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Abstract

Fluidized bed reactors are one of the unit processes most commonly used in the industry.
Plastic production, energy conversion, petroleum refining, and medicine manufacturing are
just a few examples of the fields benefiting from this type of technology. Although important
advances have been made towards the understanding and prediction of the dynamics of
fluidized beds, many important questions remain unanswered. One of the most important
open challenges is the study of the effects of electrostatic forces inside the reactor. This
electrostatic interaction is known to be the cause of some important problems such as the
accumulation of material at the reactor’s wall, the risk of explosion, the perturbation of nearby
electronic devices and even the complete loss of the fluidization state. Despite the important
research efforts in the last few decades, many problems are still unsolved. Amongst these,
we find the use of non-invasive measurements techniques to characterize the hydrodynamics
effects of electrostatic forces inside the reactor; and the macroscopic mathematical modeling
of the charging dynamics in the bed. These are the issues that this research program tries
to address. As part of the project ANR-IPAF, this Ph.D. thesis aims at improving the
understanding of the effects of electrostatic forces in a fluidized bed reactor. On the modeling
front, we use the kinetic theory of rapid granular flow to derive the most complete Eulerian
model of the particle electric charge dynamics in monodispersed gas-solid flow systems. In
this work, we show how to lift some of the most restrictive hypotheses of previous models. We
show that the transport equation for the mean particle electric charge can be obtained without
assuming the shape of the particle electric charge probability density function. In addition to
this, we also derive and close the transport equation for the second order terms: the particle
charge-velocity covariance and the particle charge variance. Our results show that a correct
modeling of the second order moments is needed in dilute or highly electrically charged
regions. Given that this complete model also adds many more partial differential equations
to be solved, we study possible simplifications. Two algebraic models, one neglecting the
effects of the charge variance and one taking it into account are proposed. The former
proved to be suitable in configurations with low electric potential energy. However, the
latter must be use with caution as it can become nonphysical in high charged situations.
Finally, a semi-algebraic model is also proposed to solve the important limitations of the
coupled algebraic model. On the experimental front, we study the use of an ECVT system to
characterize the dynamics inside the bed. We focus our attention to the image reconstruction
algorithm. We test the traditional reconstruction algorithms found in the literature. However,
our results show that they are, either too inaccurate, or too computationally expensive.
For these reasons, we explore the use of a novel reconstruction technique using machine
learning algorithms. In this thesis, we propose two different strategies to train a feed forward
artificial neural network to handle the image reconstruction step in a ECVT device. The first
strategy is based on CFD-generated data which is coupled with the sensitivity matrix model
to deduce the capacitance measurements. The second approach relies exclusively on real
experimental data and it seeks to reconstruct an image that could explain the capacitance
measurements. Our results show that artificial neural networks can be as accurate as the
best image reconstruction algorithms found in the literature. However, they can reduce the
computational cost by several order of magnitudes.
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Résumé

Les lits fluidisés représentent l’une des opérations unitaires les plus utilisées dans le génie des
procèdes. L’industrie pétrolière, énergétique et pharmaceutique sont quelques exemples des
domaines bénéficiant de cette technologie. Néanmoins, et malgré leur importance, certains
aspects des lits fluidisés restent très mal compris. Parmi les défis qui restent à relever, nous
trouvons les effets des forces électrostatiques dans la dynamique du réacteur. Il est bien connu
que cette force inter-particulaires est à l’origine des nombreux problèmes industriels comme
l’accumulation du matériel solide aux parois du réacteur, la perturbation des équipements
électronique aux alentours, et même une perte complète de l’état de fluidisation. Malgré
les nombreuses études consacrées à ce sujet, plusieurs questions restent toujours ouvertes.
Parmi elles, nous trouvons l’utilisation des techniques des mesures non-intrusives pour car-
actériser le comportement du lit sous l’influence des forces électrostatiques; et la modélisation
mathématique de la dynamique dans le réacteur d’un point de vue macroscopique. C’est
dans cette perspective que ces travaux de recherches s’inscrivent. Dans le cadre du projet
ANR-IPAF, cette thèse vise à améliorer la compréhension des effets électrostatiques dans
la dynamique des lits fluidisés avec une approche numérique et expérimentale. Du point
de vue de la modélisation, nous utilisons la théorie cinétique des milieux granulaires pour
obtenir les équations gouvernant la dynamique de la charge des particules. Dans cette étude,
nous modélisons non seulement l’équation de la charge moyenne des particules, mais aussi
l’équation de la corrélation charge-vitesse et l’équation de la variance de la charge des par-
ticules. Nous proposons également deux modèles de fermeture algébriques pour les moments
statistiques d’ordre trois. Cette modélisation représente, jusqu’à présent, la description Eu-
lerienne la plus complète d’un écoulement gaz-particules monodisperse. L’analyse de ces
équations nous permet d’établir les conditions dans lesquelles certains simplifications sont
admissibles. Nous montrons qu’une modélisation correcte de la corrélation charge-vitesse
est nécessaire dans les régions diluées pour bien pouvoir capturer le transport de charge dû
aux mouvements aléatoires des particules. De la même façon, les effets de la variance de
charge doivent être pris en compte lorsque l’énergie électrique du système est bien supérieure
à l’énergie cinétique. Nous présentons aussi des simplifications possibles des modèles de fer-
metures des équations de transport avec leur plage de validité. Du côté expérimental, nous
étudions un nouveau système de mesure non intrusive: l’ECVT. Nous nous focalisons sur l’un
des points clé: l’algorithme de reconstruction d’image. Nous évaluons différentes algorithmes
trouvées dans la littérature. Cependant, nos analyses montrent que les méthodes sont soit
très imprécises soit très coûteuses en temps de calcul. Étant donnée ces limitations, nous nous
intéressons à une nouvelle approche de reconstruction basée sur les techniques de l’intelligence
artificielle. Nous proposons deux différentes solutions pour entrâıner un réseau de neurones
artificiels. La première approche s’appuie sur un apprentissage de type supervisée avec des
données générées à partir des simulations numériques CFD. Tandis que la deuxième approche
utilise une méthode d’apprentissage par renforcement en se servant uniquement des données
expérimentales. Nous évaluons la qualité des ces approches avec des données simulées et des
données réelles. Nos résultats montrent que les deux propositions sont aussi efficaces que
les méthodes classiques de reconstruction. Mais elles peuvent réduire le temps de calcul par
plusieurs ordres de grandeurs.
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Chapter 1

Introduction

1.1 Fluidized beds

1.1.1 What is a fluidized bed?

Let us imagine we have a container in which we put some granular material. The container
also has a fluid inlet at the bottom and a fluid outlet at the top. If the solid density (ρp)
is greater than the fluid density (ρf ), the particles will settle at the bottom of the reactor,
when the fluid is at rest. If we slightly increase the inlet velocity, the fluid will pass through
the particles. These particles will not move while the upward force exerted by the fluid is
less than the apparent weight of the particles. This state is called a fix bed reactor (figure
1.1a). If we keep increasing the fluid velocity, the upward force will eventually equate the
apparent weight of the particles. At this moment, the particles will start moving around
in a suspended state and the reactor is now called a fluidized bed (figure 1.1b). The term
fluidized comes from the fact that, in this state, the dynamics of the system is very similar
to a fluid-fluid system. For example, under some conditions, we can see the formation of
clear distinguishable gas-only regions, very similar to a bubble column. Also, if we tilt the
fluidized bed we would observe that the interface between the emulsion and the gas remains
horizontal, exactly like a interface between air and water in a glass (Kunii and Levenspiel,
2003).

(a) Fix bed reactor illustration (b) Fluidized bed reactor illustration

Figure 1.1: Comparison between a fix bed reactor and a fluidized bed reactor
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This constant movement of the solid phase inside the reactor creates an excellent mixing
between the particles and the fluid. This leads to high mass and heat transfer coefficients.
Moreover, this high quality mixing helps to maintain a constant temperature inside the bed.
This greatly simplifies the control over the reactor making this technology easier to scale up.
However, this same movement of particles is the cause of many of the downsides associated
with this technology: erosion of the reactor’s wall, entrainment of fines particles that need
to be captured, and a poor control over the residence times of individual particles inside the
bed. Overall, the benefits seem to overshadow the drawbacks, and fluidized bed reactors are
used in many different industrial processes.

For example, they can be used as combustion reactors to generate heat. They are a
particular interesting option to burn material with low calorific content or high moisture
(Adanez et al., 2012; Koornneef et al., 2007). In the same process, fluidized beds can also
be used as heat exchangers to recover part of the energy liberated in the combustion reactor
(Zhang et al., 2012). Fluidized bed reactors are also a major actor in the gasification process
(Xu et al., 2006). Here, solid fuel (either biomass or fossil fuel) is mixed with high temperature
steam to generate a gas rich in hydrogen called syngas. This gas can later be burned to
generate heat, or it can act as an intermediary to produce other products. Fluidized beds
can be also extremely valuable in some green processes. For example, the high heat transfer
coefficients in fluidized beds allow concentrated solar power plants to efficiently transfer the
incoming heat flux to the solid particles. This allows to increase the working temperature to
up 1000oC (Almendros-Ibáñez et al., 2019)

Fluidization plays also an important role in the fabrication of the most consumed polymers
such as polyethylene and polypropylene. In this process, a monomer in gaseous form is fed
into a fluidized bed with a solid catalyst. This starts the polymerization reaction that forms
the plastic granulates (Abbasi et al., 2019). In a similar process, fluidized beds can be used
to break the complex oil molecules into smaller and more useful chains. This process, called
cracking, requires to put in contact the gas containing the long hydrocarbon chains with solid
particles that act as catalyst. Because the cracking reaction needs very high temperatures
(200 − 600 oC) and it uses quite fine particles (dp ≈ 60 µm), a fluidized bed reactor is a
suitable solution for this process (Jiménez-Garćıa et al., 2011).

The pharmaceutical industry is also one of the great beneficiaries of fluidized bed reactors,
especially in coating operations. Here, we use the fact that the particles are being suspended
by the fluid to put a protective layer around them (Kulah and Kaya, 2011). In addition, the
excellent mass and heat transfer properties of a fluidized bed make them a suitable option to
dry solid granulates (Chandran et al., 1990). As we can see, fludized bed reactors are present
in the most important fields of chemical engineering: plastic, pertroleum, pharmaceutical,
etc.
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1.1.2 Fluidized bed parameters

Particle types

One of the key parameters of any fluidization system is the types of particles used. Not all
particles fluidize equally. Geldart (1973) reviewed the existent literature, and also conducted
additional experiments to try to categorize the particles according to their fluidization be-
havior. He proposed that the particles can be divided into 4 different categories: A,B,C and
D. Particles of type A are typically small particles and/or low density particles (less than
1400 kg/m3). They do not produce gas bubbles at the beginning of fluidization. But the solid
circulation is still important despite this lack of bubbles. Particles with a diameter between
50 µm and 500 µm and density between 1400 kg/m3 < ρp < 4000 kg/m3 are categorized as
B-type particles. For these particles, the presence of bubbles occurs almost immediately after
fluidization starts. These bubbles are the main responsible for the solid mixing. C-type parti-
cles, also called cohesive particles, are very fine powder in which the cohesive forces (Van der
Waals or electrostatic forces) are very strong. These particles are very hard to fluidize due
to these inter-particular forces. We usually need some external mechanical system and/or
chemical treatment to start and maintain a good fluidization state. Finally, D-type particles
correspond to very large and/or heavy particles. Like B-type particles, we see the formation
of bubbles even at low fluidization velocities. However, the bubbles rise at a slower pace. In
fact the gas around the bubble rises faster than the bubble itself, unlike in B-type particles.

With these 4 definitions, and using already published data as well as in-house experiments,
Geldart proposed a chart with boundaries between the particles types solely based on the
particle diameter and density difference between the solid particles and the fluidization gas
(figure 1.2). Although the Geldart’s classification is widely known and used, it is by no means
universal. Geldart’s data only correspond to fludization at ambient conditions with air as
fluidization gas. Adjustments need to be made to account for different gas conditions (Yang,
2007) or special particles properties (Yehuda and Kalman, 2020). Nonetheless, the 4 main
categories proposed by Geldart seem to be still valid and only the transition between them
might be affected in different conditions.

Pressure drop

One of the most studied characteristic relationships in a fluidized bed is the variation of the
pressure drop across the bed as a function of the gas inlet velocity (superficial velocity). If we
start with the fluid at rest and we slightly increase the velocity, the particles will not move
because the gravity force is stronger than the upward forces. As we stated, this is a fix bed
and the pressure drop across the reactor is equivalent to the pressure drop across a porous
media. If we keep increasing the velocity, the pressure drop will also keep increasing, until
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Figure 1.2: Original Geldart’s chart proposing a powder classification according to their
fluidization properties (Geldart, 1973)

the drag and buoyancy forces are equal to the gravity force. Here, the particles will start
moving and they will be suspended by the fluid. The critical velocity at which we reach this
moment is called the minimum fluidization velocity Umf ; this state is now called a fluidized
bed. At this point, the pressure drop is roughly equal to the apparent weight of the particles
(M ′

bed) divided by cross sectional area of the reactor (Abed). If we increase the fluid velocity
even further, the bed height will increase and the global solid volume fraction inside the bed
will decrease. Overall, the pressure drop will remain constant in this region. For very high
gas velocities, the drag force become strong enough to start carrying the particles outside
the reactor. This will decrease the solid material inside the bed and therefore reduce the
pressure drop. Figure 1.3 shows an idealized version of the pressure drop plot as a function
of the velocity. The actual pressure drop curve in a fluidized bed is more complex as it might
depend on several factors like the shape of particles (Vollmari et al., 2016), the reactors
dimensions (Vanni et al., 2015) and hysteresis effects (Weber and Hrenya, 2007).

Minimum fluidization velocity

As we have seen, the fluidization state is reached when the fluid velocity is strong enough to
lift the particles in a suspended state. This critical velocity is called minimum fluidization
velocity Umf . Because Umf signals the start of the fluidization state, it is very important to
be able to accurately predict its value. For large columns, we can neglect the effect of the
friction between the fluid and the walls (Ansart et al., 2017). In this case, a simple force
balance inside the bed shows that, during fluidization, the pressure drop across the bed is
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Fix bed Fluidized bed
Pneumatic
transport

Umf

M ′

bed

Abed

Uf

∆P

Figure 1.3: Idealized pressure drop curve as a function of the superficial velocity.

equal to the apparent weight of the particles divided by the cross sectional area of the reactor:

∆P · Abed = M ′

bed · g. (1.1)

Where ∆P is the pressure drop across the bed and g is the gravitational acceleration.

Equation 1.1 can be rewritten as:

∆P

Lbed,mf

= αp,mf (ρp − ρf ) g. (1.2)

Where Lbed,mf is the height of the fluidized bed at the minimum fluidization state, and
αp,mf is the solid volume fraction inside the bed at the minimum fluidization state.

Because the minimum fluidization velocity sits at the boundary between a fix bed and a
fluidized bed, we can use the theory of porous media to estimate ∆P . For example, Ergun
and Orning (1949) proposed the following correlation between the fluid properties and the
pressure drop in a fix bed of randomly packed spherical particles:

∆P

Lbed,mf

=
150µf

d2
p

α2
p,mf

(1 − αp,mf )3 Umf +
1.75ρf

dp

αp,mf

(1 − αp,mf )3 U2
mf . (1.3)

Here, µf is the fluid viscosity and dp the particles diameter. Equating equation 1.2 with
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equation 1.3, gives an expression whose only unknown is the minimum fluidization velocity.

