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Abstract. During the last forty years the theory of integrability of Darboux, in terms of
algebraic invariant curves of polynomial systems has been very much extended and it
is now an active area of research. These developments are covered in numerous papers
and several books, not always following the conceptual historical evolution of the sub-
ject and its significant connections to Poincaré’s problem of the center. Our first goal
is to give in a concise way, following the history of the subject, its conceptual develop-
ment. Our second goal is to display the many aspects of the theory of Darboux we have
today, by using it for studying the special family of planar quadratic differential systems
possessing an invariant hyperbola, and having either two singular points at infinity or
the infinity filled up with singularities. We prove the integrability for systems in 11 of
the 13 normal forms of the family and the generic non-integrability for the other 2 nor-
mal forms. We construct phase portraits and bifurcation diagrams for 5 of the normal
forms of the family, show how they impact the changes in the geometry of the systems
expressed in their configurations of their invariant algebraic curves and point out some
intriguing questions on the interplay between this geometry and the integrability of the
systems. We also solve the problem of Poincaré of algebraic integrability for 4 of the
normal forms we study.
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1 Introduction

Let R[x, y] be the set of all real polynomials in the variables x and y. Consider the planar
system

ẋ = P(x, y),
ẏ = Q(x, y),

(1.1)

where ẋ = dx/dt, ẏ = dy/dt and P, Q ∈ R[x, y]. We define the degree of a system (1.1) as
max{deg P, deg Q}. In the case where the polynomials P and Q are relatively prime i.e. they
do not have a non-constant common factor, we say that (1.1) is non-degenerate.

Consider
χ = P(x, y)

∂

∂x
+ Q(x, y)

∂

∂y
(1.2)

the polynomial vector field associated to (1.1).
A real quadratic differential system is a polynomial differential system of degree 2, i.e.

ẋ = p0 + p1(ã, x, y) + p2(ã, x, y) ≡ p(ã, x, y),
ẏ = q0 + q1(ã, x, y) + q2(ã, x, y) ≡ q(ã, x, y)

(1.3)

with max{deg p, deg q} = 2 and

p0 = a, p1(ã, x, y) = cx + dy, p2(ã, x, y) = gx2 + 2hxy + ky2,

q0 = b, q1(ã, x, y) = ex + f y, q2(ã, x, y) = lx2 + 2mxy + ny2.

Here we denote by ã = (a, c, d, g, h, k, b, e, f , l, m, n) the 12-tuple of the coefficients of system
(1.3). Thus a quadratic system can be identified with a point ã in R12.

We denote the class of all quadratic differential systems with QS.
Planar polynomial differential systems occur very often in various branches of applied

mathematics, in modeling natural phenomena, for example, modeling the time evolution of
conflicting species, in biology, in chemical reactions, in economics, in astrophysics, in the equa-
tions of continuity describing the interactions of ions, electrons and neutral species in plasma
physics (see, for example: [45], [73], [8] and [55]). Such differential systems have also theoreti-
cal importance. Several problems on polynomial differential systems, which were stated more
than one hundred years ago, are still open: the second part of Hilbert’s 16th problem stated
by Hilbert in 1900 [32], the problem of the center stated by Poincaré in 1885 [50], the problem
of algebraic integrability stated by Poincaré in 1891 [51], [52] (both problems later discussed in
this work), and problems on integrability resulting from the work of Darboux [20] published
in 1878. With the exception of the problem of the center for quadratic differential systems that
was solved, all the other problems mentioned above, are still unsolved even in the quadratic
case.

The theory of Darboux [20] (1878) was built for complex polynomial differential equations
over the complex projective plane. Here we are interested in polynomial differential systems
over the real affine plane. But every system (1.1) with real coefficient can be extended over
the complex affine plane and it leads to a polynomial differential equation with homogeneous
coefficients over the complex projective plane (see for example [40], pp. 316–317). As a con-
sequence, the theory of Darboux can be applied to real polynomial differential systems. This
is a theory of integrability of polynomial differential systems (1.1) which is based on the exis-
tence of particular solutions that are algebraic. The cases of integrable systems are rare but as
Arnold said in [2, p. 405] “. . . these integrable cases allow us to collect a large amount of information
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about the motion in more important systems. . . .” Poincaré was enthusiastic about the theory of
Darboux and called it “admirable” in [51] and “oeuvre magistrale” in [52]. In [52] Poincaré
stated his problem of algebraic integrability on systems (1.1), which is still open today. The
French Academy of Sciences proposed this problem for a prize which was won by Painlevé
and Autonne received an honorable mention but although the new results were interesting
they have not provided a complete solution to the problem posed by Poincaré. After the re-
search done by Poincaré, Painlevé and Autonne at the end of the 19th century we have the
work of Dulac and of Lagutinskiı̆ at the beginning of the 20th century. The work of Dulac
[24] will later be briefly discussed in this work. Lagutinskiı̆’s work is not well known because
except for one paper written in French, all of his other 16 papers, published between 1903
and 1914, were written in Russian. He died in 1915 at the age of 44. The interested reader
could find information about his life and work in [21], [22]. Almost a century passed before
Darboux theory began again to significantly attract researchers. It started to flower towards
the end of the last century and the beginning of the 21th century when in numerous works
Darboux’s theory has been enriched with new notions and results. Now this is a very active
field with new results scattered in many articles and several books. The various aspects of
this extended theory appear in the literature in surveys, some incomplete as they were pub-
lished earlier, some containing the latest additions to the theory such as [44]. These surveys
are mainly concerned with results and not with the historical conceptual development of the
subject, which is fascinating. For example we mentioned above the 1908 work of Dulac on
Poincaré’s problem of the center where connections with Darboux integrability are present.
These connections go deep. They allowed Dulac to solve the problem of the center for complex
quadratic systems with a center, the only case where the problem was solved. The method
of Darboux is also powerful in unifying proofs of integrability for whole families of systems
with centers or for other families of systems like the ones we consider in this paper. For other
applications of the theory of Darboux see the survey article of Llibre and Zhang [44].

One of the goals of this article is to make this task easier by providing here a brief con-
ceptual survey of this beautiful theory, which closely follows the historical evolution of the
subject. We also prove here that even when trying to understand the integrability of real
systems, their complex invariant curves are essential (see in Section 2, Example 40).

Definition 1.1 ([20]). An algebraic curve f (x, y) = 0 with f (x, y) ∈ C[x, y] is called an invariant
algebraic curve of system (1.1) if it satisfies the following identity:

fxP + fyQ = K f , (1.4)

for some K ∈ C[x, y] where fx and fy are the derivatives of f with respect to x and y. K is
called the cofactor of the curve f = 0.

For simplicity we write the curve f instead of the curve f = 0 in C2. Note that if system
(1.1) has degree m then the cofactor of an invariant algebraic curve f of the system has degree
m− 1.

Definition 1.2 ([20]). Consider a planar polynomial system (1.1). An algebraic solution of (1.1)
is an algebraic invariant curve f which is irreducible over C.

Definition 1.3. Let U be an open subset of R2. A real function H: U → R is a first inte-
gral of system (1.1) if it is constant on all solution curves (x(t), y(t)) of system (1.1), i.e.,
H(x(t), y(t)) = k, where k is a real constant, for all values of t for which the solution
(x(t), y(t)) is defined on U.
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If H is differentiable in U then H is a first integral on U if and only if

HxP + HyQ = 0. (1.5)

The problem of integrating a polynomial system by using its algebraic invariant curves
over C was considered for the first time by Darboux in [20].

Theorem 1.4 (Darboux [20]). Suppose that a polynomial system (1.1) has m invariant algebraic
curves fi(x, y) = 0, i ≤ m, with fi ∈ C[x, y] and with m > n(n + 1)/2 where n is the degree of the
system. Then we can compute complex numbers λ1, ..., λm such that f λ1

1 ... f λm
m is a first integral of the

system.

Definition 1.5. If a system (1.1) has a first integral of the form

H(x, y) = f1
λ1 ... fp

λp (1.6)

where fi are the invariant algebraic curves of system (1.1) and λi ∈ C then we say that system
(1.1) is Darboux integrable and we call the function H a Darboux function.

Remark 1.6. We stress that the theorem of Darboux gives only a sufficient condition for Dar-
boux integrability of a system (1.1) (see example below), expressed in a relation between the
number of invariant algebraic curves the system possesses and the degree of the system.

Example 1.7. Consider the system {
ẋ = 3 + 2x2 + xy,

ẏ = 3 + xy + 2y2.

This system admits the invariant line x− y = 0 and the invariant hyperbola 2+ xy = 0. Then,
m = 2 < 3 = n(n + 1)/2. However we still have here a Darboux first integral H(x, y) = (x−
y)−3/2(2+ xy). Thus the lower bound on the number of invariant curves sufficient for Darboux
integrability in his theorem is in general greater than necessary. The following question arises
then naturally: Could we find a necessary and sufficient condition for Darboux integrability?

Definition 1.8. Let U be an open subset of R2 and let R : U → R be an analytic function
which is not identically zero on U. The function R is an integrating factor of a polynomial
system (1.1) on U if one of the following two equivalent conditions on U holds:

div(RP, RQ) = 0, RxP + RyQ = −R div(P, Q),

where div(P, Q) = Px + Qy.

A first integral H of
ẋ = RP, ẏ = RQ

associated to the integrating factor R is then given by

H(x, y) =
∫

R(x, y)P(x, y)dy + h(x),

where H(x, y) is a function satisfying Hx = −RQ. Then,

ẋ = Hy, ẏ = −Hx.
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In order that this function H be well defined the open set U must be simply connected.
The simplest integrable systems (1.1) are the Hamiltonian ones having a polynomial first

integral. Next we have the systems (1.1) which admit a rational first integral. These were
called by Poincaré algebraically integrable systems. Such a first integral yields a foliation with
singularities of the plane in algebraic phase curves. The question asked by Poincaré in [52] is
the following:

Can we recognize when a system (1.1) admits a rational first integral?
This is Poincaré’s problem of algebraic integrability and it is not even solved for quadratic

differential systems. We say more on this question in the next section.
To advance knowledge on algebraic, Darboux or more general types of integrability it is

useful to have a large number of examples to analyze. In the literature, scattered isolated
examples were analyzed, among them is the family of quadratic differential systems possess-
ing a center, i.e. a singular point surrounded by closed phase curves. There is a rather strong
relationship between the problem of the center and the theory of Darboux. In particular, every
quadratic system with a center possesses invariant algebraic curves and in the generic case it
possesses a Darboux first integral. For non-generic cases such a system is still integrable but
with a more general type of a first integral.

A more systematic approach for studying families of integrable systems was initiated in
the papers of Schlomiuk and Vulpe [65], [66], [67], [68] and [64] where they classified topo-
logically the phase portraits of quadratic systems with invariant lines of at least four total
multiplicity (including the line at infinity) as well as the quadratic systems with the line at
infinity filled up with singularities and proved their integrability. These results were applied
by Schlomiuk and Vulpe [69, 70] to the family of Lotka–Volterra differential systems (the L-V
family), important for so many applications. Not all the systems in this family are integrable
but since the L-V systems always have at least three invariant lines (including the line at in-
finity), numerous systems in this family also belong to the family of systems possessing at
least four invariant lines and using this fact and the results in the papers above indicated,
simplified the classification. There are thus many L-V systems that are integrable according
to the method of Darboux. For the Liouvillian integrability of L-V systems see [6]. The case of
quadratic systems possessing two complex invariant lines intersecting at a real finite point was
completed in [71]. Systems in this family are not always integrable but as the authors show,
for a large subfamily we can apply the Darboux theory of integrability. Work is in progress
for completing the study of the family of systems possessing three invariant lines, including
the line at infinity. In the above studies, the properties of the “configuration” of invariant
lines (term we will later define) were important to distinguish the types of integrability of the
systems. A natural question which arises is the following one:

What is the relation between the geometry of a “configuration” of invariant algebraic curves of a
system (1.1) and its integrability?

In order to be able to provide responses to such a question, data involving only invariant
lines is insufficient. Data involving more general curves and in particular conics and cubics, is
needed. In [47] the authors classified the family QSH of non-degenerate quadratic differential
systems possessing an invariant hyperbola according to “configurations of invariant hyperbolas
and lines”. They proved that the family QSH is geometrically rich as it has 205 distinct such
configurations. The problem of integrability of systems in QSH according to the theory of
Darboux was not considered in [47]. This is the problem we study in the second part of this
paper. Considered from the viewpoint of integrability, the family QSH is also very rich dis-
playing a vast array of systems of various kinds of integrability as we see in the examples we
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provide in this paper. This data will be precious in deeper exploring the Darboux theory of
integrability. Here by “deeper” we mean understanding the relationship between the integra-
bility of the systems and the geometry of the “configurations” of invariant algebraic curves they
possess.

Since its creation by Darboux in 1878 [20], this theory has evolved and it has been sig-
nificantly extended. Much of this development occurred during the past forty years. The
literature on this extended theory is scattered in many articles and also some books, not nec-
essarily following the history of the conceptual evolution of the subject with its connections
with the problem of the center. These connections were important for drawing attention to
the role of the theory of Darboux and its unifying capacity for proving integrability of families of
polynomial differential systems as we explain in the next Section and for classifying families of
vector fields not necessarily integrable such as the family of L-V systems previousy discussed.

The second goal is to study the systems of the family QSH from the viewpoint of what
we call today the Darboux theory of integrability. This adds a lot of integrability data next
to the data we have from the work of Schlomiuk and Vulpe, mentioned above, on quadratic
systems with invariant straight lines by allowing us to also include conics. Apart from richly
illustrating the theory and pointing out some rather subtle issues, this testing ground provides
us with the possibility of asking new questions relating the geometry of the configuration of
invariant algebraic curves and the Darboux theory of integrability. It is this relationship that is
our main motivation.

Our paper is organized as follows:
In Section 2 we give a short conceptual and historical overview of Darboux theory as we

have it today, including all essential new notions not used in Darboux’s work, as well as
new results, extensions of his theory. We also recall the unifying character of the method
of Darboux in proving integrability for some families of vector fields and we prove that the
theory of Darboux is essentially a theory over the complex field even when we search to
calculate real first integrals of real systems (see Example 2.34 in this Section).

In Section 3 we discuss the class QSH from the viewpoint of the relationship between
integrability and the geometry of the “configuration of invariant algebraic curves” which the
systems possess. In particular we are concerned here with the family QSHη=0 of systems in
QSH which possess either exactly two distinct real singularities at infinity or the line at infinity
filled up with singularities. In [47] the authors calculated the invariant lines and hyperbolas
of each normal form in QSHη=0.

In Section 4 we introduce a number of geometrical concepts which are very helpful in
understanding the relation between the geometry of the configuration of invariant algebraic
curves and the integrability of the systems.

In Section 5 we prove that for the 11 of the 13 normal forms for the systems in QSHη=0

all systems have a Liouvillian first integral. We present the invariant algebraic curves, expo-
nential factors, integrating factors and first integrals for each one of these 11 normal forms for
QSHη=0.

In Section 6 we prove the generic non-integrability for the remaining two normal forms for
QSHη=0, cases where the number of invariant curves and exponential factors are not sufficient
for finding a first integral or integrating factor.

In Section 7 we apply the Darboux theory of integrability to the geometric analysis of five
families of systems in QSHη=0. We exhibit the bifurcation diagrams of the configurations of
invariant algebraic curves as well as the bifurcation diagrams of the systems and raise the
problem of interaction between these two kinds of bifurcations. Phase portraits for quadratic
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system with an invariant hyperbola and an invariant straight line were also constructed in
[41]. However, we point out that the authors of [41] did not get all of the phase portraits, in
particular, in Section 7 we point out some of their missing phase portraits. This is due to the
fact that their normal form for this family misses some of the systems in the family. We also
solve the Poincaré problem of algebraic integrability for four of the families we studied.

In Section 8 we highlight some significant points raised in this paper, explain the relation
between the bifurcations of configurations of invariant curves and topological bifurcations,
raise a number of questions and state some problems. Finally we mention that we also ob-
tained, as limiting cases of the family (D), three other normal forms, i.e. (F), (G) and (I).

2 Brief conceptual and historical overview of the theory of Darboux
[20] as it is understood today

After the publication of the works of Poincaré, Painlevé and Autonne in the 1890’s originating
in the work of Darboux [20], the first article using the method of integration of Darboux
was Dulac’s paper [24] (1908) in which he solved Poincaré’s problem of the center [50] for
quadratic differential systems (see more on this problem on page 9). After the publication
of Dulac’s paper, the next important result concerning the Darboux theory of integrability is
Jouanolou’s who in [34] (1979) gave a sufficient condition for algebraic integrability.

Theorem 2.1 (Jouanolou [34]). Consider a polynomial system (1.1) of degree n and suppose that it
admits m invariant algebraic curves fi(x, y) = 0 where 1 ≤ i ≤ m, then if m ≥ 2 + n(n+1)

2 , there
exists integers N1, N2, . . . , Nm such that I(x, y) = ∏m

i=1 f Ni
i is a first integral of (1.1).

If a differential system (1.1) has a rational first integral H(x, y) = f (x, y)/g(x, y) with
f , g ∈ C[x, y], then the solution curves are located on its level curves H(x, y) = C where C
is a constant, i.e. on the algebraic curves f (x, y)− Cg(x, y) = 0. We call degree of the first
integral H the number max(deg( f ), deg(g)). Then all the algebraic invariant curves of the
system have a degree bounded by the degree of H.

We can argue that in case we can show that a system has invariant algebraic curves of
bounded degree, in order to decide whether the system is algebraically integrable it remains
to compute, by solving algebraic equations, a sufficient amount of invariant algebraic curves.
This is true because we know that a finite number of steps will be sufficient. For this reason
the problem of Poincaré is sometimes understood as the problem of bounding the degrees of
the invariant algebraic curves the system possesses. Thus, in [7] the problem of Poincaré is
stated as follows:

Let F be a holomorphic foliation by curves of the complex projective plane P2
C. Let C be an algebraic

curve in P2
C. Is it possible to bound the degree of C in terms of the degree of F?

The problem of Poincaré is understood in this way elsewhere in the literature, see for
example [33], page 242. But solving this problem is far from solving the problem as initially
formulated by Poincaré. Indeed, the algebraic equations we would need to solve in order
to find a sufficient amount of algebraic invariant curves of the systems, to obtain algebraic
integrability, can easily surpass the present day capacity of computers. Besides, the problem
of bounding the degree of an algebraic invariant curve is not even solved in the general case.
For a solution of this problem under restrictive conditions see [7].

So far we mentioned only three steps in the hierarchy of first integrals: polynomial, ratio-
nal and Darboux first integrals which could be rational or transcendental. What other kinds
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of first integrals can we have next in this hierarchy? We can have elementary first integrals.
Roughly speaking these are functions which are constructed by using addition, multiplication,
composition of finitely many rational functions, trigonometric and exponential functions and
their inverses.

The next important result, obtained in 1983, involves elementary first integrals and is due
to Prelle and Singer. It was stated for more general vector fields in Cn in differential algebra
language. Here we consider only the case of planar differential systems (1.1).

Theorem 2.2 (Prelle–Singer [53]). If a polynomial differential system (1.1) has an elementary first
integral, then the system has a first integral of the following form:

f (x, y) + c1 log( f1(x, y)) + c2 log( f2(x, y)) + · · ·+ ck log( fk(x, y))

where f and fi, are algebraic functions over C(x, y) and ci ∈ C, i = 1, 2, . . . k.

Taking the exponential of the above expression we obtain the following corollary.

Corollary 2.3. If a polynomial differential system (1.1) possesses an elementary first integral then it
also admits a first integral of the form:

e f (x,y) f1(x, y)c1 f2(x, y)c2 . . . f ck
k .

where f and fi, are algebraic functions over C(x, y) and ci ∈ C, i = 1, 2, . . . k.

In particular we can take for f (x, y) a rational function and for all f ′i s polynomial functions
over C. This kind of expression differs from a Darboux first integral by the exponential factor
e f (x,y) which appears though not explicitly, in Prelle–Singer’s paper [53] and also fi’s are here
algebraic and not just polynomials over C.

The above expression is a more general first integral that includes the case of a Darboux
first integral when f is the zero-function and fi’s are polynomials. Although this kind of
expression does not appear in [20], nowadays a first integral of this more general kind, with
f rational and all fi’ s polynomial functions, is still called a Darboux first integral in the
literature.

In Section 3 of their paper [53] Prelle and Singer talk about “Algorithmic considerations”
and they say:

The preceding work was motivated by our desire to develop a decision procedure for finding elemen-
tary first integrals. These results show that we need only look for elementary integrals of a prescribed
form. In this section we shall discuss the problem of finding an elementary first integral for a two-
dimensional autonomous system of differential equations and reduce this problem to that of bounding
the degrees of algebraic solutions of this system.

They base their algorithm on the following two propositions.

Proposition 2.4 ([53]). If the planar system (1.1) has an elementary first integral, then there exists an
integer n and an invariant algebraic curve f such that

P fx + Q fy = −n
(

Px + Qy
)

f .

Proposition 2.5. If the equations of (1.1) have an elementary first integral, then there exists an element
R algebraic over C(x, y) such that RxP + RyQ = −(Px + Qy)R.

We use here a version of the Prelle–Singer algorithm provided in [31].
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Theorem 2.6 (The Prelle–Singer algorithm [53] (1983), as presented in [31] (2001)).

(1) Let N = 1.

(2) Find all the invariant algebraic curves C : f (x, y) = 0 with

P fx + Q fy = K f

such that K(x, y) ∈ C[x, y] and deg( f ) ≤ N.

(3) Decide if there exist constants λ1, λ2, . . . , λm ∈ C, not all zero, such as

m

∑
i=0

λiKi = 0,

where Ki is cofactor of a curve fi found in (2). If such λi’s exist, then I = ∏m
i=0 fi

λi is a first
integral. Otherwise, go to (4).

(4) Decide if there exist constants λ1, λ2, . . . ., λm ∈ C, not all zero, such as

m

∑
i=0

λiKi = −(Px + Qy),

where Ki is cofactor of a curve fi found in (2).

If such λi’s exist, then R = ∏m
i=0 fi

λi is an integrating factor and a first integral can be obtained
by integrating the equations:

Ix = RQ,

Iy = −RP.

If such λi’s do not exist, return to (1) increasing N by 1 and continue the process.

In further exploring the evolution of ideas and development of the theory of Darboux it
is important to mention the connections between this theory and the problem of the center
stated by Poincaré in [50] in 1885. These connections have done much to draw attention to
the theory of Darboux and its unifying power in proving integrability of polynomial systems.
We indicate here some of these connections as well as the story of the solution of the problem
of the center for quadratic systems and in proving their integrability in a unified way by the
method of Darboux.

