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ABSTRACT

The classical paradigm of asymptotic theory employed in econometrics presumes that

model dimensionality, p, is fixed as sample size, n, tends to infinity. Is this a plausible meta-

model of econometric model building? To investigate this question empirically, several meta-

models of cross-sectional wage equation models are estimated and it is concluded that in the

wage-equation literature at least that p increases with n roughly like rc
1 /4

, while that

hypothesis of fixed model dimensionality of the classical asymptotic paradigm is decisively

rejected. The recent theoretical literature on "large-p" asymptotics is then very briefly sur-

veyed, and it is argued that a new paradigm for asymptotic theory has already emerged which
explicitly permits p to grow with n . These results offer some guidance to econometric model
builders in assessing the validity of standard asymptotic confidence regions and test statistics

and may eventually yield useful correction factors to conventional test procedures when p is

non-negligible relative to n.

Research supported by NSF Grants SES-8408567 and SES-8605595. A preliminary ver-

sion of this paper was presented at the 5th World Congress of the Econometric Society in

Cambridge, Mass., August 1985. The author wishes to express his thanks to S. Portnoy, A.

Pagan, N. Keifer, L. MaGee, C. Manski, and G. Chamberlin for interesting conversations

and/or correspondence on the subject of this paper. They are not accountable, of course, for

any of the contents.





1. Introduction

The classical paradigm of asymptotic theory in econometrics rests on the following "wil-

ling suspension of disbelief." We must imagine a colleague in the throes of specifying an

econometric model. Daily an extremely diligent research assistant arrives with buckets of

(independent) new observations, but our imaginary colleague is so uninspired by curiosity and

convinced of the validity of his original model, that each day he simply reestimates his initial

model-without alteration-employing his ever-larger samples. Is this a plausible meta-model

of econometric model building? Casual observation suggests that it is not. The parametric

dimension of econometric models seems to expand inexorably as larger samples tempt the

researcher to ask new questions and refine old ones. Indeed, this natural temptation is for-

mally justified by the extensive literature on pre-testing and model selection. As larger sam-

ples improve the precision of our estimates, our willingness to accept bias in exchange for

further improvements in precision inevitably declines. This viewpoint is quite explicit in the

non-parametric regression literature for example.

In the next section we propose a simple, yet we hope plausible, meta-model of the

econometric model specification process. And we present some empirical evidence on the

specification of cross-sectional models of wage determination. We conclude from this exercise

that the parametric dimension of wage models grows roughly like the fourth root of the sample

size. The hypothesis of classical asymptotic theory that parametric dimension is fixed, i.e.,

independent of sample size, is decisively rejected. Should this crude empirical finding cause

us to abandon our cherished beliefs in the consistency and asymptotic normality of

econometric methods? Are the approximations suggested by fixed-/? asymptotic theory

"irrelevant" to the "real world" of econometric practice? In Section 3 we argue, on the con-

trary, that the forthright admission that p—»oo with n, offers an opportunity for a challenging

and much more informative new form of asymptotic theory. We briefly review results of

Huber (1973) on the large sample theory of the least squares estimator in linear models with



p^oo. Results of Yohai and Marrona (1979), Portnoy (1984,1985), and Welsh(1987) on

large-p asymptotics for other M-estimators are then surveyed. It is hoped that this exercise

will encourage others to think more critically about the dominant paradigm of asymptotic

theory now employed in econometrics and contribute to the construction of a more realistic

asymptotic paradigm.

2. Econometric Practice: A Meta-Model of Wage Determination Models

Models of wage determination offer an unusually rich and revealing source of data on

the practice of model specification in econometrics. The "wage equation" pervades the

applied econometrics literature: models of discrimination in employment, the effects of unions,

returns to education, compensating differentials, etc. The development of several large scale

panel surveys of labor market experience has facilitated the rapid growth of this empirical

literature.

A meta-model is, of course, a model of models. As suggested in the previous section, we

are primarily interested in modeling the dependence of the parametric dimension of models,

say p, on the sample size of the available data, say n. Since the proposed dependent variable,

p, is inherently a positive integer it is natural to begin with Poisson models in which the inten-

sity (or rate) is taken to be some parametric function of the sample size and perhaps other

characteristics of the research.

