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We establish the monotonicity of second-best optimal contracts in the cost-benefit

principal-agent model developed by Grossman and Hart (G-H). For a three-state, finite-

action version of the model, we prove that the monotone likelihood ratio condition (MLRC)

on the probabilities of outcomes guarantees that the optimal payment to the agent is

monotonically increasing in output. We estabish a key result that exposes an error in an

example that cause G-H to impose conditions stronger than MLRC in order to obtain

monotonicity. This result is instrumental in our proof of the monotonicity of second-best

optimal incentive schemes.
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MONOTONICITY OF SECOND-BEST
OPTIMAL CONTRACTS

By George E. Monahan and Vijay K. Vemuri

1. INTRODUCTION

In a seminal paper, Grossman and Hart (hereafter denoted G-H)(1983) introduce the

cost-benefit version of the principal-agent model and derive many interesting properties

of optimal sharing rules. Some of their analysis relates to the monotonicity of second-

best optimal sharing rules. In "first-order" principal-agent models, a "standard" condition

guaranteeing that the optimal payment to the agent is monotonically increasing in output

is the Monotone Likelihood Ratio Condition (MLRC). MLRC places restrictions on the

probabilities of outcomes specified as functions of the agent's action. In first-order mod-

els, the agents choose from a continuum of actions. To assure uniqueness of the action

that solves the agent's incentive compatibility condition, a second requirement, called the

Convex Distribution Function Condition (CDFC), is also placed on the output probabil-

ities. See Rogerson (1985) for a discussion of first-order agency models. Milgrom (1981)

discusses the general issues associated with monotonicity in contractual settings.

Using a three-state, three-action numerical example, G-H claim to demonstrate that

MLRC alone is not sufficient for monotonicity in their cost-benefit model. To establish

monotonicity, they invoke fairly strong conditions.

In this paper, we show that the G-H example contains a flaw that reopens the issue

of the sufficiency of MLRC. Could a more judicious choice of parameter values rectify the

example? One contribution of this paper is to prove that in the three-state version of the

cost-benefit model, the answer to this question is no. The result we use to investigate

the numerical example also plays a pivotal role in the proof that MLRC alone is indeed

sufficient for monotonicity of second-best optimal contracts.

Our analysis is done entirely within the general cost-benefit framework of G-H. We

assume, however, that there are only three underlying states of the world. We do permit

any finite number of actions are available to the agent. Even with the restriction to three



states, the monotonicity result is surprisingly difficult to establish. Indeed, the entire paper

is devoted to this single task. Our result suggests that MLRC is sufficient for monotonicity

in the general, finite-state cost-benefit model. We are currently exploring ways in which

the results established here can be used to prove this conjecture.

The paper is organized as follows. We briefly review the cost-benefit model anc

introduce the bulk of the notation in the next section. In Section 3, we discuss MLRC

and the G-H numerical example. Next, we present and prove a result that illuminates th<

fallacy in the G-H example. Section 5 contains preliminary results related to monotonicity

Finally, Section 6 contains the proof that in the finite-action, three-state cost- benefit

model, MLRC does indeed imply the monotonicity of second-best optimal contracts. A

tedious proof of an intermediate result is relegated to an Appendix.



2. THE COST-BENEFIT PRINCIPAL-AGENT MODEL

We briefly review the cost-benefit model, adopting the notation of G-H (1983). See

G-H for complete details.

Notation:

qit i = l,...,n

A = {a1 ,...,am }

Ii

U(a,I) = G{a) + K{a)V{I)

u

Real-valued outcomes ordered so that

qx <q2 < • • • < qn .

Set of m actions available to the agent.

Probability of outcome qt
given action

a G A is taken.

Expected gross benefit to the principal

if action a G A is taken by the agent.

Payment to the agent when the outcome is q{

Utility of the agent given action a G A
and payment I.

V(-) is assumed to be strictly increasing and

strictly concave so that h(-) is well-defined.

Agent's minimum utility.

CFB (a) = h
[
— — I First-best cost associated with action a 6 A;

\ K
\
a

) J

C(a)

the agent's reservation price for selecting

action a.

Cost of implementing action oGi.