For quadratic systems the problem of the center as already mentioned at the beginning
of this section was solved by Dulac. Unlike Poincaré, Dulac considered differential systems
defined over C. In [23] he defined the following notion of center: A singular point of a planar
holomorphic differential system with non-zero eigenvalues is a center if and only if the quotient of its
eigenvalues is negative and rational and the system has a local analytic first integral. In his paper [24],
Dulac mentions that the general case is more difficult to treat, he supposes that the quotient of
the eigenvalues is −1. Placing the singular point at the origin, he used the following normal
form for quadratic systems:

ẋ = x + a20x2 + a11xy + a02y2,

ẏ = −y + b20x2 + b11xy + b02y2.
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To solve the problem of the center for quadratic systems means to find necessary and sufficient
conditions in terms the coefficients aij and bij so that the origin be a center. He solved this
problem in 1908 [24] and used the method of integration of Darboux in one case.

This work of Dulac could not be readily applied for real system. Indeed, in the normal
form considered by Dulac, if we assume that the coefficients of the equations are real than
this real system has a saddle at the origin and we cannot pass from this normal form to the
normal form used by Poincaré (where the linear terms of the two equations are respectively
−y, x) by a real linear transformation. Thus the conditions for the center obtained by Dulac
cannot be readily used in the case of real systems for centers as defined by Poincaré.

In 1985, working on perturbations of quadratic Hamiltonian systems with a center, Guck-
enheimer, Rand and Schlomiuk needed the conditions on a real quadratic differential system
to have a center. Exploring the literature they found that it is very messy, containing many
errors. In [58] (1990), after making a historical survey pointing out the errors, they proved
by diverse ad hoc methods that each real quadratic system with a center is integrable. The
correct conditions for a center were obtained by Kapteyn and Bautin (see [35, 36]) thus solv-
ing the problem of the center for a real quadratic differential systems. At the suggestion of
Guckenheimer, Schlomiuk then tried to give a geometric interpretation of the Kapteyn–Bautin
conditions for a center. This geometric interpretation was revealed by studying the bifurcation
diagram of the family QSC of quadratic systems with a center (see [61]). The conditions for
the center can be interpreted in terms of the types of invariant algebraic curves the systems
possess.

These results were presented for the first time by Schlomiuk at the Luminy conference
in France on differential equations in 1989 and later in 1992 at the NATO Advanced Study
Institute in Montreal where she also presented the work of Prelle–Singer (see [60]). Meetings
are always very useful for disseminating information. Thus, it was in 1989 at the Luminy
conference that Moussu, present at that meeting, told Schlomiuk about the work of Darboux.
Specialists in integrability in the audience at the Montreal meeting in 1992, not previously
aware of this work of Prelle and Singer, found out about this work from Schlomiuk’s lectures.
A unified proof of integrability based on the theory of Darboux, for all systems in QSC was obtained
(see [59,60]) (1993). While the proof in [58] was done by using diverse ad hoc methods, in the
new proof all the cases were treated in the same way, by the method of Darboux in terms of
invariant algebraic curves. These and other articles mentioned further below played a role in
drawing attention to the unifying role the method of integration of Darboux played in proving
integrability for entire families of certain planar polynomial differential systems. The articles
[59, 61] were read by a number of people, in particular they were cited in [10] (1997), which
contains an extension of the theory of Darboux to be later discussed, and also in [5].

In his PhD Thesis (1990) entitled Invariant algebraic curves in polynomial differential systems as
well as later in his paper [11] (1994) Christopher had independently explored the relationship
between the presence of invariant algebraic curves and conditions for the center in quadratic
and also some cubic differential systems such as the cubic Kukles systems without a term in y3

in the equation for dy/dt, or the cubic system of Dolov. He showed that the conditions for the
center given by Kukles were incomplete and proved that the system of Dolov was integrable
by using four invariant lines and a circle.

Work on these connections between the problem of the center and the Darboux theory of
integrability continued to be published. We only mention here a few of the earliest papers
such as [38] (1992) of Cozma and S, ubă on cubic differential systems and of Żoła̧dek [76] (1994)
on quadratic systems and their perturbations. More work on cubic systems done by Cozma
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and S, ubă and also by Żoła̧dek alone or together with some of his students, can be accessed
through MathSciNet. The cubic symmetric systems were proven to be integrable using the
method of Darboux by Rousseau and Schlomiuk in [57] (1995) and they also had integrability
results on the reduced cubic Kukles systems [56] (1995).

To get to a higher echelon in the hierarchy of first integrals, we need to consider Liouvillian
first integrals. In [72] Singer describes Liouvillian functions as follows:

Liouvillian functions are functions that are built up from rational functions using exponentiation,
integration, and algebraic functions.

Thus, the logarithm as a function of one variable is a Liouvillian function being defined as
the integral from 0 to x of 1/x. In general, Liouvillian functions are defined in the context of
differential algebra.

The following result was proved by Singer in 1992.

Theorem 2.7 ([72]). If the system (1.1) has a Liouvillian first integral, then it has an integrating factor
of the form

e
∫

Udx+Vdy, Uy = Vx,

where U and V are rational functions over C[x, y].

A consequence of Singer’s theorem is the following.

Corollary 2.8 ([72]). A system of differential equations (1.1) has a Liouvillian first integral if and only
if it has an integrating factor of the form

R(x, y) = e
∫

Udx+Vdy, Uy = Vx (U, V are rational function over C[x, y])

in which case
F(x, y) =

∫
R(x, y)Q(x, y)dx− R(x, y)P(x, y)dy

is a Liouvillian first integral.

It is important to mention that a Liouvillian integrable system does not necessarily have
an affine invariant algebraic curve. An example of such a polynomial differential system is
presented in [30].

The following notion was defined by Christopher in 1994 (see [11]) where he called it
“degenerate invariant algebraic curve”.

Definition 2.9. Let F(x, y) = exp
( G(x,y)

H(x,y)

)
with G, H ∈ C[x, y] coprime. We say that F is an

exponential factor of system (1.1) if it satisfies the equality

FxP + FyQ = LF, (2.1)

for some L ∈ C[x, y]. The polynomial L is called the cofactor of the exponential factor F.

Proposition 2.10 ([11]). If F = exp(G/H) is an exponential factor of system (1.1) with cofactor L
then H = 0 is an invariant algebraic curve of the system (1.1) with cofactor KH and G satisfies the
equation

PGx + QGy = KHG + LH, where G, H, L, KH ∈ C[x, y]. (2.2)

See [15] for a detailed proof.
A theorem of Darboux was rephrased by Chavarriga, Llibre and Sotomayor [10] (1997) by

introducing in [10] the notion of independent points.
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If S(x, y) = ∑m−1
i+j=0 aijxiyj is a polynomial of degree at most m − 1 with m(m + 1)/2 co-

efficients in C, then we write S ∈ Cm−1[x, y]. We identify the linear space Cm−1[x, y] with
Cm(m+1)/2 through the isomorphism

S→ (a00, a10, a01, . . . , am−1,0, am−2,1, . . . , a0,m−1).

Definition 2.11 ([10]). We say that r singular points (xk, yk) ∈ C2, k = 1, . . . , r of a differential
system (1.1) of degree m are independent with respect to Cm−1[x, y] if the intersection of the r
hyperplanes

m−1

∑
i+j=0

xi
kyj

kaij = 0, k = 1, . . . , r,

in Cm(m+1)/2 is a linear subspace of dimension [m(m + 1)/2]− r.

We remark that the maximum number of isolated singular points of the polynomial system
(1.1) of degree m is m2 (by Bézout’s Theorem), that the maximum number of independent
isolated singular points of the system is m(m + 1)/2, and that m(m + 1)/2 < m2 for m ≥ 2.

The following is a theorem of Darboux as stated by Chavarriga, Llibre and Sotomayor
proved in [10].

Theorem 2.12 ([20]). Assume that a real (complex) polynomial system of degree m admits q =

m(m + 1)/2 + 1− p algebraic solutions fi = 0, i = 1, 2, . . . , q, not passing through p real (com-
plex) independent singular points (xk, yk), k = 1, 2, . . . , p, then the system has a first integral of the
form f λ1

1 f λ2
2 . . . f λq

q with λi ∈ R (C).

Remark 2.13. The above theorem is interesting because it reduces the number of invariant
algebraic curves we need to have, that according to Darboux’s theorem is m(m + 1)/2 + 1, to
just m(m + 1)/2 + 1− p.

Let us consider again Example 1.7:{
ẋ = 3 + 2x2 + xy,

ẏ = 3 + xy + 2y2.

The line f1(x, y) = x− y = 0 and the hyperbola f2(x, y) = 2 + xy = 0 are invariant for this
system with co-factors K1(x, y) = 2x + 2y and K2(x, y) = 3x + 3y. Here m = 2 = n and hence
m < n(n + 1)/2. Still, the number of curves suffices to compute the first integral H(x, y) =

(x − y)−3/2(2 + xy) although the condition in the theorem of Darboux is not satisfied by
this number. But here we have that the singular points P1,2 = ±(−i

√
3, i
√

3) of the system
are independent. Indeed, solving the system H1 = a00 − i

√
3a10 + i

√
3a01 = 0, H2 = a00 +

i
√

3a10 − i
√

3a01 = 0, we get a00 = 0 and a10 = a01 and hence dim(H1
⋂

H2) = 1. Also
f1(Pi) 6= 0 and f2(Pi) 6= 0. So the points Pi’s are independent. Applying the above theorem
we have q = 2, p = 2, n = 2 and we have q = n(n + 1)/2 + 1− p.

Definition 2.14. A singular point (x0, y0) of system (1.1) is called weak if the divergence of
system (1.1) at (x0, y0) is zero.

In what follows we state a generalization of Darboux’s theorem taking into account ex-
ponential factors, independent points and invariants. The result was stated and proved by
Christopher and Llibre in 2000 in [15]. An earlier version appeared in [5] (1999).
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Theorem 2.15 ([15]). Suppose that a C−polynomial system (1.1) of degree m admits p algebraic
solutions fi = 0 with cofactors Ki for i = 1, . . . , p, q exponential factors Fj = exp(gj/hj) with
cofactors Lj for j = 1, . . . , q, and r independent singular points (xk, yk) ∈ C2 such that fi(xk, yk) 6= 0
for i = 1, . . . , p and for k = 1, . . . , r.

(i) There exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = 0,

if and only if the (multi-valued) function

f λ1
1 . . . f λp

p Fµ1
1 . . . Fµq

q (2.3)

is a first integral of system (1.1).

(ii) If p + q + r ≥ [m(m + 1)/2] + 1, then there exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
i=1

µjLj = 0.

(iii) If p+ q+ r ≥ [m(m+ 1)/2] + 2, then system (1.1) has a rational first integral, and consequently
all trajectories of the system are contained in invariant algebraic curves.

(iv) There exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −div(P, Q),

if and only if function (2.3) is an integrating factor of system (1.1).

(v) If p + q + r = m(m + 1)/2 and the r independent singular points are weak, then function (2.3)
is a first integral if

p

∑
i=1

λiKi +
q

∑
i=1

µjLj = 0,

or an integrating factor if
p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −div(P, Q),

under the condition that not all λi, µj ∈ C are zero.

(vi) If there exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = −s

for some s ∈ C\{0}, then the (multi-valued) function

f λ1
1 . . . f λp

p Fµ1
1 . . . Fµq

q exp(st) (2.4)

is an invariant of system (1.1).
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Of course, each irreducible factors of each hj is one of the fi’s.

Definition 2.16. If system (1.1) has a first integral of the form

H(x, y) = f1
λ1 . . . fp

λp F1
µ1 . . . Fq

µq (2.5)

where fi and Fj are respectively the invariant algebraic curves and exponential factors of a
system (1.1) and λi, µj ∈ C, then we say that the system is generalized Darboux integrable. We
call the function H a generalized Darboux function.

Remark 2.17. In [20] Darboux considered functions of the type (1.6), not of type (2.5). In
recent works functions of type (2.5) were called Darboux functions. Since in this work we
need to pay attention to the distinctions among the various kinds of first integral we call (1.6)
a Darboux and (2.5) a generalized Darboux first integral.

Proposition 2.18 ([25]). For a real polynomial system (1.1) the function exp(G/H) is an exponential
factor with cofactor K if and only if the function exp(G/H) is an exponential factor with cofactor K.

Remark 2.19 ([25]). If among exponential factors of the real system (1.1) a complex pair F =

exp(G/H) and F = exp(G/H) occurs, then the first integral (2.5) has a real factor of the form

(exp(G/H))µ (exp(G/H)
)µ

= exp (2 Re(µ(G/H))) ,

where µ ∈ C and Im(µ) Im(F) 6= 0. This means that function (2.5) is real when system (1.1) is
real.

Considering the definition of generalized Darboux function we can rewrite Corollary 2.8
as follows.

Theorem 2.20 ([11, 72]). A planar polynomial differential system (1.1) has a Liouvillian first integral
if and only if it has a generalized Darboux integrating factor.

For a proof see [75], page 134.
We can also state easily the following result of Preller–Singer.

Theorem 2.21 ([9, 53]). If a planar polynomial vector field (1.2) has a generalized Darboux first
integral, then it has a rational integrating factor.

In 2019, a converse of the previous result was proved in [16] as a consequence of [54].

Theorem 2.22 ([16]). If a planar polynomial vector field (1.2) has a rational integrating factor, then it
has a generalized Darboux first integral.

We have the following table summing up these results.

First integral Integrating factor
Generalized Darboux ⇔ Rational

Liouvillian ⇔ Generalized Darboux

To study the way integrable systems vary within families of polynomial differential sys-
tems (1.1) using the theory of Darboux, one needs to consider perturbations of a system within
such a family. An algebraic invariant curve f (x, y) = 0 of such a system could split in several
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algebraic invariant curves occurring in nearby systems. In [11] (1994) C. Christopher consid-
ered in an example the coalescence of two such curves and its relationship with exponential
factors but in [11] he did not yet talk about multiplicity of an invariant algebraic curve.

In [62] (1997) Schlomiuk introduced a general notion of multiplicity of an invariant alge-
braic curve f = 0 of a polynomial differential system (1.1). This definition was given in terms
of the multiplicities of singularities of the system located on the projective completion of the
curve (Definition 4.1 in [62]).

A notion of multiplicity was defined by Schlomiuk and Vulpe in 2004 for invariant lines
of quadratic differential systems and in [64] they classified the family of quadratic systems
with invariant lines of total multiplicity at least five, including the line at infinity, according
to configurations of straight lines of such systems. Around the same time this study was in
progress, Christopher, Llibre and Pereira were working on their important paper [18] (2007)
and produced a preprint, earlier version of their work, containing several notions of multiplic-
ity of an invariant algebraic curve. In [18] they gave a condition for these notions to coincide.
In this work, as we see later, we use three of the notions introduced in [18].

Suppose that a polynomial differential system has an algebraic solution f (x, y) = 0 where
f (x, y) ∈ C[x, y] is of degree n given by

f (x, y) = c0 + c10x + c01y + c20x2 + c11xy + c02y2 + · · ·+ cn0xn + cn−1,1xn−1y + · · ·+ c0nyn,

with ĉ = (c0, c10, . . . , c0n) ∈ CN where N = (n + 1)(n + 2)/2. We note that the equation

λ f (x, y) = 0, λ ∈ C∗ = C− {0}

yields the same locus of complex points in the plane as the locus induced by f (x, y) = 0.
Therefore, a curve of degree n is defined by ĉ where

[ĉ] = [c0 : c10 : · · · : c0n] ∈ PN−1(C).

We say that a sequence of curves fi(x, y) = 0, each one of degree n, converges to a curve
f (x, y) = 0 if and only if the sequence of points [ci] = [ci0 : ci10 : · · · : ci0n] converges to
[ĉ] = [c0 : c10 : · · · : c0n] in the topology of PN−1(C).

We observe that if we rescale the time t′ = λt by a positive constant λ the geometry of the
systems (1.1) (phase curves) does not change. So for our purposes we can identify a system
(1.1) of degree n with a point

[a0 : a10 : · · · : a0n : b0 : b10 : · · · : b0n] ∈ SN−1(R)

where N = (n + 1)(n + 2).
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Definition 2.23 ([64]).

(1) We say that an invariant curve

L : f (x, y) = 0, f ∈ C[x, y]

for a polynomial system (S) of degree n has geometric multiplicity m if there exists a
sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology
of SN−1(R) where N = (n+ 1)(n+ 2) such that each (Sk) has m distinct invariant curves

L1,k : f1,k(x, y) = 0, . . . ,Lm,k : fm,k(x, y) = 0

over C, deg( f ) = deg( fi,k) = r, converging to L as k → ∞, in the topology of PR−1(C),
with R = (r + 1)(r + 2)/2 and this does not occur for m + 1.

(2) We say that the line at infinity
L∞ : Z = 0

of a polynomial system (S) of degree n has geometric multiplicity m if there exists a
sequence of real polynomial systems (Sk) of degree n converging to (S) in the topology
of SN−1(R) where N = (n + 1)(n + 2) such that each (Sk) has m− 1 distinct invariant
lines

L1,k : f1,k(x, y) = 0, . . . ,Lm−1,k : fm−1,k(x, y) = 0

over C, converging to the line at infinity L∞ as k→ ∞, in the topology of P2(C) and this
does not occur for m.

In 2007 the authors of [18] introduced the following notion of geometric multiplicity:

Definition 2.24 ([18]). Consider χ a polynomial vector field of degree d. An invariant algebraic
curve f = 0 of degree n of the vector field χ has geometric multiplicity m if m is the largest
integer for which there exists a sequence of vector fields (χi)i>0 of bounded degree, converging
to hχ, for some polynomial h, not divisible by f , such that each χr has m distinct invariant
algebraic curves, fr,1 = 0, fr,2 = 0, . . . , fr,m = 0, of degree at most n, which converge to f = 0
as r goes to infinity. If h = 1, then we say that the curve has strong geometric multiplicity m.

Definition 2.25 ([18,49]). Let Cm[x, y] be the C-vector space of polynomials in C[x, y] of degree
at most m and of dimension R = (m + 1)(m + 2)/2. Let {v1, v2, . . . , vR} be a base of Cm[x, y].
We denote by MR(m) the R× R matrix

MR(m) =


v1 v2 . . . vR

χ(v1) χ(v2) . . . χ(vR)
...

...
. . .

...
χR−1(v1) χR−1(v2) . . . χR−1(vR)

 , (2.6)

where χk+1(vi) = χ(χk(vi)). The mth extactic curve of χ, Em(χ), is given by the equation
det MR(m) = 0. We also call Em(χ) the mth extactic polynomial.

From the properties of the determinant we note that the extactic curve is independent of
the choice of the base of Cm[x, y].

Theorem 2.26 ([49]). Consider a planar vector field (1.2). We have Em(χ) = 0 and Em−1(χ) 6= 0 if
and only if χ admits a rational first integral of exact degree m.
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Observe that if f = 0 is an invariant algebraic curve of degree m of χ, then f divides
Em(χ). This is due to the fact that if f is a member of a base of Cm[x, y], then f divides the
whole column in which f is located.

Definition 2.27 ([18]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has
algebraic multiplicity k if det MR(m) 6= 0 and k is the maximum positive integer such that f k

divides det MR(m); and it has no defined algebraic multiplicity if det MR(m) ≡ 0.

Definition 2.28 ([18]). We say that an invariant algebraic curve f = 0 of degree m ≥ 1 has
integrable multiplicity k with respect to χ if k is the largest integer for which the following is
true: there are k− 1 exponential factors exp(gj/ f j), j = 1, . . . , k− 1, with deg(gj) ≤ jm, such
that each gj is not a multiple of f .

In the next result we see that the algebraic and integrable multiplicity coincide if f = 0 is
an irreducible invariant algebraic curve.

Theorem 2.29 ([18]). Consider an algebraic solution f = 0 of degree m ≥ 1 of χ. Then f has
algebraic multiplicity k if and only if the vector field (1.2) has k − 1 exponential factors exp(gj/ f j),
where (gj, f ) = 1 and gj is a polynomial of degree at most jm, for j = 1, . . . , k− 1.

In 2007 Christopher, Llibre and Pereira showed in [18] that the definitions of geometric
(see Definition 2.24), algebraic and integrable multiplicity are equivalent when f = 0 is an
algebraic solution of the vector field (1.2). The algebraic multiplicity has the advantage that
we have the possibility of calculating it via the extactic curve and if the curve is irreducible
then this coincides with either the integrable (reflected in the exponential factors) or the ge-
ometric one. Christopher, Llibre and Pereira also stated and proved the following theorem
about Darboux theory of integrability that takes into account the multiplicity of the invariant
algebraic curves.

Theorem 2.30 ([18], see Theorem 8.3.). Consider a planar vector field (1.2). Assume that (1.2)
has p distinct irreducible invariant algebraic curves fi = 0, i = 1, . . . , p of multiplicity mi, and let
N = ∑

p
i=1 mi. Suppose, furthermore, that there are q critical points p1, . . . , pq which are independent

with respect to Cm−1[x, y], and f j(pk) 6= 0 for j = 1, . . . , p and k = 1, . . . , q. We have:

(a) If N + q ≥ [m(m + 1)/2] + 2, then χ has a rational first integral.

(b) If N + q ≥ [m(m + 1)/2] + 1, then χ has a Darboux first integral.

(c) If N + q ≥ [m(m + 1)/2] and pi’s are weak, then χ has either a Darboux first integral or a
Darboux integrating factor.

This theorem was generalized by Llibre and Zhang in [42] for invariant hypersurfaces in
Cn. In the same paper they also generalized the theorem of Jouanolou and gave a simplified,
elementary proof.

The term of total multiplicity of invariant curves, finite and infinite, of a polynomial differential
system was used for the first time in the theory of Darboux by Schlomiuk and Vulpe in [64],
in the specific context of invariant straight lines of quadratic differential systems. In [18] the
total multiplicity N of the finite number of affine (finite) invariant algebraic curves appeared for
the first time in the general context of the theory of Darboux in the above quoted theorem.
This number is clearly not the total multiplicity of invariant algebraic curves of the system as
the line at infinity is invariant and could have multiplicity (for examples see [64, 68]).
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The total multiplicity of the invariant algebraic curves finite and infinite occurs for the
first time in the general setting in the work of Llibre and Zhang (2009) but only for invariant
hyper-surfaces of polynomial vector fields in Rn and to this day we do not have the analog of
this theorem for multiple invariant hypersurfaces, both finite and the hyper plane at infinity.

We consider now the result of Llibre and Zhang in [43]. To state it the authors generalized
the Poincaré compactification on the sphere for planar differential systems to the Poincaré
compactification of polynomial differential systems in Rn which they constructed in the Ap-
pendix of [43].

