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Abstract. In this paper, we study the classical problem of the wind in the steady at-
mospheric Ekman layer with the constant eddy viscosity. Different from the previous
work, we modify the boundary conditions and derive the explicit solution by using the
notation of matrix cosine and matrix sine. For the arbitrary height-dependent eddy vis-
cosity, we get the solution of the classical problem with zero velocity and acceleration
at the bottom of the layer. In addition, uniqueness is shown and dynamical properties
of solution are characterized.
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1 Introduction

The Earth’s atmosphere can be divided into several layers based on the behaviour of its tem-
perature [11], these layers are, starting from ground level upwards, the troposphere, the strato-
sphere, the mesosphere and the thermosphere, A further region, beginning about 500 km
above the ground level, is the exosphere, which fades away into the realm of interplanetary
space. The troposphere contains more than 75% of all of the air in the atmosphere, and almost
all of the water vapour (which forms clouds and rain). This is the region where the famil-
iar weather phenomena occur. The lowest part-roughly the lower third-of the troposphere is
called the atmospheric boundary layer, and it is here that friction plays an important role,
while higher up, from the stratosphere upwards, the air flow is practically inviscid.

For a better understanding of the flow dynamics, it is useful to divide the atmospheric
boundary layer into there parts [8, 11], i.e., the lamina sublayer, surface (Prandtl) layer and
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the Ekman layer(see Fig. 2.1), the lamina sublayer is only a few millimeters thick and is not
relevant to the transfer of wind energy. Within the surface layer, confined to 20–100 meters
of the atmosphere (above the lamina sublayer), the velocity profile is adjusted so that the
horizontal frictional stress is nearly independent of height. In contrast to this, in the Ekman
layer, located on top of the surface layer and extending to a height of about 1 km, on average,
the flow is governed by a three-way balance among frictional effects, pressure gradient and
the influence of the coriolis force [5, 8, 21]. Primarily the air flow is horizontal (the horizontal
velocities are about 104 larger than the vertical velocity [20]).

The governing equations for mesoscale steady air flow at mid-latitudes in the Ekman layer
are [8] {

f (v− vg) = − ∂
∂z (k

∂u
∂z ),

f (u− ug) =
∂
∂z (k

∂v
∂z ),

(1.1)

where (u, v) represents the horizontal wind velocity, with zonal (West-to-East, in the sense
of the Earth’s rotation) component u = u(t, x, y, z) and meridional (positive meaning towards
the North Pole) component v = v(t, x, y, z), ug and vg are the corresponding geostrophic
wind component, k denotes the eddy viscosity, f = 2Ω sin θ is the Coriolis parameter at the
fixed latitude θ in the Northern Hemisphere and Ω ≈ 7.29× 10−5s−1 is the angular speed of
rotation of the Earth and θ ∈ (0, π/2] is the angle of latitude in right-handed rotating spherical
coordinates (θ = 0 corresponding to the Equator and θ = π/2 to the North Pole).

The boundary conditions for the system (1.1) are

u = v = 0 at z = 0, (1.2)

and

u→ ug, v→ vg for z→ ∞, (1.3)

expressing the fact that, due to the frictional properties of the flow below the Ekman layer, a
no-slip condition holds at the bottom z = 0 of the layer, while at the top of the Ekman layer the
horizontal components of the wind must be in geostrophic balance: above the Ekman layer
the flow is geostrophic (pressure-driven).

If k is a constant, then we can obtain the explicit formula of the solution to (1.1) with (1.2)
and (1.3) by the classic Ekman theory, but this assumption is too restrictive. The dynamics
of the atmospheric boundary-layer is very important in applications, for example, other than
meteorology (weather prediction and climate studies), in the control and management of air
pollution (since the dispersal of smog in urban environments depends strongly on meteoro-
logical conditions) and in agriculture (e.g. dewfall and frost formation). For this reason, it is
important, both from the theoretical as well as from the practical point of view, to understand
the flow dynamics of the atmospheric boundary-layer in the context of height-dependent
eddy viscosities. The available explicit solutions for height-dependent eddy viscosities are
very scare, being apparently restricted to special cases, for example, k(z) denote linear and
exponentially decaying functions [10, 12] or k(z) is a quadratic polynomial [15]. It is remark-
able that Constantin and Johnson [2] studied the Atmospheric Ekman flows with variable
eddy viscosity k(z) which is a perturbation of the asymptotic and verify the existence of the
solution by transforming the Ekman flows into a suitable integral equation and apply iterative
technique to give an efficient approach to find the explicit solution, so that for other types of
non-constant eddy viscosity we have to rely on case-by-case approximations and numerical
simulations [4, 6, 9, 13, 14, 16].
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Remark 1.1. When z = π
√

2k
f , the wind (u, v) is parallel to and nearly equally to the

geostrophic value (ug, vg), it is conventional to designate this level as the top of the Ekman
layer [8], so we can change the condition (1.3) to

u = ug, v = vg, at z = z0, (1.4)

where z0 > π
√

2k
f .