The data which we will analyze consists of 733 wage equations reported in 156 papers in

mainstream economics journals and essay collections over the period 1970 to 1980. These

papers deal with a variety of issues including returns to human capital, union effects discrimi-

nation, market structure effects, compensating differentials, etc. They are all cross-sectional

models, and predominantly the cross-sectional unit is an individual, although in some cases it

is some aggregate of individuals like a state, or industry. For each equation we observe the

number of parameters estimated, the sample size, date of publication, and subject classified



into four categories. We also record the number of equations reported in each paper which is

used to weight the observations. Inevitably, there are ambiguities in interpretation of the data.

What constitutes an equation? Usually, this is quite straightforward, however, occasionally

one finds samples split by age, race, sex, etc., and estimated with and without homogeneity

constraints on the coefficients. Our policy in these cases was to interpret the disaggregated

form of the equation as a single equation with say, mp, parameters, not as m distinct equa-

tions with p parameters. Frequently, there are non-wage equations in the surveyed papers;

these are remorselessly ignored. Equations must have wage, or some function of wage as the

dependent variable. Throughout, we have weighted observations on equations by the recipro-

cal of the number of equations appearing in the published paper. This tends to alleviate the

problem of over-representation in the sample by a few (candid) "fishing" enthusiasts.

With the advent of the large panel datasets of labor economics, including census samples,

some of the sampled wage-equations have exceedingly large sample sizes. A histogram of the

meta-sample sample sizes is given in Figure 2.1. Since the horizontal scale is logarithmic in

the figure, it is apparent that wage-equation sample sizes are roughly lognormally distributed.

It would be barbaric in the extreme to adopt a notation in which p was regressed on n ,

so we will revert to the more civilized convention of denoting our observed dependent vari-

able by y, the sample size variable will be denoted z, and the vector of explanatory variables

will be denoted x. Our meta-sample size, 733, may thus be denoted simply as n, and the

dimension of x by p. This notational recursion makes the world safe for meta-meta-

econometrics.

For the Poisson model we may write, for a typical observation

P(Y=y) = e-*\ y /y\

while the rate parameter A is expressed, e.g., as,

A = exp(x/3) = exp (^ + £2 log z

)



In this form, the expectation and variance of the random variable Y are of course, both equal

to the value A. This is not entirely implausible since we might expect that the dispersion of

model size would increase with its expectation. The Poisson hypothesis is obviously much

stronger than this vague presumption of monotonicity and may be subjected to rigorous test.

This problem is addressed explicitly below.

The first, simplest, and therefore perhaps the most compelling, of our estimated meta-

models yields 1

log A = 1.336 + 0.235 log z n n
(0.149) (.017)

V '

Thus, roughly speaking, a 1% increase in the sample size of a wage determination model

induces a 1/4% increase in the number of parameters of the model. This parsimony elasticity,

or for the sake of brevity, "parsity," is, , the critical parameter of meta-econometrics. It will be

denoted as tt below. To put it slightly differently, p
A/n is roughly constant over the range of

observed wage equation models. It must be emphasized that the maintained hypothesis of

classical asymptotic theory that the dimension of parametric models is independent of sample

size: /?2 = in (2.1) is decisively rejected by the data. Unfortunately, our simple Poisson

bivariate model is unsatisfactory in several respects:

1.) It predicts poorly for small n, implying negative degrees of freedom for n < 10 and

extravagantly prodigal models for n < 100.

2.) The model, in GLIM parlance, is seriously overdispersed, i.e., the Poisson hy-

pothesis that V(Y) = E(Y) is not supported by the data. The usual GLIM diagnostic

is the estimated scale parameter

^ = (n-p)-1E(y i
-X

i )
2/X

i

is 4.73 in this case and significantly different from the hypothesized value of one.

3.) There are a few highly influential observations with z.'s (sample sizes) above

500,000.

1 All estimation of Poisson models reported in this paper was carried out in the GLIM
(Generalized Linear Interactive Modeling/System Release 3 Baker and Nelder (1978) see also

McCullagh and Nelder (1983). Reported standard errors beneath the coefficients in all Pois-

son models are based on the GLIM quasi-likelihood model of McCullagh and Nelder(1983) in

which V{Y) = (PE(Y) with a2 a free parameter, estimated as in point (2) below. If should be
emphasized that in cases of overdispersion (a

2 > 1) strict adherence to the Poisson assumption
can seriously bias standard errors toward zero.



The narrow confidence interval on the coefficient of log z in (2.1) constructed condi-

tional on this specification of the meta-model is far too optimistic. We have experimented

with several alternate forms of the model. The obvious tactic of introducing a log quadratic

term is (unfortunately) extremely sensitive to the observations alluded to in point (3.) above.