We employ the same assumptions as G-H:

1. (a) G(-) and K(-) are real-valued, continuous functions defined on A, and K is pos-

itive; (b) for all ai ,02 6 A and IJeI = (/, oo),G{ai ) + K{ai )V{I) > G{a2 ) +
K(<h)V(I) => G(ai ) +K{a l )V(I) > Gia?) + ^(oajVf/).

2. [U - G[a]]/K[a) eU = {v\v = V(I)} for some / G I for all a € A
3. For all a G A and i = 1, . .

.
, n, 7r< (a) > 0.

4. The principal is assumed to be risk neutral.



Assumption 1 implies that the agent's utility of income be risk independent of action.

The functional form of the utility function is more general than the additively separable

utility functions assumed in much of the agency literature, and admits additively and

multiplicatively separable functions as special cases.

Assumption 3 eliminates the ability to infer actions from outcomes, thus establishing

a "real" moral hazard problem.

Assumption 4 follows the preponderance of the analysis in G-H. Risk-neutrality of

the principal avoids having to make utility comparisons between the principal and agent.

It also permits the principal-agent problem into two parts. First, the principal determines

the least (expected) cost way of implementing each of the m actions in A. An output-

based incentive scheme IXi ...
i
In is said to implement action a* £ A if Ix , . .

.

,

In solve the

following mathematical programming problem:

Program 1:

n

min >^ -Ki{a)Ii

»=i

s.t.

2_\ TTi {&* )U (a* , Ii) > U (individual rationality)

»= i

n

^TTiia^UiaJt) > ^^(ajt/fa,/,) for all a € A.

(incentive compatibility)

Given the incentive schemes for implementing each action, the second phase of the

cost-benefit approach is entered. The principal chooses the action that maximizes his/her

net expected payoff. The optimal action is a solution to the following mathematical pro-

gram:

Program 2:

maxf BfaJ-^TT^a)/,
j

.

If a* G A is a solution to Program 2 and Ilim ..
t In implements action a* , then

/i, . .
. , I„ is called a second-best optimal incentive scheme. Our objective is to identify

conditions under which a second-best optimal incentive scheme is nondecreasing in output,

or equivalently (given the ordering on output), is nondecreasing in t,t = 1, . . . ,n.

Since V(-) is assumed to be both strictly increasing and strictly concave, h(-) is strictly

increasing and strictly convex. Let v, = V(J<), for t = l,...,n. Given the assumptions on



U(-, •), an important feature of the cost-benefit approach is that Program 1, with decision

variables Ix , . .
.

, /„ , can be written as an equivalent mathematical program with decision

variables vx , . .
.

, vn . The new program has a convex objective function and a finite number

of constraints that are each linear in the v^'s. To denote the explicit dependence of Program

1 on a* G A, we write the equivalent program as:

Program l(a*):

C(a') = min V 3r<(a*)fc(v<)
• l, ...,»

»'= 1

s.t.

G(a* ) + if (a*
)^ 7r€ (a* ) Vi

> U

n n

G(a*) + K{a)J2*iia*) vi > G (°) + K(a) ^^(a)Vi for all a € A.

»=1 i=X

The Kuhn-Tucker conditions for Program l(a*) include the following:

(1) h'M = a+ Yl **
aj€A

_» m

K(a')- Y, *KM
aj€A

_s •

.7rt (a*)
for all t,

where A, \tx , . . .

,

pm are nonnegative Lagrange multipliers.



3. MLRC AND THE G-H NUMERICAL EXAMPLE

There are two requirements for establishing the monotonicity of second-best optimal

incentive schemes: the incentive scheme associated with some action must be nondecreasing

in the state-descriptor and that action must be selected by the principal.

Suppose the X and Y are nonnegative random variables with densities / and g,

respectively. These random variables are said to have the Monotone Likelihood Ratio

(MLR) property if f(x)/g(x) is nondecreasing in x. In the principal-agent context, MLRC
holds if, for a, a' G A, a' •< a implies that wi (a')/iri (a) is nonincreasing in i, where u<n

denotes a complete ordering on A defined as: a' < a if and only if CFB (a
1

) < CFB (a).

