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Abstract. The paper deals with the singular differential equation x′′ + g(x) = p(t),
with g having a weak singularity at x = 0 and 2π-periodic function p. For any positive
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with the singularity and a classical positive periodic solution is proven.
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1 Introduction

Investigation of Lazer–Solimini equation dates back to the year 1987 when the authors Lazer
and Solimini published their existence results for the equation

x′′ ± 1
xα

= p(t), α > 0, p is a 2π-periodic function,

where they found necessary and sufficient conditions for the existence of periodic solution,
see [3].

Later, many authors (e.g. see [1, 2, 8] or see an overview of the results in [10]) obtained
existence results for equation with a generalized singular term

x′′ + g(x) = p(t), (1.1)

where g : (0, ∞) → R has various types of singularity at x = 0. Two types of this singularity
are distinguished:

• attractive, i.e. limx→0+ g(x) = +∞, vs. repulsive, i.e. limx→0+ g(x) = −∞

and
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• weak, i.e.
∫ 1

0 g(x)dx ∈ R vs. strong, i.e.
∫ 1

0 g(x)dx = ±∞.

It is a well-known result, that under the assumptions that g is positive, nonincreasing and
continuous on (0, ∞), limx→∞ g(x) = 0 and p is a 2π-periodic and continuous on R, then the
necessary and sufficient condition for the existence of a classical positive 2π-periodic solution
of Eq. (1.1) is the assumption

p̄ :=
1

2π

∫ 2π

0
p(t)dt > 0,

where 2π is the period of the function p – see e.g. [1,8] (the necessity can be immediately seen
by integrating Eq. (1.1) over the interval [0, 2π]).

Otherwise, i.e. if p̄ ≤ 0, the Eq. (1.1) can be understood as an impact oscillator having
a singularity at the obstacle. Therefore one can investigate another type of solution – so called
bouncing solution – e.g. see [5]. It is a generalized solution of Eq. (1.1) in the sense that

• such function is a solution of Eq. (1.1) only on certain open intervals where it is positive,

• it satisfies certain impulsive conditions at those instants where the solution reaches zero
– see Definition 2.2.

The problems of the existence of such solutions were investigated using Poincaré–Birkhoff
Twist Map Theorem for an area preserving homeomorphism of an annulus, e.g. see [4–7, 9].

In particular, in 2004, Qian and Torres [6] investigated Eq. (1.1) with an attractive weak sin-
gularity for the case p̄ < 0, i.e. if no classical solution exists. They found sufficient conditions
for the existence of periodic and subharmonic solutions with prescribed number of bounces
in each period. They suggested a possible existence of this type of solution even in the case
when the classical solution exists, i.e. a classical solution would coexist with a bouncing one.
In [9], this question was partially answered. Sufficient conditions ensuring the existence of at
least two 2π-periodic bouncing solutions with one bounce in each period were given.

The purpose of this paper is to extend the results of [9] and find sufficient conditions
guaranteeing the existence of the subharmonic solutions with prescribed number of bounces
in each period. The proofs in [9] are based on the investigation of the area-preserving homeo-
morphism T which has been constructed just for one bounce in the period. But T looses some
needed properties (e.g. the monotonicity of its first component T1) if the construction of T is
extended for more bounces in the period, and so the approach of [9] cannot be directly used.
Therefore the proofs in this paper are based on the combination of the results obtained in [6]
and [9].

The paper is organized as follows. In Section 2 we give necessary definitions of a classical
and bouncing solution, the main result (Theorem 2.3) together with a consequent result for
Lazer–Solimini equation (Corollary 2.4) and an example. In the third section we prove a slight
modification of the existence theorem from [6] in order to apply it to the properly constructed
auxiliary equation (3.4). In Section 4, the estimations of bouncing solutions of the auxiliary
problem are given and subsequently the proof of the main result is finished.

2 Problem formulation and main results

We investigate the differential equation of the second order (1.1) under the following assump-
tions:

g is locally Lipschitz continuous function, positive and nonincreasing on (0, ∞), (2.1)
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lim
x→0+

g(x) = ∞,
∫ 1

0
g(x)dx < ∞, (2.2)

p is continuous function, 2π-periodic on R, (2.3)

1
2π

∫ 2π

0
p(s)ds =: p̄ > g(∞) := lim

x→∞
g(x). (2.4)

Let us precisely define the types of solutions of Eq. (1.1) used in this article. To emphasize
the concept of bouncing solution, we start with a classical solution.