With those observations, we obtain,

log A = -.438 + .663 logz -.0245 (log zf (2 2)
(£12) (.118) (.0067)

v
*

'

while without them we have,

log A = 1.737 + .0581 logz + .01543 (logz)2 (2 3)
(512) (.128) (.0078)

v
'

'

In the former the model predicts that model size declines after roughly n = 100,000, whereas

the latter implies smoothly increasing parsity. In both cases parsity at mean2 sample size (n «

1000) is roughly comparable to our simple model, ir - .32 for (2.2) and * = .27 for (2.3). It is

admittedly disturbing to find that the rise and fall of parsity is so sensitive to a few observa-

tions from our meta-sample. However, such sensitivity, especially in quadratic models, is

often inevitable. Further, one may wish to question whether the observations with n >

250,000 are really drawn from the same population as the other observations of our meta-

sample. For these cases, computational considerations enter the model specification process in

a nontrivial way and may eventually come to dominate the "scientific" considerations which

we emphasized in Section I.
3 Thus we believe that there should be some a priori preference for

(2.3) over (2.2).

Of the five subject categories which we have used to classify the papers only "discrimi-

nation" seems to have a significant (positive) effect. The others, "human capital", "unionism",

and "women" are indistinguishable from the catch-all "general" category. Contrary to the

2 Since sample sizes are logged this mean is geometric.
3 This comment may seem to undercut our contention that p—*oo with n, which if taken

absolutely literally is evidently asymptotically computationally infeasible. Of course, what is

relevant is what happens in the range of practical experience which in the case of wage equa-
tions seems to be roughly sample sizes in the range 50-500,000. Here the evidence seems
overwhelming that p increases gradually with n .



plausible hypothesis that increased computing power has led to bigger models over time, the

inclusion of an explicit annual trend yields a negative, but insignificant, coefficient. Neither of

these auxiliary subject or vintage variables have a substantive effect on the relationship

between model dimension and sample size and they have been omitted from the reported

models.

We have also experimented with models in log (log n). The estimated Poisson model

log A = -.777 + 1.947 log log z n a\
(315) (.148)

yZ"H}

yields a slightly better fit than our simple meta-model (2.1) and at mean sample size it implies a

parsity of n = .28. This "law of the iterated logarithm" form of the meta-model has the attrac-

tive feature that the parsity parameter is proportional to the reciprocal of log (sample size),

and therefore tends to zero as n —»co albeit slowly. Figure 2.2 illustrates the differences among

the four models reported above with respect to parsity as a function of sample size. One sees

clearly in the Figure that the differences between the functional forms are primarily in the

extremes of the observed sample sizes.

We have emphasized above that all of the Poisson models suffer from over-dispersion,

that is, the estimated conditional variance of dependent variable is considerably larger than

the conditional mean that is predicted by the Poisson model. One interpretation of this over-

dispersion in Poisson models is that there is some inherent variability in the rate parameter A

around its hypothesized (log) linear form. The classical approach to treating this (common)

syndrome is to hypothesize a random intercept for the rate equation, with a gamma distribu-

tion and on integrating out this random coefficient one obtains a negative binomial model for

the dependent variable. See Appendix A for details. This approach may be traced to

Anscombe (1949) who applied it in entomology. A recent application in econometrics is Haus-

man, Hall, and Griliches (1983), and an extremely insightful view of this problem and

parametric heterogeneity in general is provided by Chesher(1984), and Cox (1983).



Tests for parametric heterogeneity in Poisson models may be developed along the lines

suggested by Lancaster (1984) based on Chesher (1984), White (1982), Cox (1984) and others.

The basic information identity

D = £V2 log/+£(Vlog/V log/) =

and its extensions may be used to construct tests which are readily computed as nR 2 from a

regression of a column of ones on a matrix of n by p(j? + l)/2 elements of D augmented by the

matrix of gradient "observations" g =Vlog/ evaluated at the maximum likelihood estimator.

"Explanatory power" in this regression suggests systematic departures in the fitted model from

the hypothesis that D and g have zero expectation. Several of these tests have been conducted

restricting attention to the components of [Djg] corresponding to the intercept parameter in

A A
the log A equation. Here the test is particularly simple since d

{
= Cv,-A.)

a - A,- and

Si = y% - A, where A, = exp(;c,3). The test statistic is 133.1 for meta-model (2.1) for example,

which is clearly an implausible value for a central x
2 random variable on 2 degrees of free-

dom. In this context, this "White test" is closely related to the GLIM diagnostic referred to

above, see Cameron and Trivedi(1985) for detailed discussion.