To talk about multiplicity of the hyperplane at infinity they only needed to pass by central
projection from the systems in Rn, considered as the hyperplane Z = 1 in Rn+1 tangent to the
n-sphere with radius 1 centered at the origin of Rn+1, and then further into the chart x1 = 1
and obtain (x1, . . . , xn, 1) = λ(1, y2, . . . , yn, Z) for some non-zero real λ. Hence we must have
λ = x1 and therefore y2 = x2/x1,. . . , yn = xn/x1, Z = 1/x1 and x1 = 1/Z, x2 = y2/Z,. . . ,
xn = yn/Z. Transferring the vector field in this chart we obtain that it has a pole on Z = 0. In
complete analogy with the compactification of the plane we can obtain an analytic vector field
on the n-sphere which is conjugate to the vector field thus obtained. In this way our initial
hyper-surface at infinity, becomes just an affine hypersurface in the chart x1 = 1 and hence we
can apply to it our notions of multiplicity. Let χ = (P1(x), P2(x), . . . , Pn(x)) be the expression
of the compactified vector field χ. We say that the infinity of χ has algebraic multiplicity k if
Z = 0 has algebraic multiplicity k for the vector field χ; and that it has no defined algebraic
multiplicity if Z = 0 has no defined algebraic multiplicity for χ. One thing the authors did
not say is that this definition of the multiplicity of the infinite hypersurface does not depend
on the chart x1 we chose, and that it leads to the same value if we replace this chart by any
other chart xi = 1 with i 6= 1.

Theorem 2.31 ([43]). Let χ be the expression of the compactified vector field χ. Assume that χ

restricted to Z = 0 has no rational first integral. Then Z = 0 has algebraic multiplicity k for χ if and
only if χ has k− 1 exponential factors exp(gj/Zj) where j = 1, . . . , k− 1 with gj ∈ Cj[Z, y2, . . . , yn]

having no factor Z.

The next result provides a relation between the exponential factors of χ and those of χ

associated with Z = 0.

Proposition 2.32 ([43]). For the exponential factors associated with the hyperplane at infinity the
following statements hold.

(a) If E = exp(g(x)) with g a polynomial of degree k is an exponential factor of χ with cofactor
LE(x), then E = exp

( g
Zk

)
with g = Zkg

( 1
Z , y2

Z , . . . , yn
Z

)
is an exponential factor of χ with

cofactor LE = Zd−1LE
( 1

Z , y2
Z , . . . , yn

Z

)
.

(b) Conversely if F = exp
( h

Zk

)
with h ∈ Rk[Z, y2, . . . , yn] is an exponential factor of χ with

cofactor LF, then F = exp(h(x)) with h(x) = xkh
( 1

x1
, x2

x1
, . . . , xn

x1

)
is an exponential factor of χ

with cofactor LF = xd−1LF
( 1

x1
, x2

x1
, . . . , xn

x1

)
.

The following result was proved in 2009 by Llibre and Zhang.

Theorem 2.33 ([43]). Assume that the polynomial vector field χ in Rn of degree d > 0 has irreducible
invariant algebraic hypersurfaces fi = 0 for i = 1, . . . , p and the invariant hyperplane at infinity.

(i) If one of these irreducible invariant algebraic hypersurfaces or the invariant hyperplane at infinity
has no defined algebraic multiplicity, then the vector field χ has a rational first integral.



Darboux theory of integrability with applications to a family of QSH 19

(ii) Suppose that each irreducible invariant algebraic hypersurfaces fi = 0 has algebraic multiplicity
mi for i = 1, . . . , p and that the invariant hyperplane at infinity has algebraic multiplicity k.
If the vector field restricted to the hyperplane at infinity or to any invariant hypersurface with
multiplicity larger than 1 has no rational first integral, then the following hold

(a) If ∑
p
i=1 mi + k = N + 2, then the vector field χ has a real Darboux first integral, where

N = ( n+d−1
n ).

(b) If ∑
p
i=1 mi + k = N + n + 1, then (1.2) has a real rational first integral.

We remark that by “real Darboux first integral” in Theorem 2.33 the authors mean gen-
eralized Darboux first integral. For two-dimensional polynomial vector fields, the additional
condition in Theorem 2.33 on the nonexistence of rational first integrals of the vector field
restricted to the invariant algebraic curves including the line at infinity is not necessary.

We end our conceptual and historical survey with some comments about this result over
the reals. Darboux constructed his theory over the complex projective space which we think is
the natural field and natural space for this theory. Firstly the complex numbers form an alge-
braically closed field. So an essential ingredient in his theory, the theory of algebraic curves,
can be properly done. Indeed, Bézout’s theorem cannot be proved over the reals. Secondly
the complex projective plane is a compact space and in particular “the line at infinity” of the
affine plane completely looses its special status in the projective plane. It is like any other line.

On the other hand it is important to observe that when we consider the theory of Darboux
for real systems, we can go to their complexification and these systems could have complex
invariant algebraic curves f (x, y) = 0 with f ∈ C[x, y]. We can therefore end up with more
invariant curves than those with real coefficients. Let us consider an example.

Example 2.34. {
ẋ = x2 + 1,

ẏ = x + y.

This system clearly has two invariant lines which are complex x ± i = 0 with respective
co-factors x∓ i. It can easily be checked that the line at infinity has the multiplicity two. So
the total multiplicity of invariant lines over C is four. This system was proved to be integrable
in [66] having the inverse Darboux integrating factor (x + i)1+i/2(x− i)1−i/2.

Let us now consider this real system without taking into consideration its complexification.
Suppose now that we want to prove just by using real curves that the system is integrable.
The lines x± iy = 0 are defined over C and it is only their union, the conic x2 + 1 = 0 which
is defined over R. This is an invariant curve of the real system with the cofactor 2x. We
also have an exponential factor e1+2y with co-factor 2(x + y). However this is insufficient for
proving integrability as we can check by trying to apply the usual algorithm for computing
an integrating factor. Indeed, given λ1, λ2 ∈ C we have 2λ1x + 2λ2(x + y) = −div(P, Q) =

−2x− 1, which has no solution. So although the real system is integrable and has a real first
integral, we cannot compute this real first integral without considering the two invariant lines.
So this supports the idea that the full real extension of the Darboux theory that also covers
the line at infinity with its own multiplicity cannot produce all the real integrable systems.

In conclusion we really need an extension of the Darboux theory over C that includes the
multiplicity of the line at infinity and work in this direction is in progress.



20 R. Oliveira, D. Schlomiuk, A. M. Travaglini and C. Valls

3 Applications of Darboux’s theory to the family QSH of quadratic
differential systems with an invariant hyperbola, case η = 0

The notion of configuration of invariant curves of a polynomial differential system appears in
several works, see for instance [64].

Definition 3.1 ([64]). Consider a real planar polynomial system (1.1) with a finite number of
singular points. By configuration of algebraic solutions of the system we mean a set of algebraic
solutions over C of the system, each one of these curves endowed with its own multiplicity
and together with all the real singular points of this system located on these curves, each one
of these singularities endowed with its own multiplicity.

The notion of equivalence of configurations was used in many papers (see for instance,
[47, 64–68]) to classify systems in QS possessing invariant algebraic curves according to the
kind of configurations these systems.

In particular, in [47], QSH was classified according to the configuration of invariant hy-
perbolas and lines the systems possess. The equivalence of configurations in the class QSH
depends on whether the systems admits a finite or an infinite number of invariant hyperbolas.
See Definition 1.9 of [47] in case the system has a finite number of invariant hyperbolas and
Definition 1.10 of [47] for the case the system has an infinite family of invariant hyperbolas.
The classification of QSH led to 205 distinct configurations.

Here we introduce some invariant polynomials that play an important role in the study of
polynomial vector fields. Considering C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary
form of x and y we calculate

η(ã) = Discrim[C2, ξ], M(ã, x, y) = Hessian[C2],

where ξ = y/x or ξ = x/y. It is known that the singular points at infinity of quadratic systems
are given by the solutions in x and y of C2(ã, x, y) = 0. If η < 0 then this means we have one
real singular point at infinity and two complex ones.

Remark 3.2. We note that since a system in QSH always has an invariant hyperbola then clearly
we always have at least 2 real singular points at infinity. So we must have η ≥ 0.

The family QSH can be split as follows: QSHη=0 of systems which possess either exactly
two distinct real singularities at infinity or the line at infinity filled up with singularities and
QSHη>0 of systems which possess three distinct real singularities at infinity in P2(C). In this
paper we present a study of QSHη=0.

In [47] the authors gave necessary and sufficient conditions for a quadratic system to
have an invariant hyperbola. These conditions were given in terms of 40 affine invariant
polynomials and hence these conditions are independent of the normal forms in which the
systems may be presented. For the sake of completeness, we give below in the following tables
these conditions for QSHη=0.

In the next table we present in the first column the number associated to the equations
in [47], which are the normal forms for the systems in QSH. In the second column are the
necessary and sufficient conditions. For a proof see [47].
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Equations in [47] Invariants

(4.4) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 6= 0,R1 6= 0, B1 6= 0

(4.10) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 6= 0,R1 6= 0, B1 = 0

(4.11) η = 0, M 6= 0, θ 6= 0, β2 6= 0, β1 = 0, γ1 = 0,R3 6= 0

(4.13) η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0

(4.13) g = 1/4 η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 < 0, β8 = 0

η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 > 0, β8 = 0

(4.13) g = 1/2 η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 < 0, β7 = 0

η = 0, M 6= 0, θ 6= 0, β2 = 0, β1 = γ14 = 0,R10 6= 0, β7β8 = 0,R10 > 0, β7 = 0

(4.16) η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A < 0

η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A > 0

(4.16) c2 = a η = 0,A1 [M 6= 0, θ = 0], µ0 6= 0, β3 = γ8 = 0,R7 6= 0, χ
(7)
A = 0

(4.18) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 6= 0

(4.18) g = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 = 0, γ16 6= 0

(4.18) c = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 6= 0, µ2 = 0, γ16 = 0

(4.22) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 < 0

η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 > 0

(4.22) ε = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N 6= 0, (C1), β12 = 0, γ17 = 0

(4.25) c 6= 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 6= 0, γ10 = γ17 = 0,R11 6= 0, γ16 6= 0

(4.25) c = 0 η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 6= 0, γ10 = γ17 = 0,R11 6= 0, γ16 = 0

(4.27) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 = 0, γ̃18 = γ̃19 = 0, µ2 6= 0

(4.28) η = 0,A1 [M 6= 0, θ = 0], µ0 = 0, N = 0, β13 = 0, γ̃18 = γ̃19 = 0, µ2 = 0

(4.30) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 < 0

η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 > 0

(4.31) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 6= 0, H9 = 0

(4.34) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 6= 0, H2 6= 0

(4.36) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 6= 0, H2 = 0

(4.38) η = 0,A2 [C2 = 0, M = 0], N7 = 0, H10 = 0, H12 = 0

In this table we denote by (4.25) the following system that appears in [47] without number

ẋ = − 3c2

16 + cx− x2, ẏ = 1− 2xy.

If c 6= 0 we may assume c = 4 by the rescaling (x, y, t) 7→ (cx/4, 4y/c, 4t/c). So we obtain the
system denoted by (4.25) in [47] which we denote here by (4.25) c 6= 0.

The normal forms numbered in the table from (4.4) and up to (4.38), that were obtained
in [47], appear below in a condensed table in the following proposition.

Proposition 3.3 ([47]). Every system in QSHη=0 can be brought by an affine transformation and time
rescaling to one of the following 13 normal forms, where a, g, c, ε are real parameters. Next to each
normal forms we present the respective invariant hyperbola.{

ẋ = 2a + x + gx2 + xy,

ẏ = a(2g− 1)− y + (g− 1)xy + y2,
where a(g− 1) 6= 0

Φ(x, y) = a + xy (A)
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{
ẋ = 2a + gx2 + xy,

ẏ = a(2g− 1) + (g− 1)xy + y2,
where a(g− 1) 6= 0

Φ(x, y) = a + xy (B)

{
ẋ = 2a + 3cx + x2 + xy

ẏ = a− c2 + y2,
where a 6= 0

Φ(x, y) = a + cx + xy (C)

{
ẋ = (c + x)(c(2g− 1) + gx)

ẏ = 1 + (g− 1)xy,
where (g± 1)(3g− 1)(2g− 1) 6= 0

Φ(x, y) = 1
(−1+2g) + cy + xy (D)

{
ẋ = x2 + ε

ẏ = 1− 2xy
Φ1,2(x, y) = −1± i

√
εy + xy (E)

{
ẋ = (x− 1)(3− x)

ẏ = 1− 2xy
Φ(x, y) = 1

3 + y− xy (F)

{
ẋ = −x2

ẏ = 1− 2xy
Φ(x, y) = −1 + 3xy (G)

{
ẋ = (2x− 1)(2x + 1)/4

ẏ = y
Φ(x, y) = − q

2 + qx + y
2 + 2xy, q 6= 0 (H)

{
ẋ = x2

ẏ = 1
Φ(x, y) = 1 + rx + xy (I)

{
ẋ = a + y + x2

ẏ = xy
Φ(x, y) = a + 2y + x2 −m2y2 (J)

{
ẋ = (1 + 3x)(2 + 3x)/9

ẏ = xy
Φ(x, y) = 4 + 12x + 9x2 + my + 3mxy (K)

{
ẋ = a + x2

ẏ = xy,
where a 6= 0

Φ(x, y) = a + x2 −m2xy (L)

{
ẋ = x2

ẏ = 1 + xy
Φ(x, y) = 1 + mx2 + 2xy. (M)

Using the invariants described previously which are powerful so as to give the necessary
and sufficient conditions for systems (1.3) to have an invariant hyperbola, in [47] the authors
considered the two possibilities: M(ã, x, y) 6= 0 (i.e. at infinity we have two distinct real
singularities) and M = 0 = C2 (when we have an infinite number of singularities at infinity).
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(i) M(ã, x, y) 6= 0: This brings systems (1.3) to the systems{
ẋ = a + cx + dy + gx2 + hxy,

ẏ = b + ex + f y + (g− 1)xy + hy2.
(3.1)

with invariants C2(x, y) = x2y and θ = −h2(g− 1)/2.

(i.1) The case θ 6= 0 gives the condition h(g − 1) 6= 0 for (3.1) and via the bifurcation
diagram in [47] we arrive at the normal forms

• (A) where a(g− 1) 6= 0,
• (B) where a(g− 1) 6= 0.

(i.2) The case θ = 0 gives the condition h(g − 1) = 0 for (3.1) and via the bifurcation
diagram in [47] we arrive at another invariant µ0 = gh2.

(i.2.1) For µ0 6= 0 we have the normal form
• (C) where a 6= 0.

(i.2.2) For µ0 = 0 they calculated the invariant N = 9(g− 1)(g + 1)x2 and we need to
consider two possibilities.

(i.2.2.1) For the case N 6= 0 we have the normal forms
• (D) where (g− 1)(g + 1)(2g− 1)(3g− 1) 6= 0,
• (E) where ε 6= 0.

(i.2.2.2) The case N = 0 gives the condition (g − 1)(g + 1) = 0 and we have the
normal forms
• (F),
• (G),
• (H),
• (I).

(ii) M(ã, x, y) = 0 = C2: We arrive at the normal forms

• (J),

• (K),

• (L) where a 6= 0,

• (M).

Remark 3.4. The invariant hyperbolas involve:

(i) sometimes all the parameters of the system (such as (C));

(ii) sometimes only some parameters (such as (A)) and

(iii) sometimes additional parameters (such as (J)).

The next theorem is the main result of this paper.
Consider the following sets:

L1 = ∪k∈N L1,k, where L1,k =
{
(a, g) ∈ R2 : g = k/2 and a 6= 0

}
, k ∈N,

L2 = ∪k∈N L2,k, where L2,k =
{
(a, g) ∈ R2 : g = k/3 and a 6= 0

}
, k ∈N,

L3 =
{
(a, g) ∈ R2 : g = 1/4 and a 6= 0

}
,

C′ = ∪k∈N Ck, where Ck =
{
(a, g) ∈ R2 : g = (2 + a− 2ak)/4a and a 6= 0

}
, k ∈N.
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Main Theorem. Consider the polynomial systems in QSHη=0.

(a) The 11 normal forms (C)–(M) are all Liouvillian integrable. The following table sums up the
results regarding the types of integrability:

Systems Parameters Type of first integral

(C) a = 8c2/9 and c 6= 0 Generalized Darboux
(C) a(a− 8c2/9) 6= 0 Liouvillian

(D) g(g± 1)(2g− 1)(3g− 1) 6= 0 Darboux
(D) g = 0 and c 6= 0 Generalized Darboux

(E) ε ∈ R Polynomial (hamiltonian)

(F) - Rational

(G) - Rational

(H) - Rational

(I) - Rational

(J) a ∈ R Rational

(K) - Rational

(L) a 6= 0 Rational

(M) - Rational

(b) For the normal forms (A) and (B) we have the following:

(i) If (a, g) ∈ R2 − (L1 ∪ L2 ∪C′), then systems (A) are not Liouvillian integrable.

(i.1) If (a, g) ∈ L1,1 then systems (A) are not Liouvillian integrable.

(ii) If (a, g) ∈ R2 − (L1 ∪ L3), then systems (B) are not Liouvillian integrable.

(ii.1) If (a, g) ∈ L1,1 then systems (B) are generalized Darboux integrable.
(ii.2) If (a, g) ∈ L3 then systems (B) are Liouvillian integrable.

The following table sums up the results regarding the types of integrability:

Systems Parameters Type of first integral

(A) (a, g) ∈ R− (L1 ∪ L2 ∪C′) Not Liouvillian integrable

(B) g = 1/2 and a 6= 0 Generalized Darboux
(B) g = 1/4 and a 6= 0 Liouvillian
(B) (a, g) ∈ R− (L1 ∪ L3) Not Liouvillian integrable

Observation 3.5. The Liouvillian integrability of any system in class (A) with (a, g) ∈ (L1− L1,1)∪
L2 ∪C′ or in class (B) with (a, g) ∈ (L1− L1,1) is still open. The reason is that the methods applied in
this paper for proving the existence or non-existence of a Liouvillian first integral do not work in these
cases and so new ideas are needed for proving or disproving their Liouvillian integrability.

For a proof, see Section 5 (integrable cases) and Section 6 (non integrable cases).
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4 Geometrical concepts and results useful for studying the geome-
try of the configurations of invariant curves and their bifurcations

Remark 4.1. In the theory of Darboux presented in the preceding section what counts is
mainly the number of invariant curves, their multiplicities, the number of independent points.
When certain inequalities involving these numbers are satisfied then we have integrability of
the system.

However in 1993 Christopher and Kooij stated a theorem in [13] where, if we reformulate
the theorem in geometric terms, we see a beautiful relation between the geometry of the
“configuration of invariant curves” and their Darboux integrability. This theorem was proved
in [17].

Theorem 4.2 ([13]). Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such
that

(a) all curves Ci = 0 are non-singular and have no repeated factor in their highest order terms,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves have a common factor in their highest order terms,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 . . . Ck).

This theorem has a geometric content which is not completely explicit in the algebraic way
they stated the result. We rewrite the theorem above in geometric terms as follows:

Theorem 4.3. Consider a polynomial system (1.1) that has k algebraic solutions Ci = 0 such that

(a) all curves Ci = 0 are non-singular and they intersect transversally the line at infinity Z = 0,

(b) no more than two curves meet at any point in the finite plane and are not tangent at these points,

(c) no two curves intersect at a point on the line at infinity Z = 0,

(d) the sum of the degrees of the curves is n + 1, where n is the degree of system (1.1).

Then system (1.1) has an integrating factor

µ(x, y) = 1/(C1C2 . . . Ck).

In the hypotheses of this theorem the way the curves are placed with respect to one another
in the totality of the curves, in other words the “geometry of the configuration of invariant
algebraic curves” has an impact of the kind of integrating factor we could have.

We are interested in relating the geometry of the invariant algebraic curves curves taken
in their totality with the various kinds of integrability. To begin doing this we need to recall
some concepts and in particular those introduced by Poincaré in [52]. Among them we have
the following.

Let H = f /g be a rational first integral of the polynomial vector field (1.2). We say that
H has degree n if n is the maximum of the degrees of f and g. We say that the degree of H
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is minimal among all the degrees of the rational first integrals of χ if any other rational first
integral of χ has a degree greater than or equal to n. Let H = f /g be a rational first integral
of χ. According to Poincaré [52] we say that c ∈ C ∪ {∞} is a remarkable value of H if f + cg
is a reducible polynomial in C[x, y]. Here, if c = ∞, then f + cg denotes g. Note that for all
c ∈ C the algebraic curve f + cg = 0 is invariant. The curves in the factorization of f + cg,
when c is a remarkable value, are called remarkable curves.

Now suppose that c is a remarkable value of a rational first integral H and that uα1
1 . . . uα

r
is the factorization of the polynomial f + cg into reducible factors in C[x, y]. If at least one of
the αi is larger than 1 then we say, following again Poincaré (see for instance [28]), that c is a
critical remarkable value of H, and that ui = 0 having αi > 1 is a critical remarkable curve of the
vector field (1.2) with exponent αi.

Since we can think of C ∪ {∞} as the projective line P1(R) we can also use the following
definition.

Definition 4.4. Consider F(c1,c2) : c1 f − c2g = 0 where f /g is a rational first integral of (1.2).
We say that [c1 : c2] is a remarkable value of the curve F(c1,c2) if F(c1,c2) is reducible over C.

It was proved in [9] that there are finitely many remarkable values for a given rational first
integral H and if (1.2) has a rational first integral and has no polynomial first integrals, then
it has a polynomial inverse integrating factor if and only if the first integral has at most two
critical remarkable values.

Given H = f /g a rational first integral, consider F(c1,c2) = c1 f − c2g where deg F(c1,c2) = n.
If F(c1,c2) = f1 f2 where f1, f2 ∈ C[x, y] and deg fi = ni < n then necessarily the points on the
intersection of f1 = 0 and f2 = 0 must be singular points of the curve F(c1,c2).

Lemma 4.5 ([11]). Assume that system (1.1) with degree m has an invariant algebraic curve f of
degree n. Let fn, Pm and Qm be the homogeneous parts of f with degree n, P and Q with degree m.
Then each one of the irreducible factors of fn divides yPm − xQm.

In geometric terms, this lemma means that the points at infinity of any invariant algebraic
curve f = 0 of a system (1.1) are singularities of this system.

Let us recall the algebraic-geometric definition of an r-cycle on an irreducible algebraic
variety of dimension n.

Definition 4.6. Let V be an irreducible algebraic variety of dimension n over a field K. A cycle
of dimension r or r-cycle on V is a formal sum

∑
W

nWW

where W is a subvariety of V of dimension r which is not contained in the singular locus of
V, nW ∈ Z, and only a finite number of nW ’s are non-zero. We call degree of an r-cycle the
sum

∑
W

nW .

An (n− 1)-cycle is called a divisor.

Definition 4.7. For a non-degenerate polynomial differential system (S) possessing a finite
number of algebraic solutions

F = { fi}m
i=1, fi(x, y) = 0, fi(x, y) ∈ C[x, y],
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each with multiplicity ni and a finite number of singularities at infinity, we define the algebraic
solutions divisor (also called the invariant curves divisor) on the projective plane attached to
the family F ,

ICDF = ∑
ni

niCi + n∞L∞

where Ci : Fi(X, Y, Z) = 0 are the projective completions of fi(x, y) = 0, ni is the multiplicity
of the curve Ci = 0 and n∞ is the multiplicity of the line at infinity L∞ : Z = 0.

Proposition 4.8 ([2]). Every polynomial differential system of degree n and with a finite number of
invariant lines has at most 3n invariant straight lines, including the line at infinity.