For a constant eddy viscosity k, we can obtain the explicit formula of the solution to (1.1)
with (1.2) and (1.3). Based on Remark 1.1, we consider (1.1) with (1.2) and (1.4). The first
contribution of this paper is to apply the technique of second linear ODEs (using the notion of
sin and cos matrix) to find the explicit solution of (1.1) with (1.2) and (1.4) and give a directly
approach to compute the explicit solution.

If we assume the velocity and acceleration at the bottom of the layer are zero, then (1.2) is
retained and (1.3) is changed into

u′ = 0, v′ = 0 at z = 0, (1.5)

so the second aim of this paper is to investigate the explicit solution of (1.1) with (1.2) and
(1.5) for an arbitrary height-dependent eddy viscosity k(z). We use the closed form of function
series to give the representation of solutions. By using integral change and introducing Green
function, a spectrum theorem of a corresponding anti-symmetric compact operator is used to
deriving the uniqueness result. Finally, some dynamical properties of solution like asymptotic
property, Lyapunov exponents, and stable manifold are characterized.

2 Model description

Motivated by [8], we give the details to derive (1.1) by dividing into four steps.

Step 1. We set up the momentum equation in rotating coordinates.
We derive the relationship between the total derivative of a vector in an inertial reference

frame and the corresponding total derivative in a rotating system. Let
−→
A be an arbitrary

vector whose Cartesian components in an inertial frame given by

−→
A =

−→
i′ A′x +

−→
j′ A′y +

−→
k′ A′z

and whose components in a frame rotating with the angular velocity
−→
Ω are

−→
A =

−→
i Ax +

−→
j Ay +

−→
k Az,

here
−→
i ,
−→
j ,
−→
k are unit vectors which are taken to be directed eastward, northward, and

upward, respectively,
−→
Ω = (0, Ω sin φ, Ω cos φ), φ is the latitude.

Letting Dα
−→
A

Dt be the total derivative of
−→
A in the inertial frame, we can write

Dα
−→
A

Dt
=
−→
i′

DA′x
Dt

+
−→
j′

DA′y
Dt

+
−→
k′

DA′z
Dt

=
−→
i

Du
Dt

+
−→
j

Dv
Dt

+
−→
k

Dw
Dt

+
Dα
−→
i

Dt
u +

Dα
−→
j

Dt
v +

Dα
−→
k

Dt
w,
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Figure 2.1: Ekman layer, surface layer and lamina sublayer are called the atmo-
sphere boundary layer.

the first three terms on the left line above can be combined to give

D
−→
A

Dt
=
−→
i

DAx

Dt
+
−→
j

DAy

Dt
+
−→
k

DAz

Dt
,

which is just the total derivative of
−→
A as viewed in the rotating coordinates. By direct calcu-

lation [8], we get

Dα
−→
i

Dt
=
−→
Ω ×−→i ,

Dα
−→
j

Dt
=
−→
Ω ×−→j ,

Dα
−→
k

Dt
=
−→
Ω ×

−→
k ,

there, the total derivative for
−→
A in an inertial frame is related to that in a rotating frame by

Dα
−→
A

Dt
=

D
−→
A

Dt
+
−→
Ω ×−→A . (2.1)

For a given air parcel the location (x, y, z) is a given function of t so that x = x(t), y =

y(t), z = z(t), let Dx
Dt = u, Dy

Dt = v, Dz
Dt = w , then u, v, w are the velocity components in the

x, y, z directions, respectively, let
−→
U is the velocity vector , then

−→
U =

−→
i u +

−→
j v +

−→
k w.

In an inertial reference frame, Newton’s second law of motion may be written as

∑
−→
F =

Dα
−→
Uα

Dt
,

here Dα
−→
U α

Dt is the rate of change of the absolute velocity Uα. On the rotating Earth, if −→r is a
position vector for an air parcel, from the (2.1), we get

Dα
−→r

Dt
=

D−→r
Dt

+
−→
Ω ×−→r ,
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but Dα
−→r

Dt =
−→
Uα, D−→r

Dt =
−→
U , so we obtain

−→
Uα =

−→
U +

−→
Ω ×−→r . (2.2)

We apply (2.1) to
−→
Uα and obtain

Dα
−→
Uα

Dt
=

D
−→
Uα

Dt
+
−→
Ω ×−→Uα.