This approach is, however, extremely simple and it does not take into account different
important parameters such as the type and shape of particles or the influence of the fluid-wall
friction. In practice, there is a large number of experimental research done for different types
of particles under different conditions. Most of them proposed the use of correlations linking
the minimum fluidization velocity with the particles and fluid properties. These correlations
are usually written as:

Remf = f (Ar, Φ, αmf ) . (1.4)

Where Φ is the particles sphericity, and Ar is the Archimedes number, and Remf is the
Reynolds number at the minimum fluidization state:

Remf = (1 − αp,mf )
Umfρfdp

µf

, (1.5)

Ar =
ρf (ρp − ρf ) d3

pg

µ2
f

. (1.6)

For more details, Anantharaman et al. (2018) reviewed more than 150 different correla-
tions found in the literature.

Fluidization regimes

The exact dynamics inside a fluidized bed reactor is extremely complex. However, there is
an agreement that there are some common regimes present in almost all fluidization systems
(Bi and Grace, 1995). These regimes are:

1. Smooth regime: Also called homogeneous fluidization, it occurs for liquid-solid systems
or gas-solid systems with type A particles when the fluidization velocity is close to
Umf . It is characterized by the absence of any fluid bubble and the particles are
homogeneously distributed in space. Despite the absence of bubbles in the emulsion,
the particles do circulate inside the bed (Di Renzo and Di Maio, 2007).

2. Bubbling regime: Here some clear rising gas regions appear inside the bed. These
structures look very much like air bubbles in a bubble column. For type B particles,
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this regime starts almost after fluidization. But for type A particles this regime is
observed when the superficial velocity reaches a critical value Umb (minimum bubbling
velocity ≈ 2Umf ). The characteristics of the bed (transfer coefficients, or solid mixing)
are mostly controlled by the bubble’s dynamics. (Grace et al., 2020).

3. Slug regime: As we increase the gas superficial velocity in a bubbling fluidized bed, the
bubble size will also increase. At some point the bubbles will be as big as the column
diameter. This state is called slug regime. This condition is usually undesirable, as the
solid mixing is impacted negatively because all the gas phase is concentrated in these
slug regions (Baeyens and Geldart, 1974).

4. Turbulent regime: Further increase of the gas velocity after the slug regime (if it occurs)
will lead to a fluidization dynamics where the bubbles or slugs break and coalesce
continuously. Because of this, the void regions inside the bed have an irregular shape
and they will burst violently in the free surface of the bed (Bi et al., 2002; Yerushalmi
and Cankurt, 1979).

1.2 Experimental techniques in fluidized beds

Experimental techniques to characterize the hydrodynamic behavior in fluidized beds can be
divided into two categories: intrusive and non-intrusive approaches. The first type involves
the insertion of probes inside the reactor to directly measure the quantity of interest. This
approach, however, can potentially disturb the internal dynamics of the flow, especially if
many probes are inserted at the same time. Non-intrusive techniques, on the other hand, rely
on the information gathered by devices placed outside the reactor like: cameras, tomographs,
pressure sensors, radiation sensors, etc. The data obtained from these devices is then used
to try to infer the bed’s properties.

1.2.1 Probe-based measurement techniques

Probes are very common devices used to obtain local measurements inside the bed. Nowa-
days, we can find many different probing techniques: optical probes, capacitance probes,
electrostatic probes, laser Doppler probes, extraction probes, etc. They allow us to obtain
accurate data in very specific regions or locations of our reactor. Probes are also relative
simple and small devices requiring little instrumentation to function. Their presence inside
the bed can, however, impact the local dynamics of the bed making the data harder to in-
terpret and extrapolate. There is also a risk of breaking the probe inside the bed due to the
large number of particles colliding with it. Despite these shortcomings, they are still largely
used to characterize the internal dynamics of fluidized beds.
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Optical probes have one light emitting tip and one light receiving tip. The amount of light
captured in the second tip is a function of the local solid volume fraction (figure 1.4). A low
solid volume fraction zone is basically transparent, while a high solid volume fraction zone is
basically opaque. This type of probes has been extensively used to measure the local solid
volume fraction in a fluidized bed (Johnsson and Johnsson, 2001). They can also be combined
in pairs to deduce key bubbles parameters, like size and rising velocity (Mainland and Welty,
1995; Rüdisüli et al., 2012). Optical probes are, however, very sensitive to particles deposition
on the surface of the emitter or sensor (Werther and Hage, 1995).

Figure 1.4: Optical probe diagram (Mainland and Welty, 1995).

The capacitance probe is similar to the optic probe, but instead of measuring the local
opacity, it measures the local capacitance between the two tips (figure 1.5). This local ca-
pacitance is direct function the local permittivity which is function of the local solid volume
fraction. Similarly to the optical probe, the capacitance probe can be used to monitor the
local solid volume fraction of particles (Hage and Werther, 1997; Wiesendorf and Werther,
2000). This type of probe is more resilient against particle deposition in their surface. How-
ever, the capacitance measurements are sensitive to electromagnetic noise.

Electrostatic probes take advantage of the fact that there is a electric charge transfer when
a particle collides with the tip of the probe (figure 1.6). This property can also be used to
distinguish the emulsion phase from a bubble allowing us to deduce essential parameters like
the bubble rising velocity (Li et al., 2020). An important advantage of electrostatic probes is
that they can also be employed to measure the electric charge of particles without stopping
the reactor or extracting samples from the bed (He et al., 2015).
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Figure 1.5: Capacitance probe diagram (Wiesendorf and Werther, 2000).

Figure 1.6: Electrostatic probe diagram (Chen et al., 2003).

All the previous probes are suitable for measuring the local presence of particles, however
little information can be extracted about their dynamics. To solve this problem, Laser
Doppler Probes have been developed. This device sends two beams of light into a region of
the bed (figure 1.7). This light will be reflected by the particles in the region. However, the
wave length of the reflected light will be shifted due to the Doppler effect. This information
allows us to calculate the velocity of the particles (Werther et al., 1996). This technique is,
nonetheless, restricted to the dilute regions of the bed.

Figure 1.7: Laser Doppler probe diagram (Werther et al., 1996).



10 CHAPTER 1. INTRODUCTION

1.2.2 Gas pressure sensors

Gas pressure sensors are one of the most commonly used device to monitor the state of a
fluidized bed. They are cheap and relatively easy to install at the walls of the reactor. How-
ever, extracting meaningful information from the pressure signals is far from straightforward.
Pressure fluctuations can have different causes: the passage of a bubble, the local turbulence
of the gas phase, or even the formation, breakup and coalescence of bubbles far away from
the pressure sensor (Fan et al., 1981; Punčochář and Drahoš, 2005). Despite these challenges,
pressure signals have been used to obtain important information about the dynamics and
properties of the reactor such as: the minimum fluidization velocity (Punčochář et al., 1985),
the bed’s height (Zhang et al., 2008b), the current fluidization regime (Lee and Kim, 1988;
Trnka et al., 2000), bubble’s properties (Liu et al., 2010; Van Der Schaaf et al., 2002).

1.2.3 Particle tracking devices

Another approach to understand the dynamics of the solid phase is by tracking the position
of one, or multiple, particles inside the bed. These techniques are based on the insertion
of a radioactive tracer particle inside the bed. The motion information of this individual
particle can provide valuable information to understand the solid mixing patterns inside the
reactor. The main disadvantage of these techniques is that they rely on radioactive material.
Therefore, special care is needed to ensure the safety of the installation. We also need to
ensure that the shape and density of the tracer particle are similar to the bulk material.

Two main approaches have been developed so far: the Radioactive Particle Tracking
system (RPT) and the Positron Emission Particle Tracking (PEPT). The RPT system relies
on detecting the intensity of the gamma rays emitted by the radioactive tracer. Using multiple
sensors placed around the reactor, we can determine the location of the tracer (figure 1.8).
The main drawback is that RPT devices require a calibration step for every new geometry or
material, because the γ rays are attenuated by the medium. This technique has allowed us
to accurate map not only the solid mixing (Fotovat et al., 2015) in a fluidized bed, but also
very important and detailed quantities such as the kinetic stress tensors and the turbulent
kinetic energy (Ali et al., 2017; Kiared et al., 1997; Larachi et al., 1995; Rasouli et al., 2015)

The second approach is called the Positron Emission Particle Tracking (PEPT). This
time, we use a radioactive tracer undergoing a β+ decay. This type of radioactive decay
produces a positron that will be annihilated as soon as it collides with a nearby electron.
By energy and linear momentum conservation, the positron-electron annihilation produces
two γ rays traveling in opposite directions. Detecting this pair of γ rays allows to infer the
line in which the tracer particle must lie. This line is called Line of Response (LOR). If we
detect a second pair of γ rays, we know that the particle is located near the interception of
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Figure 1.8: Radioactive Particle Tracking system (Ali et al., 2017).

the two measured LORs (figure 1.9). The main advantages of the PEPT technique is that
calibration is not needed and the tracer particle can be chosen from the bulk material with
the addition of a radioactive coating. However, the PEPT sensors and equipment are bigger
and more expensive. Similarly to the RPT, this approach has been applied to fluidized beds
to deduce key dynamic parameters of the solid phase: the motion patterns, mean velocity
field, the particle velocity distribution, etc (Langford et al., 2016; Parker, 2017; Parker et al.,
1993; Van de Velden et al., 2008).

Figure 1.9: Positron Emission Particle Tracking system (Depypere et al., 2009).
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1.2.4 Visualization techniques

If the fluidized bed column is transparent, an intuitive measurement approach is to record
the dynamics of the bed with a camera and to use image analysis techniques to extract all the
information we can. A simple setup consists in taking high resolution images of the dynamics
and extracting flow patterns and bubble properties (figure 1.10). This exact same procedure
has been employed to obtain important information about the bubble size and aspect ratio
distribution, and breakup dynamics (Busciglio et al., 2008; Movahedirad et al., 2014).

Figure 1.10: Image analysis technique (Movahedirad et al., 2014).

However, more data can be obtained if we take into account the temporal dimension of a
series of images. This is the objective of the Particle Image Velocimetry (PIV) technique. In
this approach, the cross-correlation between two consecutive images allows to compute the
distance traveled by particles between the two images. Then, the velocity is calculated by
dividing by the time delay between the two images. This strategy has been used to calculate
not only the particles mean velocity, but also the particle shear stresses and turbulent kinetic
energy (Dijkhuizen et al., 2007; Kashyap et al., 2011). The main disadvantage of the visu-
alization techniques is the need for an optically transparent medium, which cannot always
be achieved. Even more, even with a transparent column, we can only gather information
about visible phenomena near the walls. The dynamics in the center of a fluidized bed is
much harder to obtain.
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1.2.5 Tomographic techniques

Tomography is a imaging technique that aims at reconstructing the internal composition
of a object by measuring the effects of passing some wave through the body of the object.
Tomographic devices rely on a series of sensors placed around the volume of interest. A wave
is then emitted and forced to pass inside the domain. The sensors record the perturbations on
the wave produced by the medium. This data is then used to deduce the internal properties
of the volume inside the tomograph. Tomography can be categorized into two classes: hard-
field tomography and soft-field tomography. In the first category, the perturbations measured
only depend on the path between the emitter and the sensors. In the soft-field tomography,
the perturbations are a function of the entire domain. This makes this approach harder to
implement and it is, in general, less accurate.

Examples of hard field tomography are the X-ray or γ-ray tomography. In both cases a
source emits a beam of either X or γ rays from one side, and sensors located on the other
side measure the attenuation suffered by the beam (figure 1.11). This data is then used
to reconstruct the volume fraction distribution along the line connecting the emitter and
the sensor. By changing the position of the source and the sensors, we can reconstruct a
3D representation of the internal composition of the volume. These techniques have been
used to obtain a more global representation of the solid volume fraction distribution inside a
fluidized bed. But also, they have allowed us to observe more complex parameters/dynamics
such as the bubble’s shape and the coalescence between bubbles (Efhaima and Al-Dahhan,
2015; MacCuaig et al., 1985; Mudde, 2010a,b).

Figure 1.11: X-ray tomography system (Mudde, 2010b).

In the soft field tomography class, we find techniques such as the Electrical Capacitance
Tomography (ECT) or the Electrical Resistance Tomography (ERT). They have a very similar
operating principle: a series of electrodes are placed around the volume of interest and a small
electric field is sent through the domain (figure 1.12). Using this electric field, we measure
either the inter-plate capacitance or the inter-plate conductivity. This data allows us to
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reconstruct an approximated image of the solid volume fraction distribution inside the bed.
In comparison to the X or γ ray tomography, the ECT and ERT work with lower energy
fields which makes them much safer and easy to install. However, we lose accuracy in the
reconstructed image.

Figure 1.12: ECVT system around a laboratory scale fluidized bed.

1.3 Mathematical modeling of fluidized beds

By their very nature, fluidized beds involve physical phenomenon with very distinct length
scales: particle-particle interactions (∼ µm); particle clusters and gas bubbles (∼ cm); and
macroscopic motions inside the reactor (∼ m) For this reason, different mathematical mod-
eling approaches have been developed, from an accurate representation of the dynamics at
the particle scale to a macroscopic statistical representation of the phases involved.

1.3.1 Direct Numerical Simulation (DNS)

The Direct Numerical Simulation (DNS) is the most accurate modeling of a gas-solid flow
system. In this approach, we solve for the smallest structures in the system. The fluid flow
around each particle is accurately computed and the force exerted by the fluid on the particle
is calculated using the fluid stress tensor at the surface of the particle. The high degree of
precision required by this approach makes it very computationally expensive. The current
computer power available is only enough to simulate configurations with only a few thousands
of particles (Ozel et al., 2017).

Despite this limitation, DNS has proven to be a very valuable tool to obtain very detailed
and accurate information about the dynamics of gas-particle flows. This approach has been
used to validate and propose closure laws required by the other modeling strategies (Beetstra
et al., 2007; Lu et al., 2017). A unique advantage of this approach is that it allows us
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to simulate complex configurations like non-spherical particles (Zastawny et al., 2012) or
non-smooth walls (Milici et al., 2014).

1.3.2 Discrete Element Method (DEM)

The discrete element method is based on the point-particle assumption to model the solid
phase. In this approach, the particles are tracked individually and their positions are calcu-
lated using Newton’s second law of motion. However, in the DEM method, we do not solve
for the flow field around each particle. Instead, the coupled interactions between the particles
and the fluid are taken into account using closure laws (Traoré et al., 2015). This reduces the
computational costs compared to the previous approach, but it requires an accurate modeling
of these closure laws to achieve meaningful results.

With the current computer power, we can simulate laboratory-scale systems containing
many more particles than any DNS simulation. This allows us to study in fine detail im-
portant phenomena of larger systems like: particle interaction with the flow eddies (Ernst
et al., 2019), the particle-wall interactions (Li et al., 2016), and the particle cluster formation
(Zhang et al., 2008a). The DEM approach is very useful as it can be combined with particle
tracking experimental technique to propose and validate closure laws for other modeling ap-
proaches (Kriebitzsch et al., 2013; Link et al., 2005). Although this strategy is very powerful,
the computational cost is still too high to tackle industrial size problems.