Definition 2.1. We say that x is a (classical) solution of Eq. (1.1) on an interval J ⊂ R iff x
is a positive, twice continuously differentiable function on J, and x satisfies the differential
equation (1.1) on J.

Definition 2.2. We say that x : R→ R is a bouncing solution of Eq. (1.1) iff there exists a doubly
infinite sequence {ti}i∈Z, ti < ti+1, i ∈ Z such that

(i) x(ti) = 0,

(ii) x′(ti+) = −x′(ti−),

(iii) x is a classical solution of Eq. (1.1) on (ti, ti+1).

We call ti the bounces of the solution x.

We can see that a bouncing solution consists of several maximal classical solutions sepa-
rated by bounces.

To state the main result of the paper, we introduce the notation

pmax = max
s∈R

p(s), pmin = min
s∈R

p(s),

and denote by K a positive constant satisfying

g(K) > pmax. (2.5)

The existence of such K follows from assumptions (2.1)–(2.3).

Theorem 2.3 (Main result: Coexistence of bouncing and classical periodic solutions). Let (2.1)–
(2.4) hold and let (

K
m

)2

+ 2π2 pminK ≥ 2π2
∫ K

0
g(x)dx, (2.6)

where K fulfills (2.5), m ∈N. Then

(i) there exists a classical solution of Eq. (1.1) greater than K,

(ii) there exist at least two 2mπ-periodic bouncing solutions of Eq. (1.1) with one bounce in each
period such that their maximal values are lower than K,

(iii) for any n ∈ N, n > 1 there exist at least one 2mπ-periodic bouncing solution of Eq. (1.1) with
exactly n bounces in each period, which has the maximum value lower than K.

We give even more effective sufficient conditions for the existence of solutions of Lazer–
Solimini equation

x′′ + x−α = p(t), (2.7)

with α ∈ (0, 1).
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Corollary 2.4. Let p : R → R be a continuous, 2π-periodic function, p̄ > 0, α ∈ (0, 1) and m ∈ N

be such that

m <
1
π

√√√√ 1− α

2p
1
α
max(pmax − (1− α)pmin)

. (2.8)

Then

(i) there exists a classical solution of Eq. (2.7) greater or equal to p−
1
α

max,

(ii) there exist at least two 2mπ-periodic bouncing solutions of Eq. (2.7) with one bounce in each

period such that their maximal values are lower than p−
1
α

max,

(iii) for any n ∈ N, n > 1 there exist at least one 2mπ-periodic bouncing solution of Eq. (2.7) with

exactly n bounces in each period, which has the maximum value lower than p−
1
α

max.

Proof. We apply Theorem 2.3 on Eq. (2.7). The assumptions (2.1)–(2.4) are trivially satisfied
for g(x) = x−α, x > 0. It remains to find a positive K satisfying (2.5) and (2.6). These
conditions are satisfied iff

K−α > pmax (2.9)

and (
K
m

)2

+ 2π2 pminK ≥ 2π2 K1−α

1− α
. (2.10)

The inequality (2.9) is equivalent to K < p−
1
α

max. And the inequality (2.10) can be written in the
form

ω(K) :=
K

2π2m2 + pmin −
K−α

1− α
≥ 0,

where ω : R → R is continuous on (0, ∞), limK→0+ ω(K) = −∞, limK→∞ ω(K) = ∞ and
ω′(K) > 0 for each K ∈ (0, ∞). Therefore there exists a unique K0 > 0 such that ω(K0) = 0.

Since ω is strictly increasing, K satisfies (2.9) and (2.10) iff K ∈ [K0, p−
1
α

max). From (2.8) we get

ω(p−
1
α

max) > 0, which implies that the interval [K0, p−
1
α

max) is nonempty. Let us choose some

K ∈ [K0, p−
1
α

max). According to Theorem 2.3 (i) there exists a classical solution x of Eq. (2.7)

greater than K. If mint∈R x(t) < p−
1
α

max, then there exists t0 ∈ R such that x(t0) < p−
1
α

max,
x′(t0) = 0 and x′′(t0) ≥ 0. In view of (2.7) we get

x′′(t0) = −(x(t0))
−α + p(t0) < −p(t0) + p(t0) = 0,

which is a contradiction. Therefore the classical solution is bounded from below by p−
1
α

max.
The assertions (ii) and (iii) follow directly from Theorem 2.3 (ii), (iii) and from the inequal-

ity K < p−
1
α

max. �

The feasibility of the obtained result is illustrated in the following example.