Using (2.2), we get

Dα
−→
U α

Dt
=

D
−→
Uα

Dt
+
−→
Ω ×−→Uα

=
D
Dt

(
−→
U +

−→
Ω ×−→r ) +

−→
Ω × (

−→
U +

−→
Ω ×−→r )

=
D
−→
U

Dt
+ 2
−→
Ω ×−→U −Ω2−→R ,

here
−→
R is a vector with direction perpendicular to the axis of rotation, and the magnitude

equal to the distance to the axis of rotation.
If we assume that the only real forces acting on the atmosphere are the pressure gradient

force
−→
Fp , gravitation force

−→
Fg and friction force

−→
Fr , then we have

D
−→
U

Dt
=
−→
Fg +

−→
Fp +

−→
Fr ,

so we get

D
−→
U

Dt
= −2

−→
Ω ×−→U + Ω2−→R +

−→
Fg +

−→
Fp +

−→
Fr . (2.3)

Step 2. We set up the component equations in spherical coordinates.
Let (λ, φ, z) be the spherical coordinates, λ is longitude, φ is latitude, and z is the vertical

distance above the surface of the Earth, using the formula for the transformation of local
rectangular coordinate system and spherical coordinate system, we can get the following
relationships,

dx = a cos φdλ, dy = adφ, dz = dr,

where a is the radius of the Earth, r is the distance to the center of the Earth, which is related
to z by r = a + z.

The direction of the
−→
i ,
−→
j ,
−→
k unit vectors are not constant, they are the functions of

position on the spherical Earth, thus we write

D
−→
U

Dt
=
−→
i

Du
Dt

+
−→
j

Dv
Dt

+
−→
k

Dw
Dt

+ u
D
−→
i

Dt
+ v

D
−→
j

Dt
+ w

D
−→
k

Dt
, (2.4)

from [8], we get

D
−→
i

Dt
=

u
a cos φ

(−→
j sin φ−

−→
k cos φ

)
,

D
−→
j

Dt
= −u tan φ

a
−→
i − v

a
−→
k , (2.5)
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and

D
−→
k

Dt
=

u
a
−→
i +

v
a
−→
j , (2.6)

substituting (2.5) and (2.6) into (2.4) and rearranging the terms, we obtain

D
−→
U

Dt
=

(
Du
Dt
− uv tan φ

a
+

uw
a

)−→
i +

(
Dv
Dt

+
u2 tan φ

a
+

vw
a

)−→
j

+

(
Dw
Dt
− u2 + v2

a

)−→
k . (2.7)

We know that

Ω2−→R +
−→
Fg = −→g , (2.8)

and

−2
−→
Ω ×−→U = −2Ω


−→
i

−→
j

−→
k

0 cos φ sin φ

u v w


= −(2Ωw cos φ− 2Ωv sin φ)

−→
i − 2Ωu sin φ

−→
j + 2Ωu cos φ

−→
k .

(2.9)

We consider an infinitesimal volume element of air, δV = δxδyδz, center at the point (x0, y0, z0)

(see Fig. 2.2), so we can easily get the total pressure gradient force per unit mass is

−→
Fp =

1
ρ
∇−→p =

−→
i

1
ρ

∂p
∂x

+
−→
j

1
ρ

∂P
∂y

+
−→
k

1
ρ

∂P
∂z

, (2.10)

we know that

−→g = −
−→
k g, (2.11)

and

−→
Fr =

−→
i Frx +

−→
j Fry +

−→
k Frz, (2.12)

where 
Frx = υ[ ∂2u

∂x2 +
∂2u
∂y2 +

∂2u
∂z2 ],

Fry = υ[ ∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 ],

Frz = υ[ ∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2 ],

υ = µ
ρ is the kinematic viscosity coefficient [8].

From (2.3) and using (2.7), (2.8), (2.9), (2.10), (2.11), (2.12), we get the following equations
Du
Dt = − 1

ρ
1

cos φ
∂P
∂λ + 2Ωv sin φ− 2Ωw cos φ + uv tan φ

a − uw
a + Frx,

Dv
Dt = − 1

ρ
1
a

∂P
∂φ − 2Ωu sin φ− u2 tan φ

a − vw
a + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g− 2Ωu cos φ + u2+v2

a − uw
a + Frz.

(2.13)
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Figure 2.2: The x component of the pressure gradient forcer.

Step 3. We simplify (2.13) in local rectangular coordinates system.
The table 2.1 in [8] shows the terms proportional to 1

a on the above equations are unim-
portant for midlatitude synoptic scale motions, so we omit this terms and get

Du
Dt = − 1

ρ
∂P
∂x + 2Ωv sin φ− 2Ωw cos φ + Frx,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ωu sin φ + Fry,

Dw
Dt = − 1

ρ
∂P
∂z − g− 2Ωu cos φ + Frz.