1.3.3 Eulerian-Eulerian model

The last approach we will mention is the Euler-Euler model, also called the Two-Fluid Model
(TFM). This is a hybrid approach, where the fluid phase is treated using the phase-averaged
Navier-Stokes equations, and the solid phase is modeled using the kinetic theory of granular
flows (Zhang and Prosperetti, 1994). In this model, the individual particles are not longer
tracked. Instead, we take interest in the statistical moments of the probability density func-
tion of particles. This can give us crucial information such as the solid volume fraction, the
mean particle velocity, the mean particle electric charge, the mean particle temperature, etc.
Depending on the accuracy required, we can easily extend this to the higher order moments
such as: the variance, covariance, skewness, etc.

Given that the particles are not longer individually followed, the TFM approach scales
very well to large problems. Combustion reactors (Wang et al., 2014), gasification processes
(Liu et al., 2013) and polymerization fluidized beds (Schneiderbauer et al., 2015) are some
examples that shows the success and acceptance of the TFM model. On the negative side,
this approach requires very complex and accurate closure models for many terms (Boëlle
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et al., 1995; Sakiz and Simonin, 1999; Simonin et al., 2002). This model is further explained
in chapter 2.

1.4 Effects of electrostatic forces in fluidized beds

Due to the numerous solid-solid interactions present in a fluidized bed, the particles can
get electrically charged (Forward, 2009). The two main mechanisms responsible for the
charging of the solid particles are: the collision of a particle with a charged or neutral
wall (figure 1.13), or the collision between particles with different electric charge (figure
1.14). This electrification of the solid phase adds an extra particle-particle force due to the
electromagnetic interaction between the particles. It is well known, since several decades
ago, that this effect can have a significant impact in the dynamics and properties of the
fluidized bed (Miller and Logwinuk, 1951; Wolny and Kaźmierczak, 1993). Fotovat et al.
(2017) examined the magnitude of the electrostatic force compared with the other two major
forces: drag and gravity. Their findings showed that the electrostatic force can be of the
same order of magnitude as the other two for small particles.

(a) Particle-wall charge transfer. (b) Particle-wall charge separation.

Figure 1.13: Tribocharging of a solid particle due to the collision with a wall.

The presence of electrostatic forces could be undesirable in fluidized bed reactors. For
example, in a polyethylene reactor, the particles might adhere to the walls due to electrostatic

Figure 1.14: Tribocharging of a solid particle due to the collision with a charged particle.
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attraction. If an exothermic reaction takes place inside the reactor, these particles will create
hot regions that could force the complete shutdown of the reactor (Hendrickson, 2006). The
presence of electrically charged particles can also be a safety concern. If the electric field
generated by the particles is strong enough, a spark might occur which could lead to an
explosion (Choi et al., 2011). However, electrostatic forces are not always a problem. They
can be used to our advantage, like modifying the bed’s dynamics to enhance the mass or
heat transfer coefficient (Kleijn van Willigen et al., 2005). Also, the difference in electric
charge between the particles can be exploited in conjunction with an external electric field
as a separation technique (Calin et al., 2008).

However, due to their nature, research in electrostatic force is a highly complex task.
From an experimental standpoint, the handling and transport of particles must be extremely
careful, otherwise the particles might get charged before the experiment begins of after it
ended. Also the net electric charge of particles it is very low, and we require very accurate
measurement techniques. These problems have been the cause of reproducibility issues or
even contradictory results. From a modeling point of view, the triboelectric charging is a
microscopic phenomenon occurring at the particle scale. And the mechanisms involved in the
transfer of charge between two colliding solid surfaces it is still up to debate. Nevertheless,
and despite all these difficulties, very important advances and discoveries have been made in
the last 70 years. In the following sections, we present a non-exhaustive historical summary
of the advances in research of electrostatic forces in fluidized bed.

1.4.1 Experimental research on the effects of electrostatic forces
in fluidized beds

The effects of electrostatic charges in fluidized beds were first recognized in the literature at
the beginning of the 50s. A study on the heat transfer properties of fluidized beds revealed
some, at first, inconsistent results for some types of particles (Miller and Logwinuk, 1951).
In particular, their data showed that, contrary to all other particles tested, the heat transfer
coefficient increased with particle diameter for silica gel powder. The cause of this discrepancy
was attributed to the presence of electrostatic forces in the fluidized bed. More precisely, the
silica gel particles adhere to the walls of the reactor adding an extra thermal resistance to the
system, but bigger particles allow more inter-particle space, increasing the transfer surface
area. These findings inspired the same authors to build a simple setup to assess the presence
of electrostatic charges in the system. They proved that the transport of silica gel particles
was able to electrically charge a copper tube. This work was one of the first to, not only
point out the presence of electrostatic forces in gas-solid configurations, but also to highlight
that they can modify the properties of a fluidized bed.

After this work, the presence of electrostatic effects was acknowledged and studied by
many different researchers. Several works showed that the particles adhering to the walls
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and sensors can become a serious problem for the experimental devices (Wen and Hashinger,
1960; Capes and McIlhinney, 1968). However, they all reported that increasing the fluidiza-
tion gas humidity greatly diminished or completely solved this issue. It is also around these
times where we find the first work dedicated to the characterization of the electrification
phenomenon in fluidized beds. Ciborowski and Wlodarski (1962) introduced a probe in a
fluidized bed to measure the electric potential in different conditions. They showed that high
fluidization velocities or low gas humidity enhance the build up of high electric potentials
inside the reactor. They also observed that the particle adhesion phenomenon is more pro-
nounced when the voltages are higher. Ganzha (1967) also measured the voltage inside a
fluidized bed using different column materials. They concluded that the electrification phe-
nomenon must come from the contact between the walls and the particles. And the level of
electrification is highly dependent on both materials.

Although these studies proved that the electrostatic force was indeed present inside a
fluidized bed, little was still known about the effects they could have in the dynamics of the
reactors. One of the key aspects that was still poorly understood was the role of humidity
as a limiting factor for the charge build up. Many researchers reported that high humidity
decreased the impact of electrostatic forces, however, no work in the literature formally
addressed this problem. Bafrnec et al. (1972) confirmed that the humidity in the fluidization
gas forms a small layer of water at the surface of the particle which increases the surface
conductivity. If we consider a single solid particle as a capacitor, then increasing its surface
conductivity will prevent the electric charge to accumulate in the particle. During this decade,
we see also the first academic studies using the electrification phenomenon for control method
or separation techniques. Inculet et al. (1977) and Kiewiet et al. (1978) took advantage of
the fact that particles of different sizes get different electric charge, and they used an external
electric field to separate them. Another favorable application of the electrostatic phenomenon
was proposed by Colver (1977) who applied an external electric field to the fluidized bed to
control the bubbles’ size.

To this moment, the presence of an electrostatic phenomenon was acknowledged by the
scientific community, but still no real measurement of the electric charge had been published.
Tardos and Pfeffer (1980), however, introduced the use of a Faraday cup as an option to
measure the total electric charge of the bulk material. They confirmed that the solid particles
were indeed electrically charged of the order of a few microcoulombs per meter square. The
intensity of the charge increased with the gas velocity but it decreased with the gas humidity.
They also showed that the electrostatic probes must be used with caution, as they might not
accurately reflect the particle electric charge. This is because the electric current generated on
the probe depends on the particle electric charge and the relative velocity between the probe
and the particle. This idea of a Faraday cup was also used by Fasso et al. (1982). They
placed an extraction probe to capture and measure the electric charge of particles in the
freeboard region of the fluidized bed. Their data showed that, like for the particles inside the
bed, the particles in the freeboard region are more electrically charged for higher fluidization
velocities. Baron et al. (1987) extended this analysis and studied the entrainment flux in the
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freeboard region. They concluded that, for silica sand particles, the effect of electrostatic
forces over the entrainment flux disappears for humidity rates higher than 30%, regardless
of the fluidization velocity.

Although the Faraday cup was a useful method to directly measure the global electric
charge inside the bed, it cannot measure the charge of an individual particle. This was the
objective of the study conducted by Wolny and Kaźmierczak (1989). They used small air jets
to eject and isolate single particles and then, they recorded their trajectory in a fixed electric
field. This allowed them to determine the electric charge of the particle. They showed that,
in a polystyrene bed, the particles do not necessarily charge with the same polarity. There
are negatively and positively charged particles. They also confirmed that adding antistatic
agents, like sodium chloride, does reduce the tribocharging effect in the solid phase. Another
novel study on polystyrene particles was performed by Gajewski (1985). They placed a
series of metallic rings around the bed in order to measure the electrification phenomenon
at different heights. Their data highlighted that the charge generation occurs at the walls of
the bed. Then the electric charge is transported to the rest of the domain by the motion of
the particles or by the charge transfer due to particle-particle collisions.

During the last decade of the 20th century, the research focused mainly on gathering
a deeper understanding of the effects of electrostatic phenomenon in fluidized bed. Briens
et al. (1992) continued the research on the elutriation phenomenon. They observed that, for
polyethylene particles, the electrostatic forces greatly reduces the entrained flux by up to 2
order of magnitudes compared with the neutral case. They also showed that the particle
size distribution of entrained particles does not vary significantly between the neutral and
the charged case. During that same period, Wolny and Kaźmierczak (1993) studied the
dependency between Umf and Umb as a function of the electrostatic forces. Their findings
highlight that the electrostatic effects induce an important hysteresis effect in the pressure
drop plot. And both Umf and Umb are higher for charged particles compared to their neutral
case. Later, Zhang et al. (1996) used Laser Doppler Velocimetry (LDV) to measure the
velocities of particles in a dilute system. In particular, they revealed that the electrostatic
force does not modify the Maxwellian particle velocity probability density function.

From the years 2000s, we can see that the electrostatic forces became a very important
topic in the studies of fluidized beds, as the number of publications increased. During this
period, we witnessed the development of new measurements techniques that allowed us to
gain a deeper understanding of the tribocharging phenomenon. Zhao et al. (2003) developed
a sampling method of several Faraday cups vertically aligned to separate the particles by their
size and then measure their electric charge. They showed that, for their polymer powder,
there is a bipolar charging phenomenon taking place. The small particles charged negatively
while the large particles were positively charged. In addition to this result, Mehrani et al.
(2005) designed an online measurement system where the fluidized bed column forms part
of a big Faraday cup. They concluded that, in an initially neutral poly-disperse system,
the fines particles will get negatively charged and then leave the system. By the charge
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conservation law, this means that the particles left in the bed must be positively charged.
This system also allowed them to confirm that the gas-particle contact does not charge
the solid phase; and the charging phenomenon is exclusively due to solid-solid contacts.
Sowinski et al. (2009) developed a Faraday cup embedded inside the windbox to collect all
the particles immediately after fluidization. This reduced the effect of tribocharging due to
manual handling. Bi et al. (2007) adapted an electrostatic probe to monitor both the electric
charge and the local hydrodynamics simultaneously based on the normalized instantaneous
and time average signals. Chen et al. (2003) also developed a model that allowed them to
extract the particle charge per unit of mass using a single electrostatic probe.

During this period, some researchers also tried to expand the experimental work to more
complex configurations. Moughrabiah et al. (2009) studied the impact of gas pressure and
temperature in charge generation. They concluded that the pressure contributes to the
electrification of the bed, while temperature seems to be a neutralizing factor. We also found
the first study involving gas-liquid-solid fluidized beds (Alissa Park and Fan, 2007). Similarly
to the gas-solid systems, they concluded that particle-particle interactions are responsible for
the electrification of the bed. They also showed that the addition of fines particles could be
used to decrease the electric charge of the system.

The last decade of research in electrostatic in fluidized bed has brought us a deeper
understanding of the physical phenomena taking place inside the bed. Sowinski et al. (2012)
studied the wall sheeting effect for particles of different sizes. Their experiments showed
that the smaller particles are more prone to attach to the wall. They also revealed that
the magnitude electric charge of the particles stuck on the wall is much higher than the
charge of particles in the bulk. Later, Salama et al. (2013) investigated in detail the electric
charge distribution of the particles adhered to the wall. They found that, in fact, we have
particles of different polarities in this region. This led them to hypothesize the following
mechanism for the wall sheeting phenomenon: due to electric charge transfer between the
wall and the particles, the wall acquires certain polarity. Then, the wall will attract particles
of the opposite sign, which makes the first layer of particles to attach to the wall. This
layer of particles will now attract particles of the opposite sign and this forms a second layer
of particles. This process will continue forming consecutive layers of positive and negative
particles, until the fluid and gravity forces are stronger than the electrostatic attraction.
Further and more detailed studies seem to support this theory (Song and Mehrani, 2017;
Song et al., 2016).

Dong et al. (2015) also investigated the dynamics inside the bed, but more focused in
their effects on the gas dynamics. Using electrostatic probes, pressure sensors and Faraday
cups, they showed that the more the particles are charged, the smaller the size of the bubbles.
According to their findings, the particles inside the bed are mostly charged with the same
polarity. This makes all the particles repeal each other, leaving less space for the bubbles to
develop. Yang et al. (2016) also studied the presence of agglomerates inside the bed. As we
previously discussed, the electrostatic force promotes the formation of wall fouling that could
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dangerously fall into the reactor. Their study showed that these falling agglomerates, not only
disturb the hydrodynamics of the bed, but also they also change the tribocharging dynamics
of the particles. Most of the experimental studies in fluidized bed focused on initially neutral
particles that get charged via the fluidization process. However, Manafi et al. (2019a,b)
studied the effects of the fluidization of pre-charged particles. In particular, they showed
that the minimum fluidization velocity of already charged particles is higher compared to
the initially neutral case. They also observed that the bubble size could be smaller when the
particles are already charged. This revealed that the initial fluidization condition can play an
important role. More recently, Nasro Allah (2019) conducted an extensive analysis, coupling
in-house experiments with 3D numerical simulations. They studied the charging dynamics
for different types of particles under different fluidization conditions. Their results show that
the temporal charging dynamics follows an exponential law. They also confirmed that the
electric charge of particles stuck to the wall are several order of magnitudes higher than the
charge of the bulk. This data allowed them to simulate a 3D laboratory scale fluidized bed
reactor showing that indeed the electric charge of particle has a significant impact on the
macroscopic quantities of the bed such as the solid volume fraction, mean particle velocity
and particle agitation.

All this shows the evolution of more that 70 years of experimental research in the electro-
static effects in fluidized beds. From a mere qualitative acknowledgment of the presence of
an electrostatic phenomenon, to accurate macro and microscopic measurements of the most
important parameters of the fluidized bed under myriad of different conditions. We have
now a good understanding of the triboelectric effects inside a fluidized bed. We know why
the particles inside a fluidized bed get charged. And we have reliable techniques to measure
it. In addition to this, we are aware of how this can modify the main properties of the
fluidized bed. And we also know how to limit and control the effects of electrostatic forces.
Nonetheless, the number of unanswered questions remains large, and new research seems to
open more questions than it answers.

1.4.2 Modeling of electrostatic forces in fluidized beds

Modeling of the contact electrification phenomenon

Before trying to model the charge dynamics in a complex system like a fluidized bed, it is
important to understand the electrification dynamics of a single particle. This is mainly
done by the surface state theory which deals with the description of the electronic state of
surfaces. This theory explains the charge transfer between two surfaces using the concept
of work function, which is the energy required to remove an electron from the surface of
an object. According the surface state theory, when two surfaces approach each other, the
difference in work function creates an exchange of electron between the objects. For insulating
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materials, it is assumed that electrons are exchanged at the interface to create an electrostatic
field that balance the work function difference (Schein et al., 1992).