Unfortunately, the negative binomial model while quite attractive from a number of per-

spectives is somewhat unwieldy computationally. Estimation in GLIM may be carried out by

conditioning on the variance parameter, but this approach yields unsatisfactory (conditional)

estimates of standard errors. Some exploratory forays have been made using the negative

binomial model and the remarkable quasi-maximum likelihood estimation software of Spady

(1984). This approach is somewhat capital intensive, but avoids the labor of coding analytical

derivatives, and has the virtue of producing statistically reliable standard errors.
4
In the simple

loglog model we obtain

log a, = -.679 + 1.9001oglog z
(365) (.200)

4 Standard errors are computed by numerical approximations to the general quasi-mle
formula V - J~l

I J~l where / denotes Edlogf /d0d\ogf /d0' and J denotes Ed2
\ogf /dOdd'

.
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with 7 = 1.51 (.14). Here £Y, = ati so the parsity parameter has the same interpretation as in

the loglog Poisson model and it is somewhat comforting to observe that the results are essen-

tially indistinguishable from that model.

3. Asymptotic Theory: A Practical Paradigm

We are thus faced with the familiar dialetical discrepancy between theory and practice.

Theory offers us a static view of the econometric model, a model "cast in concrete," unper-

turbed by the influx of new data. The practice of econometrics, however, offers quite a dif-

ferent, more plastic, view: models gradually expanding and elaborating themselves in response

to the availability of new data. How are these views to be reconciled?

The answer, of course, is to expand the paradigm of classical asymptotic theory. Huber

(1973) was apparently the first to observe that, under rather mild regularity conditions on the

sequence of designs, consistency and asymptotic normality of the least-squares estimator in

linear models was possible if p In—>0. These results are quite elementary, on the same level as

the fixed p asymptotics which are done in introductory graduate courses, and therefore

should be better known. To my knowledge, only the recent text of Amemiya (1985) treats any

of these questions.

To illustrate the general approach consider the simplest application to the classical linear

model with iid disturbances: the asymptotic behavior of the least-squares estimator. For fixed

p , and error distributions with finite variance, we know that 0-*0o , strongly if and only if

(XX)~l—(). See Lai, Robbins and Wei (1979), for a proof of this surprisingly delicate result.

For p—*oo with n, consider the "hat" matrix H = X(X' X)~lX' We know the following:

ha e [0,1], tr(H)= p , HH = H Thus, since 9=Hy, we have

k=l

so by Chebyshev's inequality



P[\9i-Eyi \
>e]<^-4 (3-3)

e
2

Thus j>,—

>

p x,£ if /i*— 0; the converse is also true, see Huber(1973). Note that

h=msixih ii
>n~1Yl

h
ii
=n~1Tr(H) = p/n, so h-*0 implies p/n->0 so p/n-*0 is necessary, but not

sufficient, for weak consistency.

Now consider an arbitrary linear function of 3, say a '3, |M| = 1. Assume F isn't Gaus-

sian, and reparameterize so that X'X = I
p

Hence, = X'y and a = a'P = a'X'y = s'y

where s 's = a'X'Xa = 1 so Var(a) = a2 Then a straightforward applications of the Linde-

berg Central Limit Theorem implies that a is asymptotically Gaussian if and only if

A

max,- \s, |

—(). Bickel(1977) has reformulated this as: estimable functions a'/3, are asymptoti-

cally Gaussian with natural parameters if and only if the fitted values are consistent.

These results for the least squares estimator are extremely encouraging. What happens in

nonlinear cases? The simplest nonlinear case is robust regression for linear models. Here all

the nonlinearity seems to be very well circumscribed, however, already, serious difficulties

arise. Huber (1973), on the basis of informal expansions and Monte Carlo experimentation

conjectured that p
2/n-*0 was necessary to achieve a uniform normal approximation for a typ-

ical M-estimator in the absence of any symmetry conditions on the error distribution. Subse-

quently, Yohai and Marrona (1979) showed that p
zl2h—*Q implied a uniform normal approxi-

mation, but this means, since h~p /n, that p
B/2/n would be sufficient. Huber (1981) conjec-

tured that ph —»0 was sufficient and that yfph —>0 was necessary if the error distribution was

permitted to be asymmetric. For symmetric errors one might hope that h —*0 was sufficient as

in the least-squares case. Huber (1980) contains an elementary proof for the case p
2h—*Q.