As u = u(t, x, y, z), and Dx
Dt = u, Dy

Dt = v, Dz
Dt = w, we get

Du
Dt

=
∂u
∂t

+
∂u
∂x

∂x
∂t

+
∂u
∂y

∂y
∂t

+
∂u
∂z

∂z
∂t

=
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

,

Dv
Dt and Dw

Dt are similar.
For a wide range of air movements, w� u, v [21], so we assume w = 0, for the atmosphere

below 100km, kinematic viscosity coefficient is negligible except in a thin layer within a few
centimeters of the Earth’s surface where the vertical shear is very large [8], so Frx = 0, Fry = 0
in Ekman layer, as shown in chapter 3 in [8], the magnitude of w can be deduced from
knowledge of the horizontal velocity u, v, so we omit the last equation of the system and get{

Du
Dt = − 1

ρ
∂P
∂x + 2Ωv sin φ = − 1

ρ
∂p
∂x + f v,

Dv
Dt = − 1

ρ
∂P
∂y − 2Ωu sin φ = − 1

ρ
∂p
∂y − f u.

Step 4. We set up the mean equations.
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In a turbulent fluid, a field variable such as velocity measured at a point generally fluctu-
ates rapidly in time as eddies of various scales pass the point, so we assume that the field vari-
ables can be separated into slowing varying turbulent components, for example, u = u + u′,
the corresponding means are indicated by overbars and the fluctuating component by primes.
With the aid of the continuity equation

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0,

and the chain rule of the differentiation, we get

Du
Dt

=
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+ u(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)

=
∂u
∂t

+
∂u2

∂x
+

∂uv
∂y

+
∂uw
∂z

. (2.14)

Separating each dependant variable into mean and fluctuating parts, substituting into
(2.14), and averaging then yields

Du
Dt

=
∂u
∂t

+
∂

∂x
(u u + u′u′) +

∂

∂y
(u v + u′v′) +

∂

∂z
(u w + u′w′).

Noting that the mean velocity fields satisfy the continuity equation, we get

Du
Dt

=
D u
Dt

+
∂

∂x
(u′u′) +

∂

∂y
(u′v′) +

∂

∂z
(u′w′),

where
D
Dt

=
∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z

is the rate of change following the mean motion, the mean equations thus have the following
form, {

Du
Dt = − 1

ρ
∂P
∂x + f v− [ ∂u′u′

∂x + ∂u′v′
∂y + ∂u′w′

∂z ],
Dv
Dt = − 1

ρ
∂P
∂y − f u− [ ∂u′v′

∂x + ∂v′v′
∂y + ∂v′w′

∂z ].

Away from region with horizontal inhomogeneities (e.g., shorelines terms, forest edges),
we can assume turbulent fluxes are horizontally homogeneous because they are too small in
comparison to the term involving vertical differentiation [8], so we assume ∂u′u′

∂x = ∂u′v′
∂y =

∂u′v′
∂x = ∂v′v′

∂y = 0.
Outside the boundary layer, the resulting approximation was geostrophic balance, i.e.,{

1
ρ

∂P
∂x = f vg,

1
ρ

∂P
∂y = − f ug.

For midlatitude synoptic-scale motions, the inertial acceleration terms (the terms on the left of
above equations) can be neglected compared to the Cariolis force and pressure gradient force
terms [8], so we get {

f (v− vg)− ∂u′w′
∂z = 0,

− f (u− ug)− ∂v′w′
∂z = 0.
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By the Flux-Gradient theory, we get {
u′w′ = −k( ∂u

∂z ),

v′w′ = −k( ∂v
∂z ),

where k(m2s−1) is the eddy viscosity coefficient, then we have{
f (v− vg) = − ∂

∂z (k
∂u
∂z ),

f (u− ug) =
∂
∂z (k

∂v
∂z ).

Finally, we omit the overbars for simplicity to obtain (1.1).

3 Main results

3.1 Existence of explicit solution

Note that if k reduces to a constant, then (1.1) reduces to{
d2v
dz2 = f

k (u− ug),
d2u
dz2 = − f

k (v− vg).
(3.1)

Based on Remark 1.1, we change the condition (1.3) to (1.4) in the following theorems, and
we try to find explicit solution of (3.1) with (1.2) and (1.4) by using the notion of sin and cos
matrices.