In particular the maximum number of invariant lines for a quadratic system with a finite
number of invariant lines is six. In the case we consider here, we have a particular instance
of the divisor ICD because the invariant curves we consider are invariant hyperbolas and
invariant lines of a quadratic differential system, in case these are in finite number. In case we
have an infinite number of hyperbolas we can construct the divisor of the invariant straight
lines which are always in finite number.

Another ingredient of the configuration of algebraic solutions are the real singularities
situated on these curves. We also need to use here the notion of multiplicity divisor of real
singularities of a system, located on the algebraic solutions of the system.

Definition 4.9.

1. Suppose a real quadratic system (1.3) has a non-empty finite set of invariant hyperbolas
Hi and a finite number of affine invariant lines Lj, where Hi : hi(x, y) = 0, i = 1, 2, . . . , k,
Lj : f j(x, y) = 0, j = 1, 2, . . . , l and hi, f j ∈ C[x, y].

We denote the line at infinity L∞ : Z = 0 and suppose that on this line we have a finite
number of singularities. The divisor of invariant hyperbolas and invariant lines on the
complex projective plane of the system is the following

ICD = n1H1 + · · ·+ nkHk + m1L1 + · · ·+ mlLl + m∞L∞

where ni (respectively mj) is the multiplicity of the hyperbola Hi (respectively mj of the
line Lj), and m∞ is the multiplicity of L∞. We mark the complex (non-real) invariant
hyperbolas (respectively lines) denoting them by HC

i (respectively LC
i ). We define the

total multiplicity TM of the divisor as the sum ∑i ni + ∑j mj + m∞.

2. The zero-cycle on the real projective plane, of singularities of a quadratic system (1.3)
located on a configuration of invariant lines and invariant hyperbolas, is given by

M0CS = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) real singularities of

the system and ri (respectively vj) are their corresponding multiplicities. We mark the
complex singular points denoting them by PC

i . We define the total multiplicity TM of
zero-cycles as the sum ∑i ri + ∑j vj.

Definition 4.10.

(1) In case we have an infinite number of hyperbolas and just two or three singular points
at infinity but we have a finite number of invariant straight lines we define the invariant
lines divisor as

ILD = m1L1 + · · ·+ mlLl + m∞L∞,

where mi denotes the multiplicity of the line Li and m∞ the multiplicity of L∞.
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(2) In case we have an infinite number of hyperbolas, the line at infinity is filled up with
singularities and we have a finite number of affine lines, we define the invariant lines
divisor

ILD = m1L1 + · · ·+ mlLl .

Definition 4.11.

(1) Suppose we have a finite number of invariant hyperbolas and invariant straight lines of
a system (S) and that they are given by equations

fi(x, y) = 0, i ∈ {1, 2, . . . , k}, fi ∈ C[x, y].

Set Fi(X, Y, Z) = 0 the projection completion of the invariant curves fi = 0 in P2(C). The
total invariant algebraic curve of the system (S) in QSH, on P2(R), is the curve

T(S) = ∏
i

Fi(X, Y, Z)mi Zm∞ = 0,

where mi is the multiplicity of fi = 0, i = 1, . . . , k and m∞ is the multiplicity of the line
at infinity.

(2) Suppose that a system (S) has an infinite number of invariant hyperbola. Then the sys-
tem (S) has a finite number of invariant affine straight lines (see [47]). Set Li(X, Y, Z) =
0 the projective completions of the invariant lines li(x, y) = 0, i ∈ {1, 2, . . . , k} in P2(C).

(i) If there are a finite number of singular points at infinity, the total invariant curve of
system (S) is

T(S) = ∏
i

Li(X, Y, Z)mi Zm∞ = 0,

where mi is the multiplicity of the line li = 0, i = 1, . . . , k and m∞ is the multiplicity
of the line at infinity.

(ii) If the line at infinity is filled up with singularities, the total invariant curve of system
(S) is

T(S) = ∏
i

Li(X, Y, Z)mi = 0,

where mi is the multiplicity of the line li = 0, i = 1, . . . , k.

The singular points of the system (S) situated on T(S) are of two kinds: those which are
simple (or smooth) points of T(S) and those which are multiple points of T(S).

Remark 4.12. To each singular point of the system we have its associated multiplicity as a
singular point of the system. In addition, when these singular points are situated on the total
curve, we also have the multiplicity of these points as points on the total curve T(S). Through
a singular point of the systems there may pass several of the curves Fi = 0 and Z = 0. Also we
may have the case when this point is a singular point of one or even of several of the curves
in case we work with invariant curves with singularities. This leads to the multiplicity of the
point as point of the curve T(S). The simple points of the curve T(S) are those of multiplicity
one. They are also the smooth points of this curve.
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Definition 4.13.

(i) Suppose a quadratic system (S) has a finite number of singularities finite or infinite. The
zero-cycle of singularities of the total curve T(S) of system (S) is given by

M0CT = r1P1 + · · ·+ rl Pl + v1P∞
1 + · · ·+ vnP∞

n

where Pi (respectively P∞
j ) are all the finite (respectively infinite) singularities situated

on T(S) and ri (respectively vj) are their corresponding multiplicities as points on the
total curve T(S). We mark the complex singular points denoting them by PC

i . We define
the total multiplicity TM of the zero-cycle M0CT as the sum ∑i ri + ∑j vj.

(ii) Suppose a system (S) possessess the line at infinity filled up with singularities. The
zero-cycle of the total curve T(S) of system (S) is given by

M0CT = r1P1 + · · ·+ rl Pl

where Pi are all the finite singularities situated on T(S) and ri are their corresponding
multiplicities as points on the total curve T(S). We mark the complex singular points
denoting them by PC

i . The total multiplicity TM of the zero-cycle M0CT as the sum ∑i ri.

Definition 4.14. If the intersection multiplicity [29] of two curves is one then we say that the
curves intersect transversally or that this point is a simple point of intersection.

If at a point two curves are tangent, we have an intersection multiplicity higher than or
equal to two.

Definition 4.15 ([63]). Two polynomial differential systems S1 and S2 are topologically equiv-
alent if and only if there exists a homeomorphism of the plane carrying the oriented phase
curves of S1 to the oriented phase curves of S2 and preserving the orientation.

To cut the number of non equivalent phase portraits in half we use here another equiva-
lence relation.

Definition 4.16. Two polynomial differential systems S1 and S2 are topologically equivalent if
and only if there exists a homeomorphism of the plane carrying the oriented phase curves of
S1 to the oriented phase curves of S2, preserving or reversing the orientation.

Notation: ∼=top .

In [4] the authors provide a complete classification of QS according to the geometric equiv-
alence relation of topological configurations of singularities, finite or infinite. Here we use the
same terminology and notation for singularities introduced in [4].

We say that a singular point is elemental if it possesses two non-zero eigenvalues; semi-
elemental if it possess exactly one eigenvalue equal to zero and nilpotent if it possesses two
zero eigenvalues and the linear part is not zero. We call intricate a singular point with its
Jacobian matrix identically zero.

We place first the finite singular points denoted with lower case letters and secondly the
infinite singular points denoted by capital letters, separating them by a semicolon ’;’.

In our study we have real and complex finite singular points for real systems and from
the topological viewpoint only the real ones are interesting. When we have a complex finite
singular point we use the notation ©. For the elemental singular points we use the notation
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‘s’, ‘S’ for saddles, ‘n’, ‘N’ for nodes, ‘ f ’ for foci and ‘c’ for centers. We also denote by ‘a’ (anti-
saddle) for either a focus or any type of node when the local phase portraits are topologically
equivalent.

Non-elemental singular points are multiple points. We denote by (a
b) the maximum num-

ber a (respectively b) of finite (respectively infinite) singularities which can be obtained by
perturbation of the multiple point at infinity. For example, (1

1)SN and (0
2)SN correspond to two

saddle-nodes at infinity which are locally topologically distinct since the first arises from the
coalescence of a finite with an infinite singularity and the second from the coalescence of two
infinite singularities.

The semi-elemental singular points can either be nodes, saddles or saddle-nodes (finite or
infinite). If they are finite singular points we denote them by ’n(3)’, ’s(3)’ and ’sn(2)’, respec-
tively and if they are infinite singular points by ’(a

b)N’, ’(a
b)S’ and ’(a

b)SN’, where (a
b) indicates

their multiplicity. We note that semi-elemental nodes and saddles are respectively topologi-
cally equivalent with elemental nodes and saddles.

The nilpotent singular points can either be saddles, nodes, saddle-nodes, elliptic-saddles,
cusps, foci or centers. The only finite nilpotent points for which we need to introduce notation
are the elliptic-saddles and cusps which we denote respectively by ’es’ and ’cp’.

In the case of nilpotent infinite points, the relative positions of the sectors with respect to
the line at infinity, can produce topologically different phase portraits. Then we use a notation
for these points similar to the notation which we will use for the intricate points.

The intricate singular points are degenerate singular points. It is known that the neigh-
bourhood of any singular point of a polynomial vector field (except for foci and centers) is
formed by a finite number of sectors which could only be of three types: parabolic (p), hyper-
bolic (h) and elliptic (e) (see [25]). Then, a reasonable way to describe intricate and nilpotent
points at infinity is to use a sequence formed by the types of their sectors. From the topo-
logical view point, any two adjacent parabolic geometrical sectors merge into one and any
elliptic sector, in a small vicinity of the singularity, always has two parabolic sectors one of
each side. We make the convention to eliminate the parabolic sectors adjacent to the elliptic
sectors, according to the notation in [4].

In quadratic systems, we have just four topological possibilities for finite intricate singular
points of multiplicity four:

• phph;

• hh;

• hhhhhh;

• ee.

For intricate and nilpotent singular points at infinity, we insert a dash (hyphen) between
the sectors to split those which appear on one side or the other of the equator of the sphere.
When describing a single finite nilpotent or intricate singular point, one can always apply an
affine change of coordinates to the system, so it does not really matter which sector starts
the sequence, or the direction (clockwise or counter-clockwise) we choose. If it is an infinite
nilpotent or intricate singular point, then we always start with a sector bordering the infinity
(to avoid using two dashes).

If the line at infinity is filled up with singularities, then it is known that any such sys-
tem has in a sufficiently small neighbourhood of infinity one of 7 topological distinct phase
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portraits (see [67]). The way to determine these portraits is by studying the reduced sys-
tems on the infinite local charts after removing the degeneracy of the systems within these
charts. Following [3] we use the notation [∞; ∅], [∞; N], [∞; Nd] (one-direction node, that
is a node with two identical eigenvalues whose Jacobian matrix cannot be diagonal), [∞; S],
[∞; C], [∞; (0

2)SN], [∞; (0
3)ES] indicating the kinds of singularities obtained after removing the

line filled with singularities.
The degenerate systems are systems with a common factor in the polynomials defining the

system. We denote this case with the symbol 	. The degeneracy can be produced by a non-
constant common factor of degree one which defines a straight line or a common quadratic
factor which defines a conic. In this paper we have just the second case happening.

Moreover, we also want to determine whether after removing the common factor of the
polynomials, singular points remain on the curve defined by this common factor. If the re-
duced system has no finite singularity on this curve, we use the symbol ∅ to describe this
situation. If some singular points remain on this curve we use the corresponding notation of
their various kinds. In this situation, the geometrical properties of the singularity that remains
after the removal of the degeneracy, may produce topologically different phenomena, even if
they are topologically equivalent singularities. So, we need to keep the geometrical informa-
tion associated to that singularity. In this paper we use the notation (	[)(]; ∅) which denotes
the presence of a hyperbola filled up with singular points in the system such that the reduced
system has no finite singularity on this curve.

The existence of a common factor of the polynomials defining the differential system also
affects the infinite singular points. We point out that the projective completion of a real affine
line filled up with singular points has a point on the line at infinity which will then be also a
non-isolated singularity. There is a detailed description of this notation in [3]. In case that after
the removal of the finite degeneracy, a singular point at infinity remains at the same place, we
must denote it with all its geometrical properties since they may influence the local topological
phase portrait. In this paper we use the notation (	[)(]; N, ∅) that means that the system has
at infinity a node, and one non-isolated singular point which is part of a real hyperbola filled
up with singularities and that the reduced linear system has no infinite singular point in that
position.

See [4] for more details on the notation for singularities.
In order to distinguish topologically the phase portraits of the systems we obtained, we

also use some invariants introduced in [66]. Let SC be the total number of separatrix connec-
tions, i.e. of phase curves connecting two singularities which are local separatrices of the two
singular points. We denote by

• SC f
f the total number of SC connecting two finite singularities,

• SC∞
f the total number of SC connecting a finite with an infinite singularity,

• SC∞
∞ the total number of SC connecting two infinite.

A graphic as defined in [26] is formed by a finite sequence of singular points p1, p2, . . . , pn,
pn+1 = p1 and oriented regular orbits s1, . . . , sn connecting them such that sj has pj as α-limit
set and pj+1 as ω-limit set for j < n and sn has pn as α-limit set and p1 as ω-limit set. Graphics
may or may not have a return map. Particular graphics are given special names. A loop is
a graphic through a unique singular point and with a return map. A polycycle is a graphic
through several singular points and with a return map. A degenerate graphic as defined in [26]
is formed by singular points p1, p2, . . . , pn, pn+1 = p1, oriented regular orbits and segments
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s1, . . . , sn of curves of singular points (which are also oriented) such that either sj is a orbit
that has pj as α-limit and pj+1 as ω-limit for j < n and sn has pn as α-limit set and p1 as
ω-limit set or an open segment of a curve of singular points with end points pj and pj+1,
for each j < n. Moreover, the regular orbits and the curves of singular points have coherent
orientations in the sense that if sj−1 has left hand orientation then so does sj. For more details,
see [26].

In what follows we present an example of the notation used in paper to describe the global
configuration of singularities of QSH.

Semi-elemental saddle–node
Saddle
Unstable node
Stable node

Non-elemental
Curve of singularities
Separatrices
Orbits
Graphics

Figure 4.1: Notations used on the phase portraits.

Figure 4.2: Some examples of phase portraits.

The notation used to describe the topological type of the singularities in Figure 4.2 is

(a, s, a, s; (0
2)SN, N)

(s, sn, a; (0
2)SN, N)

(s; (2
2)E− E, (1

1)SN)

for each phase portrait appearing in the respective order. The first letters appearing with lower
case represents the topological type of the finite singularities. Here ‘sn’ denotes a saddle-node
which arises from the coalescence of a finite saddle with a finite node so this is a singularity
of multiplicity two, ‘a’ denotes an elemental anti-saddle and ‘s’ denotes an elemental saddle.
The capital letters give the topological type of the singularities at infinity: ‘(0

2)SN’ denotes a
saddle-node which arises from the coalescence of two infinite singularities (saddle and node)
so this is a double singularity, ‘(1

1)SN’ also denotes a saddle-node but here this multiplicity
arises from the coalescence of a finite with an infinite singularity, ‘(2

2)E− E’ denotes an intricate
singularity arising from the coalesce of two finite singularities with two infinite singularities
and the neighbourhood of this singularity is formed by an elliptic sector which has, in a small
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vicinity of the singularity, two parabolic sectors one of each side. The cases where we do no
indicate the multiplicity means the singularity is simple, which is the case of ‘S’ (elemental
saddle) and ‘N’ (elemental node).

5 Proof of the Main theorem for the integrable cases

The data described in Table 5.2 led us to the proof of Main theorem for the integrable case.
We begin by using the Prelle–Singer algorithm (including the exponential factors, when

they exist) in order to prove integrability.
The result of our calculations are given in Table 5.2 where we have the invariant algebraic

curves, exponential factors and their cofactors, first integrals or integrating factors for each
normal form of Proposition 3.3 obtained using the software Mathematica.

In the first column are the normal forms for QSHη=0.
In the second column are the invariant algebraic curves, the exponential factors and the

respective cofactors.
In the third column are the expressions of the first integrals or the expressions of the

integrating factors. If we give the expression for the first integral then it is not necessary to
give the integrating factor to guarantee the integrability. When we give the expression for
the integrating factor instead of the first integral this means that we could not compute the
expression for the first integral using Mathematica and we use the notation “—”. When “—”
appears in both the first integral and integrating factor this means that we could find neither
of them applying the Prelle–Singer algorithm.

In the fourth and fifth columns are the normal forms and their possible configurations as
in [47]. The notation “—" appears when we do not have them appearing in [47].

In the sixth column are indicated the types of integrability of each normal form using the
notations in Table 5.1.

The precise integrating factor, first integral that did not fit in the table will be given in the
text following the table.

Thereby, the proof of the Main theorem follows except for the non integrable cases, that
will be done in Section 6.

Table 5.1: Notations used in Table 5.2.

Notation

N-I : Systems admit neither a Darboux nor a Liouvillian first integral;
D: Systems are Darboux integrable;
GD: Systems are generalized Darboux integrable;
L: Systems are Liouvillian integrable;
P: Systems admit a polynomial first integral;
R: Systems admit a rational first integral;
HAM: Systems are Hamiltonian.
open case : We could prove neither the integrability nor the non-integrability;
R : Represents an integrating factor;
F : Represents a first integral;
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=
(x
−

1)
(3
−

x)
,

ẏ
=

1
−

2x
y

1
−

x,
3
−

x,
−

1 3
−

y
+

xy
,

−
19 8

+
x
+

3y
−

x2 8

(4
.2

5)
19

R

3
−

x,
1
−

x,
3
−

3x
,

−
2x

F
F
=
−

(x
−

3)
2

3(
x−

1)
y−

1

(G
){ ẋ
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RC = (y +
√

c2 − a)
1
2

(
1+ c√

c2−a

)
(y−

√
c2 − a)

1
2

(
1− c√

c2−a

)
(a + cx + xy)−2;

RC,1 = y
(

c + x +
xy
c

)−2
e
−c
y ;

FC,2 = (c + 3y)

(
e
−cx+48cy+63xy−24y2

48c(8c2+9cx+9xy)

)−18c

;

FD = (c(2g− 1) + gx)
(

y(c + x) +
1

2g− 1

)− g
2g−1

.

6 Proof of the Main theorem for the non integrable cases

Consider the sets:

L1 = ∪k∈N L1,k, where L1,k =
{
(a, g) ∈ R2 : g = k/2 and a 6= 0

}
, k ∈N,

L2 = ∪k∈N L2,k, where L2,k =
{
(a, g) ∈ R2 : g = k/3 and a 6= 0

}
, k ∈N,

L3 =
{
(a, g) ∈ R2 : g = 1/4 and a 6= 0

}
,

C′ = ∪k∈N Ck, where Ck =
{
(a, g) ∈ R2 : g = (2 + a− 2ak)/4a, a 6= 0

}
, k ∈N.

6.1 The systems (A) {
ẋ = 2a + x + gx2 + xy,

ẏ = a(2g− 1)− y + (g− 1)xy + y2,

where a(g− 1) 6= 0.

Theorem 6.1.

(a) If (a, g) /∈ L1 then the only invariant algebraic curves of a system in the family (A) are of the
form Jm

1 = 0 where J1(x, y) = a + xy and m is a positive integer.

(b) If (a, g) /∈ (L1 ∪ L2 ∪C′) then any system in the family (A) has no exponential factors.

(c) If (a, g) /∈ (L1 ∪ L2 ∪C′) then any system in the family (A) is not Liouvillian integrable.

Remark: When g = 1/2 the systems posses the invariant line y = 0 but this invariant curve
is still not enough to prove the integrability. The non integrability in this case can be done just
by adapting g = 1/2 in the proof below. In (a) we find C = ym−l(a + xy)l .

Proof. (a) By a straightforward computation, we can verify that J1(x, y) = a + xy is an in-
variant hyperbola with cofactor α1(x, y) = (−1 + 2g)x + 2y. Assume that

C =
n

∑
i=0

Ci(x, y) = 0

is an invariant algebraic curve of the system (A) with cofactor K = K0 + K1x + K2y, where Ci
are homogeneous polynomial of degree i where 0 ≤ i ≤ n. From the definition of invariant
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algebraic curve (1.4), we have:

(2a + x + gx2 + xy)
n

∑
i=0

Ci,x + (a(2g− 1)− y + (g− 1)xy + y2)
n

∑
i=0

Ci,y

= (K0 + K1x + K2y)
n

∑
i=0

Ci. (6.1)

Taking from (6.1) the terms of degree n + 1 we have:(
gx2 + xy

)
Cn,x +

(
(g− 1)xy + y2) Cn,y = (K1x + K2y) Cn. (6.2)

For this system we have
yP2 − xQ2 = x2y.

Then, from Lemma 4.5 we can assume that

Cn = xmyl , where n = m + l.

Substituting Cn in (6.2) and doing some computations we terminate that

K1 = gm + (g− 1)l; K2 = m + l.

Now, taking from (6.1) the terms of degree n we have:

x Cn,x + (gx2 + xy) Cn−1,x − y Cn,y + ((g− 1)xy + y2) Cn−1,y

= K0 Cn + [(gm + (g− 1)l) x + (m + l) y] Cn−1. (6.3)

Set Cn−1 = ∑n−1
i=0 cn−1−ixn−1−iyi. Replacing Cn, Cn−1 in (6.3) and doing some calculations, we

obtain

m+l−1

∑
i=0

(l − i− g) cm+l−1−i xm+l−i yi −
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1 = (K0 −m + l) xmyl .

Note that this equation can be written as

m+l

∑
i=0

[(l − i− g) cm+l−1−i − cm+l−i] xm+l−i yi = (K0 −m + l) xmyl ,

where ci = 0 for i < 0 and i > m+ l− 1. Equating the coefficients of xiyj in the above equation,
we get:{

(l − i− g) cm+l−1−i − cm+l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , m + l

(−g) cm−1 − cm = K0 −m + l.
(6.4)

For i = m + l, m + l − 1, . . . , l + 1 we have

c0 = c1 = · · · = cm−1 = 0.

Then cm = −K0 + m− l. Working recursively we have

cm+1 = (−g + 1)(−K0 + m− l),

cm+2 = (−g + 2)(−g + 1)(−K0 + m− l), . . .

cm+l−1 = (−g + l − 1) . . . (−g + 2)(−g + 1)(−K0 + m− l).
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Replacing cm+l−1 in (6.4) where i = 0, we get

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)(−K0 + m− l) = 0.

Note that
(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1 the

set of roots. If g /∈ Sl
1 then K0 = m− l. Therefore, we can conclude that

K = (m− l) + (gm + (g− 1)l)x + (m + l)y,

since g /∈ Sl
1. This is

Cn−1 ≡ 0.

Now, taking from (6.1) the terms of degree n− 1 we have:

2a Cn,x + (gx2 + xy) Cn−2,x + a(2g− 1) Cn,y + ((g− 1)xy + y2) Cn−2,y

= [(gm + (g− 1)l) x + (m + l) y] Cn−2. (6.5)

Setting Cn−2 = ∑n−2
i=0 cn−2−ixn−2−iyi and replacing Cn, Cn−2 in (6.5) we obtain

m+l−2

∑
i=0

(l − i− 2g) cm+l−2−i xm+l−1−i yi +
m+l−2

∑
i=0

(−2) cm+l−2−i xm+l−2−i yi+1

= −a(2g− 1)l xmyl−1 − 2am xm−1yl .

