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Abstract

The purpose of this note is to demonstrate that Freeland's [6]

modification of Ruefli's Generalized Goal Decomposition model [10] can

generate nonoptimal solutions. Although it is theoretically possible

to overcome these difficulties, degeneracy makes an optimal implementa-

tion of the modified GGD model difficult to achieve.
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On the Optimality of the Modified Generalized Goal
Decomposition Model: A Numerical Example

1. INTRODUCTION

Several years ago, Freeland [6] suggested that Benders' decomposi-

tion algorithm [1] could be used to overcome deficiencies in Ruefli's

three-level Generalized Goal Decomposition (GGD) model [10]. In de-

veloping and testing a set of computer codes that could implement a

group of two-level and three-level "composition" (see [11] for an elab-

oration of this term) models [4, 6, 7, 10, 12], it was discovered that

Freeland' s formulation still has computational deficiencies.

2. THE MODIFIED GGD FORMULATION

The three-level organization modeled by the GGD is given in

Figure 1. The organization consists of a central unit, M management

units (k = 1,...,M) and N operating units. Define a set of integers

r through r , with rn equal to zero and r equal to N such that oper-
M U M

ating units r .+1 through r are subordinate to management unit k.

The mathematical structure of Freeland 's modified GGD is given in

equations (1) through (9). Equations (1) through (4) specify the cen-

tral unit's problem, while equations (5) through (7) and (8) through

(9) provide the formulation of management unit k and operating unit

i, respectively. Nonnegativity requirements although not provided are

of course applicable,

The notation used in equations (l)-(9) differs slightly from that

found in either [6] or [10]. Instead, it follows the more general struc-

ture seen in Lasdon [9, pp. 150-151].
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!entral Unit

M
Min 2 a (t+1) (1)

k=l
K

s.t. a
k
(t+l) -

k
(x)G

k
(t+l) 2 Z*(x) -

k
(T)G

k
(x) (2)

for k = 1,...,M and x l,...,t

,VkG
k
(c+1) T G

o
(3)

k=l

G. (t+1) > for k = 1 M (4)
k —

In this subproblem, G (x) is a vector of goals assigned to manage-

ment unit k on iteration x, and G
n

is a vector of stipulations for the

central unit. P, is a matrix relating management unit k's goals, G, (x),

to Gn . . (x) is a vector of dual variables at iteration x associated
k

*
with constraint (6) in the k-th management unit's problem. Z, (x) is

the optimal value of the k-th management unit's objective function at

iteration x.

Management Unit k (k=l,...,M)

Min Z
k
(t) = W^Y^Ct) + \\(t) (5)

r
k t

s.t. Z Z B.X.(x)X.(x) - I Y. (t) + I Y. (t)=G.(t) (6).,,11 l m,k m.Ic k.

i=r. .+1 x=l k k
k-1

t

Z X.(x) = I for i = r +l,...,r (7)

x=l

where I is the (ni xm. )-identity matrix.
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This problem is a standard goal programming formulation that

+ + - -
minimizes weighted deviations W, Y,(t) and W Y,(t) from the goals

specified for management unit k on iteration t, G, (t). B. is a matrix

that relates the i-th operating unit's vector of proposals on iteration

t, X.(t), to G,(t). Finally X.(x) is a scalar included to generate the

convex combination requirement in the Dantzig-Wolfe decomposition pro-

cedure [2] •

Operating Unit i (i=r +1 , . . . ,r )

Min -IL (t) B. X.(t+1) (8)
k li

s.t. D.X.(t+l) 4 F. (9)11 > l

Here D. is a matrix of technological coefficients relating the

vector of operating decisions or proposals for operating unit i,

X.(t+1), at iteration t+1 , to a vector of stipulations, F . • A discus-

sion of the modified GGD iterative solution procedure is given in [6].

3. DISCUSSION

The principal motivation for using Benders' partitioning con-

straints within the GGD model can be seen in a paper by Freeland and

Baker [7]. This two-level model consisting of a central unit and a

group of M subordinate managers (k = 1,...,M) is a straightforward

application of Benders' algorithm, which was originally defined as

a two-level decomposition model. Hence convergence and optiraality of

the Freeland and Baker two-level model can be demonstrated via Benders'
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proofs. Unfortunately extension of the proofs of convergence and "

optimality to the three-level model proposed by Freeland is not straight-

forward.