Since the state-descriptor i enters the optimality conditions (l) only through

7r,-(ay)/7rj(a*), monotonicity of the incentive scheme that implements some action a* € A

follows if 7r, (ay)/7Tj (a*) is decreasing in t for all actions ai for which /Zy > 0. If \ij is

positive for some action a, that is "larger" than a*, 7ri (a,j)/'Ki (a*) is increasing in i, thus

confounding the demonstration that MLRC is sufficient for the monotonicity of second-

best optimal sharing rules. In an attempt to demonstrate what can go wrong, G-H present

the following numerical example:

n = 3, m = 3, V(I) = (37)
1/3

, h{v) = -v\

Also

U = ->/2+ — \/-, and Kia) = 1 for all a.
4 12V 4

v }

i = l t' = 2 t' = 3 G(a
3 )

(2) ill"^333-113
3 12 4 3

a, 2. i _i_ o1 3 4 12

-y/2 _ i /l
12 4 V 4

-7 fr

It is clear from (2), that MLRC holds. The solution to Program 1(^2) is:

Vl =0, w3 =\/2, v3 = J 7
-, X = 1.25, fi x

= 2.0, ^3 = 1.0, and C^) = 0.571.

Also, C{a l ) = 0.0333 and C(a3 ) = 0.7432. Notice that v2 > v3 so the incentive scheme

that implements a? is not monotone. Notice also, that n x > and n3 > 0, implying

that the agent is indifferent between taking action a? and both actions a : and a3 . G-H

(page 24) remark, "The reason monotonicity breaks down ... is because, at the optimum

6



[in Program 1(02)], the agent is indifferent between a?, the action to be implemented, ai,

a less costly action, and a3 , a more costly action."

The example is complete if it can be shown that it is optimal for the principal to choose

action a2 . G-H state (page 24) that u
. . . it is easy to show that we can find q1 < q2 < (73

,

such that

(2a) 5(02) - 0(0*) > max{£(a3 )
- C{a3 ), 5(ai )

- C(a1 )}
n

leading them to conclude that
a

. . . the optimal incentive scheme ... is not nondecreasing

despite the satisfaction of MLRC." In the next section we demonstrate that this final claim

is false.



4. A SUFFICIENT CONDITION

Within the context of the numerical example in the previous section, the problem of

finding q x < q2 < q3 that guarantee that a? will be optimal for the principal is expressed

as the following problem:

Find numbers q x , q2 , q3 that satisfy the following system of linear inequalities:

3 3

53^W* ~C(<h) > 53^W* ~C(a3 )

»=i »=i

3 3

(3) 22 m (a^ )q4 - C{o2 ) > 2J 7T, («i )ft
~ C(ax )

»=i »=i

q-i > qi

<lz > ?2 •

Notice that in (3)
tt>" replace

a>" since any solution to (2a) necessarily satisfies (3).

Our first result identifies sufficient conditions for there not to be a solution to a

particular system of linear inequalities. We then show that the conditions are satisfied in

the G-H example.

Consider the following system of linear inequalities:

53 a»fc > A i

i= 1

3

53 Aft >a2

(4)

92 ~ Qi >

?3 - Q2 >

qit i = 1, 2, 3 unconstrained in sign.

We assume that the parameters Ah A2 , a*, ft, t = 1, 2, 3 satisfy:

a x < a2 < a3 , ft > ft >ft,

a x < 0, a3 > 0, ft > 0, ft < 0, A2 <

and 53°^ = 53& =0.
»=i »=i

PROPOSITION 1. Suppose that (5) holds. If A ly/A2 < min{a 1 /ft, a3 /ft}, then there is

no solution to (4).



PROOF: Using Gale's Theorem of the Alternative [see, e.g., Mangasarian (1969), page 33],

(4) does not have a solution if there are variables y x , y2 , y3 , y* that are each non-negative

and that are all not zero, that satisfy the system of equations

(6)

where

Ay=b,

o=i 01 -1 °\ ~yi'
-0-

«2

(*3

ft

03

1 "

!
y =

y2

V3
and b =

At A2 o7 -y4 - .1.

A =

We will show that under the hypotheses, (6) always has a solution so that (4) does not.

Since X^,= i
<*» = ^,= 1 0* — 0> ^ne sum °f the ^TS^ three rows of A is zero, and the

rank of A is less than four. It is straightforward to determine that the rank of A is three

and that there are an infinite number of solutions to (6). The general form of the solution

is:

y2

ya

y4

= t

(i-a 1 0/a2

[ft -(A x ft -A3ttl )t]/Aa

[-ft +(A x ft -A 2 a3 )*]/A2

where £ is any real number.