Definition 3.1 ((see [7]). It is well known that

sin Ωz = Ω
z
1!
−Ω3 z3

3!
+ · · ·+ (−1)kΩ2k+1 z2k+1

(2k + 1)!
+ · · ·,

cos Ωz = I −Ω2 z2

2!
+ · · ·+ (−1)kΩ2k z2k

(2k)!
+ · · ·.

Theorem 3.2. The solution of (3.1) with (1.2) and (1.4) can be expressed by the following formula[
v
u

]
= cos Ωz

[
−vg

−ug

]
+ sin Ωz

[
C21

C22

]
+

[
vg

ug

]
, (3.2)

where

Ω =

√ f
2k −

√
f

2k√
f

2k

√
f

2k

 ,

and [
C21

C22

]
= (sin Ωz0)

−1 cos Ωz0

[
vg

ug

]
.
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Remark 3.3. Note that (sin Ωz0)−1 does exist because z0 is a positive number, so using Wolfram
Mathematica, (sin Ωz0)−1 cos Ωz0 can be solved by the following computations:

sin Ωz0 =

sin
√

f
2k z0 cosh

√
f

2k z0 − cos
√

f
2k z0 sinh

√
f

2k z0

cos
√

f
2k z0 sinh

√
f

2k z0 sin
√

f
2k z0 cosh

√
f

2k z0

 ,

det sin Ωz0 =
1
2

(
cosh

(
2

√
f

2k
z0

)
− cos

(
2

√
f

2k
z0

))
> 0,

(sin Ωz0)
−1 =


2 sin

√
f

2k z0 cosh
√

f
2k z0

cosh(2
√

f
2k z0)−cos(2

√
f

2k z0)

2 cos(
√

f
2k z0) sinh

√
f

2k z0

cosh(2
√

f
2k z0)−cos(2

√
f

2k z0)

2 cos
√

f
2k z0 sinh

√
f

2k z0

cos(2
√

f
2k z0)−cosh(2

√
f

2k z0)

2 sin
√

f
2k z0 cosh

√
f

2k z0

cosh(2
√

f
2k z0)−cos(2

√
f

2k z0)

 ,

and

cos Ωz0 =

 cos
√

f
2k z0 cosh

√
f

2k z0 sin
√

f
2k z0 sinh

√
f

2k z0

− sin
√

f
2k z0 sinh

√
f

2k z0 cos
√

f
2k z0 cosh

√
f

2k z0

 ,

det cos Ωz0 =
1
2

(
cosh

(
2

√
f

2k
z0

)
+ cos

(
2

√
f

2k
z0

))
> 0,

(sin Ωz0)
−1 cos Ωz0 =


− sin(2

√
f

2k z0)

cos(2
√

f
2k z0)−cosh(2

√
f

2k z0)
− sinh(2

√
f

2k z0)

cos(2
√

f
2k z0)−cosh(2

√
f

2k z0)

sinh(2
√

f
2k z0)

cos(2k)−cosh(2
√

f
2k z0)

− sin(2
√

f
2k z0)

cos(2
√

f
2k z0)−cosh(2

√
f

2k z0)

 ,

and

det
(
(sin Ωz0)

−1 cos Ωz0

)
=

cos
(

2
√

f
2k z0

)
+ cosh

(
2
√

f
2k z0

)
cosh

(
2
√

f
2k z0

)
− cos

(
2
√

f
2k z0

) > 0.

Proof. Let U = u− ug, V = v− vg and k = f
k . Then (3.1) becomes{

d2V
dz2 = kU,
d2U
dz2 = −kV,

(3.3)

and the conditions (1.2), (1.4) are transformed into the equivalent forms

U = −ug, V = −vg at z = 0, (3.4)

U = 0, V = 0 at z = z0. (3.5)

From the (3.3), we get [
V
U

]′′
+

[
0 − k
k 0

] [
V
U

]
= 0.

By using the matrix Ω, we obtain [
V
U

]′′
+ Ω2

[
V
U

]
= 0. (3.6)
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So we get the solution of the (3.6) as following form,[
V
U

]
= cos Ωz

[
C11

C12

]
+ sin Ωz

[
C21

C22

]
.

We determine the constants such that the initial conditions (3.4) and (3.5) are satisfied. Con-
sidering the condition (3.4), we get

C11 = −vg, C12 = −ug.

Considering the condition (3.5), we obtain[
0
0

]
= cos Ωz0

[
−vg

−ug

]
+ sin Ωz0

[
C21

C22

]
.

Because the matrix sin Ωz0 is nonsingular, so we get[
C21

C22

]
= (sin Ωz0)

−1 cos Ωz0

[
vg

ug

]
.

As U = u− ug, V = v− vg, so we obtain (3.2).