A Breakdown in Coordination

In order to construct the partitioning constraints used in the

highest level problem of his decomposition procedure, Benders required

the optimal solution for each subproblera (SP, , k=l,...,M) at the second

level of the decomposed problem on every iteration. In the three-level

model, however, subproblem SP, is an overall problem obtained via an

ensemble of subproblems belonging to management k and its subordinate

operating units (i = r +l,...,r ). In a three-level GGD context,

subproblem SP, is "solved" via the Dantzig-Wolfe decomposition algorithm,

On a given iteration the solution of the generalized linear programming

problem normally requires several interactions between a given manage-

ment unit and its subordinates. Unfortunately Freeland and Ruefli

advocate a single interaction between each manager and its operating

units on each iteration of the GGD.

Actually Freeland did not directly address himself to this issue.

Instead in footnote 1 on page 101 of [6], he states:

the interaction between management unit k and

operating unit j ,k is not discussed in this note
because Ruefli' s procedure handles this with no

shortcomings.

Ruefli's position is given in his Figure 2 (see [10], p. B-509). Here

Ruefli clearly advocates a single interaction between operating unit

j ,k [operating unit i (i = r +1, ..., r ) in this paper] and
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manager k on each iteration t. In this figure on iteration t, the vec-

f
t

)

tor, K , flows simultaneously to both the central unit and operating

unit j ,k. This flow of information is described on page B-509 , lines

3 and 4 of [10]. Using IT 5 and equation (2.j.k) ([10], p. B-506),

operating unit j ,k then generates a proposal, A. , [X.(t+1) in this
J » * !

presentation] . Simultaneously the central unit solves its problems

using this same II , vector to generate G,

If one were to assume more than one interaction per iteration,

manager k would initially pass II ,
* [note that it is necessary to

include an interaction counter, (t,l)] to its operating units. A

series of interactions would continue between manager k and its operat-

ing units until the optimal solution to the overall problem for manager

k and its operating units is ascertained, given the current value for

(t) (t T*)
G . . Let H be the vector of simplex multipliers for manager k's

optimal decision at iteration t. For Benders' algorithm to be imple-

(t T*)
mented correctly, only II should be sent to the central unit. The

central unit must not receive the simplex multiplier vectors, II, '
,

(t,T*-l)

k

As a result of a breakdown in coordination within the GGD, the

solution of the Dantzig-Wolfe restricted master for subproblem SP,

(i.e., the k-th manager's problem) will probably not generate the

optimal solution for subproblem SP, given G (t). Accordingly the
is. tC

simplex multiplier vector, II (t), does not necessarily represent the

optimum dual solution to subproblem SP, • In addition, objective

function value for subproblem SP, is probably suboptimal. From an
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implementation viewpoint nonoptimal (dual infeasible) simplex multi-

pliers and objective function values can have a dramatic impact upon

the solution process. These nonoptimal inputs introduce cutting

planes into the central unit's problem, and once introduced they

remain for all subsequent iterations. [See equation (2).]

A Numerical Example of Nonoptimality

The following example shows the potential for nonoptimality in

Benders' algorithm when subproblems at the lower level decision-making

units are not solved optimally. This example was originally formu-

lated by Burton, Damon, and Loughridge [2]. Freeland [5] later showed

that Benders' partioning procedure could be applied to this problem.

In his application, the problem has two divisions whose subproblems

are given below.

Division I (on iteration t)

max = x + x

s . t

.

t t t
(

tv
X
ll

+ X
12

< b
ll

(V
2x

ll
+ 3X

12
< b

12
(V

2

C)

x!\ + 3x5« < 30 (vh
'11 12

t
2x, .. + X.J2 * 20 (v,)

'11* x
12

>0

Division II (on iteration t)

max = 2x + x

s.t. ^x21
+ x

22 * b
21 ^ Z

l^

3X
21

+ 2*22
< b

22
(Z

2
5

< 10 (zp

< 10 (z
A

)

X
21

+ X
22

< 15 ^ Z 5^

x

L

21
t

22

k21»
x
22

>0

For these problems v.(i=l, ..., 4) and z.(j=l, ..., 5) are the dual

variables of Division I and II on iteration t, respectively. The

coordinator's problem in this two-level hierarchy on iteration t is



} (T-l, ..., t-1)