Example 2.5. We consider Lazer–Solimini equation (2.7), where α ∈ (0, 1), m ∈ N and p(t) =
b sin t + c with b, c > 0. Then pmax = b + c and pmin = c− b, and so the condition (2.8) can be
written as

m <
1
π

√
1− α

2(b + c)
1
α (2b + α(c− b))

. (2.11)

For instance, the condition (2.11) is valid for these values of the parameters:
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• α = 0.5, b = 0.01, c = 0.11, m ≤ 3, or

• α = 0.1, b = 0.01, c = 0.51, m ≤ 30.

Remark 2.6. Let us note that the assumptions of Theorem 2.3 always fail to be satisfied for
high m. Indeed, let the assumptions of Theorem 2.3 hold for each m ∈N with K = Km in (2.5)
and (2.6), i.e.

g(Km) > pmax (2.12)

and (
Km

m

)2

+ 2π2 pminKm ≥ 2π2
∫ Km

0
g(x)dx (2.13)

for each m ∈ N. From (2.1), (2.2) and (2.4) it follows that there exists K > 0 such that
g(K) = pmax and according to (2.12) and (2.1) also K > Km for every m ∈ N, i.e. {Km} is
bounded. On the other hand, from (2.1) and (2.12) we get∫ Km

0
g(x)dx ≥

∫ Km

0
g(Km)dx = g(Km)Km > pmaxKm.

This estimate together with (2.13) yields an inequality(
Km

m

)2

+ 2π2 pminKm > 2π2 pmaxKm,

which gives (
Km

m

)2

> 2π2(pmax − pmin)Km

and finally
Km > 2π2(pmax − pmin)m2

for every m ∈ N. The last inequality contradicts the boundedness of {Km}. Therefore, the
(non)existence of subharmonic solutions of arbitrary period is still an open problem.

3 Auxiliary equation

First, let us state the main result from [6], which will be used here as the main existence
principle.

Theorem 3.1 (see [6, Theorem 1.2]). Let us assume that

g : (0, ∞)→ (0, ∞) is locally Lipschitz continuous function,

there exists ε > 0 such that g is strictly decreasing on (0, ε),

}
(3.1)

g satisfies (2.2), p fulfills (2.3) and

1
2π

∫ 2π

0
p(s)ds =: p̄ < 0 = g(∞) := lim

x→∞
g(x). (3.2)

Then, for any m ∈ N, there exist at least two 2mπ-periodic bouncing solutions of Eq. (1.1) with one
bounce in each period. Moreover, for any n, m ∈ N, n ≥ 2, there exists at least one 2mπ-periodic
bouncing solution of Eq. (1.1) with n bounces in each period.
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In the current paper we will use this result under slightly different assumptions. More
precisely, we replace assumption (3.1) by (2.1) and assumption (3.2) by

p̄ < 0, 0 ≤ g(∞) := lim
x→∞

g(x). (3.3)

Theorem 3.2. Let us assume that (2.1), (2.2), (2.3) and (3.3) hold. Then the assertions of Theorem 3.1
remain valid.

Proof. Decreasing character of g in (3.1) is used in the paper [6] only to prove uniqueness in
the singular IVP (1.1), x(t0) = 0, x′(t0) = y0 > 0, see [6, Remark 2.4]. Since this uniqueness
was already proved in [9] under the assumptions (2.1)–(2.3), the replacement of (3.1) by (2.1)
in Theorem 3.2 is correct.

In [6], only the positivity of the function g is used, not the fact g(∞) = 0. Therefore the
replacement of (3.2) by (3.3) is also correct. �

Now, we introduce the auxiliary equation

x′′ + f (x) = p(t), (3.4)

where f : (0, ∞)→ (0, ∞) is defined by

f (x) =

{
g(x) if x ∈ (0, K],

g(K) if x > K,
(3.5)

with g, p and K satisfying (2.1), (2.2), (2.3) and (2.5). From (2.5) it follows that there exists
ε > 0 such that

g(K)− pmax > ε

and therefore
f (x)− pmax > ε (3.6)

for each x > 0.

Theorem 3.3. Let us assume that (2.1), (2.2), (2.3) and (3.3) hold and let f : R → R be defined by
(3.5). Then the assertions of Theorem 3.2 are valid for Eq. (3.4).

Proof. Let us consider the differential equation

x′′ + h(x) = r(t) (3.7)

with
h(x) = f (x)− pmax −

ε

2
, x > 0 (3.8)

and
r(t) = p(t)− pmax −

ε

2
, t ∈ R. (3.9)

By (2.3), (3.8) and (3.9), we see that r is a continuous 2π-periodic function, so r fulfills condi-
tion (2.3).