Based on this theory, Ali et al. (1998) developed a charge exchange model for two colliding
spherical particles. In their proposition, they used a soft-sphere model to calculate the
area of contact between the colliding particles. This information coupled with the surface
state theory allowed them to calculate the amount of charge transferred during a collision.
Later, Laurentie et al. (2013) extended this model by accurately solving the contact area
between the particles as a function of time during the collision. Their model showed an
excellent agreement with the experimental results. Finally, Kolehmainen et al. (2017) adapted
this model to calculate the electric charge in a system with multiple particles, like a fluidized
bed.

Modeling of fluidized beds with charged particles

Although the effects of the electrostatic forces in fluidized beds have been well studied ex-
perimentally. The mathematical modeling and simulation of this phenomenon in particle
laden flows is still in its early stages. Different factors are responsible for this lag between
the experimental and modeling research. First, even though the presence of electrostatic
phenomenon is well known for many decades, the actual understanding of how the parti-
cles get charged at a microscopic level is not yet fully understood. Second, a fluidized bed
reactor, even without electrostatic forces, involves phenomena of different length scales and
physical nature, like particle-fluid, particle-wall and particle-particle interactions. It is not
until very recently that we started having the necessary tools to correctly model the behavior
of a neutral fluidized bed.

As we stated in section 1.3, the modeling and simulation of fluidized bed is done using
either direct numerical simulation, discrete element method, or the two-fluid model. Although
DNS is the most accurate approach available, to the best of our knowledge, there has been
no published research involving the use of this technique to study the electrostatic effects
in gas-solid flows. This might be due to two factors: firstly, the additional particle-particle
force adds an extra layer of complexity to an already costly numerical simulation. Secondly,
DNS might also require a detailed understanding of the electric charge distribution at the
surface of the particle, which is still poorly understood to this day.

The DEM is much simpler to implement because the electric charge distribution around
the particle can be neglected. However the electrostatic interaction between the particles
still represents an important computing challenge. An exact computation of the electrostatic
force between all the particles is proportional to the number of particles squared (this is called
the n-body problem). It is for this reasons that part of the research work in this area has
dealt with more efficient algorithms to solve this problem. Hassani et al. (2013) computed
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the electrostatic interaction of each particles using only nearby particles. They were able to
simulate a fluidized bed with particles with constant electric charge. They showed that as
the electric charge of particles increases, the bubble diameter decreases (in agreement with
Dong et al. (2015)). Their data also highlighted that adding identical particles but with the
opposite polarity makes the bed behave like more like a neutral system. In particular, they
observed that particles of different charge sign have the tendency to form clusters and this
reduces the overall electrostatic effects. Pei et al. (2013) proposed a contact electrification
model for the particle-particle and particle wall contacts. In their 2D fluidized bed, they
showed that the charge generation happens due to the particle-wall contacts and then the
electric charge propagates into the domain due to the particle mixing or the particle-particle
collisions. Later, they extended this study to particles with different work functions (Pei et al.,
2016). According to their model, having particles with different work function can lead to
a bipolar charging phenomenon inside the fluidized bed. Given that this bipolar charging
effect was already known from experiments. Yang et al. (2017) simulated a fluidized with
large and fines particles with different polarity. Their results showed that the fines particles
adhere to the big particles due to the electrostatic attraction and this greatly diminish the
total entrainment rate of fines particles.

Finally, the two-fluid model approach can be easily extended to incorporate the electro-
static force. A very important advantage is that adding this extra interaction is not too
computationally expensive, because the solid phase is not longer considered as a set of in-
dividual particles, but rather a continuum phase. The first use of the two fluid model to
simulate a fluidized bed under electrostatic effects came by Shih et al. (1987). They sim-
ulated a fluidized bed with charged particles under the effect of an external electric fluid.
They, however, neglected the local electric field generated by the particles themselves and the
charge transfer between particle-particle or particle-wall contacts. Their results showed that
an external electric field can indeed be used to modify and control the shape, size and veloc-
ity of rising bubbles. We would have to wait 15 years for the next modeling work, this time
published by Al-Adel et al. (2002). They derived a steady state model from the momentum
balance equations combined with the Maxwell’s equation for the electric field. Solving this
set of equations allowed them to predict the segregation of charged particles toward the wall
in a riser. Later, Rokkam et al. (2010, 2013) extended Shih’s study. They proposed a model
to consider the electric field generated by the particles using Maxwell’s equations. Their
simulations showed that this approach was capable of predicting the wall sheeting effect in a
fluidized bed reactor. During the same period, Jalalinejad et al. (2012) also used this same
approach to study the deformation of a single rising bubble in a fluidized bed. According to
their results, the bubble suffers an axial elongation. The reason behind this effects lies in the
fact that the electric field pushes the charged particles towards the wall leaving less space for
the bubble to grow radially.

The main drawback of all these previous studies was that the electric charge of particles is
constant and it needs to be specified by the user. This data usually came from experimental
results. Recently some efforts have been made to address this limitation. Kolehmainen et al.
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(2018) use the kinetic theory of granular flow to derive a transport equation of the average
electric charge of particles for mono-disperse configurations. Later, Ray et al. (2019) extended
this model to take into account the mean electric charge flux term due to the random motion
of particles, and in a later study they expanded to bi-disperse configurations (Ray et al.,
2020). All of these works however consider that the particle velocity is not correlated with
the particle electric charge.

This shows that the modeling of fludiized bed with charged particles it is a still a very
open research topic. Although in the recent years some works have contributed with full
3D transient models that could predict the tribocharging phenomenon in fluidized beds, but
further validity is still necessary. Moreover, the hypotheses used to derive the closure laws
might be too restrictive and a more complex approach might be necessary.

1.5 Thesis outline

As we have exposed, the electrostatic effects in fluidized beds is a topic that has been studied
for several decades. However, many questions remain unanswered. On the experimental front,
most of the research on the hydrodynamic behavior has been conducted using intrusive probes
techniques. Although they have proven to be very valuable, the information we can extract
from them is also very limited. In addition to this, the tribocharging phenomenon is highly
dependent on solid-solid contacts. Hence, the presence of a foreign material can modify the
particle charging dynamics. It is for this reason, we wish to explore the use of a non-intrusive
tomographic technique to study the effects of electrostatic interactions in a fluidized bed
reactor. More in particular, we have chosen the Electrical Capacitance Volume Tomography
(ECVT) which is a relative novel technology that promises to give a 3D representation of the
solid volume fraction inside the bed. This represents an improvement over the old known
Electrical Capacitance Tomography (ECT) which can only provide the solid volume fraction
in a 2D slice. ECVT devices were conceived only 15 years ago, and their application to
fluidized bed is still an open problem. So in this work, we want to explore the use of this
technology in fluidized bed, laying the grounds for future work on electrostatic effects in our
group.

On the modeling front, we wish to extend the current models used in the Eulerian ap-
proach. More in particular, we want to expand the current modeling for the mean electric
charge transport equation. Previous works have proposed a simple approach where the cor-
relation between the particle electric charge and velocity is neglected. In this thesis, we will
show a strategy to take into account this correlation. In addition to this, we will also propose
closure models not only for the second order moments: charge velocity covariance and charge
variance, but also for some of the third order moments. To the best of our knowledge this
will represent the most complete Eulerian description for monodisperse gas-solid flow with
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electrostatic effects.

With these objectives in mind, the present thesis is structured as follow:

Chapter 2 addresses the Eulerian modeling of the particle mean electric charge transport
equation. We show that a more general governing equation can be derived without imposing
the full form for the particle density probability function. A simple linear modeling of the
conditional mean of the particle electric charge proves to be enough to fully close the collision
term. We also show that this linear model is also sufficient to derive the transport equation
for the charge-velocity covariance. This transport equation is then simplified until obtaining
an algebraic closure model.

Chapter 3 is dedicated to the extension of the previous chapter’s model. Here, we
propose a more complete mathematical model using the full transport equations not only
for the particle charge-velocity covariance but also for the particle charge variance. We also
propose closure laws for two of the third order statistical moments appearing in the second
order moment transport equations. Given that this model greatly increases the number of
partial differential equations to be solved, we study possible simplifications to this approach.
An algebraic model coupling the particle charge-velocity covariance and the particle variance
is proposed. And a semi-algebraic model, where the charge-velocity covariance is kept in its
algebraic form, but the variance term is solved using its transport equation.

Chapter 4 tackles our study in the use of ECVT system in fluidized beds. More in
particular, we assess the accuracy and performance of a state-of-the-art ECVT device. We
primarily focus on the image reconstruction algorithm. We study the default strategy pro-
posed by the system as well as two other algorithms found in the literature. However, the
approaches studied were either too inaccurate or too computationally expensive. Given these
limitation, we study the use of a feed forward artificial neural network as a image reconstruc-
tion technique. To train this network, we present two different strategies. The first one
is based on CFD-generated data coupled with a supervised learning approach. The sec-
ond strategy is based directly on experimental data coupled with a reinforcement learning
approach. Both techniques are then tested against simulated and real experimental data.
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M. Bafrnec, J. Bena, and J. Beňa. Quantitative data on the lowering of electrostatic charge
in a fluidized bed. Chemical Engineering Science, 27(5):1181–1183, 1972.

T. Baron, C. L. Briens, M. A. Bergougnou, J.D.Hazlett, and J. D. Hazlett. Electrostatic
effects on entrainment from a fluidized bed. Powder Technology, 57(1):55–67, 1987.

R. Beetstra, M. A. van der Hoef, and J. A. M. Kuipers. Drag Force of Intermediate Reynolds
Number Flow Past Mono- and Bidisperse Arrays of Spheres R. AIChE Journal, 53(2):
489–501, 2007.



28 CHAPTER 1. BIBLIOGRAPHY

H. T. Bi and J. R. Grace. Flow regime diagrams for gas-solid fluidization and upward
transport. International Journal of Multiphase Flow, 21(6):1229–1236, 1995.

H. T. Bi, N. Ellis, I. A. Abba, and J. R. Grace. A state-of-the-art review of gas-solid turbulent
fluidization. Chemical Engineering Science, 55:4789–4825, 2002.

X. T. Bi, A. Chen, and J. R. Grace. Monitoring Electrostatic Charges in Fluidized Beds
Monitoring Electrostatic Charges in Fluidized Beds. In The 12th International Conference
on Fluidization - New Horizons in Fluidization Engineering, pages 1001–1008. Curran
Associates Inc, 2007.
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Chapter 2

Eulerian modeling of electrostatic
force in mono-dispersed gas-solid flow

As stated in the introductory chapter, we will focus on the Eulerian modeling of fluidized beds.
This is hybrid approach where the governing equations for both phases are obtained using
different physical theories. On one hand, the fluid phase is governed by the phase-average
Navier-Stokes equations. While on the other hand, the solid phase relies on a modification of
the kinetic theory of gases to derive the dynamic equations (Zhang and Prosperetti, 1994).
This modification is justified given the similarities between the movement of molecules in a gas
and the movement of particles in a gas–solid flow. This extended theory is called the Kinetic
Theory of Granular Flow (KTGF). In this work, we focus exclusively in the modeling of the
charging dynamics of the solid phase. Hence, we will only present the governing equations
for the granular phase.

The kinetic theory of granular flow tries to explain the macroscopic properties of a large
set of identical particles. These particles can be subjected to body forces (gravity or electro-
magnetic forces), surface forces (drag, lift, buoyancy, etc.), and contact forces (collision with
other particles or with the solid boundaries). The main objective of the KTGF formalism is
to obtain the spatial and temporal evolution of the most important macroscopic quantities
that can explain the dynamics of the particles. Some of these quantities are: the number
of particles per unit of volume, the mean particle velocity and the mean particle fluctuating
kinetic energy. However, we can easily extend the theory for other variables such as: the
mean particle temperature or even the mean particle weight fraction of its constituents.

The main idea behind this theory is to define a distribution function f ( #»x , #»cp, Tp, · · · ; t)
(where #»cp and Tp are the particle velocity and temperature, respectively). This particle
distribution function can be used to derive a Boltzmann-like equation. From this equation,
we can derive the governing conservation laws for some of the statistical moments of f , such
as:

1. The particle number density conservation equation:

∂mpnp

∂t
+

∂mpnpUp,i

∂xi

= 0 (2.1)

2. The mean particle linear momentum conservation equation:
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np
∂mpUp,i

∂t
+ npUp,j

∂mpUp,i

∂xj

+
∂npmpRp,ij

∂xj

= np〈Fi〉 + C〈mpcp,i〉 (2.2)

Here, Up,i is the mean particle velocity, Rp,ij is the kinetic stress tensor, C (mpcp,i) is
the mean rate of change in the particle linear momentum due to particle-particle collisions
(Jenkins and Richman, 1985; Jenkins and Savage, 1983) and 〈Fi〉 is the mean surface and
body force exerted on the particles.

Historically, the only forces considered were the gravity force, the drag force and the
buoyancy force:

np
∂mpUp,i

∂t
+ npUp,j

∂mpUp,i

∂xj

+
∂npmpRp,ij

∂xj

=

− npVp
∂Pg@p

∂xi

− npmp

τp

(Up,i − Ug,i) + npmpgi + C〈mpcp,i〉
(2.3)

Where Pg@p is the gas pressure at the particle position, τp is the mean particle relaxation
time, Ug,i is the mean gas velocity and gi is the gravitational acceleration.

If we wish to add the electrostatic force between the particles, we need to add an additional
force term to equation 2.3:

np
∂mpUp,i

∂t
+ npUp,j

∂mpUp,i

∂xj

+
∂npmpRp,ij

∂xj

=

− npVp
∂Pg@p

∂xi

− npmp

τp

(Up,i − Ug,i) + npmpgi + npQpEi + C〈mpcp,i〉
(2.4)

Where Qp is the mean particle electric charge and Ei is the electric field. This electric
field can be a combination of an external electric field and the electric field generated by the
particles themselves.

Now, the main problem is how to determine the value of the mean particle electric charge.
Previous works have chosen to consider Qp as a constant value (Rokkam et al., 2010, 2013).
Although useful, this approach is very limited, because any effect of the charge spatial distri-
bution would be neglected. In addition to this, the charging phenomenon cannot be studied.
And finally, the imposed value of Qp is not easy to determine. Kolehmainen et al. (2018)
and Ray et al. (2019) have taken a different approach, deriving a transport equation for the
mean particle electric charge in the Eulerian framework. However, these modeling attempts
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assumed no correlation between the particle electric charge and the particle velocity. To im-
prove these formulations, we developed a more general model accounting for the correlation
between the electric charge and the particle velocity. This research work was submitted to
and accepted by the Journal of Fluid Mechanics (Montilla et al., 2020). What follows is the
exact copy of that research paper1.

1Only the original headers were removed and replaced with this document’s headers
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Due to triboelectric charging, the solid phase in gas–particle flows can become electrically
charged, inducing an electrical interaction among all the particles in the system. Because
this force decays rapidly, many of the current models neglect the contribution of this
electrostatic interaction. In this work, an Eulerian particle model for gas–particle flow
is proposed in order to take into consideration the electrostatic interaction among the
particles. The kinetic theory of granular flows is used to derive the transport equation for
the mean particle electric charge. The collision integrals are closed without presuming
the form of the electric part for the particle probability density function. A linear
model for the mean electric charge conditioned by the instantaneous particle velocity
is proposed to account for the charge–velocity correlation. First, a transport equation is

written for the charge–velocity correlation. Then, a gradient dispersion model is derived
from this equation by using some simplifying hypotheses. The model is tested in a
three-dimensional periodic box. The results show that the dispersion phenomenon has
two contributions: a kinetic contribution due to the electric charge transport by the
random motion of particles and a collisional contribution due to the electric charge
transfer during particle–particle collisions. Another phenomenon that contributes to the
mean electric charge transport is a triboelectrical current density due to the tribocharging
effect by particle–particle collisions in the presence of a global electric field. The
corresponding electric charge flux is written as equal to the product of the electric field by
a triboconductivity coefficient.