-8-

t t
max a

1
+ a

t T, k t, k . .x
s.t. aj - v

x
bu - v

2
bu < ^

t T. t T,t . ,T
CJ„ ~ z,b„, ~ z„b„„ < £„
2 1 21 2 22 2

b
C

+ b
fc

< 41
11 21

12 22

t t t t
b , b . b , b >
11* 12* 21' 22

Freeland [5] gives Che solutions of the coordinator's problem for the

first three iterations. On the third iteration, an optimum solution

to this problem (multiple optimum solutions do exist) is given as

a^ = 10 b^ = 15 b^ = 20

o\ = 26 b^ = 26 b
3

n = 42

On iteration 4, the optimum solution values for Division I's problem

are:

4 4 4
6
±

« 10 x* =10 v^ =

4 4
x
12
=0 v

2
- .5 .

The solution of Division II ' s problem on iteration 4 requires three

tableaus. The solution values for each tableau are given in Table 1,

4 4
where H and II are the first two components of the simplex multiplier

vector for iteration 4.
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Table 1

Values for Division II' s Subproblem on Iteration Four

4 4
II IT

1

4
4

X
21

4

22
n

20 '10

25 10 5

2 20 10

3 25 10 5
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At the optimum, the simplex multiplier equals the dual solution

4 4
implying Chat (z.. , z ) = (0,0). Note for this example the first two

components of the simplex multiplier vector equal the first two compo-

nents of the dual solution vector at each tableau.

The coordinator's problem on iteration 4 is:

Max 4 +
4

°2

s. t

.

4
°1

4
°2

• Z5bn

4
°1

4
°2

• 5b
12

4
°1

4
°2

4
0bn-

bn'

• 5b
i2

b
l2

b
l2

< 5

- Ob^ - .5b*
2

< 5

<

" 0b21- b
22

<0

< 10

4 44-obn - ob
22

<*
2

+ b
21

< 41

+ b
22

< 62

bu , b*r b*
2

>0

4
If <L is set to the optimum value of 25 then one of the multiple

optimum solutions to this problem is given by Freeland as:

4 4 4
a = 10.5 b* = 16 b

12
= 22

4 = 25
.

b
21 * 25 b

22 ' 40 "
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Thus for iteration four the optimum value of the coordinator's objective

function is 35.5, and this is the optimum solution to the overall problem,

Suppose that a feasible but nonoptimum solution for Division II was

passed to the coordinator on iteration four. In particular, assume that

the solution corresponding to the second tableau was transmitted. In

this case, the sixth constraint of the coordinator's problem on itera-

tion four,

4 4
a
2

< rf

2
= 25,

becomes

:

4
a
2

< 20

The optimum solution to this revised problem is:

4 4
a* = 10.5 o\J

= 20,

which implies that

a* + a* = 30.5 < 35.5.

Because the constraints placed in the coordinator's problem on itera-

tion 4 remain for all subsequent iterations, the solution process is

thus destined to nonoptimality.

It is important to note that in this example, only a nonoptimal

objective function value was introduced. In most cases, an infeasible

dual solution would also be passed if subproblera SP, were not optimally

solved. This situation will further exacerbate the ability of the

Benders' partioning procedure to achieve the optimal solution.
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4. CONCLUSION

Based upon the preceding example it is clear that if the opti-

mality of manager k's solution to subproblem SP, cannot be demon-
rC

strated at every iteration, the optimality of Freeland's three-level

model cannot be demonstrated. Theoretically, these difficulties could

be a eliminated by allowing manager k and its subordinates to interact

via the Dantzig-Wolf e algorithm until the optimal solution to SP, is

obtained. Unfortunately the goal programming structure of this

problem often makes the Dantzig-Wolf e procedure difficult to implement

because the solution of the restrictive master for SP, tends to be
k

highly degenerate [8]. This degeneracy mathematically implies the

existence of multiple optimum solutions for the dual of this problem.

When multiple optimal dual solutions exist for the Dantzig-Wolfe

restricted master, a viable convergence criterion is often difficult

to implement. When the Dantzig-Wolfe algorithm was applied to several

test problems with a structure similar to that of subproblem SP, , it

converged to and remained at the same nonoptimal objective function

value for several iterations (sometimes ten or more) before displaying

further progress toward the optimum solution. No foolproof stopping

criterion has been developed that does not compromise to some degree,

the basic mathematical intent of the decomposition procedure. Thus an

optimal implementation of Freeland's three-level model, though theore-

tically possible with the proposed modifications, may be computationally

difficult to achieve.
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