By (2.1) and (3.6) we see that h is locally Lipschitz continuous, positive and nonincreasing
on (0, ∞) which means that h fulfills conditions (2.1).

Using (2.2), (3.6), (3.8) and (3.9), we get

r̄ = p̄− pmax −
ε

2
< 0
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and
lim
x→∞

h(x) = g(K)− pmax −
ε

2
≥ ε− ε

2
> 0.

Therefore also conditions (2.2) and (3.3) are satisfied. From Theorem 3.2 we get that assertions
of Theorem 3.1 are valid for Eq. (3.7).

Note that Eq. (3.7) is equivalent to Eq. (3.4). Indeed Eq. (3.7) is obtained from Eq. (3.4) by
subtracting the expression pmax + ε/2 from both sides. Therefore the assertions of Theorem 3.1
remains valid also for Eq. (3.4). �

4 Bounds of bouncing solutions

By Theorem 3.3 there exist at least two 2mπ-periodic bouncing solutions of Eq. (3.4) with
one bounce in each period and existence of at least one 2mπ-periodic bouncing solution of
Eq. (3.4) with n (n > 1) bounces in each period. It remains to prove that all these solutions
are bounded from above by the constant K and therefore they are also bouncing solutions of
Eq. (1.1). This is the main purpose of this section.

To achieve this goal we use several auxiliary results from [9], namely Lemma 4.1, 4.2
and 4.3 from Section 4 of that paper. Here, we assume that (2.1)–(2.4) are satisfied – these are
the same assumption as in [9, Section 4].

Let us consider an initial value problem (3.4),

x(t0) = 0, x′(t0+) = y0, (4.1)

where t0 ∈ R, y0 > 0.

Lemma 4.1 (see [9, Lemma 8]).

(a) Let t0 ∈ R, y0 > 0. Then there exists a finite t1 > t0 and a unique maximal solution x of IVP
(3.4), (4.1) on (t0, t1) such that x(t1−) = 0. Moreover there exists a ∈ (t0, t1) such that

x′(a) = 0, x′ > 0 on (t0, a), x′ < 0 on (a, t1), x′(t1−) < 0.

(b) Let t1 ∈ R, y1 > 0. Then there exists a finite t0 < t1 and a unique maximal solution x of
TVP (3.4), x(t1) = 0, x′(t1−) = −y1 on (t0, t1) such that x(t0+) = 0. Moreover there exists
a ∈ (t0, t1) such that

x′(a) = 0, x′ > 0 on (t0, a), x′ < 0 on (a, t1), x′(t0+) > 0.

Further we need some estimates. First we define several useful functions

F(x) =
∫ x

0
f (s)ds, α(x) = F(x)− pmaxx, β(x) = F(x)− pminx, x ∈ [0, ∞). (4.2)

Finally, we will need the following assertions from [9].

Lemma 4.2 (see [9, Lemma 10]). Let x be a maximal solution of Eq. (3.4) on the interval (t0, t1).
Then √

2α(xmax) ≤ x′(t0+) ≤
√

2β(xmax), (4.3)

−
√

2β(xmax) ≤ x′(t1−) ≤ −
√

2α(xmax), (4.4)
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β−1
(

y2
0

2

)
≤ xmax ≤ α−1

(
y2

0
2

)
, (4.5)

t1 − t0 ≤
2y0

ε
, (4.6)

∀η ∈ (0, xmax) : t1 − t0 >

√
2(xmax − η)

f (η)− pmin
, (4.7)

where α, β are from (4.2), x(a) := xmax := max{x(t) : t ∈ (t0, t1)}, and ε is from (3.6).

Lemma 4.3 (see [9, Lemma 13]). There exists a continuous 2π-periodic function ψ : R → R,
ψ(R) ⊂

[√
2α(K),

√
2β(K)

]
such that the solution x of IVP (3.4), (4.1) with y0 = ψ(t0) has its

maximum value xmax equal to K, for each t0 ∈ R.

The following lemma is a generalization of [9, Lemma 11].

Lemma 4.4. Let x, x̃ be two different maximal classical solutions of Eq. (3.4) defined on the intervals
(t0, t1), (t̃0, t̃1), respectively. If (t0, t1) ⊂ (t̃0, t̃1), then

0 < x(t) < x̃(t), t ∈ (t0, t1).