Key words: kinetic theory, mixing and dispersion, fluidized beds

1. Introduction

Nowadays, gas–particle-laden flows play an extremely important role in many industrial
technologies. Fluidized beds, cyclonic separators and the transport of air pollutants are
just a few examples of this type of flow. In some configurations, the particles collide
with other solid materials (either another particle or a solid boundary). During these
interactions, the particles can get electrically charged due to the triboelectrification effect
(Matsusaka & Masuda 2003). The electrically charged particles can now interact with
other charged particles via the Lorentz force (electrostatic + magnetic forces). Because the

† Email address for correspondence: olivier.simonin@toulouse-inp.fr
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particle velocity is very small compared to the speed of light, the magnetic contribution
can be dropped, and only the Coulomb force is relevant.

The generation of electrical charges can be undesirable for many industrial processes.
There are safety hazards such as the risk of explosions due to a spark, wall sheeting and
the generation of an intense electric field. It is also known that the electrostatic force
can have different effects on the dynamics of gas–particle flows, such as: modification of
the minimum fluidization velocity, the entrainment rate and the heat transfer coefficient
(Miller & Logwinuk 1951; Hendrickson 2006).

All these electrostatic effects are well documented in the literature. Sowinski, Salama
& Mehrani (2009) and Sowinski, Miller & Mehrani (2010) built a fluidized bed with a
Faraday cup to measure the total particle charge after fluidization. Their results showed
that the particles get charged and the magnitude of the electric charge depends on the
fluidization velocity. Moreover, the entrained fine particles and the remaining bed particles
have an inverse polarity. Salama et al. (2013) focused their study on the particles inside
the bed. They observed that, although globally the bed is charged negatively, there is a
small percentage of particles with a positive charge. This suggests the wall sheet is formed
by consecutive layers of negatively and positively charged particles. Zhou et al. (2013)
introduced a moving probe inside a fluidized bed to map the electric potential inside the
column. Their data reveal that the bed is negatively charged at the bottom and positively
charged at the top. Moreover, they also found a difference in the radial profile; with the wall
having a stronger potential than the centre of the bed. The entrainment rate is also impacted

by the presence of an electrostatic force. Fotovat et al. (2017) showed that the entrainment
rate is overestimated by the current correlations found in the literature. The gas dynamics
can also be impacted. Dong et al. (2015) placed four electrostatic probes inside a fluidized
bed to analyse the effect of the electrostatic force on the motion of bubbles. The authors
observed that the bubble size decreases as the electrostatic force increases. They attributed
this result to the fact that most of the particles have the same charge sign. This creates a
repulsive force between them, leaving less space for the bubble to grow.

The modelling of gas–particle flows is a very complex topic due to the different scales

involved. The most accurate approach is to fully resolve the dynamic equations in the

gas–particle mixture. This would require us to accurately compute the flow field around
each particle and to use the stress tensors to compute the force acting on the solid phase
(Ozel et al. 2017). This approach is computationally expensive and can only be done for a
few thousand particles. A less computational demanding approach is the so-called discrete
element method (DEM). In this method, we use the simplification of the point particle
to model the solid phase. The forces acting on the particles due to the flow field are
computed using correlations based on the undisturbed flow field (Kriebitzsch, Van der
Hoef & Kuipers 2013). This approach reduces the computational cost by allowing us to
compute the fluid phase flow on a coarse mesh compared to the particle size. However, we
still need to keep track of every particle in the system. With the current computing power,
this method allows us to manipulate systems up to a few tens of millions of particles.
This is still, at the present time, insufficient for most industrial problems. Finally, another
method is called the Eulerian approach, in which we derived the governing equations for

the mean properties of the phases (volume fraction, velocity, fluctuant kinetic energy, etc.).
For the fluid phase we use the standard averaged Navier–Stokes equations. While the solid
phase equations rely on the kinetic theory of granular flows.

The kinetic theory of granular flow (KTGF) is based on the analogy between the motion
of particles in rapid granular flow and the motion of molecules in gases. At early stages,
Jenkins & Savage (1983) and Jenkins & Richman (1985) derived closed mean momentum
and granular temperature (random kinetic energy) transport equations in the frame of a
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hard-sphere collision model by assuming a perturbed Maxwellian (or Gaussian) velocity

distribution. Later, the KTGF was extended to gas–solid flow by accounting for the drag
force in the macroscopic transport equations (Ding & Gidaspow 1990) and in the closure
of the transport properties (Boelle, Balzer & Simonin 1995).

Currently, some efforts have been made in order to add the electrostatic force to Eulerian
codes. Rokkam, Fox & Muhle (2010) developed a model in which the electrostatic effect
is added as a body force in the solid momentum equation. Later, the same authors
(Rokkam et al. 2013) tested this model in a fluidized bed reactor using the ANSYS
Fluent software. Their model was in good agreement with the experimental observations,
especially concerning the radial segregation of the solid phase. In this approach, however,
the electrical charge is an input parameter and remains fixed throughout the simulation.

A more complex model was proposed by Kolehmainen, Ozel & Sundaresan (2018);
they used the kinetic theory of granular flow to derive a transport equation for the
particle charge. Using uncorrelated Maxwellian probability density distributions for the
velocity and the particle charge, they were able to close the collision integral and to
derive an electric charge collisional dispersion coefficient. However, this coefficient was
found to represent only a part of the particle electric charge dispersion, therefore, they
decided to add a kinetic dispersion coefficient following an analogy with the heat transfer
coefficient (Hsiau & Hunt 1993). The results showed that this new formulation was in
better agreement with DEM simulations. More recently, Ray et al. (2019) extended this
modelling approach by accounting for the charge–velocity correlation in order to derive
a kinetic dispersion coefficient. The authors also derived the charge variance equation in
order to fully close the mean charge transport equation. They implemented their model
using OpenFOAM and simulated a two-dimensional fluidized bed. The results showed
that the proposed model was able to successfully predict the thickness of the particle
layer formed at the wall of the reactor. It is worth noting that these previous studies were

conducted with the assumption that the Coulomb force does not modify the dynamics

of the particle–particle collisions. Although this hypothesis holds for rapid granular
flows, it might be too restrictive for configurations where the electric potential energy
is comparable to the kinetic energy.

In our work, we propose a closure for the collisional and kinetic electric charge
dispersion terms in the mean charge transport equation derived in the framework of
the kinetic theory of rapid granular flows, keeping the assumption that the electrostatic

force does not affect the particle–particle hard-sphere collision model. In particular, we
show that the closure assumption for the collisional contribution can be derived without
assuming an uncorrelated charge and velocity probability distributions. In addition, we
derive closures for the dispersion term and for the triboelectric current density, due to the
transport of electric charges by the random motion of particles, from the transport equation
of the charge–velocity correlation.

2. Particle dynamics

2.1. Equation of motion for a single particle

Assuming instantaneous particle–particle collisions, the motion equation for a single
particle between two collisions is described by Newton’s second law of motion (Gatignol
1983; Maxey & Riley 1983)

mp

dup,i

dt
= −Vp

∂Pg@p

∂xi

+ Fd,i + mpgi + qpEi. (2.1)
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The right-hand side of the equation represents the sum of forces acting on the particles.

There, we found in order: the generalized Archimedes force, the drag force, gravity and
the last term is the electrostatic force due to the electric field generated by the presence of
other charged particles.

Here, mp is the mass of the particle, up,i the particle velocity, Vp the particle volume,

∂Pg@p/∂xi is the undisturbed pressure gradient at the particle centre, gi is the gravity, Fd,i

is the drag force, Ei is the electric field and qp is the particle electric charge. Hereinafter,
all the equation are presented in tensor notation using the Einstein summation convection
over all indices except p.

The drag force can be written as

F d = −mp

ρg

ρp

3

4

Cd

dp

|vr|vr = −
mp

τp

vr, (2.2)

where ρg is the gas density, ρp is the particle density, dp is the particle diameter, vr is the

relative velocity between the particle and the undisturbed fluid flow at the centre of the

particle vr = up − ug@p, Cd is the local drag coefficient and τp is the particle relaxation
time:

τp =
4

3

ρp

ρg

dp

Cd|vr|
. (2.3)

Following Maxwell’s equation, we can find the electric field

∇(ε∇ϕ) = −̺, (2.4)

Ei = −∇ϕ, (2.5)

where ϕ is the electrical potential, ̺ is the charge density and ε is the mixture permittivity.

2.2. Particle–particle collision dynamics

Some of the most important aspects of particle dynamics are the particle–particle
collisions, and the exchange of momentum and electric charge during the collision.
Following the hard-sphere collision model, we limit our study to binary collisions of
frictionless inelastic spherical particles.

Let us consider two particles p1 and p2 with their centres located at xp1 and xp2. They

have given velocities cp1 and cp2 and electric charges ξp1 and ξp2. We define k as the unit

vector going from the centre of p1 to the centre of p2, we also define gr as the relative
velocity of the particles gr,i = cp1,i − cp2,i.

Previous studies (Kolehmainen et al. 2018; Ray et al. 2019) have chosen to neglect the
effect of the Coulomb interaction when two particles are colliding. This assumption is
valid for rapid granular flow where the kinetic energy of particles is much greater than their
electric energy. This hypothesis also preserves all the models developed for the momentum
conservation equation. In concordance with the previous work, we have chosen to keep this
hypothesis. Therefore, the particle velocities after the collision, c+

p1
and c+

p2
, are given by

c+

p1,i = cp1,i −
1

2
(1 + ec)(gr,jkj)ki, (2.6)

c+

p2,i = cp2,i +
1

2
(1 + ec)(gr,jkj)ki, (2.7)

where ec is the collision restitution coefficient.
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To take into account the triboelectrification phenomenon, we use the model developed
by Kolehmainen et al. (2017). They used a Hertzian collision model to calculate
the overlapping area Amax

during a collision between two particles. Using the
triboelectrification model proposed by Laurentie et al. (2013), they were able to compute
the charge transfer during the impact

ξ
+

p1 = ξp1 − ε0Amax
E∗

i ki, (2.8)

ξ
+

p2 = ξp2 + ε0Amax
E∗

i ki, (2.9)

where E∗

i is the total electric field, which has the contribution of the resolved electric field

plus the contribution of the electric field generated by the colliding particles

E∗

i = Ei −
ξp2 − ξp1

πε0d2
p

ki (2.10)

The value of Amax
is given by the Hertzian model

Amax
= π

dp

2

(

30mp(1 − ν2)

32Y
√

dp

)2/5

(gr,mkm)
4/5

, (2.11)

where Y is the particle Young’s modulus, and ν is the particle Poisson’s ratio.
Finally, the charge transfer model by collision can be written as

ξ
+

p1 = ξp1 +

[

−βEiki +
β

γ
(ξp2 − ξp1)

]

(gr,mkm)
4/5

, (2.12)

ξ
+

p2 = ξp2 −

[

−βEiki +
β

γ
(ξp2 − ξp1)

]

(gr,mkm)
4/5

. (2.13)

With

β = ε0π
dp

2

(

30mp(1 − ν2)

32Y
√

dp

)2/5

, (2.14)

γ = πε0d2
p. (2.15)

According to (2.12) and (2.13), we can point out that the electric charge transfer
between colliding particles due to the triboelectric effect may be written as two separate
contributions. The first one is directly proportional to the global electric field projection on
the vector k, while the second one is proportional to the electric charge difference between
the two colliding particles. As shown below, these two contributions lead to very different
modelled transport terms in the mean electric charge transport equation.

3. Eulerian modelling of the electrostatic phenomenon

In order to derive a continuum model for the solid phase, we use the fact that the motion
of particles in a rapid granular flow is very similar to the motion of molecules in a gas.
This allows us to use the kinetic theory to obtain the governing equation of the solid phase.
Let f (x, cp, ξp, t)δxδcpδξp be the mean probable number of particles with their centre in
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the volume element [x, x + δx] at time t, with a velocity in the range [cp, cp + δcp] and
an electric charge in the range [ξp, ξp + δξp]. Using this function, we have the definition
for the particle number density (np) and the mean value for any property φp

np =

∫

R3

∫

R

f dξp dcp, (3.1)

Φp = 〈φp〉 =
1

np

∫

R3

∫

R

φp f dξp dcp. (3.2)

This allows us to define some useful quantities such as the particle mean velocity

Up,i = 〈cp,i〉 =
1

np

∫

R3

∫

R

cp,i f dξp dcp. (3.3)

The particle velocity fluctuation

c′

p,i = cp,i − Up,i. (3.4)

The particle kinetic stress tensor

Rp,ij = 〈c′

p,ic
′

p,j〉 =
1

np

∫

R3

∫

R

c′

p,ic
′

p,j f dξp dcp. (3.5)

Assuming an uncorrelated motion of particles (Fox 2014), the granular temperature can
be defined as

Θp =
Rp,ii

3
. (3.6)

The particle mean electric charge

Qp = 〈ξp〉 =
1

np

∫

R3

∫

R

ξp f dξp dcp. (3.7)

The particle electric charge fluctuation

ξ
′

p = ξp − Qp. (3.8)

The particle electric charge covariance

Qp = 〈ξ
′

pξ
′

p〉 =
1

np

∫

R3

∫

R

ξ
′

pξ
′

p f dξp dcp. (3.9)

3.1. Boltzmann equation

The dynamic evolution of f is given by the Boltzmann equation

∂f

∂t
+

∂

∂xi

[cp,i f ] +
∂

∂cp,i

[〈

dup,i

dt

∣

∣

∣

∣

x, cp, ξp

〉

f

]

+
∂

∂ξp

[〈

dqp

dt

∣

∣

∣

∣

x, cp, ξp

〉

f

]

=

(

∂f

∂t

)

coll

. (3.10)

The notation 〈G|x, cp, ξp〉 is a short form for the conditional expectation 〈G|xp =

x, up = cp, qp = ξp; t〉.
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The right-hand side of the Boltzmann equation accounts for the variation due to

particle–particle collisions. We consider that the particle charge only changes due to the

collisions with other particles, hence

dqp

dt
= 0. (3.11)

3.2. General mean transport equation

From the Boltzmann equation, we can derive a general mean transport equation for any
particle property φp (Chapman & Cowling 1970)

Dnp〈φp〉

Dt
+ np〈φp〉

∂Up,i

∂xi

+
∂np〈φpc′

p,i〉

∂xi

− np

〈

Dφp

Dt

〉

− np

〈

c′

p,i

∂φp

∂xi

〉

− np

〈

1

mp

〈Fi|x, cp, ξp〉
∂φp

∂c′

p,i

〉

+ np

DUp,i

Dt

〈

∂φp

∂c′

p,i

〉

+ np

〈

c′

p,j

∂φp

∂c′

p,i

〉

∂Up,i

∂xj

= C(φp). (3.12)

The right-hand side of the equation represents the mean rate of change for φp due

to particle–particle collisions. Following the formulation proposed by Jenkins & Savage

(1983) this term can be written as the contribution of a source term and a flux term

C(φp) = χ(φp) −
∂

∂xi

θi(φp), (3.13)

where

χ =
d2

p

2

∫

g·k>0

�φp(gr,iki)f
(2) dk dξp1 dξp2 dcp1cp2, (3.14)

θi = −
d3

p

2

∫

g·k>0

δφp(gr,iki)f
(2)ki dk dξp1 dξp2 dcp1cp2, (3.15)

where f (2)
= f (2)(xp1, cp1, ξp1, xp1 + dpk, cp2, ξp2, t) is the two particle pair distribution.