Since ft > and A2 < 0, y3 can be positive only when A x ft > A 2 a x or, equivalently,

when

(?)

Similarly, y4 can be positive only when

(8)

A x ai

A2 ft

Ai a3

A2 ft"

If (7) and (8) are both satisfied, then there is a non-negative solution to (6) with at least

one Vi > and there is no solution to (4). Q.E.D.

We now use Proposition 1 to prove that within the context of the G-H example, there

is no solution to (3), implying that action a? will not be chosen by the principal. Let

(9) ai = 7^(02) - iti{a x ) and ft = ^(a?) - 7i\(a3 ), i = 1, 2, 3.

9



It is straightforward to show that MLRC implies that these a's and /?'s satisfy (5). Let

(10) Ax = 0(0-2) - C(ai ) and A 2 = C{a?) - C(a3 ).

Note that in the example, A 2 = 0.571 - 0.743 = -0.172 < and Aj = 0.571 - 0.033 =

0.538 > 0, as required. In the numerical example, ax /& = (1/3 - 2/3)/(l/3 - 1/12) =

-4/3, a3 / (33 = (1/3 - l/12)/(l/3 - 2/3) = -3/4. Since A x / Aa = 0.538/ - 0.172 =

—3.128 < —4/3 = min{a! / lt a3 j /?3 }, the principal would never pick action 02 in the

G-H example. We will now show that this example cannot be rectified by a more judicious

choice of parameter values.

10



5. MONOTONICITY: SOME PRELIMINARY RESULTS

Denote the matrix of the probabilities of outcomes as functions of action as:

(11) <*i Pi P2 P3

Ch ?4 Ps Pe

a3 Pr Ps Ps

)wi:ag relations hold:

a. Pa - Pi < o e. Pi/Pa > Pi/Ps

b. p4 - p7 < f. Pi /Ps > Pz /Pe

c. p6 - p3 < g. Pa/Pi > Pb/Ps

d. p6 - p9 < h. Ps /Pa > Pe /Pa

(12)

Without loss of generality, number the actions so that a x < a? < a3 ; i.e., CFB (ai) <

CFB (a^) < CFB (^3). Since a x is the least-costly action, it follows that C(a 1 ) = h[(U —

G(a 1 )/K(a 1 )]
= CFB (%). (Action a x can be implemented be setting 7, = CFB {a y ) for all

It is easy to show that an optimal incentive scheme is monotone if C(a3 ) < C(a2 ).

The principal prefers action a3 to action a^, since MLRC implies that £(a
t ), the gross

expected benefit accruing to the principal, is nondecreasing in z. MLRC also implies that

7r, (a^/iTi (a3 ) is decreasing in i for j = 1,2, and 3. Therefore, the incentive scheme that

implements a3 is monotonically increasing in output. Since the incentive scheme that

implements action o x , the only other action that could possibly be second-best optimal, is

constant, it also is monotonic.

In light of the discussion above, if there is a non-monotone sharing rule, it is when a2

is a second-best optimal action. From now on we will concentrate on the optimal incentive

scheme that implements action a?. Let v* = {v[,v*,vl) denote such an incentive scheme;

i.e., v* is a solution to Program 1(02).

The incentive scheme v* is non-monotone if h'[v*) > h'(vl) for k > i. Suppose

h'{v[) > h'(v*), which, in light of (l), implies that

w> E**(%>3g}<£**(%>S|3$-
y=i,3 v ' y=i,3 v '

Let n'. = HjKfo), j = 1,2,3. Using (11), write (13) as:

(ia\ 1 P 1 , P? ^ , P2
, , Ps

(14) n\ — -I- /z'
3
— < p' — + n'3

—.
P* Pa Pb Pb

11



The only other possible non-monotonicity is ^'(t;^) > h'(v^), which can be written as:

(15)
, Pi . , Pa . , Pa , Pq

Mx — + M3— < Mi — + M3— •

Pb Pb Pe Pe

In summary, the optimal sharing rule is non-monotone if, and only if, either (14) or (15)

hold.

It will be convenient to write (14) in the following form:

/ Pi p2

"

- 1 Pa Pt"
Ml — <M3

— —
.p* Ps. .Ps P*.