Portnoy (1984, 1985) has substantially improved these results and verified an important

conjecture of Huber. In particular, he shows that under quite mild regularity conditions on

X, p{logn)/n-*0, suffices for norm consistency of M-estimators based on (smoothly) mono-

tone functions. Asymptotic normality is more problematic, and under slightly stronger regu-



10

larity conditions, Portnoy shows that if (p log/? )
zl2/n —+0 then a uniform normal approximation

is possible. Note that this essentially, except for the factor (log/? )
3/2

, verifies Huber's conjec-

ture. Unfortunately, Portnoy's arguments which are based on stochastic expansions are

extremely delicate. The situation is somewhat easier for monotone V, but even there the argu-

ment is difficult.

Recently, Welsh(1987) has provided an elegant, unified approach to M-estimator asymp-

totics based on the stochastic equicontinuity of associated M-processes - stochastic approxi-

mations to the defining normal equations of M-estimators. One virtue, among many, of this

approach is that it yields large-p asymptotics for a somewhat larger class of M-estimators. In

particular the treatment of an unknown scale parameter is treated with in this framework, as

are instances of non-smooth M-estimators. In the latter category, the /^regression estimator

and other so-called "regression quantiles" see (Koenker and Bassett(1978) and Koenker and

Portnoy(1987)), are shown to be asymptotically Gaussian as p—k» provided that

p
z{\ogn)2/n—*Q. This is somewhat more stringent that the rates of /?

2(log«)2+Vrt—>0 for 7>0

derived by Welsh for smooth M-estimators.

While the importance of the classical linear regression model in econometrics can hardly

be over-estimated, there are numerous related estimation problems which also require an

asymptotic theory with parametric dimensionality tending to infinity. In a remarkable paper,

Sargan(1975) addresses certain implications of large-/? asymptotics in simultaneous equation

models. Related results appear in Kunitomo(1981). In time-series there are numerous places

where one is naturally led to sequences of models whose dimensionality tends to infinity.

Hannan(1985) mentions some examples in a recent interview. Non-parametric regression in

its many guises is the most obvious example: here recent work by Elbadawi, Gallant, and

Souza(1983) has emphasised the centrality of the dimensionality-choice problem. Various

semi-parametric models, typically involving density estimation of an infinite dimensional nui-

sance parameter, also require an asymptotic theory with p-*oo. In short, large-/? asymptotics
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are an essential element of many of the current developments in econometric theory. And we

are led to conclude that both the theory and practice of econometrics currently demands an

asymptotic theory which explicitly considers model sequences for which p—>oo with n.

A. Epilogue

Perhaps we should pause here to reconsider some implications of the results surveyed in

the previous section for the wage equation literature considered in Section 2. Recall that our

empirical meta-model of wage-equations implied that p
4/n was roughly constant over the

observed range of sample sizes. Thus, the foregoing results would appear to be extremely

encouraging. However, we should be careful to remember that they rely on certain regularity

conditions on the sequence of designs in addition to the rate conditions on the growth of p.

These conditions as Portnoy shows are satisfied by design sequences drawn at random from a

distribution "not too concentrated in any fixed directions." Such conditions, in a simpler form,

already arise in the case of least squares where h-*0 implied p/n—>0 as a necessary condition,

but clearly the h condition, is much more stringent. For example in the p sample design it

requires that the number of observations in each cell tends to infinity as n—>oo.
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Appendix

Given independent negative binomial observations, y,-, on random variables, Y,, parame-

ters (a, ,7) we have log-likelihood,

/ (a,7 ) = £ log(r(y,- +a, ))-logr(a,- )-logr(y,- + 1 )+y, log(7/( 1 +7))-<*. log( 1 +7)
«=i

In this model, £7, = /x,- = <*,7 and FY, = Hi+n?/~t Now, if we take, a,- = exp(x,/3) we might

have for example,

log£y, = log7+£ 1 +/32logz,-

and it is straightforward to to compute elasticities from this expression. It is also clear the the

variance of Yt
increases quadratically with the mean, in contrast to the Poisson model, but

that as 7—>oo we obtain the Poisson model as a limiting case. Readers interested in a further

exposition of this model and variations thereof, are urged to consult the recent survey by

Trivedi and Cameron(1988). It also should be noted that misspecification of the form of the

heteroscedasticity in models of this type typically leads to inconsistency of the estimator of the

regression parameter. This point is explored in detail in Pagan and Sabau(1987), and may be

attributed to the lack of block diagonality in the information matrix when the covariance

parameters depend upon the regression parameters.
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