We recall the following result.

Lemma 3.4 (see [1, 18]). For the matrix equation

Φ′(t, t0) = A(t)Φ(t, t0), t ∈ [t0, tα]

with the initial boundary condition Φ(t0, t0) = I, where the matrix Φ(t, t0) and A(t) are n × n
matrices, tα > t0 ≥ 0, the solution Φ(t, t0) is given by

Φ(t, t0) = I +
∫ t

t0

A(τ)dτ +
∫ t

t0

A(τ1)

[∫ τ1

t0

A(τ2)dτ2

]
dτ1

+
∫ t

t0

A(τ1)
∫ τ1

t0

A(τ2)
∫ τ2

t0

A(τ3)dτ3dτ2dτ1 + · · ·

For (1.1), we assume the k = k(z) 6= 0, then we will get
d2v
dz2 +

k′(z)
k(z)

dv
dz = f

k(z) (u− ug),

d2u
dz2 +

k′(z)
k(z)

du
dz = − f

k(z) (v− vg).

Let u− ug = U, v− vg = V, then we will get{
d2V
dz2 + α(z) dV

dz = β(z)U,
d2U
dz2 + α(z) dU

dz = −β(z)V,

where α(z) = k′(z)
k(z) , β(z) = f

k(z) , and the conditions (1.2) and (1.5) will become

U(0) = −ug, V(0) = −vg, (3.7)

and
U′(0) = 0, V ′(0) = 0. (3.8)
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Let V ′(z) = w1, U′(z) = w2, then we obtain

X′(z) = A(z)X(z), X(0) = X0, (3.9)

where

X =


V
U

W1

W2

 , X0 =


−vg

−ug

0
0

 ,

and

A(z) =


0 0 1 0
0 0 0 1
0 β(z) −α(z) 0

−β(z) 0 0 −α(z)

 .

We get the solution of (3.9) by using Lemma 3.4, that is

X(z) = Φ(z, z0)X0,

where

Φ(z, z0) = I +
∫ z

0
A(τ)dτ +

∫ z

0
A(τ1)

[∫ τ1

0
A(τ2)dτ2

]
dτ1 + · · ·,

as u− ug = U, v− vg = V, so we get the solution of (1.1) with the conditions (1.2) and (1.5).
If k(z) is constant, then we will solve (3.9) with the conditions (1.2) and (1.5).

Remark 3.5. If k(z) is a constant k, then α(z) = 0, β(z) = f
k , and (1.1) will become the following

form,
X′(z) = AX(z), (3.10)

the corresponding initial conditions are

X(0) = X0,

where

A =


0 0 1 0
0 0 0 1
0 β 0 0
−β 0 0 0

 . (3.11)

The characteristic equation of (3.11) is

λ4 + β2 = 0,

so we get the four eigenvalues:

λ1 =

√
f

2k
+

√
f

2k
i, λ2 = −

√
f

2k
−
√

f
2k

i, λ3 =

√
f

2k
−
√

f
2k

i, λ4 = −
√

f
2k

+

√
f

2k
i.
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Let λ = λ1, then we have

(A− λ1 I) =


−λ1 0 1 0

0 −λ1 0 1
0 β −λ1 0
−β 0 0 −λ1

 ,

so the corresponding eigenvector is

ξ1 =


1
i√

f
2k +

√
f

2k i

−
√

f
2k +

√
f

2k i

 ,

thus we obtain

eλ1zξ1 = e
√

f
2k z



cos
√

f
2k z + i sin

√
f

2k z

− sin
√

f
2k z + i cos

√
f

2k z√
f

2k

(
cos

√
f

2k z− sin
√

f
2k z
)
+
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)

i

−
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)
+
√

f
2k

(
cos

√
f

2k z− sin
√

f
2k z
)

i


.

The two linear independent solutions are obtained:

X1(z) = e
√

f
2k z



cos
√

f
2k z

− sin
√

f
2k z√

f
2k

(
cos

√
f

2k z− sin
√

f
2k z
)

−
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)


,

and

X2(z) = e
√

f
2k z



sin
√

f
2k z

cos
√

f
2k z√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)

√
f

2k

(
cos

√
f

2k z− sin
√

f
2k z
)


.

Similarly, let λ3 = −
√

f
2k +

√
f

2k i, we will get the eigenvector

ξ2 =


1
−i

−
√

f
2k +

√
f

2k i√
f

2k +
√

f
2k i

 ,
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therefore we have

eλ2zξ2 = e−
√

f
2k z



cos
√

f
2k z + i sin

√
f

2k z

sin
√

f
2k z− i cos

√
f

2k z

−
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)
+
√

f
2k

(
cos

√
f

2k z− sin
√

f
2k z
)

i√
f

2k

(
cos

√
f

2k z− sin
√

f
2k z
)
+
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)

i


.