Here, �φp accounts for the total variation of the property φp during the collision

�φp = φ
+

p1 − φp1 + φ
+

p2 − φp2. (3.16)

Also, δφp is the variation of φp for the particle p1

δφp = φ
+

p1 − φp1. (3.17)

In order to close the collision integrals in the mean charge equation, we need to give
an expression for the joint charge–velocity two particle number density function f (2).
Assuming uncorrelated colliding particle velocities and charges in the frame of the Enskog
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theory of a dense gas (Chapman & Cowling 1970), Kolehmainen et al. (2018) and Ray
et al. (2019) proposed the following model:

f (2)
= g0 f (xp1, cp1, ξp1, t)f (xp2, cp2, ξp2, t), (3.18)

where g0 is the radial distribution function and f (xp, cp, ξp, t) is given by uncorrelated

charge and velocity Maxwellian distributions

f =
1

(2πQp)1/2

np

(2πΘp)3/2
exp(−ξ ′2

p /Qp) exp(−c
′2
p /Θp). (3.19)

This form for the particle number density function has the disadvantage of forcing a
null correlation between the particle velocity and electric charge (〈c′

p,iξ
′

p〉 = 0). However,
with such an assumption, the electric charge transport by the random motion of particles
cannot be accounted for. In our study, we show that the particle electric charge probability
distribution does not have to be assumed, and we show that the charge–velocity correlation

can be accounted for by using the definition of the probability density function

∫

∞

−∞

∫

∞

−∞

ξp1 f (2) dξp1 dξp2 = 〈ξp1|xp1, cp1, xp2, cp2〉f
∗(2). (3.20)

Here, f ∗(2)
= f ∗(2)(xp1, cp1, xp2, cp2, t) is the two particle velocity distribution, which

does not depend on the electric charge of the particles.
Let us assume that the electric charge of the first particle is not conditioned by the

presence of the second colliding particle, therefore

〈ξp1|xp1, cp1, xp2, cp2〉 = 〈ξp1|xp1, cp1〉. (3.21)

To take into consideration the correlation between the property ξp and the particle
velocity, we chose a linear model for the mean electric charge conditioned by the particle
velocity of the form

〈ξp1|xp1, cp1〉 = 〈ξp〉(xp1) + Bjc
′

p,j, (3.22)

where the vector components Bi are chosen so that the mean charge and charge–velocity
correlations are correctly represented by (3.22)

Bi = R−1
p,ij〈ξ

′

pc′

p,j〉, (3.23)

which, in a hydrodynamic isotropic model, simplifies to

Bi =
〈ξ ′

pc′

p,i〉

Θp

. (3.24)

To close f ∗(2) we can use the standard assumptions of the kinetic theory of granular
flow. In particular, we may assume that the colliding particle velocities are not correlated
(molecular chaos)

f ∗(2)
= g0 f ∗(xp1, cp1, t)f ∗(xp2, cp2, t). (3.25)

We can notice that, in turbulent flows, this assumption is valid only for very inertial
particles which are not affected by the local turbulent eddies (Simonin, Février &
Laviéville 2002).
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In order to fully close the electric charge collision term, we need to specify a form for
the particle velocity distribution. We have chosen to use a Maxwellian distribution for the
sake of simplicity (3.26).

f ∗
=

np

(2πΘp)
3/2

exp(−c′2
p /Θp). (3.26)

If the Maxwellian distribution happens to be too restrictive, we can easily extend our
model by using more complex propositions (Grad 1949; Jenkins & Richman 1985).

With such a modelling approach, the collisions terms can be fully computed. It is worth

noting that this joint velocity–charge probability density function is only necessary for the
charge transport equation. So all the standard models developed for the particle momentum
and granular temperature equations are still fully compatible with our proposition.

4. Mean charge transport equation

If we now use φp = ξp in equation (3.12), we find the following expression for the charge
transport equation:

np

∂Qp

∂t
+ npUp,i

∂Qp

∂xi

+
∂np〈ξ

′

pc′

p,i〉

∂xi

= C(ξp). (4.1)

From this equation, two terms need to be closed: the last term on the left-hand side

which accounts for the correlation between the charge and the velocity and the right-hand

side term that represents the mean rate of change for the charge due to particle–particle
collisions.

Due to the charge conservation law, it can be shown that the source term of the collision
integral vanishes

χ(ξp) = 0. (4.2)

To compute the flux term, we use its definition (3.15) substituting φp by ξp

θi = −
d3

p

2

∫

R3

∫

R3

∫

R

∫

R

∫

g·k>0

(ξ
+

p1 − ξp1)(gr,mkm)f (2)ki dk dξp1 dξp2 dcp1cp2, (4.3)

where the electric charge exchange during a collision is given by (2.8)

θi = −
d3

p

2

∫

R3

∫

R3

∫

R

∫

R

∫

g·k>0

−βEjkj(gr,mkm)
9/5f (2)ki dk dξp1 dξp2 dcp1cp2

−
d3

p

2

∫

R3

∫

R3

∫

R

∫

R

∫

g·k>0

β

γ
(ξp2 − ξp1)(gr,mkm)

9/5f (2)ki dk dξp1 dξp2 dcp1cp2. (4.4)

From the equation above, we can see that we have to solve the following integral:

∫

∞

−∞

∫

∞

−∞

(ξp2 − ξp1)f
(2) dξp1 dξp2. (4.5)

This yields integrals similar to (3.20). These terms will be treated using the
methodology explained in the previous section. This will allow us to fully compute the
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collisional flux term

θi(ξp) = d3
pβEig0n

2
p(Θp)

9/10
Υ

(1.1)
− d4

p

β

γ

∂Qp

∂xi

g0n
2
p(Θp)

9/10
Υ

(1.2)

+ g0d5
p

∂Ut

∂xj

β

γ

∂Qp

∂xl

(Θp)
2/5

n
2
pΨ

(1.3)

tlji Υ
(1.3)

+ d3
p

β

γ
Big0n

2
p(Θp)

7/5
Υ

(1.4)
− d4

pg0

∂Ut

∂xj

β

γ
Bln

2
p(Θp)

9/10
Ψ

(1.5)

ltji Υ
(1.5)

, (4.6)

where Υ (·) are constants (given in appendix A), and Ψ
(·)

tlji are known fourth-order constant
tensors.

It is also worth noting that this equation is very similar to the one proposed by
Kolehmainen et al. (2018). However, our model shows an additional contribution of
the two last term on the right-hand side. These terms come from the charge–velocity
correlation, which is neglected in the Kolehmainen et al. (2018) approach (corresponding
to Bi = 0).

If we insert this last equation into the collision term definition, and we neglect any term
proportional to the mean particle velocity gradient, we get

C(ξp) = −
∂

∂xi

(σ
coll
p Ei) +

∂

∂xi

(

npDcoll
p

∂Qp

∂xi

)

−
∂

∂xi

(npηcoll〈ξ
′

pc′

p,i〉), (4.7)

Dcoll
p = d4

p

β

γ
g0np(Θp)

9/10
Υ

(1.2)
, (4.8)

σ
coll
p = d3

pβg0n
2
p(Θp)

9/10
Υ

(1.1)
, (4.9)

ηcoll =
3

2
d3

p

β

γ
g0npΘ

2/5
p Υ

(1.4)
. (4.10)

The mean collision term given by (4.7) represents a mean electric charge transport
due to the local triboelectric transfer of charge between colliding particles given by
(2.12) and (2.13). The first contribution on the right-hand side is due to the tribocharging

effect occurring during particle–particle collisions in the presence of a global electric
field. This contribution is written as the divergence of a collisional triboelectrical current
density obeying a mesoscopic Ohm’s law. Indeed, the corresponding electric charge flux
is given equal to the product of the global electric field by a collisional triboconductivity
coefficient σ coll

p depending on the particle number density squared and on the granular

temperature at the power 9/10. The second contribution represents the triboelectric
effect due to the difference of the electric charge between the colliding particles and is
written as a dispersion term proportional to the mean charge gradient and a collisional
dispersion coefficient Dcoll

p . In addition, we remark that there is an extra term involving the

charge–velocity correlation.

In order to have an idea of the behaviour of these coefficients, we can plot them for a
common practical configuration. For this purpose, we choose polyethylene particles, the
particle properties are described in table 1. In figures 1 and 2, we show the value of the
collisional dispersion and triboconductivity coefficients in function of the solid volume
fraction (αp = npmp/ρp), for different values of the granular temperature. We can notice
that both coefficients grow with the solid volume fraction. This is expected because the
particle–particle collision frequency increases with the solid volume fraction. Also, both
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Property Value

dp 1600 µm

ρp 850 kg m−3

Y 2 GPa

ν 0.46

ρg 22 kg m−3

µg 1.54 × 10−5 Pa s

TABLE 1. Polyethylene particle properties.
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FIGURE 1. Electric charge collisional dispersion coefficient.

coefficients increase with the particle granular temperature. This is also due to the fact
that the particle–particle collision frequency increases with the granular temperature.

Finally, the mean charge transport equation may be written as

np

∂Qp

∂t
+ npUp,i

∂Qp

∂xi

+
∂

∂xi

[np(1 + ηcoll)〈ξ
′

pc′

p,i〉]

= −
∂

∂xi

(σ
coll
p Ei) +

∂

∂xi

(

npDcoll
p

∂Qp

∂xi

)

. (4.11)

5. Charge–velocity correlation modelling

5.1. Charge–velocity correlation equation

The last term to be closed in the mean charge transport equation (4.11) is the charge
velocity correlation 〈ξ ′

pc′

p〉. To accomplish this, we write a transport equation for the
correlation between the particle velocity and electric charge derived from the Boltzmann
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FIGURE 2. Collisional triboconductivity coefficient.

equation (3.10). Therefore, we set φp = ξpc′

p,i in the general mean transport equation (3.12)

np

D〈ξpc′

p,i〉

Dt
+

∂np〈ξ
′

pc′

p,ic
′

p,j〉

∂xj

+ np〈c
′

p,ic
′

p,j〉
∂Qp

∂xj

+ np〈c
′

p,jξp〉
∂Upi

∂xj

= np

〈

1

mp

〈Fi|x, cp, ξp〉ξ
′

p

〉

+ C(ξpc′

p,i) − QpC(c′

p,i). (5.1)

If we develop the term 〈Fiξ
′

p/mp〉 using particle Newton equation (2.1) we find

〈

1

mp

〈Fi|x, cp, ξp〉ξ
′

p

〉

= −

〈

Vp

mp

〈

∂Pg@p

∂xi

|x, cp, ξp

〉

ξ
′

p

〉

−

〈

1

τp

(cp,i − 〈ug@p,i|x, cp, ξp〉)ξ
′

p

〉

+ 〈giξ
′

p〉 +

〈

1

mp

ξ
′

pξpEi

〉

. (5.2)

We simplify this expression by assuming that the fluid properties of the undisturbed flow
at the particle position are not correlated with the particle electric charge. Additionally, we
assume that the particle response time is not correlated with the particle velocity

〈

1

mp

〈Fi|x, cp, ξp〉ξ
′

p

〉

= −
1

�τp

〈c′

p,iξ
′

p〉 +
1

mp

〈ξ
′

pξ
′

pEi〉, (5.3)

where

�τp =

〈

1

τp

〉−1

. (5.4)

We have also used the following equalities: 〈cp,iξ
′

p〉 = 〈c′

p,iξ
′

p〉 and 〈ξ ′

pξp〉 = 〈ξ ′

pξ
′

p〉.
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Now we can focus on the right-hand side of the charge–velocity correlation (5.1). In
order to simplify the collision term, we neglect the mean velocity and granular temperature
gradients. With these simplifications, the collision integrals can be computed

C(ξpc′

p,i) − QpC(c′

p,i) = −Υ
(2.1) 1

2
(1 + ec)d

2
pg0Bin

2
p(Θp)

3/2

−
1

2
(3 − ec)Υ

(2.2)d2
p

β

γ
g0n

2
pBi(Θp)

19/10

+ ecΥ
(2.3)d2

pβEig0(Θp)
7/5

n
2
p

− ecΥ
(2.4)d3

pg0

β

γ

∂Qp

∂xi

(Θp)
7/5

n
2
p. (5.5)

The first two terms on the right-hand side of the equation are the destruction of the
correlation due to the randomization of the particle velocities. The last two terms may
lead to either a production or destruction of the charge–velocity correlation due to the
charge transfer during the collision.

5.2. Charge–velocity correlation algebraic model

In order to close the charge transport equation, we should need to solve the charge–velocity

correlation equation. This approach has different difficulties including the computation
of three coupled new differential equations with specific wall boundary conditions and
closure model assumptions for third-order charge–velocity correlations. A simpler way

consists of deriving a model assuming the following hypothesis:

(i) Steady state.
(ii) The third-order moment 〈ξ ′

pc′

p,ic
′

p,j〉 is neglected.
(iii) The charge covariance term 〈ξ ′

pξ
′

pEi〉 is neglected.

(iv) The velocity gradient on the left-hand side of (5.1) is also neglected.

