examples; Le., in the order of 200 maximally, the polynomial bounded storage and running time

allow even the APL test codes to run quickly. We show this in the next section.

5. Numerical Results

Algorithms 1 and 2 have been coded in APL and were run on an IBM 4341 machine at T.J.

Watson Research Center. Algorithm 1 has also been coded in FORTRAN (Lee, et al, 1979). The

two codes have been tested on many medium to large-sized problems. We report results of these two

algorithms on two test cases found in the existing literature.

13



Example 5.1

The first example is a 16 machine-43 component example in King and Nakomchai, (1982, pp.

128-129). This GT problem is shown in Figure 9. King's ROC algorithm decomposes this problem

into 4 groups. The bottleneck cells set contains the machines 6 (which is duplicated two times) and

8 (which is duplicated three times). An exceptional element exists in the final decomposition depicted

in Figure 10.

e

components

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43_
1 1
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On applying Algorithms 1 and 2 with the starting machine nodes 1, 4 and 7, m - 3 , and K - 30,

the minimal bottleneck ceil set and minimal bottleneck machines set contain marhin^ 6 and 8 also.

However, unlike King's results, no exceptional elements have to be dealt with after duplication. Each

machine is duplicated two times. See Figure 11. The running time was 1.01 seconds CPU time.

'i

e

components

7
10

1

2

3
9

14

16

4

5

11

12

13

IS

6

8

i? n ->s a ii » 3 4 6 7 10 17 18 28 32 34 35 38 37 38 49 42 3 5 8 9 11 14 15 16 19 20 21 22 23 24 27 29 30 33 41 43,
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J

ill i i i i i l

J-J
1 1

J U-J 1 L-L-L
1
J_L_L

T
1

Figure 11

Example 5.2

The following real-life example considered by Burbidge (1973) illustrates the order of magnitude

improvement that is often possible with these algorithms. Burbidge consider the following data from

Black and Decker Ltd. (see Figure 12). Machines 3, 4, 8, 10, 12 and 24 were not considered since

they did not process components. On applying Algorithm 2 with starting machine nodes 7 and 17,

m^n - 2, and Kaan - 26, the minimal bottleneck machines were found to be 1, 31, 32, 33, 34.

Thus, if these five machines are duplicated, perfect decomposition results. This is shown in Figure

13. The running time was 2.65 seconds CPU time. King and Nakomchai (1982) need to duplicate

eighteen machines with the ROC approach. They obtain six exceptional elements also.

15
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6. Conclusions

In every manufacturing facility, two commonly found characteristics are component subcon-

tracting and machine duplication. The former is usually used as a strategy to reduce capacity re-

quirements while the latter is used to increase capacity available.

In this paper, we have outlined the use of these strategies to streamline the manufacturing system.

The production system, comprising of components and processors, are grouped to form component-

16



processor families so as to reduce interaction between families. The two strategies of subcontracting

and duplication can be used to perfectly decompose the system into non-overiapping families. This

decomposition allows the management to contemplate the use of cellular manufacturing technologies

or even the implementation of flexible manufacturing systems on each of the component-processor

families.

The choice of the strategy, either subcontracting or duplication or both, is left to the designer.

In most cases, the economics of machine duplication and the strategic/economic circumstances of

subcontracting will dictate the best way to group component-processors. The algorithms developed

in this paper will serve as a decision aid to generate possible groupings and the minimal bottleneck

cells; Le., components to be subcontracted or processors to be duplicated.

The algorithms suggested are very efficient and perform a better partition on a 16 machine-43

component problem and on a 36 machine-90 component problem than the clustering algorithms

proposed by King (1980), King and Nakomchai (1982) and Burbidge (1973). An order of magni-

tude improvement can be obtained by translating these APL codes into higher-level language codes.

This is the next phase of the research. Based on this limited testing, the storage and running time

considerations, the proposed algorithms may serve as important decision aids for a designer of cellular

manufacturing systems or a flexible manufacturing system.

17
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