The two linear independent solutions can be stated as follows,

X3(z) = e−
√

f
2k z



cos
√

f
2k z

sin
√

f
2k z

−
√

f
2k

(
cos

√
f

2k z + sin
√

f
2k z
)

√
f

2k

(
cos

√
f

2k z− sin
√

f
2k z
)


,

and

X4(z) = e−
√

f
2k z



sin
√

f
2k z

− cos
√

f
2k z√

f
2k

(
cos

√
f

2k z− sin
√

f
2k z
)

√
f

2k

(
cos

√
f

2k z + sin
√

f
2k z
)


.

So the general solution of (3.9) is

X(z) = c1X1(z) + c2X2(z) + c3X3(z) + c4X4(z),

then

V = c1e
√

f
2k z cos

√
f

2k
z + c2e

√
f

2k z sin

√
f

2k
z + c3e−

√
f

2k z cos

√
f

2k
z + c4e−

√
f

2k z sin

√
f

2k
z, (3.12)

and

U = − c1e
√

f
2k z sin

√
f

2k
z + c2e

√
f

2k z cos

√
f

2k
z

+ c3e−
√

f
2k z sin

√
f

2k
z− c4e−

√
f

2k z cos

√
f

2k
z. (3.13)

By using the conditions (3.7), (3.8), we get c1 = c3 = − 1
2 vg, c2 = − 1

2 ug, c4 = 1
2 ug, so the

solution of (3.10) with the conditions (3.7), (3.8) is obtained.

Remark 3.6. From the above example, we know that the general solution of (3.10) is (3.12),
(3.13), so if we use the traditional boundary conditions (1.2), (1.3), then we will get

c1 = c2 = 0, c3 = −vg, c4 = ug,



Atmospheric Ekman flows with boundary conditions 15

then we have 
V = e−

√
f

2k z
(

ug sin
√

f
2k z
)
− vg cos

√
f

2k z,

U = e−
√

f
2k z
(
−vg sin

√
f

2k z
)
− ug cos

√
f

2k z,

so the solution is 
v = vg + e−

√
f

2k z
(

ug sin
√

f
2k z
)
− vg cos

√
f

2k z,

u = ug + e−
√

f
2k z
(
−vg sin

√
f

2k z
)
− ug cos

√
f

2k z,

this coincides with the result in [8].

3.2 Uniqueness

For the constant k, the explicit solution of (1.1) with (1.2) and (1.4) is obtained by Theorem 3.2,
in the following theorem, we try to find the uniqueness for k(z).

Theorem 3.7. Assume f 6= 0, then there is a unique solution of (1.1) with conditions (1.2) and (1.4).

Proof. Let û and v̂ be the solutions of (1.1) for f = 0 with (1.2) and (1.4). Then

û(z) =
l(z)
l(z0)

ug, v̂(z) =
l(z)
l(z0)

vg

for l(z) =
∫ z

0
ds

k(s) . Thus using in (1.1) the exchange

u↔ u + û, v↔ v + v̂,

we get 
f (v + v̂− vg) = − ∂

∂z (k(z)
∂u
∂z ),

f (u + û− ug) =
∂
∂z (k(z)

∂v
∂z ),

u = v = 0 at z = 0, z0.

(3.14)

Introducing the corresponding Green function

G(z, s) =

l(s)
(

l(z)
l(z0)
− 1
)

for 0 ≤ s ≤ z ≤ z0,

l(z)
(

l(s)
l(z0)
− 1
)

for 0 ≤ z ≤ s ≤ z0,

(3.14) is rewritten as {
f̂ u(z) = −

∫ z0
0 G(z, s)(v(s) + v̂(s)− vg)ds,

f̂ v(z) =
∫ z0

0 G(z, s)(u(s) + û(s)− ug)ds
(3.15)

for f̂ = f−1. Now we consider a Hilbert space H = L2(0, z0)2 with an inner product

((u1, v1), (u2, v2)) =
∫ z0

0
(u1(z)v1(z) + u2(z)v2(z))dz.

Next introducing a linear operator A : H → H by

A(u, v)(z) =
(∫ z0

0
G(z, s)v(s)ds,−

∫ z0

0
G(z, s)u(s)ds

)
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and functions

ũ(z) = −
∫ z0

0
G(z, s)(v̂(s)− vg)ds,

ṽ(z) =
∫ z0

0
G(z, s)(û(s)− ug)ds,

(3.15) is equivalent to
f̂ (u, v) + A(u, v) = (ũ, ṽ).