This equation can be written as

m+l−2

∑
i=0

[(l − i− 2g) cm+l−2−i + (−2) cm+l−1−i] xm+l−1−i yi

= −a(2g− 1)l xmyl−1 − 2am xm−1yl

where ci = 0 for i < 0 and i > m+ l− 2. Equating the coefficients of xiyj in the above equation,
we get

(l − i− 2g) cm+l−2−i − 2 cm+l−1−i = 0, where i = 0, . . . , l − 2, l + 1, . . . , m + l − 1,

(−2g + 1)cm−1 − 2cm = −a(2g− 1)l,

(−2g)cm−2 − 2cm−1 = −2am.

(6.6)

For i = m + l − 1, m + l − 2, . . . , l + 1 we have

c0 = c1 = · · · = cm−2 = 0.

Then cm−1 = am. Working recursively we have

cm =
a(−2g + 1)(m− l)

2
, cm+1 =

a(−2g + 1)(−2g + 2)(m− l)
4

, . . .

cm+l−2 =
a(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(m− l)

2l−1 .
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Replacing cm+l−2 in (6.6) where i = 0, we get

a(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(−2g + l)(m− l)
2l−1 = 0.

Note that
(−2g + 1)(−2g + 2) . . . (−2g + l − 1)(−2g + l)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
2 the

set of roots. If g /∈ Sl
1 ∪ Sl

2 then a = 0 or m = l.
The hyperbola is not an invariant algebraic curve when a = 0 and this cases does not

matter for us. We assume m = l. Then, we have the following:

K = (2g− 1)m x + 2m y,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,
(6.7)

for g /∈ Sm
1 ∪ Sm

2 which is a numerable set.

Following similar arguments for terms of degree n− 2, n− 3, . . . in (6.1) we conjecture that
C = (a + xy)m. Now we prove this statement by induction:

Suppose that for k = 1, 2 . . . , L we have

Cn−(2k−1) ≡ 0, Cn−2k =
ak(m− (k− 1))!

k!
xm−kym−k. (6.8)

We shall prove that:

Cn−2L−1 ≡ 0, Cn−2L−2 =
aL+1(m− L)!

(L + 1)!
xm−L−1ym−L−1.

Considering in (6.1) the terms of degree n− 2L we have:

2a Cn−2L+1,x + x Cn−2L,x + (gx2 + xy) Cn−2L−1,x + a(2g− 1) Cn−2L+1,y

− y Cn−2L,y +
(
(g− 1)xy + y2) Cn−2L−1,y = ((2g− 1)m x + 2m y) Cn−2L−1.

By the induction hypothesis Cn−2L+1 ≡ 0 then:

x Cn−2L,x + (gx2 + xy) Cn−2L−1,x − y Cn−2L,y + ((g− 1)xy + y2) Cn−2L−1,y

= [(2g− 1)m x + 2m y] Cn−2L−1. (6.9)

Setting Cn−2L−1 = ∑2m−2L−1
i=0 c2m−2L−1−ix2m−2L−1−iyi and replacing Cn−2L, Cn−2L−1 in (6.9) we

obtain

2m−2L−1

∑
i=0

(m− i− g(2L + 1)) c2m−2L−1−i x2m−2L−i yi

+
2m−2L−1

∑
i=0

(−2L− 1) c2m−2L−1−i x2m−2L−1−i yi+1 = 0.

This equation can be written as

2m−2L

∑
i=0

[(m− i− g(2L + 1)) c2m−2L−1−i + (−2L− 1) c2m−2L−i] x2m−2L−i yi = 0,
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where ci = 0 for i < 0 and i > 2m − 2L − 1. Equating the coefficients of xiyj in the above
equation, we have:

(m− i− g(2L + 1)) c2m−2L−1−i + (−2L− 1) c2m−2L−i = 0,

for i = 0, 1, . . . , 2m− 2L. As L ∈N then L 6= −1/2 and:

c2m−2L−1 = c2m−2L−2 = · · · = c1 = c0 = 0.

Therefore,
Cn−2L−1 ≡ 0.

Now, considering in (6.1) the terms of degree n− 2L− 1 we have:

2a Cn−2L,x + x Cn−2L−1,x + (gx2 + xy) Cn−2L−2,x + a(2g− 1) Cn−2L,y

− y Cn−2L−1,y + ((g− 1)xy + y2) Cn−2L−2,y = [(2g− 1)m x + 2m y] Cn−2L−2.

We just proved that Cn−2L−1 ≡ 0, then we have:

2a Cn−2L,x + (gx2 + xy) Cn−2L−2,x + a(2g− 1) Cn−2L,y

+ ((g− 1)xy + y2) Cn−2L−2,y = [(2g− 1)m x + 2m y] Cn−2L−2 (6.10)

By the induction hypothesis it follows that Cn−2L = aL(m−(L−1))!
L! xm−Lym−L. Setting Cn−2L−2 =

∑2m−2L−2
i=0 c2m−2L−2−ix2m−2L−2−iyi and replacing Cn−2L, Cn−2L−2 in (6.10) we have:

2m−2L−2

∑
i=0

(m− i− g(2(L + 1)) c2m−2L−2−i x2m−2L−1−i yi

+
2m−2L−2

∑
i=0

(−2L− 2) c2m−2L−2−i x2m−2L−2−i yi+1

= − (2g− 1)
aL+1(m− L)!

L!
xm−Lym−L−1 − 2aL+1(m− L)!

L!
xm−L−1ym−L.

This equation can be rewritten as

2m−2L−1

∑
i=0

[(m− i− g(2(L + 1)) c2m−2L−2−i + (−2L− 2) c2m−2L−1−i] x2m−2L−1−i yi

= −(2g− 1)
aL+1(m− L)!

L!
xm−Lym−L−1 − 2aL+1(m− L)!

L!
xm−L−1ym−L

where ci = 0 for i < 0 and i > 2m − 2L − 2. Equating the coefficients of xiyj in the above
equation, we get the following equations

(m− i− g(2(L + 1))) c2m−2L−2−i + (−2L− 2) c2m−2L−1−i = 0,

(L + 1− g(2(L + 1)))cm−L−1 + (−2L− 2)cm−L = −(2g− 1)
aL+1(m− L)!

L!
,

(L− g(2(L + 1)))cm−L−2 + (−2L− 2)cm−L−1 = −2aL+1(m− L)!
L!

,

for i = 0, 1, . . . , m− L− 2, m− L + 1, . . . , 2m− 2L− 1. As L ∈N then L 6= −1 and

cm−L−2 = · · · = c1 = c0 = 0.
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Then,

cm−L−1 =
aL+1(m− L)!

(L + 1)!
, cm−L = 0.

When i = m− L− 2, . . . , 0, we obtain

cm−L+1 = cm−L+2 = · · · = c2m−2L−2 = 0.

Therefore,

Cn−2L−2 =
aL+1(m− L)!

(L + 1)!
xm−L−1ym−L−1.

This finishes the induction proof. It follows that

C = Jm
1 , m ∈N

for all (a, g) /∈ L1, where L1 = ∪k∈NL1,k = ∪k∈N

{
(a, g) ∈ R2 : g = k

2 and a 6= 0
}

.

(b) From (a) systems (A) have only the algebraic solution J1(x, y) = a + xy for (a, g) ∈
R2 − L1. Then by Proposition 2.10, if systems (A) have an exponential factor, it must have the
form:

F = exp
(

G/Jl
1

)
with cofactor L = L0 + L1x + L2y and where l is non-negative integer. Since the invariant
algebraic curve Jl

1 = 0 has the cofactor

K = lα1 = l(−1 + 2g)x + 2ly,

it follows by (2.2) that G satisfies the following equation:[
2a + x + gx2 + xy

]
Gx +

[
a(2g− 1)− y + (g− 1)xy + y2]Gy

+ [l(1− 2g)x− 2ly] G =
[
L0 + L1x + L2y

] l

∑
k=0

(
l
k

)
akxl−kyl−k. (6.11)

From now on we assume G(x, y) = ∑n
i=0 Gi(x, y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n + 1 < 2l.
By equating the homogeneous terms of highest degree in (6.11) we obtain that

L1 = L2 = 0 and L0 = 0.

Thus, G is an invariant algebraic curve. Then, G = c Jl
1 where c is a constant. Therefore, F is

constant and it cannot be an exponential factor of system (A).

Case 2: n + 1 = 2l.
By equating the homogeneous terms of highest degree in (6.11) we obtain that

L1 = L2 = 0.

Set Gn = ∑n
i=0 cn−ixn−iyi where cn−i are constants. Equating the terms of degree n+ 1 in (6.11)

and using that n + 1 = 2l, we have:

∑2l
i=0 [(−g− i + l)c2l−i−1 + (−1)c2l−i] x2l−iyi = L0xlyl ,
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where ci = 0 for i < 0 and i > n. Equating the coefficients of xiyj in the above equation, we
have: {

(−g− i + l) c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , 2l

(−g) cl−1 − cl = L0.

For i = 2l, 2l − 1, . . . , l + 1 we obtain: c0 = c1 = · · · = cl−1 = 0. Then cl = −L0. Working
recursively,

cl+1 = (−g + 1)(−L0), cl+2 = (−g + 2)(−g + 1)(−L0), . . .

c2l−1 = (−g + l)(−g + l − 1) . . . (−g + 1)(−L0).

Therefore, if g /∈ {l, l − 1, . . . , 1}, this is (a, g) /∈ L1 we have L0 = 0 then

L = 0.

Consequently, system (A) has no exponential factors for (a, g) ∈ R2 − L1.

Case 3: n = 2l.
Consider the notation for Gn introduced in the study of Case 2. Equating the terms of

degree n + 1 in (6.11) we have

∑2l+1
i=0 (l − i) c2l−ix2l−i+1yi = L1 xl+1yl + L2 xlyl+1,

where ci = 0 for i < 0 and i > n. These equations are equivalent to
(l − i) c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 2, l + 3, . . . , 2l + 1

0 cl = L1,

(−1) cl−1 = L2,

(6.12)

For i = 2l, 2l − 1, . . . , l + 2 we obtain: c0 = c1 = · · · = cl−2 = 0. Then,

cl−1 = −L2, cl is free, L1 = 0 and cl+1 = cl+2 = · · · = c2l = 0.

Therefore,
Gn = cl xlyl − L2xl−1yl+1.

Since cl 6= 0, without loss of generality, we assume that cl = 1.
Equating the terms of degree n in (6.11) we have

x Gn,x +
[
gx2 + xy

]
Gn−1,x − y Gn,y +

[
(g− 1)xy + y2]Gn−1,y

+ [l(1− 2g)x− 2ly] Gn−1 = L0xlyl .

Set Gn−1 = ∑n−1
i=0 cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that n = 2l

we obtain:

∑2l
i=0 [(−g− i + l)c2l−i−1 − c2l−i] x2l−iyi = L0 xlyl + 2L2 xl−1yl+1,

where ci = 0 for i < 0 and i > 2l − 1. Equating the coefficients of xiyj in the above equation,
we have:

(−g− i + l)c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 2, . . . , 2l

(−g)cl−1 − cl = L0,

(−g− 1)cl−2 − cl−1 = 2L2.

(6.13)
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For i = 2l, . . . , l + 2 we have: c0 = c1 = · · · = cl−2 = 0. Then, cl−1 = −2L2, cl = 2gL2 − L0.
Working recursively,

cl+1 = (−g + 1)(2gL2 − L0), cl+2 = (−g + 1)(−g + 2)(2gL2 − L0), . . .

c2l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(2gL2 − L0).

Replacing c2l−1 in (6.13) where i = 0, we have:

(−g + l)(−g + l − 1) . . . (−g + 1)(2gL2 − L0) = 0.

Then, if g /∈ {l, l − 1, . . . , 1} we must have L0 = 2gL2 and

Gn−1 = −2L2xl−1yl .

Therefore, L = 2gL2 + L2y.

Equating the terms of degree n− 1 in (6.11) we have:

2aGn,x + x Gn−1,x +
[
gx2 + xy

]
Gn−2,x + a(2g− 1)Gn,y − y Gn−1,y

+
[
(g− 1)xy + y2]Gn−2,y + [l(1− 2g)x− 2ly] Gn−2 = alL2xl−1yl .

Set Gn−2 = ∑n−2
i=0 cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that n = 2l

we obtain:

2l

∑
i=0

[(−2g− i + l)c2l−i−2 − 2c2l−i−1] x2l−i−1yi = al(−2g + 1)L2 xlyl−1

+
(

L2(al − 2)− 2al + a(2g− 1)(l + 1)L2
)

xl−1yl + 2a(l − 1)L2 xl−2yl+1,

where ci = 0 for i < 0 and i > 2l − 2. Equating the coefficients of xiyj in the above equation,
we have:

(−2g− i + l)c2l−i−2 − 2c2l−i−1 = 0, where i = 0, 1, . . . , l − 2, l + 2, . . . , 2l − 1

(−2g + 1)cl−1 − 2cl = al(−2g + 1)L2,

(−2g)cl−2 − 2cl−1 = L2(al − 2)− 2al + a(2g− 1)(l + 1)L2,

(−2g− 1)cl−3 − 2cl−2 = 2a(l − 1)L2.

(6.14)

For i = 2l − 1, . . . , l + 2, we obtain: c0 = c1 = · · · = cl−3 = 0. Then,

cl−2 = −a(l − 1)L2, cl−1 = al + L2

(
1 +

a
2
− 2ag

)
,

cl =
al
2
(2g− 1)L2 +

(−2g + 1)
2

(
L2 + al +

aL2

2
− 2agL2

)
.
= A

Working recursively, we have:

cl+1 =
(−2g + 2)A

2
, cl+2 =

(−2g + 2)(−2g + 3)A
22 , . . .

c2l−2 =
(−2g + l − 1)(−2g + l − 2) . . . (−2g + 2)A

2l−2 .
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Replacing c2l−2 in (6.14) where i = 0 we obtain:

(−2g + l)(−2g + l − 1) . . . (−2g + 2)A
2l−2 = 0, or

(−2g + l)(−2g + l − 1) . . . (−2g + 2)(−2g + 1)
2l−1

(
−alL2 + L2 + al +

aL2

2
− 2agL2

)
= 0

If g /∈
{ 1

2 , 2
2 , 3

2 , . . .
}

, this is (a, g) /∈ L1 then we must have:

−alL2 + L2 + al +
aL2

2
− 2agL2 = 0,

that happens if, and only if,

L2 =
−2al

−2al + 2 + a− 4ag
, for − 2al + 2 + a− 4ag 6= 0, or g =

2 + a− 2al
4a

.

Suppose that (a, g) /∈ L1 ∪C′ where

C′ = ∪k∈NCk = ∪k∈N

{
(a, g) : g =

2 + a− 2ak
4a

and a 6= 0
}

.

Therefore, we have:

Gn = xlyl +
2al

(−2al + 2 + a− 4ag)
xl−1yl+1, Gn−1 =

4al
(−2al + 2 + a− 4ag)

xl−1yl ,

Gn−2 =
2a2l(l − 1)

(−2al + 2 + a− 4ag)
xl−2yl − 2a2l2

(−2al + 2 + a− 4ag)
xl−1yl−1,

L =
−4agl

(−2al + 2 + a− 4ag)
− 2al

(−2al + 2 + a− 4ag)
y.

Equating the terms of degree n− 2 in (6.11) we have:

2aGn−1,x + x Gn−2,x +
[
gx2 + xy

]
Gn−3,x + a(2g− 1)Gn−1,y − y Gn−2,y

+
[
(g− 1)xy + y2]Gn−3,y + [l(1− 2g)x− 2ly] Gn−3 =

−4a2gl2

(−2al + 2 + a− 4ag)
xl−1yl−1.

Set Gn−3 = ∑n−3
i=0 cn−i−3xn−i−3yi. Replacing Gn−3 in the above equation and using that n = 2l

we obtain:

2l−2

∑
i=0

[(−3g− i + l)c2l−i−3 − 3c2l−i−2] x2l−i−2yi

=
4a2l2(1− 3g)

(−2al + 2 + a− 4ag)
xl−1yl−1 − 4a2l(l − 1)

(−2al + 2 + a− 4ag)
xl−2yl ,

where ci = 0 for i < 0 and i > 2l − 3. Equating the coefficients of xiyj in the above equation,
we have:

(−3g− i + l)c2l−i−3 − 3c2l−i−2 = 0, where i = 0, 1, . . . , l − 2, l + 1, . . . , 2l − 2

(−3g + 1)cl−2 − 3cl−1 =
4a2l2(1− 3g)

(−2al + 2 + a− 4ag)
,

(−3g)cl−3 − 3cl−2 = − 4a2l(l − 1)
(−2al + 2 + a− 4ag)

.

(6.15)
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For i = 2l − 2, . . . , l + 1 : c0 = c1 = · · · = cl−3 = 0. Then,

cl−2 =
4a2l(l − 1)

3(−2al + 2 + a− 4ag)
, cl−1 =

(4a2l(2l − 1))(1− 3g)
(−9)(−2al + 2 + a− 4ag)

.
= B.

Working recursively, we obtain:

cl =
(−3g + 2)B

3
, cl+1 =

(−3g + 2)(−3g + 3)B
32 , . . .

c2l−3 =
(−3g + 2)(−3g + 3) . . . (−3g + l − 1)B

3l−3 .

Replacing c2l−3 in (6.15) where i = 0 :

(−3g + l)(−3g + l − 1) . . . (−3g + 2)B
3l−2 = 0, or

(−3g + l)(−3g + l − 1) . . . (−3g + 2)(−3g + 1)
3l

(
4a2l(2l − 1)

2al − 2− a + 4ag

)
= 0.

Consider L2 = ∪k∈NL2,k = ∪k∈N

{
(a, g) : g = k

3

}
. Then, if (a, g) /∈ (L1 ∪ L2 ∪ C′) we must

have
4a2l(2l − 1) = 0.

What happens if, and only if a = 0 or l = 0 or l = 1/2. Therefore, systems (A) have no
exponential factors for (a, g) ∈ R2 − (L1 ∪ L2 ∪C′)

Case 4: n > 2l.

Consider the notation for Gn introduced in the study of Case 2. Equating the terms of
degree n + 1 in (6.11) we have:

[
gx2 + xy

] n

∑
i=0

(n− i)cn−ixn−i−1yi +
[
(g− 1)xy + y2] n

∑
i=0

icn−ixn−iyi−1

+ [l(1− 2g)x− 2ly]
n

∑
i=0

cn−ixn−iyi = 0.

Working in a similar way to the previous cases, we obtain:

n+1

∑
i=0

[(gn− i + l(1− 2g))cn−i + (n− 2l)cn−i+1] xn−i+1yi = 0,

when ci = 0 for i < 0 and i > n. Therefore,

(gn− i + l(1− 2g))cn−i + (n− 2l)cn−i+1 = 0,

for i = 0, 1, . . . , n + 1. As n 6= 2l we have

c0 = c1 = · · · = cn = 0.

Then, Gn = 0.

Summing up these four cases the proof follows.
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(c) Suppose (a, g) ∈ R2 − (L1 ∪ L2 ∪ C′). Then, by (a) and (b) we get that the systems (A)
have only the algebraic solution

J1(x, y) = a + xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under these assump-
tions{

λ1α1 = 0⇔ λ1 = 0 and

λ1α1 = −div(P, Q) = −(1 + 2gx + y)− (−1 + (g− 1)x + 2y) has no solution.

Hence, from the Darboux theory of integrability it follows that systems (A) are not Liouvillian
integrable.

6.2 The systems (B) {
ẋ = 2a + gx2 + xy,

ẏ = a(2g− 1) + (g− 1)xy + y2,

where a(g− 1) 6= 0.

Theorem 6.2.

(a) If (a, g) /∈ L1 then the only invariant algebraic curves of a system in the family (B) are of the
form Jm

1 = 0 where J1(x, y) = a + xy and m is a positive integer.

(b) If (a, g) /∈ (L1 ∪ L3) then any system in the family (B) has no exponential factors.

(c) If (a, g) /∈ (L1 ∪ L3) then any system in the family (B) is not Liouvillian integrable.

Proof. (a) By a straightforward computation, we can verify that J1(x, y) = a + xy is an
invariant hyperbola with cofactor α1(x, y) = (−1 + 2g)x + 2y. Assume that

C =
n

∑
i=0

Ci(x, y) = 0

is an invariant algebraic curve of the systems (B) with cofactor K = K0 + K1x + K2y, where Ci
are homogeneous polynomial of degree i where 0 ≤ i ≤ n. From the definition of the invariant
algebraic curve (1.4), we have:

(
2a + gx2 + xy

) n

∑
i=0

Ci,x +
(
a(2g− 1) + (g− 1)xy + y2) n

∑
i=0

Ci,y

= (K0 + K1x + K2y)
n

∑
i=0

Ci. (6.16)

The step where we take the terms of degree n+ 1 in (6.16) is exactly the same made for system
(A). Then we have:

Cn = xm yl , where n = m + l,

K1 = gm + (g− 1)l; K2 = m + l.
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Now, taking from (6.16) the terms of degree n we have:(
gx2 + xy

)
Cn−1,x +

(
(g− 1)xy + y2) Cn−1,y

= K0 Cn + [(gm + (g− 1)l) x + (m + l) y] Cn−1. (6.17)

Set Cn−1 = ∑n−1
i=0 cn−1−ixn−1−iyi. Replacing Cn, Cn−1 in (6.17) and doing some calculations,

we obtain:

m+l−1

∑
i=0

(l − i− g) cm+l−1−i xm+l−i yi −
m+l−1

∑
i=0

cm+l−1−i xm+l−1−i yi+1 = K0 xmyl .

This equation can be written as

m+l

∑
i=0

[(l − i− g) cm+l−1−i − cm+l−i] xm+l−i yi = K0 xmyl ,

where ci = 0 for i < 0 and i > m + l − 1. Equating the coefficients of xiyj in the above
equation, we get:{

(l − i− g) cm+l−1−i − cm+l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , m + l

(−g) cm−1 − cm = K0.
(6.18)

For i = m + l, m + l − 1, . . . , l + 1 we have:

c0 = c1 = · · · = cm−1 = 0.

Then cm = −K0. Working recursively we have

cm+1 = (−g + 1)(−K0),

cm+2 = (−g + 1)(−g + 2)(−K0), . . .

cm+l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(−K0).

Replacing cm+l−1 in (6.18) where i = 0, we get

(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)(−K0) = 0.

Note that
(−g + l)(−g + l − 1) . . . (−g + 2)(−g + 1)

is a polynomial of degree l in the variable g, which has at most l real roots. Denote by Sl
1 the

set of roots. If g /∈ Sl
1 we have that K0 = 0. Therefore, we can conclude that

K = (gm + (g− 1)l)x + (m + l)y,

since g /∈ Sl
1. This is Cn−1 ≡ 0.