The bracketed terms on the left and right side of the inequality are each positive by MLRC
conditions (12e) and (I2g), respectively. Therefore, (14) is equivalent to

Pa P7

("')
M'i

M3

< Pb

Pi_

P4

Pa

_ P*_

Pb

= 1

Similarly, (13) can be written as:

El _ Pa_

(15')
4 < Pe Pb = 6
M3

Pb Pe

The ratios 7 and 6 are used to characterize the structure of the optimal sharing rule.

Suppose that 7 < 6. Then \i\lli'3 < 7 implies that h'(vl) > h'(v^) > h'{v^), which

can never be optimal by Proposition 5 in G-H (which states that an optimal second-best

incentive scheme cannot be nonincreasing in output for all states). If 7 < \i\f\i\ < 6,

then h'(vl) < fc'(w') and h'(v*
2 ) > fc'(t/*). Finally, if 7 < n'Jn'2 , then k'(v*) < V(w*) <

h'(vl). Analogous statements hold when 6 > 7. Note that since h(-) is strictly increasing,

h'{v') < (>) h'(v'
k ) is equivalent to h{v') - h{v'k ) < (>)0.

Let

(16)

x = h{vl) - h(v'2 ), y = h(v;) - h{*l) %

9 = min{7,6}, = max{7, £}, and

We summarize the discussion above in tabular form as follows:

r <6 d<r<6 r>6
(17) 7 < 6 NA+ x < 0, y < x < 0, y >0

7 > 6 NA+ x > 0, y > x < 0, y >
+ "NA" means tt

ruled out by Proposition 5, G-H"

12



The next result provides an important linkage to Proposition 1, the sufficiency condi-

tion in Section 4. We use this result to reduce the number of cases that must be examined

in the proof of the main result given in the next section.

Proposition 2. IfaJ^ < (>) a3 //?3 , then 7 < (>)<5.

PROOF: Deferred to the Appendix.

We are now in position to state and prove the main result of this paper.

13



6. THE MAIN RESULT

In this section we prove that MLRC implies monotonicity of second-best optimal

incentive schemes in the three-state cost-benefit model. The proof uses ideas developed in

the previous sections: we show that if, for some action there is an incentive scheme that

is not monotonic, then it will never be optimal for the principal to choose that action.

In light of the discussion in Section 5, non-monotonicity can only occur if 0(02) <

C(a3 ). Therefore, we assume that this condition holds and examine the case where

(18) Ai > and A 2 < 0,

with A x and A 2 as defined in (10).

We now state the main result of this paper.

THEOREM. In the three-state, m-action cost-beneGt principal-agent model, MLRC im-

plies Ii < I2 < I3 , where 7X , I2 , h is a second-best optimal incentive scheme.

PROOF: Let v* = (v* , v\ , v*z ) and w* = (w{ , w^ , u>3 ) denote optimal solutions to Program

l(a2 ) and Program l(a3 ), respectively.

Suppose that the incentive scheme that implements action a? is not monotonic.

CLAIM, v* is feasible in Program l(a3 ).

PROOF OF CLAIM: The constraints of Program 1(02) are:

3

(19) GM + KMj^ViMvi >U

3 3

(20) G(a2 ) + Kfa) J2*<Mvi >GM+KM ^2*iM*i

3 3

(21) GM + KM^Vifafa >G(a3 ) + K{a3)J2*iM v
i

and the constraints of Program l(a3 ) are:

3

(22) G(a3 ) + tf(a3 ) 5^(05 )u/< > U
t=i

3 3

(23) G(a3 ) + K{az )£ jr< (a3 )wt
> G{a, ) + K(ax )£ tt, (a, )w

t

3 3

(24) G(a3 ) + tf(a3)£ 7^(03)^ > G^) + tf^) ^.(a,)™,,.

»=i »=i

14



Since v* is not monotonic, it follows that (21) also holds as an equality when v = v* .

(MLRC implies that 7rt (c^ )/7r» (a? ) is decreasing in i and that 7i\ (a3 J/^ (a? ) is increasing in

i. The only way in which v* can not be monotonic is if /x3 , the coefficient of 7ri (a3 )/7ri
{a2 )

is positive, which, by complementary slackness, implies that (21) holds as an equality.)

