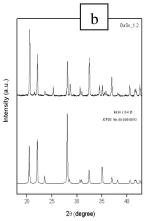
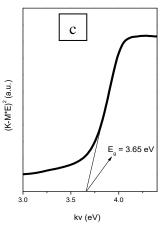

PRELIMINARY STUDIES ON THE SYNTHESIS AND CHARACTERIZATION OF BaSn(OH)₆ AS A PRECURSOR FOR PEROVSKITE BARIUM STANNATE CERAMICS


<u>Cristian Casut</u>^{1,3}, Marinela Miclau¹, Daniel Ursu¹, Nicolae Miclau², Iosif Malaescu³, Alina Zamfir^{1,3}


¹ National Institute for Research and Development in Electrochemistry and Condensed Matter, 1 Plautius Andronescu Street, 300224 Timisoara, Romania

Functional perovskite oxides may enable entirely new electronic device paradigms, ranging from negative capacitance to charge amplification in phase change devices. A major challenge is the intrinsically poor charge carrier mobility of most perovskite oxides, typically no better than 1^{-10} cm² V⁻¹ s⁻¹ at room temperature.[1] There has been growing interest in perovskite BaSnO₃ due to its desirable properties for oxide electronic devices including high electron mobility at room temperature and optical transparency.[2] Because of its high chemical and thermal stability, BaSnO₃ can be potentially used at high temperature as a protective coating or catalyst support. The pure compound is an insulator at room temperature and becomes semiconducting when doped with donor impurities such as Sb⁵⁺ and La³⁺.[3].

Usually, ceramic powders of $BaSnO_3$ are prepared by solid-state reaction between $BaCO_3$ and SnO_2 at 1000-1200 °C. Polycrystalline materials can be obtained by sintering at 1400-1600 °C, but good densification is difficult to achieve. In this study, we propose using $BaSn(OH)_6$ as precursor for the synthesis of $BaSnO_3$ ceramics. $BaSn(OH)_6$ acicular crystals were obtained by a simple precipitation at 80°C from Na_2SnO_3 and $Ba(NO_3)_2$ aqueous solutions and their transformation in the perovskite like compound $BaSnO_3$ was demonstrated by TG-DTA analysis.

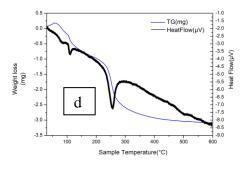


Figure 1: a) SEM image of $BaSn(OH)_6$ b): X-ray diffraction patterns of $BaSn(OH)_6$; c) UV-VIS-NIR of $BaSn(OH)_6$; d) TG-DTA analysis of $BaSn(OH)_6$ in argon

² Politehnica University Timisoara, Str. PiataVictoriei, nr.2, 300006 Timisoara, Romania ³ West University of Timisoara, Bulevardul Vasile Pârvan 4, Timișoara 300223 Timisoara, Romania

References

- 1 S. Raghavan, <u>High-mobility BaSnO3 grown by oxide molecular beam epitaxy</u>, APL Mater. 4, 2016
- 2 M.T. Buscaglia, Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles, J. Mater. Res., 2003
- 3 H. Yun, *Electronic structure of BaSnO3 investigated by high-energyresolution electron energy-loss spectroscopy and ab initio calculations*, Journal of Vacuum Science & Technology, 2018