With these simplifications, we can derive an algebraic model for the charge–velocity
correlation written as the sum of two contributions, a mean charge gradient contribution
and a flux proportional to the global electric field

〈ξ
′

pc′

p,i〉 = −
Θp + Υ (ξ)τ

−1
ξ dpΘ

1/2
p

1

3
(1 + ec) τ−1

c + �τp
−1

+
2

5
(3 − ec)τ

−1
ξ

∂Qp

∂xi

+
ecΥ

(2.3)d2
pβg0(Θp)

7/5
np

1

3
(1 + ec)τ

−1
c + �τp

−1
+

2

5
(3 − ec)τ

−1
ξ

Ei, (5.6)

where τc is the characteristic particle collision time

τc =

(

npg0πd2
p

√

16

π

Θp

)−1

. (5.7)

Also, τξ is the characteristic time of electric charge covariance destruction by collisions

τξ =

(

Υ
(3.2)d2

p

β

γ
npg0Θ

9/10
p

)−1

. (5.8)

This time can be found from the charge covariance transport equation (see appendix B).
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We can also write the charge–velocity correlation (5.6) in a more compact form

np〈ξ
′

pc′

p,i〉 = −npDkin
p

∂Qp

∂xi

+ σ
kin
p Ei. (5.9)

Leading to a closed mean electric charge equation

np

∂Qp

∂t
+ npUpi

∂Qp

∂xi

= −
∂

∂xi

[(σ coll
p + (1 + ηcoll)σ

kin
p )Ei]

+
∂

∂xi

[

np(D
coll
p + (1 + ηcoll)D

kin
p )

∂Qp

∂xi

]

. (5.10)

The above equation shows that accounting for the charge–velocity correlation leads
to additional contributions for both the electric charge dispersion coefficient and the
triboconductivity coefficient

Dkin
p =

Θp + Υ (ξ)τ
−1
ξ dpΘ

1/2
p

1

3
(1 + ec)τ

−1
c + �τp

−1
+

2

5
(3 − ec)τ

−1
ξ

(5.11)

σ
kin
p =

ecΥ
(2.3)d2

pβg0(Θp)
7/5

n
2
p

1

3
(1 + ec)τ

−1
c + �τp

−1
+

2

5
(3 − ec)τ

−1
ξ

. (5.12)

The first coefficient (Dkin
p ) accounts for the dispersion of the electric charge due to

transport by the random motion of particles. This dispersion coefficient has already been

studied in a more simplified configuration, such as particle self-dispersion in particle-laden
flows (Laviéville, Deutsch & Simonin 1995; Abbas, Climent & Simonin 2009). In
particular, they found that the particle self-diffusion coefficient in homogeneous isotropic
flows can be written as

Dp = τ
L
p Θp, (5.13)

where τ L
p , the particle Lagrangian integral time scale given by the integration of the

particle velocity autocorrelation function, is written as

1

τ L
p

=
1 + ec

3

1

τc

+
1

�τp

. (5.14)

And we can notice that, when the electric charge transfer by collisions is negligible

(β/γ → 0), the charge kinetic dispersion coefficient Dkin
p given by (5.11) is fully identical

to the self-dispersion coefficient Dp given above (5.13) and (5.14).
Equation (5.11) reveals the three main limiting mechanisms for the particle electric

charge kinetic dispersion: the particle–particle collisions, the drag force and the particle
charge transfer. When there are many collisions (small values of τc) the mean free path
of particles is very small, which prevents the particles from travelling long distances,
diminishing the particle dispersion. The second mechanism pointed out by Laviéville
et al. (1995) is the drag force (�τp). Indeed, the effect of the fluid drag force slows down
the particle fluctuating motion. This imposes a characteristic distance that a single particle
can travel before being stopped due to the drag force. As we increase the effect of the
drag force this distance will be smaller, therefore reducing the electric charge dispersion.
Finally, the third term limiting the dispersion phenomenon is due to the electric charge
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FIGURE 3. Kinetic dispersion coefficient Dkin
p weighted by (1 + ηcoll) as a function of the

solid volume fraction.

transfer during collisions. During its random motion, a single particle will encounter other
particles and will transfer some of its electric charge to them. Therefore, the particle will
gradually lose the information about its initial electric charge value. Hence, the electric
charge dispersion will be impacted negatively. This effect can be characterized by the
characteristic time of electric charge covariance destruction by collision (τξ ). Indeed,
the destruction of the charge covariance and the decorrelation of the charge measured
along the particle trajectory are both due to the same mechanism of exchange of charge
between particles during collisions. This extra term is a new contribution that has not been
remarked in previous works. In conclusion, the dispersion coefficient might be limited
by three different factors: particle–particle collisions, the drag force and charge transfer
during a collision. The phenomenon with the smallest characteristic time will be the
limiting factor.

In the charge transport equation, the contribution of this dispersion coefficient is
weighted by the factor (1 + ηcoll), this contribution is represented in figure 3. For simplicity
we have chosen to neglect the contribution of the drag term, which is effective only for
very dilute flows. Because the driving mechanism for this dispersion phenomenon is the
transport by the random motion of particles, it is expected that the dispersion coefficient
increases with the particle granular temperature. This graph also shows that this term
is high in both very dilute and very dense systems. However, as we will show later, for
dense configurations, the collisional dispersion coefficient is always larger than the kinetic
contribution.

In a previous study conducted by Kolehmainen et al. (2018), they suggested that the
collisional dispersion coefficient is known to underestimate the dispersion process; and
they added a kinetic dispersion coefficient by analogy with particle temperature dispersion
in granular flows (Hsiau & Hunt 1993).

The dispersion coefficient used in their work is in fact identical to the self-diffusion
coefficient given by (5.13) and (5.14) when the effect of the drag force is negligible
(�τp ≫ τc). Therefore, our proposed approach, based on the modelling of the particle

charge–velocity correlation, leads to a more general expression for the kinetic dispersion
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FIGURE 4. Kinetic triboconductivity coefficient weighted by (1 + ηcoll) as a function of the
solid volume fraction.

coefficients. Indeed, the kinetic dispersion coefficient is found to depend also on the effect
of the drag force and of the electric charge transfer during particle–particle collisions.

In the frame of the derivation of the simplified model for the charge–velocity
correlation (5.6), in addition to the kinetic dispersion contribution, we obtain a transport
term by a kinetic triboelectrical current density obeying a mesoscopic Ohm’s law.
The corresponding electric charge flux is given as equal to the product of the global

electric field and a kinetic triboconductivity coefficient σ
kin
p . The kinetic triboconductivity

coefficient depends on the particle number density and granular temperature, and also on
the different characteristic time scales of the limiting mechanisms of the charge kinetic
dispersion: τc, �τp and τξ . As an example, we represented this coefficient as a function of
the solid volume fraction for different values of granular temperature in figure 4.

6. Electric charge dispersion

Our modelling approach shows that the dispersion of electric charge can be split into
two different contributions: collisional and kinetic. In this part, we compare them both
in different configurations. Figure 5 shows the value of the two dispersion coefficients as
a function of αp, for Θp = 0.01 m2 s−2. As we can see, for the dilute system the kinetic
contribution is the most important. However, for dense systems, the collisional term is
dominant, despite the fact that the kinetic contribution also increases very rapidly. Also, it
is worth noting that, for an intermediate value of αp, the two terms have the same order of
magnitude and therefore both have to be considered.

To see the effect of these dispersion coefficients, we study one of the test cases
proposed by Kolehmainen et al. (2018). They studied a three-dimensional periodic box
of 192dp × 8dp × 8dp. Initially, the particles at x < 96dp are charged positively Qp = Q0

and the particles at x ≥ 96dp are charged negatively Qp = −Q0. An initial granular
temperature is imposed, and it remains constant during the simulation. We also neglect
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FIGURE 5. Collisional and kinetic dispersion coefficients as a function of the solid volume
fraction for Θp = 0.01 m2 s−2.

all the external forces (gravity, drag, electrostatic, etc.). For simplicity, in this part we
also neglect the triboconductivity effect; this is analysed in the next section. Using these
hypotheses, the charge transport equation can be simplified to a one-dimensional diffusion
equation

np

∂Qp

∂t
= np[Dcoll

p + (1 + ηcoll)D
kin
p ]

∂2Qp

∂x
2

. (6.1)

This equation can be solved analytically

Qp =

∞
∑

n=1

λ
n

exp(−(Dcoll
p + (1 + ηcoll)D

kin
p )(2πn/L)

2t) sin

(

2πnx

L

)

(6.2)

λ
n

=
2Q0

nπ

(1 − (−1)
n

), (6.3)

where L = 192dp is the box length in the x direction.
This equation allows us to study the evolution of the electric charge as a function

of time. For the simulation, we use the same type of particles as before and we set
αp = 0.60. In figure 6 we plot the particle charge spatial profile for different values of

the non-dimensional time t∗ = (
√

Θ/dp)t. As we can see, the electric charge is dispersed
inside the domain as the time passes and tends to reach the equilibrium value Qp = 0.

A more interesting analysis can be performed if we separate the kinetic and collisional
contributions to the dispersion mechanism. Figures 7, 8 and 9 show the particle charge

profile for a dense system (αp = 0.60), a dilute system (αp = 0.05) and an intermediate

system (αp = 0.55). The squares markers with a solid line represent the total dispersion,

the solid line represents for the collisional contribution and the dashed line is the
contribution of the kinetic term. As we can see, for dilute systems, the dispersion comes
almost exclusively from the kinetic dispersion coefficient contribution. On the contrary,
for dense systems, the collisional term accounts for most of the electric charge dispersion.
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FIGURE 6. Particle charge profile as a function of x/L at different times t∗ = (
√

Θ/dp)t.
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FIGURE 7. Particle charge profile at t∗ = 10 000 for αp = 0.60.

However, we can see that, for intermediate values, both coefficients are of the same order

of magnitude; they both need to be taken into account in order to accurately predict the
dispersion phenomenon.
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FIGURE 8. Particle charge profile at t∗ = 200 for αp = 0.05.
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FIGURE 9. Particle charge profile at t∗ = 20 000 for αp = 0.55.

7. Triboconductivity effect

In addition to the dispersion phenomenon, we found that both the collision term (4.7)

and the charge–velocity correlation (5.6) lead to electrical current density transport effects
in the mean electric charge equation. These triboelectrical current density contributions
obey separate mesoscopic Ohm’s laws in terms of collisional and kinetic triboconductivity
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FIGURE 10. Collisional and kinetic triboconductivity coefficient.

coefficients, σ
coll
p and σ

kin
p , respectively. In figure 10, we represent both contributions as a

function of the solid volume fraction. For this particular type of particle, we can see that
the kinetic contribution can be dropped for high values of αp.

The charge transport equation (5.10) for this simplified problem is written

np

∂Qp

∂t
= −(σ

coll
p + (1 + ηcoll)σ

kin
p )

∂E

∂x

+
∂

∂x

[

npDcoll
p + np(1 + ηcoll)D

kin
p

∂Qp

∂x

]

. (7.1)

Now, taking the divergence of (2.5), we have

∂E

∂x

= −
∂2ϕ

∂x
2
. (7.2)

Using (2.4), and given that the medium permittivity is constant, we obtain

∂E

∂x

=
̺

ε0

, (7.3)

where, ̺ = npQp is the volume charge density. Finally, the divergence of the electric field
can be written as

∂E

∂x

=
npQp

ε0

. (7.4)

This leads to a closed mean charge transport equation of the form

np

∂Qp

∂t
= −np

σ coll
p + (1 + ηcoll) σ kin

p

ε0

Qp +
∂

∂x

[

npDcoll
p + np (1 + ηcoll) Dkin

p

∂Qp

∂x

]

. (7.5)

If we apply this equation to the simplified problem described before, we find the analytic
solution (7.6). Using the same parameters as before, we can determine the dynamic
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FIGURE 11. Particle charge profile as a function of x/L at different times t∗ = (
√

Θ/dp)t.

evolution of the electric charge (figure 11). As we can see, the electric charge reaches
the equilibrium value faster, which confirms the fact that the triboconductivity helps the
redistribution of the electric charge. However, it is worth noting that the triboconductivity
effect seems to be more important than the dispersion process, this was also reported in
the literature (Kolehmainen et al. 2018).

Qp =

∞
∑

n=1

λ
n

exp([−((σ
coll
p + (1 + ηcoll)σ

kin
p )/ε0)

− (Dcoll
p + (1 + ηcoll)D

kin
p )(2πn/L)

2]t) sin

(

2πnx

L

)

. (7.6)

In order to verify this, we rewrite the equation (7.5), so we make the characteristic times

for the dispersion (τD) and the triboconductivity (τσ ) appear. Taking l as the dispersion

characteristic length, we have

∂Qp

∂t
= −

(

(1 + ηcoll)
1

τ kin
σ

+
1

τ coll
σ

)

Qp + l2

(

(1 + ηcoll)
1

τ kin
D

+
1

τ coll
D

)

∂2Qp

∂x
2

, (7.7)

τσ =
ε0

σp

, (7.8)

τD =
l2

Dp

. (7.9)

If we chose l = L, then we can represent them as a function of the solid volume fraction
(figure 12). We remark that the triboconductivity characteristic time is much smaller than
the dispersion characteristic time for almost all values of αp. For dense regimes, where the
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FIGURE 12. Triboconductivity and dispersion characteristic times as a function of solid

volume fraction for Θ = 0.01 m2 s−2.

collisional triboconductivity and dispersion coefficient are much larger than their kinetic
counterparts, the ratio between these two characteristic times reduces to

τ coll
σ

τ coll
D

∝

(

dp

l

)2

. (7.10)

This shows, that for dense systems, the dispersion effect is only comparable to the
triboconductivity when the dispersion characteristic length scale is of the same order as
the particle diameter.

8. Conclusions

In this work, we derived an Eulerian particle model for the mean electric charge equation
in gas–solid flow using the framework provided by the kinetic theory of rapid granular
flows. The transport equation for the mean electric charge was fully closed using less
restrictive hypotheses than previous works found in the literature. The collision term
in the transport equation was closed without assuming the electric charge probability
density function explicitly. We proposed a linear model for the mean electric charge
conditioned by the instantaneous particle velocity to account for the charge–velocity

correlation. To close the charge–velocity correlation, we also derived the corresponding

transport equation with the same set of hypotheses for the collision term modelling.

Then, by using a series of additional hypotheses, we derived an algebraic model for

the charge–velocity correlation from the corresponding transport equation. Finally, the

modelled particle–particle collision term and electric charge–velocity correlation are

considered in the electric charge transport equation, allowing us to identify their main
effects. First of all, we found a charge dispersion phenomenon written as the sum of two
separate contributions: a collisional contribution due to the electric charge transfer during
particle–particle collisions and a kinetic contribution due to the transport of electric charge
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by the random motion of particles. Each contribution was written using separate gradient
model approximations, leading us to derive an electric charge dispersion coefficient as the
sum of two separate collisional and kinetic contributions. We showed that the collisional
dispersion coefficient is predominant in dense regimes and that the kinetic dispersion
coefficient is the most important in dilute ones. There is, nevertheless, an intermediate
region where both coefficients have to be taken into account in order to accurately predict
the dispersion effect. In addition to the dispersion phenomenon, we found than both
the collision term and the charge–velocity correlation lead to electrical current density
transport effects in the mean electric charge transport equation. These triboelectrical
current density contributions obey separate mesoscopic Ohm’s laws in terms of collisional
and kinetic triboconductivity coefficients, σ coll

p and σ kin
p , respectively. Finally, in order to

determine which is more important between the dispersion and the triboelectrical current
effects, we derived their characteristic times. These parameters allowed us to show that, for
dense regimes, both mechanisms are of the same order of magnitude if the characteristic
dispersion length scale is comparable with the particle diameter. For dilute regimes, the
analysis is more complicated and depends on the particle size and physical properties, the
solid fraction and the particle agitation.
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Appendix A. Integral collision coefficients

The coefficients appearing in the collision terms (4.6) and (5.5) have the following
numerical values:

Υ
(1.1)

=
214/55

3 × 7
Γ

(
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2

)

Γ

(

12

5

)
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Υ
(1.2)
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Υ
(2.3)

=
214/55

3 × 19
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(
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(
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(2.4)
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Γ
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3
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)

,

Υ
(ξ)

=
Υ (2.4)

Υ (3.2)
,

where Γ is the gamma function.