Since G(z, s) = G(s, z), it is easy to see that A is anti-symmetric A∗ = −A. It is also well-
known that A is compact [1, 19]. Thus a spectrum of A consists from isolated pure imaginary
eigenvectors with a limit at the zero and the corresponding eigenvalues form an orthogonal
bases of H. Consequently, for any 0 6= f ∈ R, there is a unique solution of (3.14), and thus
also for (1.1). Some approximations methods can be used for general k(z) in order to construct
these solutions. If k(z) is constant then a method presented above is applied.

3.3 Dynamical properties

Conditions (1.2) and (1.5) are Cauchy initial value conditions for (1.1), so they determine a
unique solution on R+ = [0, ∞). We will try to study the uniqueness of (1.1) with conditions
(1.2) and (1.3).

Theorem 3.8. For any constant k̄ > 0 there is an ε̄ > 0 such that for any continuous function
k : R+ → R+ satifying

sup
z∈R+

|k̄− k(z)| < ε̄,

there is a unique solution of (1.1) with conditions (1.2) and (1.3).

Proof. To study conditions (1.2) and (1.3), we introduce

x = k
∂u
∂z

,

y = k
∂v
∂z

,

and (1.1) is replaced by 

∂u
∂z = k̂x,
∂v
∂z = k̂y,
∂x
∂z = − f (v− vg),
∂y
∂z = f (u− ug)

(3.16)

for k̂ = 1
k . The affine system (3.16) has a unique equilibrium

(ug, vg, 0, 0)

with the linearization 

∂u
∂z = k̂x,
∂v
∂z = k̂y,
∂x
∂z = − f v,
∂y
∂z = f u.

(3.17)
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If supz∈R+
k̂(z) < ∞, then the asymptotic property of (3.17) is determined by its Lyapunov

exponents. When k is a constant function, then the matrix
0 0 k̂ 0
0 0 0 k̂
0 − f 0 0
f 0 0 0


has eigenvalues

λ1 = −

√
f k̂
2
(1 + i), λ2 = −

√
f k̂
2
(1− i), λ3 =

√
f k̂
2
(1− i), λ4 =

√
f k̂
2
(1 + i)

with the corresponding eigenvectors(
− (1 + i)

√
k̂√

2
√

f
,− (1− i)

√
k̂√

2
√

f
, i, 1

)
,

(
− (1− i)

√
k̂√

2
√

f
,− (1 + i)

√
k̂√

2
√

f
,−i, 1

)
,(

(1− i)
√

k̂√
2
√

f
,
(1 + i)

√
k̂√

2
√

f
,−i, 1

)
,

(
(1 + i)

√
k̂√

2
√

f
,
(1− i)

√
k̂√

2
√

f
, i, 1

)
.

So the linear system (3.17) has a stable space

S =


(
−

√
k̂√

2
√

f
,−

√
k̂√

2
√

f
, 0, 1

)
(
−

√
k̂√

2
√

f
,
√

k̂√
2
√

f
, 1, 0

)


and (3.16) has a stable manifold

Ws = (ug, vg, 0, 0) + S.

Thus condition (1.2) holds if [17, 18]

(0, 0) ∈ (ug, vg) +


(
−

√
k̂√

2
√

f
,−

√
k̂√

2
√

f

)
(
−

√
k̂√

2
√

f
,
√

k̂√
2
√

f

)
 ,

which is uniquely satisfied

(0, 0) = (ug, vg) + c1

(
−
√

k̂√
2
√

f
,−

√
k̂√

2
√

f

)
+ c2

(
−
√

k̂√
2
√

f
,

√
k̂√

2
√

f

)

c1 =

√
k̂(ug + vg)√

2
√

f
, c2 =

√
k̂(ug − vg)√

2
√

f
.

Consequently, there is a unique solution of (1.1) with conditions (1.2) and (1.3). This is already
shown above in Remark 3.6. By using a roughness result [3, Proposition 1, p. 34], we see that
for any constant k̄ > 0 there is an ε̄ > 0 such that for any continuous function k : R+ → R+

such that
sup
z∈R+

|k̄− k(z)| < ε̄,

there is a unique solution of (1.1) with conditions (1.2) and (1.3). ε̄ can be estimated in the
term of k̄ and f , but we do not go into details. Since k(z) is just continuous, here we have a
solution u(z), v(z) of (1.1) such that u(z), v(z), ∂u(z)

∂z , ∂v(z)
∂z , ∂

∂z (k(z)
∂u(z)

∂z ) and ∂
∂z (k(z)

∂u(z)
∂z ) exist

and continuous on R+. The proof is complete.
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