The step where we take the terms of degree n− 1 in (6.16) is exactly the same made for
system (A). Then we have m = l which leads us to

K = (2g− 1)mx + 2my,

Cn = xmym, Cn−1 ≡ 0, Cn−2 = amxm−1ym−1,
(6.19)
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for g /∈ Sm
1 ∪ Sm

2 numerable set, where Sm
2 is the set of roots of the polynomial

(−2g + 1)(−2g + 2) . . . (−2g + m− 1)(−2g + m).

Following similar arguments for terms of degree n− 2, n− 3, ... in (6.16) we can prove that
C = (a + xy)m. It follows that C = Jm

1 , m ∈ N for all (a, g) /∈ L1, where L1 = ∪k∈NL1,k =

∪k∈N

{
(a, g) ∈ R2 : g = k

2 and a 6= 0
}

.

(b) From (a) systems (B) have only the algebraic solution J1(x, y) = a + xy for (a, g) ∈ R2 −
L1. Then, by Proposition 2.10, if systems (B) have an exponential factor, it must have the form

F = exp
(

G/Jl
1

)
with a cofactor L = L0 + L1x + L2y and where l is non-negative integers. Since the invariant
algebraic curve Jl

1 = 0 has the cofactor

K = lα1 = l(−1 + 2g)x + 2ly,

it follows by (2.2) that G satisfies the following equation:

[
2a + gx2 + xy

]
Gx +

[
a(2g− 1) + (g− 1)xy + y2]Gy + [l(1− 2g)x− 2ly] G

=
[
L0 + L1x + L2y

] l

∑
k=0

(
l
k

)
akxl−kyl−k (6.20)

From now on we assume G(x, y) = ∑n
i=0 Gi(x, y), where Gi is a homogeneous polynomial of

degree i and split the study in cases.

Case 1: n + 1 < 2l.

This case is exactly the same proved for systems (A). We have that F is constant, what
cannot happen.

Case 2: n + 1 = 2l.

This case is also the same proved for systems (A). We have that if g /∈ {l, l − 1, ..., 1}, this
is (a, g) /∈ L1 then L = 0. Consequently, system (B) has no exponential factors for (a, g) ∈
R2 − L1.

Case 3: n = 2l.

Set Gn = ∑n
i=0 cn−ixn−iyi, where cn−i are constants. Equating the terms of (6.20) with

degree n + 1 we have

∑2l+1
i=0 (l − i)c2l−ix2l−i+1yi = L1xl+1yl + L2xlyl+1,

where ci = 0 for i < 0 and i > n. This is the same equation solved for systems (A) in case 3.
Then we have:

Gn = xlyl − L2xl−1yl+1 and L1 = 0.

Equating the terms of degree n in (6.20) we have[
gx2 + xy

]
Gn−1,x +

[
(g− 1)xy + y2]Gn−1,y + [l(1− 2g)x− 2ly] Gn−1 = L0 xlyl .
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Set Gn−1 = ∑n−1
i=0 cn−i−1xn−i−1yi. Replacing Gn−1 in the above equation and using that n = 2l

we obtain:
2l

∑
i=0

[(−g− i + l)c2l−i−1 − c2l−i] x2l−iyi = L0 xlyl ,

where ci = 0 for i < 0 and i > 2l − 1. Equating the coefficients of xiyj in the above equation,
we have: {

(−g− i + l)c2l−i−1 − c2l−i = 0, where i = 0, 1, . . . , l − 1, l + 1, . . . , 2l

(−g)cl−1 − cl = L0.
(6.21)

Then

c0 = c1 = · · · = cl−1 = 0, cl = −L0,

cl+1 = (−g + 1)(−L0), cl+2 = (−g + 1)(−g + 2)(−L0), . . .

c2l−1 = (−g + 1)(−g + 2) . . . (−g + l − 1)(−L0).

Replacing c2l−1 in (6.21) where i = 0, we have:

(g + l)(−g + l − 1) . . . (−g + 1)(−L0) = 0.

Then, if g /∈ {l, l − 1, . . . , 1} we must have L0 = 0. Therefore,

Gn−1 ≡ 0 and L = L2y.

Equating the terms of degree n− 1 in (6.20) we have:

2aGn,x +
[
gx2 + xy

]
Gn−2,x + a(2g− 1)Gn,y +

[
(g− 1)xy + y2]Gn−2,y

+ [l(1− 2g)x− 2ly] Gn−2 = alL2xl−1yl .

Set Gn−2 = ∑n−2
i=0 cn−i−2xn−i−2yi. Replacing Gn−2 in the above equation and using that n = 2l

we obtain:

2l

∑
i=0

[(−2g− i + l)c2l−i−2 − 2c2l−i−1] x2l−i−1yi = (al(1− 2g))xlyl−1

+ (L2al − 2al + a(2g− 1)(l + 1)L2)xl−1yl + 2a(l − 1)L2xl−2yl+1,

where ci = 0 for i < 0 and i > 2l − 2. Equating the coefficients of xiyj in the above equation,
we have:

(−2g− i + l)c2l−i−1 + (−2)c2l−i = 0, where i = 0, 1, . . . , l − 2, l + 2, . . . , 2l − 1

(−2g + 1)cl−1 + (−2)cl = al(1− 2g),

(−2g)cl−2 + (−2)cl−1 = L2al − 2al + a(2g− 1)(l + 1)L2,

(−2g− 1)cl−3 + (−2)cl−2 = 2a(l − 1)L2.

(6.22)

Therefore,

c0 = c1 = · · · = cl−3 = 0, cl−2 = −a(l − 1)L2, cl−1 =
a
2
(2l + L2)− 2agL2,

cl =
L2a
2

(
−2g +

1
2

)
(−2g + 1) .

= A, cl+1 =
(−2g + 2)A

2
,

cl+2 =
(−2g + 2)(−2g + 3)A

4
, . . . , c2l−2 =

(−2g + l − 1)(−2g + l − 2) . . . (−2g + 2)
2l−2 A.
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Replacing c2l−2 in (6.22) where i = 0 we have:

(−2g + l)(−2g + l − 1) . . . (−2g + 2)
2l−2 A = 0, or

(−2g + l)(−2g + l − 1) . . . (−2g + 2)(−2g + 1)
2l−2

[
L2a
2

(
−2g +

1
2

)]
= 0.

Then, if g /∈ {1, 2, . . . , 1} ∪
{ 1

2 , 2
2 , . . . , l

2

}
∪ {1/4}, this is (a, g) /∈ (L1 ∪ L3) we must have

L2 = 0.

Therefore, L = 0 and systems (B) have no exponential factors for (a, g) ∈ R2 − (L1 ∪ L3).

Case 4: n > 2l.

This case is the same proved for systems (A). Then, Gn = 0 that cannot happen.

Summing up these four cases the proof follows.

(c) Suppose (a, g) ∈ R2 − (L1 ∪ L3). Then, by (a) and (b) we get that the systems (B) have
only the algebraic solution

J1(x, y) = a + xy

with cofactor α1 = (−1+ 2g)x + 2y and they have no exponential factor. Under these assump-
tions {

λ1α1 = 0⇔ λ1 = 0 and

λ1α1 = −div(P, Q) = −(2gx + y)− ((g− 1)x + 2y) has no solution.

Hence, from the Darboux theory of integrability it follows that systems (B) are not Liouvillian
integrable.

7 Geometric study of the families (C) and (D)

In this section we present a detailed study of two of the normal forms (C) and (D) for the
family QSHη=0. We note that we obtained, as limiting cases of the family (D), three other
normal forms, i.e. (F), (G) and (I). This is part of the more ample project of gathering data on
the geometry of polynomial systems as expressed in the configurations of invariant algebraic
curves and their impact on integrability. This data is useful in gaining more insight into
the Darboux theory of integrability in order to enable us to answer some questions and in
particular to give an answer to the problem of Poincaré for specific families of polynomial
differential systems. We are also interested in the topological phase portraits of systems in
QSHη=0 and their bifurcation diagrams. Is there any relationship between the two kinds of
bifurcation diagrams? Can we determine when we have algebraically integrable systems? All
these motivate our study in this section and we answer some of these questions here or in the
last section.

We first present the results of our calculations of the geometric features of the configu-
rations as well as the information on the singularities. Afterwards we sum up these in a
proposition and in pictures of the two bifurcation diagrams: one of the changes in the config-
urations, the other on the topological bifurcation of the systems.
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7.1 Geometric analysis of family (C)

Consider the family

(C)

{
ẋ = 2a + 3cx + x2 + xy

ẏ = a− c2 + y2,

where a 6= 0.
For a complete understanding of the bifurcation diagram of the systems in the full family

defined by the equations (C) we study here also the limit case a = 0 where the equations are
still defined.

In the generic case
a(a− c2)(a− 8c2/9) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbolas J3 with
respective cofactors αi, 1 ≤ i ≤ 3 where

J1 = y−
√

c2 − a, α1 = y +
√

c2 − a,

J2 = y +
√

c2 − a, α2 = y−
√

c2 − a,

J3 = a + cx + xy, α3 = 2c + x + 2y.

We note that if a = c2 the two lines coincide and we get a double line. Also if a = 8v2/9
we get a double hyperbola as we later prove.

The multiplicities of each invariant straight line and invariant hyperbola appearing in the
divisor ICD of invariant algebraic curves were calculated by using the 1st extactic polynomial
for the lines and the 2nd extactic polynomial for the hyperbola.
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(i) The generic case: a(a− c2)(a− 8c2/9) 6= 0.

Table 7.1: Invariant curves, cofactors, singularities and intersection points of
family (C) for the generic case.

Inv. curves and cofactors Singularities Intersection points

J1 = y−
√

c2 − a
J2 = y +

√
c2 − a

J3 = a + cx + xy

α1 = y +
√

c2 − a
α2 = y−

√
c2 − a

α3 = 2c + x + 2y

P1 =(−
√

c2−a−c,−
√

c2−a)
P2 =(−2(

√
c2−a+c),

√
c2−a)

P3 =(
√

c2−a−c,
√

c2−a)
P4 =(2(

√
c2−a−c),−

√
c2−a)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For a < 8c2

9 we have

a, s, a, s; (0
2)SN, N

For 8c2

9 < a < c2 we have

s, s, a, a; (0
2)SN, N if c < 0

a, a, s, s; (0
2)SN, N if c > 0

For c2 < a we have

©, ©, ©, ©; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{
P∞

2 simple

P3 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ J3 =

{
P∞

2 simple

P1 simple

J2 ∩ L∞ = P∞
2 simple

J3 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.2: Divisor and zero-cycles of family (C) for the generic.

Divisor and zero-cycles Degree

ICD =

{
J1 + J2 + J3 + L∞ if a < c2

JC
1 + JC

2 + J3 + L∞ if a > c2

M0CS =

{
P1 + P2 + P3 + P4 + 2P∞

1 + P∞
2 if a < c2

PC
1 + PC

2 + PC
3 + PC

4 + 2P∞
1 + P∞

2 if a > c2

T = ZJ1 J2 J3 = 0

M0CT =

{
2P1 + P2 + 2P3 + P4 + 2P∞

1 + 4P∞
2 if a < c2

2PC
1 + PC

2 + 2PC
3 + PC

4 + 2P∞
1 + 4P∞

2 if a < c2

4
4

7
7

5

12
12

where the total curve T has four distinct tangents at P∞
2 .

Remark 7.1. Mathematica could not give a response for the computation of the first integral
of family (C) in this generic case.



Darboux theory of integrability with applications to a family of QSH 55

Table 7.3: Integrating factor of family (C) for the generic case.

Integrating Factor

General R = J
c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3

Simple
example

R = J
c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3

(ii) The non-generic cases: a(a− c2)(a− 8c2/9) = 0.

(ii.1) a = c2 and c 6= 0.

Table 7.4: Invariant curves, exponential factor, cofactors, singularities and inter-
section points of family (C) for a = c2 and c 6= 0.

Inv. curves and cofactors Singularities Intersection points

J1 = y
J2 = xy

c + c + x

E3 = e
g0+g1y

y

α1 = y
α2 = 2c + x + 2y
α3 = −g0

P1 = (−2c, 0)
P2 = (−c, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

sn, sn; (0
2)SN, N

J1 ∩ J2 =

{
P∞

2 simple

P2 simple

J1 ∩ L∞ = P∞
2 simple

J2 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.5: Divisor and zero-cycles of family (C) for a = c2 and c 6= 0.

Divisor and zero-cycles Degree
ICD = 2J1 + J2 + L∞

M0CS = 2P1 + 2P2 + 2P∞
1 + P∞

2

T = ZJ2
1 J2 = 0

M0CT = 2P1 + 3P2 + 2P∞
1 + 4P∞

2

4

7

5

11

Table 7.6: First integral and integrating factor of family (C) for a = c2 and c 6= 0.

First integral Integrating Factor

General I R = J1 J−2
2 E

− c
g0

3
Simple

example
I R = J1 J−2

2 E−c
3

I = I =
c2
(

ec/yEi

(
− c

y

) (
c2 + cx + xy

)
+ y(c + x− y)

) (
e

g0
y +g1

)− c
g0

c2 + cx + xy
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where Ei(z) = −
∫ ∞
−z

e−t

t dt is the exponential integral function that has a branch cut disconti-
nuity in the complex z plane running from −∞ to 0.

(ii.2) a = 8c2/9 and c 6= 0.

Table 7.7: Invariant curves, exponential factor, cofactors, singularities and inter-
section points of family (C) for a = 8c2/9 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points

J1 = −c + 3y
J2 = c + 3y
J3 = 8c2 + 9cx + 9xy

E4 = e
c2(48g0−g1x+48g1y)+54cg0x+3cg1y(21x−8y)+54g0xy

48c2(8c2+9cx+9xy)

α1 = y + c
3

α2 = y− c
3

α3 = 2c + x + 2y
α4 = − g1(c−3y)

54c

P1 =
(
− 8c

3 , c
3

)
P2 =

(
− 4c

3 ,− c
3

)
P3 =

(
− 2c

3 , c
3

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s, sn, a; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 =

{
P∞

2 simple

P3 simple
J1 ∩ L∞ = P∞

2 simple

J2 ∩ J3 =

{
P∞

2 simple

P2 simple
J2 ∩ L∞ = P∞

2 simple

J3 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.8: Divisor and zero-cycles of family (C) for a = 8c2/9 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + 2J3 + L∞

M0CS = P1 + 2P2 + P3 + 2P∞
1 + P∞

2

T = ZJ1 J2 J2
3 = 0

M0CT = P1 + 3P2 + 3P3 + 3P∞
1 + 5P∞

2

5

7

7

15

Table 7.9: First integral and integrating factor of family (C) for a = 8c2/9 and
c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E
− 18cλ2

g1
4 R = J2

1 Jλ′2
2 J−2

3 E
− 18(cλ′2+c)

g1
4

Simple
example

I = J2E−18c
4 R =

J2
1

J2 J2
3

(ii.3) a = 0 and c 6= 0.

Under this condition, systems defined by (C) do not belong to QSH. All the invariant lines
are x = 0 and ±c + y = 0 that are simple. By perturbing the reducible conic x(c + y) = 0 we
can produce the hyperbola a+ cx+ xy = 0. Furthermore, the conic x(c+ y) = 0 has integrable
multiplicity two.
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Table 7.10: Invariant curves, exponential factor, cofactors, singularities and in-
tersection points of family (C) for a = 0 and c 6= 0.

Invariant curves and cofactors Singularities Intersection points
J1 = −c + y
J2 = c + y
J3 = x

E4 = e

(
− c2(g0−3g1x)+2cg0(x−y)−3cg1xy+g0y2

3cx(c+y)

)

α1 = c + y
α2 = −c + y
α3 = 3c + x + y
α4 = g0(y−c)

3c

P1 = (−4c, c)
P2 = (−2c,−c)
P3 = (0,−c)
P4 = (0, c)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

s, a, s, a; (0
2)SN, N

J1 ∩ J2 = P∞
2 simple

J1 ∩ J3 = P4 simple
J1 ∩ L∞ = P∞

2 simple
J2 ∩ J3 = P3 simple
J2 ∩ L∞ = P∞

2 simple
J3 ∩ L∞ = P∞

1 simple

Table 7.11: Divisor and zero-cycles of family (C) for a = 0 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + L∞

M0CS = P1 + P2 + P3 + P4 + 2P∞
1 + P∞

2

T = ZJ1 J2 J3 = 0

M0CT = P1 + P2 + 2P3 + 2P4 + 2P∞
1 + 3P∞

2

4

7

4

11

Table 7.12: First integral and integrating factor of family (C) for a = 0 and c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J0
3 E
− 3cλ2

g0
4 R = J1 Jλ′2

2 J−2
3 E

− 3(2c+cλ′2)
g0

4
Simple

example
I = J2E−3c

4 R = J1
J2
2 J2

3

(ii.4) a = c = 0.

Under this condition, systems defined by (C) do not belong to QSH. Here we have a single
system which has a generalized Darboux first integral. The affine invariant lines x = 0 and
y = 0 are both double. By perturbing the reducible conic xy = 0 we can produce the hyperbola
a + cx + xy = 0.
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Table 7.13: Invariant curves, exponential factor, cofactors, singularities and in-
tersection points of family (C) for a = c = 0.

Invariant curves and cofactors Singularities Intersection points
J1 = x
J2 = y
E3 = eg0+

g1y
x

E4 = eh0+
h1
y

α1 = c + y
α2 = −c + y
α3 = −g1y
α4 = −h1

P1 = (0, 0)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

phph; (0
2)SN, N

J1 ∩ J2 = P1 simple
J1 ∩ L∞ = P∞

1 simple
J2 ∩ L∞ = P∞

2 simple

Table 7.14: Divisor and zero-cycles of family (C) for a = c = 0.

Divisor and zero-cycles Degree
ICD = 2J1 + 2J2 + L∞

M0CS = 4P1 + 2P∞
1 + P∞

2

T = ZJ2
1 J2

2 = 0

M0CT = 4P1 + 3P∞
1 + 3P∞

2

5

7

5

10

Table 7.15: First integral and integrating factor of family (C) for a = c = 0.

First integral Integrating Factor

General I = J0
1 Jg1λ3

2 Eλ3
3 E0

4 R = J−2
1 J−1+g1λ′3

2 Eλ′3
3 E0

4
Simple

example
I = J2E3 R = 1

J2
1 J2

We sum up the topological, dynamical and algebraic geometric features of family (C) and
also confront our results with previous results in literature in the following proposition. We
show that all the phase portraits for family (C) are missing in [41].

Proposition 7.2.

(a) For the family (C) we obtained six distinct configurations C(C)
1 –C(C)

6 of invariant hyperbolas and
lines (see Figure 7.1 for the complete bifurcation diagram of configurations of this family). The
bifurcation set of configurations in the full parameter space is is a(a− c2)(a− 8c2/9) = 0 and
it is made of points of bifurcation due to change in the multiplicities of the invariant algebraic
invariant curves: On a = c2 and c 6= 0 the invariant lines coalesce into a double line. On
a = 8c2/9 and c 6= 0 the hyperbola becomes double. Outside the parameter space, i.e. on a = 0
the invariant hyperbola becomes reducible producing the lines x = 0 and c + y = 0 and when
also c = 0 then x = 0 and y = 0 become double lines.



Darboux theory of integrability with applications to a family of QSH 59

(b) The family (C) is Liouvillian integrable for a(a− 8c2/9) 6= 0 and generalized Darboux integrable
for a = 8c2/9. All systems in family (C) do not have a polynomial inverse integrating factor.
Outside the parameter space, i.e. on a = 0 we have a polynomial inverse integrating factor only
when c = 0.

(c) For the family (C) we have five topologically distinct phase portraits P(C)
1 –P(C)

5 . The topological
bifurcation set is the same as the one for configurations, i.e. it is a(a − c2)(a − 8c2/9) = 0
(see Figure 7.2 for the complete topological bifurcation diagram). The parabolas a = c2 and
a = 8c2/9 are bifurcation sets of singularities and the line a = 0 is a bifurcation of separatrices
connection. The phase portraits P(C)

1 − P(C)
5 are not topologically equivalent with anyone of the

phase portraits in [41].

Proof of Proposition 7.2. (a) We have the following type of divisors and zero-cycles of the
total invariant curve T for the configurations of family (C):

Table 7.16: Configurations for family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

C(C)
1

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
2

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
3

ICD = J1 + J2 + J3 + L∞

M0CT = 2P1 + P2 + 2P3 + P4 + 2P∞
1 + 4P∞

2

C(C)
4

ICD = JC
1 + JC

2 + J3 + L∞

M0CT = 2PC
1 + PC

2 + 2PC
3 + PC

4 + 2P∞
1 + 4P∞

2

C(C)
5

ICD = 2J1 + J2 + L∞

M0CT = 2P1 + 3P2 + 2P∞
1 + 4P∞

2

C(C)
6

ICD = J1 + J2 + 2J3 + L∞

M0CT = P1 + 3P2 + 3P3 + 3P∞
1 + 5P∞

2

Note that C(C)
1 , C(C)

2 and C(C)
3 admit the same type of divisor and zero-cycles but the con-

figurations are non equivalent. In fact, consider the convex quadrilateral in Figure 7.1 formed
by the four finite singularities in these configurations. In C(C)

1 any two consecutive or opposite
points of this quadrilateral are not joined by anyone of the two branches of the hyperbola, in
C(C)

2 , two opposite points are joined by a branch of the hyperbola and in C(C)
3 two consecutive

points of this quadrilateral is joined by a branch of the hyperbola.
Therefore, the configurations C(C)

1 up to C(C)
6 are all distinct. For the limit cases of family

(C) we have the following configurations:

Table 7.17: Configurations for the limit cases of family (C).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + L∞

M0CT = P1 + P2 + 2P3 + 2P4 + 2P∞
1 + 3P∞

2

c2
ICD = 2J1 + 2J2 + L∞

M0CT = 4P1 + 3P∞
1 + 3P∞

2
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Therefore, we have two distinct configurations for the limit cases.

(b) In the generic case a(a− c2)(a− 8c2/9) 6= 0 the three cofactors α1, α2, α3 of J1, J2, J3 are
linearly independent. Hence we cannot get a Darboux first integral by using these curves.
Furthermore the curves are each of multiplicity 1 and hence we cannot have exponential
factors attached to them. However we obtained an integrating factor for (C) in the generic
case. Using Mathematica we could not obtain an expression for the first integral of these
systems but we know that it exists and it is Liouvillian. For the non-generic cases we obtained
first integrals and they were given in previously exhibited tables.

Let us show that the family does not admit a polynomial inverse integrating factor.

(i) The generic case: a(a− c2)(a− 8c2/9) 6= 0.
We have the following integrating factor

R = J
c+
√

c2−a

2
√

c2−a
1 J

−c+
√

c2−a

2
√

c2−a
2 J−2

3 .

In order to R−1 to be polynomial we must have that
c+
√

c2−a
2
√

c2−a
= c

2
√

c2−a
+ 1

2 = −m1, m1 ∈N

−c+
√

c2−a
2
√

c2−a
= −c

2
√

c2−a
+ 1

2 = −m2, m2 ∈N.