Proof. Let us prove the lemma by contradiction. Let the assumptions be satisfied and there
exists τ ∈ (t0, t1) such that x(τ) ≥ x̃(τ). We put v(t) = x(t) − x̃(t), t ∈ (t0, t1). Then
v(t0+) ≤ 0, v(t1−) ≤ 0 and v(τ) ≥ 0. From the continuity of v it follows that there exists an
interval (τ0, τ1) ⊂ (t0, t1) such that v(τ0+) = v(τ1−) = 0 and v(t) ≥ 0 for t ∈ (τ0, τ1). This
implies v′(τ0+) ≥ 0. There are two possibilities:

Case A. If v′(τ0+) = 0, then x and x̃ would be solutions of the same IVP and according to
the uniqueness (see Lemma 4.1), we get x = x̃, which is a contradiction.

Case B. Let v′(τ0+) > 0. From the Mean Value Theorem we get that there exists ξ ∈ (τ0, τ1)

such that v′(ξ) = v(τ1−)− v(τ0+) = 0. Since x and x̃ are solutions of Eq. (3.4) on (τ0, τ1) and
f is decreasing, we get

v′′(t) = x′′(t)− x̃′′(t) = − f (x(t)) + f (x̃(t)) ≥ 0

for t ∈ (τ0, τ1). Integrating this inequality over the interval (τ0, ξ), we get v′(ξ) ≥ v′(τ0+) > 0,
which is also a contradiction. �

The next lemma is a very slight generalization of [9, Lemma 14].

Lemma 4.5. Let x be a maximal solution of IVP (3.4), (4.1) with y0 = ψ(t0) defined on (t0, t1). If(
K
m

)2

+ 2π2 pminK ≥ 2π2F(K), (4.8)

then
t1 − t0 > 2mπ. (4.9)

Proof. Let us consider linear functions

q(t) = (t− t0)
√

2β(K), t ∈ R
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y

t

K

x

t0 t1

q

t̂

r

t̃a

Figure 4.1: The solution x of IVP and auxiliary functions q and r from the proof
of Lemma 4.5.

and
r(t) = (t1 − t)

√
2β(K), t ∈ R.

The graph of function q passes through some point (t̂, K), where K = q(t̂) = (t̂− t0)
√

2β(K).
Consequently,

t̂− t0 =
K√

2β(K)
.

Similarly, the graph of function r passes through some point (t̃, K), so

t1 − t̃ =
K√

2β(K)
.

The solution x is concave on (t0, t1) and from Lemma 4.3 we obtain that x has its maximum
value equal to K. Denote x(a) = K, a ∈ (t0, t1). Therefore t̂ ∈ (t0, a) and t̃ ∈ (a, t1), see
Figure 4.1. From (4.2) and assumption (4.8) we have

K ≥ mπ
√

2β(K). (4.10)

Finally we obtain

t1 − t0 = t1 − a + a− t0 > t1 − t̃ + t̂− t0 =
2K√
2β(K)

≥ 2mπ
√

2β(K)√
2β(K)

= 2mπ,

where the last inequality follows from (4.10). �

Finally, in the next lemma we get the upper bound of bouncing solutions.

Lemma 4.6. Let x be 2πm-periodic bouncing solution of Eq. (3.4) with n bounces in each period,
m, n ∈N. Then x(t) < K for each t ∈ R.

Proof. Let t0 ∈ R be such that x(t0) = 0. Then there exist bounces t1, . . . , tn ∈ R such that
t0 < t1 < · · · < tn = t0 + 2πm. Let x̃ be a maximal classical solution of IVP (3.4), (4.1) with
y0 = ψ(t0) defined on the interval (t0, t̃1). According to Lemma 4.5, t̃1 > t0 + 2πm = tn. Then
for i = 0, . . . , n− 1 we have (ti, ti+1) ⊂ (t0, t̃1), which by Lemma 4.4 implies that x(t) < x̃(t) ≤
K for each t ∈ (ti, ti+1). This proves that x is lower than K on the interval [t0, t0 + 2πm] and
the rest follows from 2πm-periodicity. �
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Now, we are ready to prove the main theorem of this paper.

Proof of Theorem 2.3. Let (2.1)–(2.6) be satisfied. Case (i) is proved in [9]. Let us prove the
cases (ii) and (iii). Due to Theorem 3.3 for any m ∈ N, there exists at least two 2mπ-periodic
bouncing solutions of Eq. (3.4) with one bounce in each period and for any n, m ∈ N, n ≥ 2,
there exists at least one 2mπ-periodic bouncing solution of Eq. (3.4) with n bounces in each
period. By Lemma 4.6 every bouncing solution of Eq. (3.4) is lower than K. According to (3.5),
these functions are also bouncing solutions of Eq. (1.1). �
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