Since (21) holds as an equality, (24) is obviously satisfied, (22) follows from (19), and (23)

follows from (22). Q.E.D

From (10),

Ai __ Vi=l *i(<h)h(v:) - h{(U - Gja^/KM]

<

(25) <

Zl^iJchMv;) - h{(U - Gja^/KM]
n-i**W*W)-Etxin(«.)M<)

EL^(a»)%)-Cs i^(«iK)

<
ELi M^K*) - E,

3

=1 ^(a3 )/i(v;)

with a< and /?,, t = 1,2,3 defined in (9). The first inequality follows since v* is feasible

in Program l(os) and tu* is optimal in this program. Therefore, £3

=1 7ri (a2 )/i(iy*) <

2Ji=i *i[<h)h(v?). The second inequality follows since CFB (a x ) = C(a x ). The last in-

equality follows from the convexity of h(-).

Since ct x + a2 + a3 = & + /?2 + /33 = 0, we eliminate a2 and /?2 in (25) to obtain

A, tti [frfo) - Jt(t;
a*)] + q3 [fe^j - h(v'

2 )\

(26)
a2 a [h(vD - h(v

2 )] + & [h(v;) - fcfa)]

where x and y are defined in (16). Proposition 2 asserts that there are only two ways in

which v* cannot be monotonic. We examine each case separately. (Recall that the a's and

/?'s defined in (9) satisfy (5).)

Case 1: ajfit < a3 //?3 .

15



By Proposition 2, we know that in this case the only possible non-monotonicity is

x < and y < 0. Suppose R > a x j^ x . Then (/?i a3 — a x ^3 )y < 0. Since y < 0, this

implies that flia3 — a l (33 > 0, which in turn implies that a3 //?3 < tti//?i 5
a contradiction.

Therefore, using (26), A 1 /A 2 < iE < minfc*!//?! , a3 //?3 } and so by Proposition 1, (3) has

no solution.

Case 2: c^/ft > a3 //?3 .

Again using Proposition 2, the only possible non-monotonicity is x > and y > 0.

Suppose R > a3 /fi3 . Then {(33 a x
— a.3 (3i) > and that (33 a x

— a3 /?i > 0. Since a; > 0,

this implies that a 1 /(31 < o:3 //?3 , which again is a contradiction. As in Case 1, A x /A 2 <

R < minfai//?!, a3 /(33 } and again invoking Proposition 1, (3) has no solution. Q.E.D.

The proof does not hinge on the fact that we only consider three actions. Suppose

there are m > 3 actions. Let a* denote some action for which there is a non-monotone

incentive scheme. Let a{ denote an action that is "smaller" than a* and has the property

that the agent is indifferent between e^ and a* in Program l(a*); if a* is the least-costly

action, the incentive scheme that implements a* is constant with respect to i and hence

is monotone. Let a
}
denote any action that is "larger" than a* and also has the property

that the agent is indifferent between a
3
and a* in Program l(<z*). If such an a

i
does not

exist, monotonicity follows directly. Otherwise, label the three actions as a x = aiy a? = a*
,

and a3 = a, . The theorem in this paper says that if the incentive scheme that implements

a* is not monotone, it is not optimal for the principal to select action a* .

University of Illinois at Urbana- Champaign
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APPENDIX

Proof of Proposition 2: From (14') and (15'),

Ps /ps - Pr l?\ Po /Pe - Ps /Ps

(Al)

sgn(7 - 6) = sgn

= sgn

.Pi IP\ - Pi IPs Pi IPs - Ps /Pe

_

P4Ps - P5P7 P5P9 - PePs

.PiPs - P2P4 P2P6 - P3P5 .

Substituting p2 = 1 — pi — p3 , p5 = 1 — p4 — p6 , and p8 = 1 — p7 — p9 into (Al) yields:

. . [p4 (l -Pt -Ps) -P?(l -P4 -Pe)
sgn 7 - 6) = sgn — { }- r

LPi(l -P4 -Pe) -P4 (l -Pi -P3)

p9 (l -p4 -p6 ) -Pe(l -P? ~Pq)

p6 (l -Pi -p3 ) -p3 (l -P4 -Pe)

/ . r,\ \P* - Pi + PeP? - P4P9 Po - Pe + PeP? ~ P4P9
(A2) = sgn

.Pi - P4 + P3P4 - PiPe Pe - Pz + P3P4 - PiPe .