Adding up these two expressions we have

1 = −(m1 + m2), m1, m2 ∈N

and this equation does not have a solution. Therefore, R−1 cannot be polynomial.

(ii) The non-generic case: a(a− c2)(a− 8c2/9) = 0.

(ii.1) a = c2 : We have the integrating factor

R = J1 J−2
2 E−c/g0

3

and it is clear that R−1 cannot be polynomial.

(ii.2) a = 8c2/9 : We have the integrating factor

R = J2
1 Jλ′2

2 J−2
3 E−18(cλ′2+c)/g1

4

again it is clear that R−1 cannot be polynomial.

(ii.3) a = 0 and c 6= 0. We have the integrating factor

R = J1 Jλ′2
2 J−2

3 E−3(2c+cλ′2)/g0
4 .

again it is clear that R−1 cannot be polynomial.

(ii.4) a = 0 and c = 0 : We have the integrating factor

R = J−2
1 J−1+g1λ′3

2 Eλ′3
3 E0

4.

Taking λ′3 = 0 we have that R−1 = J2
1 J2 which is polynomial.
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(c) We have:

Table 7.18: Phase portraits for family (C).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(C)
1 ((0

2)SN, N) (a, s, a, s) 4SC f
f 6SC∞

f 0SC∞
∞

P(C)
2 ((0

2)SN, N) (a, s, a, s) 4SC f
f 5SC∞

f 1SC∞
∞

P(C)
3 ((0

2)SN, N) (©, ©, ©, ©) 0SC f
f 0SC∞

f 2SC∞
∞

P(C)
4 ((0

2)SN, N) (sn, sn) 1SC f
f 5SC∞

f 1SC∞
∞

P(C)
5 ((0

2)SN, N) (s, sn, a) 3SC f
f 5SC∞

f 1SC∞
∞

Therefore, we have five distinct phase portraits for systems (C). For the limit case of family
(C) we have the following phase portraits:

Table 7.19: Phase portraits for the limit case of family (C).

Phase portraits Sing. at ∞ Finite sing. Separatrix connections

p1 ((0
2)SN, N) (s, a, s, a) 4SC f

f 5SC∞
f 0SC∞

∞

p2 ((0
2)SN, N) phph 0SC f

f 4SC∞
f 0SC∞

∞

Therefore, we have two topologically distinct phase portraits for the limit cases.

Table 7.20: Phase portraits in [41] that admit 2 singular points at infinity with
the type (SN, N).

Phase Portrait Sing. at ∞ Real finite sing. Separatrix connections

L01 ((0
2)SN, N) ∅ 0SC f

f 0SC∞
f 3SC∞

∞

L03 ((0
2)SN, N) ∅ 0SC f

f 0SC∞
f 3SC∞

∞

ω1 ((0
2)SN, N) (s, a) 1SC f

f 6SC∞
f 0SC∞

∞

Therefore, the phase portraits P(C)
1 –P(C)

5 are not topologically equivalent with anyone of the
phase portraits in [41].

Remark 7.3. Note that c1 (for example, for c > 0) has three distinct lines, each line is an
irreducible curve and for these lines the algebraic, integrable and geometric multiplicities
coincide and this multiplicity is one. Hence in perturbations the line y + c = 0 can produce at
most one line and in this case, it produces the line y +

√
c2 − a = 0.

Remark 7.4. Note that the necessary and sufficient condition for systems defined by the equa-
tions (C) to have a double hyperbola or a double line is that it has two singularities of the
system of multiplicity two or just one singularity of multiplicity four.
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a = 0

a− c2 = 0

a− 8c2/9 = 0

C(C)
3

C(C)
3

C(C)
2

(2)

(1) (1)

(1)(1)

C(C)
2

(2)

(1) (1)

(1) (1)

(1)

(2)

(1) (1)

(1)(1)

(1)

(2)

(1)

(1)(1)

(1)(1)

(2)

(1)

(2)

(1)

2

2 (4)

(2)

(1)

(1) (1)

(1)(1)

c1

c2

C(C)
1

C(C)
5

C(C)
4

(2)

(1) (1)

(2)

(1)

2

(2)

(2)

(1) (1)

(1)

2

(2)

(1)

(1) (1)

(1) (1)

c1

C(C)
6

C(C)
6

(2)

(2)

(2)
(1)

2

C(C)
5

(1)

(2)

(2)

(2)
(1)

2

(2)

(1) (1)

(1) (1)

(1)

Figure 7.1: Bifurcation diagram of configurations for family (C). The dashed
line a = 0 is a limit case of this family. The multiple invariant curves are
emphasized and the complex curves are drawn as dashed in the drawings of
the configurations.
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a = 0

a− c2 = 0

a− 8c2/9 = 0

p1

p2

P(C)
3

p1

P(C)
1

P(C)
2

P(C)
2

P(C)
2

P(C)
2

P(C)
4

P(C)
4

P(C)
5

P(C)
5

Figure 7.2: Topological bifurcation diagram for family (C). The continuous
curves in the phase portraits are separatrices. The dashed curves are the or-
bits given in each region of the phase portraits. The green bullet represents
an elemental saddle, the red bullet an elemental unstable node and the blue
an elemental stable node. The yellow triangle represents a saddle-node (semi-
elemental) and the black bullet is an intricate singularity.

7.2 Geometric analysis of family (D)

Consider the family:

(D)

ẋ = (c + x)(c(2g− 1) + gx)

ẏ = 1 + (g− 1)xy,

where (g± 1)(3g− 1)(2g− 1) 6= 0 and c2 + g2 6= 0.
For a complete understanding of the bifurcation diagram of the systems in the full family

defined by the equations (D) we study here also the limit cases (g± 1)(3g− 1)(2g− 1) = 0
where the equations are still defined.
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In the generic case
cg(g± 1)(3g− 1)(2g− 1) 6= 0

the systems have two invariant lines J1 and J2 and only one invariant hyperbola J3 with
respective cofactors αi, 1 ≤ i ≤ 3 where

J1 = c + x, α1 = c(−1 + 2g) + gx,

J2 = c(−1 + 2g) + gx, α2 = −cg + gx,

J3 = 1
2g−1 + y(c + x), α3 = c(−1 + 2g) + (−1 + 2g)x.

We note that if g = 1 or c = 0 then the two lines coincide and we get a multiple line.
The multiplicities of each invariant straight line and invariant hyperbola appearing in the

divisor ICD of invariant algebraic curves were calculated by using the 1st extactic polynomial
for the line and the 2nd extactic polynomial for the hyperbola.
(i) The generic case: cg(g± 1)(3g− 1)(2g− 1) 6= 0.

Table 7.21: Invariant curves, cofactors, singularities and intersection points of
family (D) for the generic case.

Invariant curves and cofactors Singularities Intersection points

J1 = c + x
J2 = c(−1 + 2g) + gx
J3 = 1

2g−1 + y(c + x)

α1 = c(−1 + 2g) + gx
α2 = −cg + gx
α3 = c(−1 + 2g) + (−1 + 2g)x

P1 =
(
−c,

1
c(g−1)

)

P2 =
(

c

(
1
g−2

)
,

g
2cg2−3cg+c

)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For c < 0 we have

s, a; (2
2)E−E,S if g < 0

s, s; (2
2)E−E,N if 0<g<1/2

s, a; (2
2)PH−PH,N if g > 1/2

For c > 0 we have

s, a; (2
2)E−E,S if g < 0

s, s; (2
2)E−E,N if 0<g<1/2

s, a; (2
2)PH−PH,N if g > 1/2

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ J3 =

{
P∞

1 simple

P2 simple
J2 ∩ L∞ = P∞

1 simple

J3 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.22: Divisor and zero-cycles of family (D) for the generic.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 = 0

M0CT = P1 + 2P2 + 4P∞
1 + 2P∞

2

4

7

5

9
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where the total curve T has only three distinct tangents at P∞
1 , but one of them is double.

Table 7.23: First integral and integrating factor of family (D) for the generic case.

First integral Integrating Factor

General I = J0
1 Jλ2

2 J
− gλ2

2g−1
3 R = J0

1 Jλ′2
2 J

1−g(λ′2+3)
2g−1

3
Simple

example
I = J2 J

− g
2g−1

3 R = 1
J1 J2

(ii) The non-generic case: cg(g± 1)(3g− 1)(2g− 1) = 0

(ii.1) c = 0 and g(g± 1)(3g− 1)(2g− 1) 6= 0.

Here the invariant line x = 0 has multiplicity 3 so we compute the exponential factors E3

and E4. The line at infinity and the hyperbolas are both simple. Thus the total multiplicity of
the hyperbolas and lines is 5 and by the Theorem 2.33 we must have a Darboux first integral.
We do the calculations to effectively compute the first integrals and the geometric features of
this family.

Table 7.24: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) for c = 0 and g 6= 0,±1, 1/3, 1/2.

Inv.curves/exp.fac. Singularities Intersection points
and cofactors

J1 = x
J2 = 1

2g−1 + xy

E3 = e
g0+g1x

x

E4 = e
2gh0xy+h0+x(h1+h2x)

x2

α1 = gx
α2 = (2g− 1)x
α3 = −gg0

α4 = −g(h1 + 2h0y)

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

For g < 0 we have

∅; (4
2)E− E, S

For g > 0 we have

∅; (4
2)PHP− PHP, N if g < 1/2

∅; (4
2)PH − HP, N if g > 1/2

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.25: Divisor and zero-cycles of family (D) for c = 0 and g 6=
0,±1, 1/3, 1/2.

Divisor and zero-cycles Degree
ICD = 3J1 + J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ3
1 J2 = 0.

M0CT = 5P∞
1 + 2P∞

2

5

7

6

7
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where the total curve T has only two distinct tangents at P∞
1 , but one of them is quadruple.

Table 7.26: First integral and integrating factor of family (D) when c = 0 and
g 6= 0, 1/2.

First integral Integrating Factor

General I = Jλ1
1 J
− gλ1

2g−1
2 E0

3E0
4 R = Jλ′1

1 J
1−g(λ′1+3)

2g−1
2 E0

3E0
4

Simple
example

I = J1 J
− g

2g−1
2 R = 1

J1 J2

(ii.2) c = 0 and g(g± 1)(3g− 1)(2g− 1) = 0.

(ii.2.1) c = 0 and g = −1.

Under this condition, systems defined by the equations (D) do not belong to family (D).
We note that system defined by the equation (D) when c = 0 and g = −1 is exactly the
family (G). Here we have a single system that possess an invariant line which has multiplicity
four. The line at infinity and the hyperbolas are both simple. Thus the total multiplicity of
hyperbolas and lines is 6 and by the Theorem 2.33 we must have a rational first integral. We
do the calculations to effectively compute the first integrals and the geometric features of this
family.

Table 7.27: Invariant curves, cofactors, singularities and intersection points of
system (D) when c = 0 and g = −1.

Inv.curves and cofactors Singularities Intersection points
J1 = x
J2 = −1 + 3xy
E3 = e

g0+g1x
x

E4 = e
−2h0xy+h0+h1x+h2x2

x2

E5 = e
(−3l0xy+l0+x(−2l1xy+l1+x(l2+l3x))

x3

)

α1 = −x
α2 = −3x
α3 = g0

α4 = h1 + 2h0y
α5 = l2 + 2l1y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)E− E, S

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple
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Table 7.28: Divisor and zero-cycles of system (D) when c = 0 and g = −1.

Divisor and zero-cycles Degree
ICD = 4J1 + J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ4
1 J2 = 0.

M0CT = 6P∞
1 + 2P∞

2

6

7

7

8

where the total curve T has only two distinct tangents at P∞
1 , but one of them is quintuple.

Table 7.29: First integral and integrating factor of system(D) when c = 0 and
g = −1.

First integral Integrating Factor

General I = Jλ1
1 J−

λ1
3

2 E
− (h1 l1−h0 l2)λ4

g0 l1
3 Eλ4

4 E
− h0λ4

l1
5 R = Jλ′1

1 J−
4
3−

λ′1
3

2 E
− (h1 l1−h0 l2)λ

′
4

g0 l1
3 Eλ′4

4 E
− h0λ′4

l1
5

Simple
example

I =
J3
1

J2
R = 1

J1 J2

Remark 7.5. Consider F 1
(c1,c2)

= c1 J3
1 − c2 J2 = 0, degF 1

(c1,c2)
= 3. The remarkable value of

F 1
(c1,c2)

is [1 : 0] for which we have

F 1
(1,0) = J3

1 .

Therefore, J1 is a critical remarkable curves and [1 : 0] is a critical remarkable value of I1.

(ii.2.2) c = 0 and g = 0.

Under this condition, systems defined by (D) do not belong to QSH. The hyperbola −1 +
xy = 0 filled up with singularities and the following study is done with the reduced system.

Table 7.30: Singularities of the reduced system (D) when c = g = 0. (	[)(]; ∅)

denotes the presence of a hyperbola filled up with singular points in the sys-
tem such that the reduced system has no finite singularity on this curve and
(	[)(]; N, ∅) denotes that the system has at infinity a node, and one non-isolated
singular point which is part of a real hyperbola filled up with singularities and
that the reduced linear system has no infinite singular point in that position.

Singularities
P∞

1 = [0 : 1 : 0]

(	[)(]; ∅); (	[)(]; N, ∅)
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Table 7.31: First integral and integrating factor of the reduced system (D) when
c = g = 0.

First integral Integrating Factor
General I = −x R = −1
Simple

example
I = −x R = −1

(ii.2.3) c = 0 and g = 1/3.

Under this condition, systems defined by the equations (D) do not belong to family (D).
Here we have one affine invariant line and one invariant hyperbola, both of them are triple so
we compute the exponential factors E3, E4, E5 and E6. This system is Hamiltonian so it admits
a polynomial first integral.

Table 7.32: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) when c = 0 and g = 1/3.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 = −3 + xy
E3 = e

g0+g1x
x

E4 = e
h0+h1x+h2x2+

2h0xy
3

x2

E5 = e
l0y
−3+xy

E6 = e
m0
9 +

y(m1(6−2xy)+3m2y(2xy−9))
6(xy−3)2

α1 = x
3

α2 = − x
3

α3 = − g0
3

α4 = − h1
3 −

2h0y
3

α5 = −t l0
3

α6 = m1
9 −m2y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PHP− PHP, N

J1 ∩ J2 = P∞
2 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.33: Divisor and zero-cycles of family (D) when c = 0 and g = 1/3.

Divisor and zero-cycles Degree
ICD = 3J1 + 3J2 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ3
1 J3

2 = 0

M0CT = 7P∞
1 + 4P∞

2

7

7

10

11
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where the total curve T has
1) only three distinct tangents at P∞

1 , but two of them are triple;
2) only two distinct tangents at P∞

2 , but one of them is triple.

Table 7.34: First integral and integrating factor of family (D) when c = 0 and
g = 1/3.

.

First integral Integrating Factor

General I = Jλ1
1 Jλ1

2 Eλ3
3 Eλ4

4 E
− g0λ3

l0
− λ4(2h0m1+9h1m1)

9l0m2
5 E

− 2h0λ4
3m2

6 R
Simple

example
I1 = J1 J2 R1 = 1

J1 J2

where R = Jλ′1
1 Jλ′1

2 Eλ′3
3 Eλ′4

4 E
− g0λ′3

l0
− λ′4(2h0m1+9h1m1)

9l0m2
5 E

− 2h0λ′4
3m2

6 .

(ii.2.4) c = 0 and g = 1/2.

Under this condition, systems defined by (D) do not belong to QSH. Here we have only
one triple invariant line so we compute the exponential factors E2 and E3. We have that the
line at infinity Z = 0 also is triple.

Table 7.35: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) when c = 0 and g = 1/2.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x
E2 = e

g0+g1x
x

E3 = e
h0xy+h0+x(h1+h2x)

x2

E4 = el0+l1xy

α1 = x
2

α2 = − g0
2

α3 = −h0y− h1
2

α4 = l1x

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PH − HP, N

J1 ∩ L∞ = P∞
1 simple

Table 7.36: Divisor and zero-cycles of family (D) when c = 0 and g = 1/2.

Divisor and zero-cycles Degree
ICD = 3J1 + L∞

M0CS = 6P∞
1 + P∞

2

T = ZJ3
1 = 0.

M0CT = 4P∞
1 + P∞

2

4

7

4

5

where the total curve T has only two distinct tangents at P∞
1 , one of them triple.
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Table 7.37: First integral and integrating factor of family (D) when c = 0 and
g = 1/2.

First integral Integrating Factor

General I = Jλ1
1 E0

2E0
3E
− λ1

2l1
4 R = Jλ′1

1 E0
2E0

3E
− (1+λ′1)

2l1
4

Simple
example

I = J2
1 E−1

4 R = 1
J1

(ii.2.5) c = 0 and g = 1.

Under this condition, systems defined by the equations (D) do not belong to family (D).
The system defined by the equations (D) when c = 0 and g = 1 is exactly the family (I).
Here the systems possess an invariant line with multiplicity three and a family of invariant
hyperbolas

1 + rx + xy,

where r ∈ R. The line at infinity L∞ : Z = 0 has multiplicity 3.

Table 7.38: Invariant curves, exponential factors, cofactors, singularities and
intersection points of system (D) when c = 0 and g = 1.

Inv.cur./exp.fac and cofactors Singularities Intersection points
J1 = x
J2,r = 1 + rx + xy
E3 = eg0+g1y+g2y2

E4 = e
h0+h1x

c+x

E5 = e
l0+l1x+l2x2+2h0xy

x2

α1 = x
α2 = x
α3 = g1 + 2g2x
α4 = −h0

α5 = −l1 − 2l0y

P∞
1 = [0 : 1 : 0]

P∞
2 = [1 : 0 : 0]

∅; (4
2)PH − HP, N

J1 ∩ J2,r = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2,r ∩ L∞ =

{
P∞

1 simple
P∞

2 simple

Table 7.39: Divisor and zero-cycles of system (D) when c = 0 and g = 1.

Divisor and zero-cycles Degree
ILD = 3J1 + 3L∞

M0CS = 6P∞
1 + P∞

2

T = Z3 J3
1 = 0

M0CT = 6P∞
1 + 3P∞

2

6

7

6

9

where the total curve T has
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1) only two distinct tangents at P∞
1 , both of them triple and

2) only one triple tangent at P∞
2 .

Table 7.40: First integral and integrating factor of system (D) when c = 0 and
g = 1.

First integral Integrating Factor

General I = Jλ1
1 J−λ1

2,r Eλ3
3 E
− λ3(g2 l1−g1 l0)

h0 l0
4 E

g2λ3
l0

5 R = Jλ′1
1 J−2−λ′1

2,r Eλ′3
3 E
− λ3(g2 l1−g1l0)

h0 l0
4 E

g2λ3
l0

5
Simple

example
I1 = J1

J2,1
R1 = 1

J2
1

Remark 7.6. Consider F 1
(c1,c2)

= c1 J1− c2 J2,1 = 0, degF 1
(c1,c2)

= 2. We do not have any remark-
able values and remarkable curves for I1.

(ii.3) c 6= 0 and g(g± 1)(3g− 1)(2g− 1) = 0.

(ii.3.1) g = −1 and c 6= 0.

Under this condition, systems defined by the equations (D) do not belong to family (D).
Here we have two invariant lines, one invariant hyperbola and one invariant parabola. We
note that in the case c = g = −1 this system is exactly family (F).

Table 7.41: Invariant curves, cofactors, singularities and intersection points of
system (D) when g = −1 and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 = c + x
J2 = 3c + x
J3 = −1 + 3cy + 3xy
J4 = 3c2y + x2

8c +
19c
8 + x

α1 = −3c− x
α2 = −c− x
α3 = −3c− 3x
α4 = −2x

P1 =
(
−c,− 1

2c

)
P2 =

(
−3c,− 1

6c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s, a; (2
2)E− E, S

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ J4 =

{
P∞

1 simple

P1 simple
J1 ∩ L∞ = P∞

1 simple

J2 ∩ J3 =

{
P∞

1 simple

P2 simple

J2 ∩ J4 =

{
P∞

1 simple

P2 simple
J2 ∩ L∞ = P∞

1 simple

J3 ∩ J4 =

{
P∞

1 simple

P2 triple

J3 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

J4 ∩ L∞ = P∞
1 double
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Table 7.42: Divisor and zero-cycles of system (D) when g = −1 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 J4 = 0.

M0CT = 2P1 + 3P2 + 5P∞
1 + 2P∞

2

5

7

7

12

where the total curve T has

1) only three distinct tangents at P∞
1 , two of them double and one simple,

2) two distinct tangents at P2, but one of them is double.

Table 7.43: First integral and integrating factor of system (D) when g = −1 and
c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 J−λ1−
λ2
3

3 Jλ1
4 R = Jλ′1

1 Jλ′2
2 J−

4
3−λ′1−

λ′2
3

3 Jλ′1
4

Simple
example

I1 =
J3
2

J3
R = 1

J1 J2 J4

Remark 7.7. Consider F 1
(c1,c2)

= c1 J3
2 − c2 J3 = 0, degF 1

(c1,c2)
= 3. The remarkable value of

F 1
(c1,c2)

are [1 : −8c3] and [1 : 0] for which we have

F 1
(1,−8c3) = 8cJ1 J4, F 1

(1,0) = J3
2 .

Therefore, J1, J2, J4 are remarkable curves and [1 : −8c3], [1 : 0] are remarkable values of I1.
Moreover, [1 : 0] is a critical remarkable values and J2 is critical remarkable curve of I1. The
singular points are P1 for F 1

(1,−8c3)
and P2 for F 1

(1,0).

(ii.3.2) g = 0 and c 6= 0.

Here we have only one affine invariant line and one invariant hyperbola both of them are
simple. The line at infinity Z = 0 is double so we compute the exponential factor E3.
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Table 7.44: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) for g = 0 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points

J1 = c + x
J2 = −1 + cy + xy
E3 = eg0+g1x

α1 = −c
α2 = −c− x
α3 = −c2g1 − cg1x

P1 =
(
−c,− 1

c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

For c < 0 we have

s; (2
2)E− E, (1

1)SN

For c > 0 we have

s; (2
2)E− E, (1

1)SN

J1 ∩ J2 = P∞
1 double

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.45: Divisor and zero-cycles of family (D) for g = 0 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + 2L∞

M0CS = P1 + 4P∞
1 + 2P∞

2

T = Z2 J1 J2 = 0.

M0CT = P1 + 4P∞
1 + 3P∞

2

4

7

4

8

where the total curve T has
1) only three distinct tangents at P∞

1 , but one of them is double and
1) only two distinct tangents at P∞

2 , but one of them is double.

Table 7.46: First integral and integrating factor of family (D) when g = 0 and
c 6= 0.

First integral Integrating Factor

General I = J0
1 Jλ2

2 E
− λ2

cg1
3 R = J0

1 Jλ′2
2 E

− 1+λ′2
cg1

3
Simple

example
I = Jc

2E−1
3 R = 1

J2

(ii.3.3) g = 1/3 and c 6= 0.

Under this condition, systems defined by the equations (D) do not belong to family (D).
Here we have two invariant lines and two hyperbolas. These systems are Hamiltonian so

they admit a polynomial first integral.
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Table 7.47: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) when g = 1/3 and c 6= 0.

Inv.curves and cofactors Singularities Intersection points

J1 = −c + x
J2 = c + x
J3 = −3− cy + xy
J4 = −3 + cy + xy

α1 = c
3 +

x
3

α2 = x
3 −

c
3

α3 = c
3 −

x
3

α4 = − c
3 −

x
3

P1 =
(
−c,− 3

2c

)
P2 =

(
c, 3

2c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s, s; (2
2)E− E, N

J1 ∩ J2 = P∞
1 simple

J1 ∩ J3 = P∞
1 double

J1 ∩ J4 =

{
P∞

1 simple

P1 simple
J1 ∩ L∞ = P∞

1 simple

J2 ∩ J3 =

{
P∞

1 simple

P2 simple
J2 ∩ J4 = P∞

1 double
J2 ∩ L∞ = P∞

1 simple

J3 ∩ J4 =

{
P∞

1 simple

P∞
2 triple

J3 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

J4 ∩ L∞ =

{
P∞

1 simple

P∞
2 simple

Table 7.48: Divisor and zero-cycles of family (D) when g = 1/3 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + J3 + J4 + L∞

M0CS = P1 + P2 + 4P∞
1 + P∞

2

T = ZJ1 J2 J3 J4 = 0.

M0CT = 2P1 + 2P2 + 5P∞
1 + 3P∞

2

5

7

7

12

where the total curve T has
1) only three distinct tangents at P∞

1 , but two of them are double;
2) three distinct tangents at P∞

2 .

Table 7.49: First integral and integrating factor of family (D) when g = 1/3 and
c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 Jλ2

2 Jλ2
3 Jλ1

4 R = Jλ′1
1 Jλ′2

2 Jλ′2
3 Jλ′1

4
Simple

example
I1 = J1 J4 R1 = 1

J1 J4

(ii.3.4) g = 1/2 and c 6= 0.
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Under this condition, systems defined by (D) do not belong to QSH. Here we have two
invariant lines. We also could find an exponential factor but it did not arise from multiple
curves since by calculating the 1st extactic polynomial we checked that the multiplicity of the
affine invariant lines is one. We also checked the multiplicity of the line at infinity and it is
also simple.

Table 7.50: Invariant curves, exponential factors, cofactors, singularities and
intersection points of family (D) for g = 1/2 and c 6= 0.

Inv.curves/exp.fac. and cofactors Singularities Intersection points
J1 = x
J2 = x

c + 1
E3 = ecg1y+g0+g1xy

α1 = c
2 +

x
2

α2 = x
2

α3 = cg1 + g1x

P1 =
(
−c,− 2

c

)
P∞

1 = [0 : 1 : 0]
P∞

2 = [1 : 0 : 0]

s; (3
2)E− PH, N

J1 ∩ J2 = P∞
1 simple

J1 ∩ L∞ = P∞
1 simple

J2 ∩ L∞ = P∞
1 simple

Table 7.51: Divisor and zero-cycles of family (D) for g = 1/2 and c 6= 0.

Divisor and zero-cycles Degree
ICD = J1 + J2 + L∞

M0CS = P1 + 5P∞
1 + P∞

2

T = ZJ1 J2 = 0.

M0CT = P1 + 3P∞
1 + P∞

2

3

7

3

5

where the total curve T has three distinct tangents at P∞
1 .

Table 7.52: First integral and integrating factor of family (D) when g = 1/2 and
c 6= 0.

First integral Integrating Factor

General I = Jλ1
1 J0

2 E
− λ1

2g1
3 R = Jλ′1

1 J0
2 E
− λ′1

2g1
− 1

2g1
3

Simple
example

I = J2
1 E−1

3 R = 1
J1

(ii.3.5) g = 1 and c 6= 0.

Note that this case can be reduced to the case c = 0 and g = 1 due to the translation
(x, y)→ (x− c, y). Therefore, on the line g = 1 and c 6= 0 we have the same configuration and
the phase portrait as at the point (g, c) = (1, 0).

We sum up the topological, dynamical and algebraic geometric features of family (D) and
also confront our results with previous results in literature in the following proposition.
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Proposition 7.8.

(a) For the family (D) we obtained three distinct configurations C(D)
1 –C(D)

3 of invariant hyperbolas
and lines (see Figure 7.3 for the complete bifurcation diagram of configurations of this family).
The parameter space for this family is (g ± 1)(2g − 1)(3g − 1) 6= 0, c2 + g2 6= 0 and the
bifurcation set for the full family is cg = 0. On c = 0 and g 6= 0 the invariant lines coalesce
and two finite singularities coalesced with an infinite singularity. On g = 0 and c 6= 0 the
line at infinity has multiplicity two and we have just one invariant line. The bifurcation set
of configurations in the full parameter space is cg(g ± 1)(2g − 1)(3g − 1) = 0. Outside the
parameter space occurs the following: On g = 1/3 and c 6= 0 we have an additional invariant
hyperbola. On g = 1/3 and c = 0 we have one triple line and one triple hyperbola. On g = −1
and c 6= 0 we have an invariant parabola. On g = −1 and c = 0 we have one quadruple line.
On g = 1 we have a family of invariant hyperbolas and the invariant lines coalesce. On g = 1/2
the invariant hyperbola becomes reducible and we have two invariant lines c + x = 0 and x = 0
when c 6= 0 and only one triple line x = 0 when c = 0. On c = g = 0 the hyperbola is filled up
with singularities.

(b) The family (D) is Darboux integrable in the generic case cg(g± 1)(3g− 1)(2g− 1) 6= 0 and
also when c = 0 and g 6= 0,±1, 1/3, 1/2. The family (D) is generalized Darboux integrable
when g = 0 and c 6= 0. All systems in family (D) have an inverse integrating factor which is
polynomial.

(c) For the family (D) we have seven topologically distinct phase portraits P(D)
1 –P(D)

7 . The topological
bifurcation diagram of family (D) is done in Figure 7.4. The bifurcation set is cg(2g− 1)(g−
1) = 0 and it is the bifurcation set of singularities. The phase portrait P(D)

7 is not topologically
equivalent with anyone of the phase portraits in [41].

Proof of Proposition 7.8. (a) We have the following type of divisors and zero-cycles of the
total invariant curve T for the configurations of family (D):

Table 7.53: Configurations for family (D).

Configurations Divisors and zero-cycles of the total inv. curve T

C(D)
1

ICD = J1 + J2 + J3 + L∞

M0CT = P1 + 2P2 + 4P∞
1 + 2P∞

2

C(D)
2

ICD = 3J1 + J2 + L∞

M0CT = 5P∞
1 + 2P∞

2

C(D)
3

ICD = J1 + J2 + 2L∞

M0CT = P1 + 4P∞
1 + 3P∞

2

Therefore, the configurations C(D)
1 up to C(D)

3 are all distinct. For the limit cases of family
(D) we have the following configurations:
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Table 7.54: Configurations for the limit cases of family (D).

Configurations Divisors and zero-cycles of the total inv. curve T

c1
ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 2P2 + 5P∞
1 + 3P∞

2

c2
ICD = 3J1 + 3J2 + L∞

M0CT = 7P∞
1 + 4P∞

2

c3
ICD = J1 + J2 + J3 + J4 + L∞

M0CT = 2P1 + 3P2 + 6P∞
1 + 2P∞

2

c4
ICD = 4J1 + J2 + L∞

M0CT = 6P∞
1 + 2P∞

2

c5
ILD = 3J1 + 3L∞

M0CT = 6P∞
1 + 3P∞

2

c6
ICD = J1 + J2 + L∞

M0CT = P1 + 3P∞
1 + P∞

2

c7
ICD = 3J1 + 3L∞

M0CT = 6P∞
1 + 3P∞

2

c8
ICD = L∞

M0CT = P∞
1

The other statements on (a) follows from the study done previously.

(b) It follows directly from the tables.

(c) We have:

Table 7.55: Phase portraits for family (D).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(D)
1 ((2

2)E− E, S) (s, a) 1SC f
f 4SC∞

f 1SC∞
∞

P(D)
2 ((2

2)E− E, N) (s, s) 0SC f
f 8SC∞

f 0SC∞
∞

P(D)
3 ((2

2)PH − PH, N) (s, a) 1SC f
f 5SC∞

f 0SC∞
∞

P(D)
4 ((4

2)E− E, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

P(D)
5 ((4

2)PHP− PHP, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

P(D)
6 ((4

2)PH − HP, N) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

P(D)
7 ((2

2)E− E, (1
1)SN) s 0SC f

f 4SC∞
f 1SC∞

∞

Therefore, we have seven distinct phase portraits for systems (D). For the limit case of family
(D) we have the following phase portraits:
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Table 7.56: Phase portraits for the limit case of family (D).

Phase Portraits Sing. at ∞ Finite sing. Separatrix connections

P(D)
1 ((2

2)E− E, S) (s, a) 1SC f
f 4SC∞

f 1SC∞
∞

P(D)
2 ((2

2)E− E, N) (s, s) 0SC f
f 8SC∞

f 0SC∞
∞

P(D)
4 ((4

2)E− E, S) ∅ 0SC f
f 0SC∞

f 2SC∞
∞

P(D)
5 ((4

2)PHP− PHP, N) ∅ 0SC f
f 0SC∞

f 3SC∞
∞

P(D)
6 ((4

2)PH − HP, N) ∅ 0SC f
f 0SC∞

f 1SC∞
∞

p1 ((3
2)E− PH, N) s 0SC f

f 4SC∞
f 1SC∞

∞

p2 (	[)(]; N, ∅) (	[)(]; ∅) 0SC f
f 0SC∞

f 0SC∞
∞

In [41] the authors do not have any phase portrait with 2 singular points at infinity and
with 1 singular point in the finite plane. Therefore, the phase portrait P(D)

7 is missing.

7.2.1 The solution of the Poincaré problem for the family (D)

The following theorem solves the problem of Poincaré for the family defined by the equations
(D) with (c, g) ∈ R2.

Theorem 7.9. The necessary and sufficient condition for a system (S) defined by the equations (D)
with (c, g) ∈ R2 to have a rational first integral given by invariant algebraic curves of degree at most
two, is that g ∈ Q and either g(2g− 1) 6= 0 or g = 0 = c.

Proof. The proof of this result is based on all the formulas for the first integrals contained in
the Tables calculated for the family of systems defined by the equations (D) with (c, g) ∈ R2.

Case 1. This is the generic case, cg(g± 1)(2g− 1)(3g− 1) 6= 0. We first show the necessity
of the condition, so suppose that the system has a rational first integral after fixing the cor-
responding value for the free parameter λ2. Then according to Table 7.23 the exponents of
J2 and J3 in this Table need to be integers. This implies that g/(2g− 1) = r ∈ Q and hence
g = r/(2r− 1) ∈ Q (here we have 2r− 1 = 2g/(2g− 1)− 1 = 1/(2g− 1) 6= 0). By hypothesis
we have that cg 6= 0. To prove necessity we need to show that g(2g− 1) 6= 0 but this we have
by the hypothesis of Case 1.

To prove the sufficiency we now suppose that g ∈ Q, that is g = m/n where m, n ∈ Z

with n 6= 0 and m and n are relatively prime. We also suppose that (c, g) satisfies the above
generic condition. Then the general first integral is given in Table 7.23. The exponents of J2,
respectively J3 are λ2 and −gλ2/(2g− 1). But g/(2g− 1) = m/(2m− n) where 2m− n 6= 0
since otherwise the fraction m/n would be reducible. So by taking λ2 = 2m− n we get the
first integral J2m−n

2 J−m
3 which is a rational first integral. Hence the condition is also sufficient.
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Figure 7.3: Bifurcation diagram of configurations for family (D). The dashed
lines g = ±1, g = 1/2 and g = 1/3 are limit cases of this family. The multiple
invariant curves are emphasized in the drawings of the configurations. When
g = 1 we have a family of invariant hyperbolas that are drawn in colors. The
dotted hyperbola on c = g = 0 represents an invariant hyperbola filled up with
singularities.
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Figure 7.4: Topological bifurcation diagram for family (D). Note that the phase
portraits P(D)

1 , P(D)
2 , P(D)

4 , P(D)
7 , p1 and p2 possess graphics (drew in green). The

continuous curves in the phase portraits are separatrices. The dashed curves are
the orbits given in each region of the phase portraits. The green bullet represents
an elemental saddle, the red bullet an elemental unstable node and the blue
an elemental stable node. The yellow triangle represents a saddle-node (semi-
elemental) and the black bullet is an intricate singularity. In c = g = 0 we have
an hyperbola filled up with singularities represented by a dotted hyperbola.
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Case 2. This is the non-generic case, cg(g± 1)(2g− 1)(3g− 1) = 0.

Case 2.1. Consider c = 0 6= g(g ± 1)(2g − 1)(3g − 1). We look for the general expression
of first integrals for this case which is Jλ1

1 J−gλ1/(2g−1)
2 . Suppose that we have a rational first

integral. Then in this integral the exponents λ1,−gλ1/(2g − 1) must be integers. But this
implies that g/(2g − 1) = r ∈ Q. Then g = r/(2r − 1) ∈ Q. By hypothesis we have that
g(2g − 1) 6= 0. Hence the necessity is proved. For the sufficiency we suppose that g ∈ Q.
Then again g = m/n with m, n ∈ Q, n 6= 0 and m, n relatively prime. The general form of the
first integral is Jλ1

1 J−gλ1/(2g−1)
2 . Replacing here g by m/n we obtain Jλ1

1 J−mλ1/(2m−n)
2 . Hence by

taking λ1 = 2m− n the first integral becomes J2m−n
1 J−m

2 which is rational.

Case 2.2. Consider c = 0 and g(g± 1)(2g− 1)(3g− 1) = 0. This is a set of five points all with
a rational coordinate g. In this case a necessary and sufficient condition to have a rational first
integral is that g 6= 1/2. Indeed, by checking the Tables for first integrals we see that except
for the point g = 1/2 at all four other points, we have a rational first integral. So the condition
to have a rational first integral is satisfied in this case too.

Case 2.3. Consider c 6= 0 and g(g± 1)(2g− 1)(3g− 1) = 0. This is a collection of five lines
out of which we exclude their intersection with c = 0.

Case 2.3.1. Suppose c 6= 0 and g(2g− 1) = 0 then we see that the general first integrals for
either g = 0 or g = 1/2 must contain an exponential factor and hence they are never rational.
Therefore if c 6= 0 then to have a rational first integral it is necessary and sufficient to have
g 6= 0, 1/2.

Case 2.3.2. Suppose c 6= 0 and (g± 1)(3g− 1) = 0.

Case 2.3.2.1. We consider first c 6= 0 and g = −1. In this case two half lines. For each c the
system (c, g) = (c,−1) has a rational first integral as the Table for this case indicates and the
condition g ∈ Q and g 6= 0, 1/2 is clearly satisfied.

Case 2.3.2.2. The case c 6= 0 and (g− 1)(3g− 1) is treated in analogous manner as the Case
2.3.2.1.

We note that the set of systems defined by the equations (D) for (c, g) ∈ R2 that are
algebraically integrable is dense in R2.

8 Concluding comments and problems

There are many papers on the Darboux theory of integrability for planar polynomial vector
fields but it is actually impossible to find a single source summing up this theory with all its
extended features, as we know it today. The literature also often overlooks some significant
moments in its developments as well as its most useful consequences such as its unifying
character in proofs of integrability for whole classes of polynomial differential systems as well
as its help in topologically classifying some families of systems. In this paper we covered all
these aspects and proved that its complex character is essential.

In this paper the study of integrability of the family QSHη=0 displayed all the types from
algebraic to Liouvillian integrability as well as non-integrability, proved for the generic case.

We then pursued the geometric analysis of two of the four 2-parameter sub-families of
QSHη=0 by applying the method of Darboux and obtained all their phase portraits as well
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as their bifurcation diagrams and the bifurcation diagrams of the configurations of invariant
hyperbolas and lines.

In this Section we are interested in the relationship between these two bifurcation dia-
grams, more precisely we show how the dynamics of the systems expressed in their topo-
logical bifurcations impacts the bifurcations of the geometry of the configurations and the
resulting bifurcations in integrability.

8.1 Family (C)

The parameter space for this family is {(a, c) ∈ R2 : a 6= 0}, its topological bifurcation set
is (a − 8c2/9)(a − c2) = 0 and it is formed of bifurcation points of finite singularities. On
a− 8c2/9 = 0 we see coalescence of two finite singularities, both situated on the same one of
the two invariant lines, yielding a double singular point on this line. On a− c2 = 0 we have two
coalesces, but each one of them being a coalescence of two points situated on distinct lines yielding
a double singular point situated on a double line.

The bifurcation set for configurations of invariant lines and hyperbolas is also (a− 8c2/9) ·
(a − c2) = 0. On a − 8c2/9 = 0 the coalescence of the two singularities on the same line
yielding a double singular point generates a distinct configuration than the one in the generic
case surrounding points on this parabola where none of the singularities is double. As already
mentioned above, on the parabola a− c2 = 0 we get a double line due to the coalescence of
the four singularities located on the two lines into two double singularities on the double
line. Can we explain in a similar way the appearance of a double hyperbola on the parabola
a− 8c2/9 = 0? Within this family this is however not possible. Indeed moving in all directions
from a point on this parabola, we always get just one hyperbola, no two hyperbolas coalesce
when on a− 8c2/9 = 0 in the parameter space of this family.

We claim however that the same kind of phenomenon occurs as on a− c2 = 0, namely that
a bifurcation of singularities does occur on a− 8c2/9 = 0 but when we unfold these systems in
a larger family that includes systems with three distinct singular points at infinity and hence
for these systems we have η > 0. Looking at the families of systems in the set of systems with
η > 0 in [47] we find the configuration denoted by Config. H.139 (see Figure 8.1) with three
singular points at infinity in the real projective plane and with 4 singular points in the affine
plane. This configuration has two hyperbolas that coalesce when two of the three singular
points at infinity collide and we also have collision of two finite singular points located on
distinct hyperbolas. To prove this, consider the systems:

ẋ = 72c2(1−ε)(2+ε)
(−9+ε2)2 + 3cx + x2 + (1 + ε)xy

ẏ = − 9c2(1+ε2)
(−9+ε2)2 + y2,

(8.1)

where ε is sufficiently small. These systems possess the configuration Config. H.139 (see
Figure 8.1) of [47] for any value of ε > 0 as we can show that it satisfies the required conditions
on the polynomial invariants. On the other hand, the systems (8.1) form a perturbation of the
system obtained by setting ε = 0 which has the configuration Config. H̃.33 (see Figure 8.1) of
[47] (here family (C) when a = 8v2/9 with configuration C(C)

6 ).
We conclude that on both parabolas a− c2 = 0 and a− 8c2/9 = 0 bifurcation of multiple

singular points produce bifurcation points of configurations corresponding to multiple invari-
ant curves but this time we have apart from coalescence of finite singularities, also coalescence
of two infinite singularities.



Darboux theory of integrability with applications to a family of QSH 83

In the article [47] the classification of QSH according to the configurations of invariant
hyperbolas and lines was done separately for the two subfamilies corresponding to η > 0 and
η = 0 leading to two (non-integrated) bifurcation diagrams in terms of invariant polynomials.

As the above example clearly illustrates there is the need of obtaining an integrated bifurca-
tion diagram of QSH. We thus propose the following problem:

Problem: Obtain an integrated bifurcation diagram for the family QSH of the configurations of invari-
ant hyperbolas and lines that systems in QSH have, by finding a common set of invariant polynomials
to be applied jointly to both subfamilies η > 0 and η = 0.

Finally, in the full (extended) parameter space we observe that on a = 0 the hyperbola
becomes reducible. For c 6= 0 the hyperbola splits into the lines x = 0 and c + y = 0. On
a = 0 = c, the two lines coincide yielding a double line x = 0 and in addition the hyperbola
splits into the lines x = 0 and y=0.

(1)

(1)

(1)

(1)

(1)

(1)

(1)

(2)

(2)

(1) (1)

(1)

2

Figure 8.1: Config. H.139 and Config. H̃.33 (respectively) from [47]. The left
configuration becomes the right one when the hyperbola with infinite points
point [1 : 1 : 0] and [1 : 0 : 0] is identified with the other hyperbola by moving
the point here at [1 : 0 : 0] to coincide with [0 : 1 : 0] in P2(C).

8.2 The family (D)

The parameter space for this family is {(c, g) ∈ R2 : (g± 1)(3g− 1)(2g− 1) 6= 0 and c2 + g2 6=
0}. The topological bifurcation set for this family is the set cg = 0, with c2 + g2 6= 0. On c = 0
and g 6= 0 we have that all the singularities of the systems are at infinity and this occurs
nowhere else. Moreover, on c = 0 and g 6= 0 we have that [0 : 1 : 0] is of multiplicity (2

4)

while [1 : 0 : 1] is of multiplicity one. On g = 0 and c 6= 0 the singular point [1 : 0 : 1] is of
multiplicity (1

1) while for neighbouring parameters this point is of multiplicity 1.
The bifurcation set of the configurations is again cg = 0, with c2 + g2 6= 0. On c = 0 the

line x = 0 is a triple line, except for the value (c, g) = (0,−1) where x = 0 is a quadruple
line. This phenomenon is forced by the topological bifurcation of singularities. Indeed, on this
line two of the finite singularities, one on a line and one at the intersection of the hyperbola
with the line coalesced with [0 : 1 : 0] producing the a line of multiplicity at least two. In fact
calculation indicates that the multiplicity of x = 0 is actually 3 for g 6= 0. Everywhere else in
the parameter space of (D) we either have just one simple invariant line (this occurs on g = 0)
or two simple invariant lines. This proves that g = 0 is a bifurcation line of configurations.
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Thus for both families of systems (C) and (D) the bifurcation of configurations is produced
by coalescence of singularities either finite or infinite or coalescence of a finite with an infinite
singularities.

The following problem was stated in the article [48].

Problem: Generalize the Theorem 4.2 so as to cover more cases than the ones imposed by the hypotheses
of this theorem.

The study of the families (C) and (D) give more motivation for solving this problem. For
example the systems in the family (D) with c = 0 6= (g± 1)(2g− 1)(3g− 1) have the invariant
line J1 = x and the invariant hyperbola J2 = 1/(2g− 1) + xy but these curves do not satisfy
the (C-K) conditions because the line intersects the hyperbola at infinity but we still have the
inverse integrating factor J1 J2. We also have other examples.

Remark 8.1. Finally we observe that if we take in the family of systems with equations (D)
c = 0 and g = −1 we obtain exactly the system denoted by (G) in the list of normal forms.
The normal form (F) is also for just one system. This system coincides with the system in the
family (D) when g = c = −1. If we take c = 0 and g = 1 in the systems defined by equations
(D) we obtain exactly (I). Hence in this paper we covered five of the normal forms listed in
Proposition 3.3: (C), (D), (F) and (G), (I).
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