Let

(A3)

a = Pq ~ Pe > by (12d) 6 = p6 - p3 > by (12c)

c — P4P9
—

PeP7 > by (12g) and (12h) ^ = PiPe —
P3P4 > by (12e) and (I2f)

e = Pa ~ Pi > by (12b) / = Pi - P4 by (12a).

Note that in the derivation leading to (A2), 6 — d = p y pb
— p2 p4 > by (12e) and that

f - d = p2 p6 - pz pb > by (I2f).

We use the following results.

LEMMA 1. Suppose that a',6',c',<2',e', and /' are positive numbers such that (i) a' /&' >

c'/d' > e'/f, (ii) b' > d', and (iii) /' > d'. Then

(A4)
o' - c' € - c'

If -d'
>
f -d!

PROOF: Multiply both sides of a'/b' > c'/d' by b'/c' to obtain a'/c' > b'/d'. Therefore,

(o' - c')/c' > (6' - d')d', which implies that (a' - c')/(b' - d') > c'/d', since V - d' > 0.

Similarly, c'/d' > e'/f implies that e'/f > f'/d', so that (e' - c')/c' < (/' - d')d'.

Therefore, (e' - c')/(f - d') < c'/d', since f - d' > and (A4) is obtained. Q.E.D.

LEMMA 2. If o",6",c", and d" are positive numbers such that a"/b" > c" /d", then

a"/b" > {a" + c")/(b" + d") > c"/d".

PROOF: Similar to the proof of Lemma 1 and is omitted.
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Note that with the definitions in (A3), (A2) becomes

sgn(7 - 6) = -sgn
a — c e — c

b-d f-d

The definition of the primed variables in Lemma 1 depend upon the sign of (o^ //? x
—

a3 //33 ). We assume the following:

1. Ifajfii <a3 //33 , then a' = a, 6' =6,...,/' = /.

2. If ajfc > a3 //?3 , then a' = e, b' = /, c' = c, d' = d, e' = a, f = b.

In the inequalities that follow, the first relation holds under Condition 1, while the paren-

thetical relation prevails under Condition 2.

Using (A3), hypothesis (i) of Lemma 1 is

(AS) ?L^Pl > (<)
** - *«> > (<) *Z».

Pe ~ Pz PaPz "PiPe Pi — Pi

From the comment following (A3), hypotheses (ii) and (iii) of Lemma 1 are satisfied. If we

show (A5) holds, Lemma 1 implies that sgn{^ — 6) = —sgn(a 1 //3 i
— a3 //?3 ), completing

the proof.

The hypothesis that ai//?i < (>) a3 /(33 implies that

Pi (Po ~ Pe

)

/ % Pa(P4 - Pi)

Pi(Pe ~ Pz) Pa(Pi -P4)

or, invoking Lemma 2,

(A6)
Pa ~Pe / x P1P9 ~ PiPe + P3P4 - P3P7

Pe - Pz PiPe - P1P3 + P1P3 - P3P4

Now (p9 - p6 )/(p6 - Pz) > (<) (P4 - Pt)/(Pi - P4) implies that

(
A7

) P1P9 "PiPe +P3P4 -P3P7 > (<)p4 P9 -PeP7-

Substituting (A7) into (A6), yields

P9 - Pe / v P4P9 ~PeP7 __ PeP7 -P4P9

Pe~P3 P1P6-P3P4 P3P4-P1P6

and the first inequality in (A5) is satisfied.

Using a similar argument, axjpx < (>) a3 /fi3 implies that

P?(P9 ~Pe) / x P9 (P4 -P7)

P7 (Pe -Ps) P9 (Pi ~P4 )

19



or

/Ag x PtPq - PrPe , * P9P4 "PoP?

P7P8 - P7P3 P9P1 - P9P4

Since the numerator and denominator in (A8) are both positive, it follows from Lemma 2

that

/.gN P4P9 -P6P? / x P9P4 -P9P7 __ P4 - Pi

P?Pg - P7P3 + P9P1 - P9P4 P9P1 - P9P4 Pi - P4

From (A7), we see that the denominator of the left-side of (A9) is greater than (less than)

Pi Pe - Pa P4 • Therefore,

(A10)
P<P"- p6P7 > (<) ?^i.
Pi Pe - P3 P4 Pi - P4

Multiplying the top and bottom of left-side of (A10) yields the second inequality in (A5).

Q.E.D.
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