Appendix B. Electric charge covariance transport equation

Following the mean general transport equation (3.12), we set φp = ξ ′

pξ
′

p

np

D〈ξ ′

pξ
′

p〉

Dt
+ 2np〈ξ

′

pc′

p,i〉
∂Qp

∂xi

+
∂

∂xi

(np〈ξ
′

pξ
′

pc′

p,i〉) = C(ξpξp) − 2QpC(ξp), (B 1)

C(ξpξp) = d3
pβEj

∂Qp

∂xj

(Θp)
9/10

n
2
pg0Υ

(3.1)

− d2
p

β

γ
〈ξ

′

pξ
′

p〉n
2
pg0(Θp)

9/10
Υ

(3.2)

− d2
p

β

γ
Q2

pn
2
pg0(Θp)

9/10
Υ

(3.2)

+ d2
pβ

2ElEjn
2
pg0(Θp)

13/10
Υ

(3.4)

lj

− d2
pEl

β2

γ
dp

∂Qp

∂xj
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(3.9)

ij

)

. (B 2)

Therefore, we can identify a destruction term of the electric charge covariance due to
particle–particle interactions

np

∂〈ξ ′

pξ
′

p〉

∂t
+ · · · = −np

1

τξ

〈ξ
′

pξ
′

p〉 + · · · , (B 3)
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where τξ is the characteristic time of electric charge covariance destruction by collisions

τξ =

(

Υ
(3.2)d2

p

β

γ
npg0Θ

9/10
p

)−1

. (B 4)

With

Υ
(3.2)

=
224/55

7
Γ

(

24

10

)

Γ

(

3

2

)

. (B 5)
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Chapter 3

Eulerian modeling of particle
charge-velocity covariance and
particle charge variance

3.1 Introduction

In the previous section, we derived the transport equation for the mean electric charge of
particles. The particle charge-velocity covariance term in this equation was closed using a
simple algebraic model. However, in order to derive this algebraic model, we had to neglect
several terms that could be important in certain situations. More specifically, we dropped
the terms related to the particle mean velocity gradient and the covariance transport due to
the random motion of particles. These terms could become dominant in high shear flow or
in high dilute configurations (Simonin et al., 1995; Wang et al., 1998). In addition to this,
the charge variance term was completely neglected, without evaluating in which situations
this assumption is valid.

Therefore, in this chapter, we extend the previous approach to a more complete descrip-
tion. In particular, we will study a model retaining the full transport equations for the two
second order moments: the charge-velocity covariance and the charge variance. In addition
to this, we will show that the kinetic theory of granular flow can be used to derive simple
algebraic closure law for the third order moments.

3.2 Particle velocity-charge covariance transport equa-

tion

The particle velocity-charge covariance transport equation can be derived using the general
mean transport equation for a property φ with φ = ξ′

pc′

p,i.
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np

D
〈

ξ′

pc′

p,i

〉

Dt
+

∂np

〈

ξ′

pc′

p,ic
′

p,j

〉

∂xj

+ npRp,ij
∂Qp

∂xj

+ np

〈

c′

p,jξ
′

p

〉 ∂Up,i

∂xj

= np

〈

1

mp

〈Fi | x, cp, ξp〉 ξ′

p

〉

+ C
(

ξpc′

p,i

)

− QpC
(

c′

p,i

)

,

(3.1)

Similarly to the previous chapter, the force term is expanded as:

〈

1

mp

〈Fi | x, cp, ξp〉 ξ′

p

〉

= −
〈

Vp

mp

〈

∂Pg@p

∂xi

| x, cp, ξp

〉

ξ′

p

〉

−
〈

1

τp

(cp,i − 〈ug@p,i | x, cp, ξp〉) ξ′

p

〉

+
〈

giξ
′

p

〉

+

〈

1

mp

ξ′

pξpEi

〉

.

(3.2)

We will assume that the fluid pressure and velocity are not correlated with the particles
electric charge and velocity. We will also consider that the macroscopic electric field is not
correlated with the particle fluctuant electric charge. With these hypotheses, the force term
reduces to:

〈

1

mp

〈Fi | x, cp, ξp〉 ξ′

p

〉

= − 1

τp

〈

c′

p,iξ
′

p

〉

+
1

mp

〈

ξ′

pξ′

p

〉

Ei, (3.3)

The collision terms in the RHS of equation 3.1 were already derived in the previous
chapter:

C
(

ξpc′

p,i

)

−QpC
(

c′

p,i

)

= −1 + ec

3

1

τc

np〈ξ′

pc′

p,i〉 − 3 − ec

5

1

τξ

np〈ξ′

pc′

p,i〉

+ λ2.1ec

√

Θp

dp

σcoll
p Ei − λ2.2ecnp

√

Θp

dp

Dcoll
p

∂Qp

∂xi

.

(3.4)

With λ2.1 ≈ 0.5422 and λ2.2 ≈ 0.5422

We recall that τc is the characteristic particle-particle collision time and τξ is the charac-
teristic time of destruction of the particle charge variance:

τc =
(

4
√

πnpg0d
2
p

√

Θp

)−1
(3.5)
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τξ =
(

λ2.3npg0d
2
pγΘ

9/10

p

)

−1
(3.6)

with λ2.3 ≈ 21.90

Similarly to the mean charge transport equation, the covariance transport equation de-
pends on a higher order statistical moment: 〈ξ′

pc′

p,ic
′

p,j〉, which represents the transport of the
charge-velocity covariance due to the random motion of particles. In this study, we propose
a simple closure modeling for this term based on a simplification of its transport equation,
following the methodology developed by Sakiz and Olivier (1999). First, we set φ = ξ′

pc′

p,ic
′

p,j

in the general mean transport equation. Then, after solving the collision integrals, we re-
duce the transport equation to an algebraic equation using a series of simplifying hypotheses.
From this equation, we can deduce an simple algebraic model for the third order moment
(see appendix 3.A for a detailed derivation):

〈ξ′

pc′

p,ic
′

p,j〉 =
1

K1

Dij − K2

K1 (K1 + 3K2)
Dmmδij (3.7)

with

K1 = np

[

1

τc

(

λ2.4 (1 + ec) − λ2.5 (1 + ec)
2
)

+
1

τp

+ λ2.6
1

τξ

]

, (3.8)

K2 = −np

τc

[

−λ2.7 (1 + ec) + λ2.8 (1 + ec)
2
]

, (3.9)

Dij = −npRp,jk

∂〈ξ′

pc′

p,i〉
∂xk

− npRp,ik

∂〈ξ′

pc′

p,j〉
∂xk

− npdpΘ
1/2

p (1 + ec)
1

τξ



λ2.9

∂
〈

ξ′

pc′

p,i

〉

∂xj

+ λ2.9

∂
〈

ξ′

pc′

p,j

〉

∂xi

+ λ2.10

∂
〈

ξ′

pc′

pn

〉

∂xn

δij





− λ2.11npdpΘ
1/2

p (1 + ec)
2 1

τξ





∂
〈

ξ′

pc′

pn

〉

∂xn

δij +
∂
〈

ξ′

pc′

p,i

〉

∂xj

+
∂
〈

ξ′

pc′

p,j

〉

∂xi



 .

(3.10)

With λ2.4 ≈ 6.667, λ2.5 ≈ 1.387, λ2.6 ≈ 3.201, λ2.7 ≈ 0.2667, λ2.8 ≈ 0.2607, λ2.9 ≈ 10.68,
λ2.10 ≈ 208.2, and λ2.11 ≈ 0.2048

We remark that, according to this algebraic model, the third order moment 〈ξ′

pc′

p,ic
′

p,j〉
contains a term involving product between some characteristic time, the kinetic stress tensor
and the gradient of the lower moments 〈ξ′

pc′

p,i〉 and 〈ξ′

pc′

p,j〉. This shows that, using some
simplifying hypothesis, a high order moment can be modeled as being proportional to the
gradient of the lower order moment.
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3.3 Particle charge variance transport equation

The electrostatic force in the particle velocity-charge covariance equation introduces a second
term that needs to be modeled: the particle charge variance 〈ξ′

pξ′

p〉. Similarly to the covariance
term, we can model the variance by writing its transport equation. Using the general mean
transport equation with φ = ξ′

pξ′

p, we obtain:

np

D
〈

ξ′

pξ′

p

〉

Dt
+ 2np

〈

ξ′

pc′

p,i

〉 ∂Qp

∂xi

+
∂np

〈

ξ′

pξ′

pc′

p,i

〉

∂xi

= C (ξpξp) − 2QpC (ξp) . (3.11)

To be consistent with the covariance equation, we calculated the collision terms in the
above equation neglecting the mean particle velocity gradient, the granular temperature
gradients and any cross product term between Qp, Ei, 〈ξ′

pc′

p,i〉. This led us to the following
expression:

C (ξpξp) − 2QpC (ξp) = np

(

− 1

τξ

+ λ3.1

(

Dcoll
p

)2 τc

d4
p

)

〈

ξ′

pξ′

p

〉

+ λ3.2

(

σcoll
p

)2 τc

npd2
p

EiEi +
∂

∂xi



λ3.3np

(

Dcoll
p

)2 τc

d2
p

∂
〈

ξ′

pξ′

p

〉

∂xi



 .

(3.12)

Where λ3.1 ≈ 21.29, λ3.2 ≈ 14.20 and λ3.3 ≈ 0.6278

Like the particle velocity-charge covariance transport equation, the charge variance equa-
tion depends on the higher order moment 〈ξ′

pξ′

pc′

p,i〉, which represents the transport of the
electric charge variance due to the random motion of particles. Using the approach taken
to model 〈ξ′

pc′

p,ic
′

p,j〉, we can also derive an algebraic model for this high order moment (see
appendix 3.B)

np〈ξ′

pξ′

pc′

p,i〉 = − npRp,ij

1
3

(1 + ec)
1
τc

+ 1
τp

+
(

λ3.4 − λ3.5γΘ
2/5

p

)

1
τξ

∂〈ξ′

pξ′

p〉
∂xj

(3.13)

with λ3.4 ≈ 2.806 and λ3.5 ≈ 1.017

As stated before, we can model this third order moment 〈ξ′

pξ′

pc′

p,i〉 as being proportional
to the gradient of the second order moment 〈ξ′

pξ′

p〉.
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Equations 3.1, 3.7, 3.11, and 3.13 give us a more complete closure modeling for the
covariance term in the mean electric charge transport equation. This approach uses the full
transport equations for the two second order moments 〈ξ′

pc′

p,i〉 and 〈ξ′

pξ′

p〉 coupled with two
algebraic closure laws for the thrid order moments 〈ξ′

pc′

p,ic
′

p,j〉 and 〈ξ′

pξ′

pc′

p,i〉.

3.4 Case of study

In order to gain a better understanding of the dynamics imposed by this set of equations,
we will solve these equation in the simple configuration already used in the previous chapter.
As a reminder, this test case consists in a 3D periodic box of length L. The particle density
number is constant and uniform inside the domain. The mean fluid and particle velocities
are zero. And the particles have an uniform constant granular temperature Θp. At t = 0 the
particles have a non-uniform electric charge distribution with particle positively charged on
the left and negatively charge on the right (equation 3.14). If needed, the initial condition
for particle velocity-charge covariance (〈c′

p,iξ
′

p〉) and particle charge variance (〈ξ′

pξ′

p〉) are set
to 0.

Qp (t = 0s) = −Qp,0 sin
(

2π
x

L

)

(3.14)

3.4.1 Dimensionless analysis

Given the simplicity of this system, we can rewrite the governing equations in a simpler
dimensionless form. We can choose Lref = L as reference length, Qp,ref = Qp,0 as reference

electric charge, Up,ref =
√

Θp as reference velocity, tref = L/
√

Θp as reference time, and Eref =
npQp,refL/ε0 as reference electric field. Using these characteristic scales, we can express the
governing equations as:

1. The dimensionless mean particle charge transport equation:

∂Q∗

p

∂t∗
+ (1 + ηcoll)

∂
〈

c∗′

p ξ∗′

p

〉

∂x∗
= − 1

τ ∗

σ

∂E∗

∂x∗
+

1

Pe

∂2Q∗

p

∂x∗2
(3.15)
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2. The dimensionless particle velocity-charge covariance transport equation:

∂
〈

c∗′

p ξ∗′

p

〉

∂t∗
+

(

1 + λ2.2ec
1

Pe

L

dp

)

∂Q∗

p

∂x∗
− λ2.1ec

1

τ ∗

σ

L

dp

E∗ − ue

uk

〈ξ∗′

p ξ∗′

p 〉E∗ =

−
(

1 + ec

3

1

τ ∗

c

+
1

τ ∗

p

+
3 − ec

5

1

τ ∗

ξ

)

〈

c∗′

p ξ∗′

p

〉

+

[

2 +
1

τ ∗

ξ

L

dp

(2λ2.9 + λ2.10) (1 + ec)

+ 3λ2.11
1

τ ∗

ξ

L

dp

(1 + ec)
2

]

1

K1 + K2

∂2〈ξ∗′

p c∗′

p 〉
∂x∗2

(3.16)

3. The dimensionless particle charge variance transport equation:

∂
〈

ξ∗′

p ξ∗′

p

〉

∂t∗
+ 2

〈

ξ∗′

p c∗′

p

〉 ∂Q∗

p

∂x∗
=



− 1

τ ∗

ξ

+ λ7
1

Pe2 τ ∗

c

(

L

dp

)4




〈

ξ∗′

p ξ∗′

p

〉

+ λ8
τ ∗

c

τ 2
σ

(

L

dp

)2

|E∗|2 + λ9
1

Pe2
τ ∗

c

(

L

dp

)2 ∂2
〈

ξ∗′

p ξ∗′

p

〉

∂x∗2

+





1 + ec

3

1

τ ∗

c

+
1

τ ∗

p

+
1

τ ∗

ξ



2.8 − 20.39
1

Pe
τ ∗

c

(

L

dp

)2








−1
∂2
〈

ξ∗′

p ξ∗′

p

〉

∂x∗2

(3.17)

And the dimensionless Maxwell equations can be written as:

E∗ = −∇φ∗ (3.18)

∇2φ∗ = −Q∗

p (3.19)

Where the dimensionless variables Q∗

p, E∗, x∗ and t∗ are given by:

Q∗

p =
Qp

Qp,0

(3.20) x∗ =
x

L
(3.21)

t∗ = t

√

Θp

L
(3.22) E∗ =

E

Eref

(3.23)

And the 7 dimensionless parameters are expressed as:
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Pe =
L
√

Θp

Dcoll
p

(3.24) τ ∗

σ =
ε0

σcoll
p

√

Θp

L
(3.25)

τ ∗

c = τc

√

Θp

L
(3.26) τ ∗

p = τp

√

Θp

L
(3.27)

ue

uk

=
1
2
ε0E

2
ref

1
2
npmpΘp

(3.28)
L

dp

(3.29)

ec (3.30)

This non-dimensionalization process have revealed that the original system of equations
can be expressed as a function of 7 independent dimensionless parameters: Pe, τ ∗

c , τ ∗

p , τ ∗

σ ,
L/dp, ue/uk and ec. The dimensionless parameters τ ∗

ξ and ηcoll can be written as a function of
the previous dimensionless parameters:

τ ∗

ξ = λ′Pe

(

dp

L

)2

(3.31)

ηcoll = λ′′
1

Pe

L

dp

(3.32)

with λ′ = 12 and λ′′ ≈ 3.256

Contrary to the previous chapter’s model, an analytical solution cannot be derived for
this more complex approach. Therefore, we solve these equations using an explicit adaptive
Runge-Kutta method of 7th order (Fehlberg, 1968). All the spatial derivatives are approxi-
mated with a 8th central finite difference scheme.

3.5 Two transport equations model

Analyzing equation 3.16, we notice that the charge variance term could be neglected if the
fluctuant kinetic energy is much higher than the electrostatic potential energy. In this case,
the particle charge variance equation is not longer needed and the system is governed only
by equations 3.15 and 3.16. We will start by analyzing this simpler configuration.

Previous works have already proposed an simpler model to take into account the particle
velocity-charge covariance. Their formulation consisted in a simpler algebraic gradient model
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derived by analogy with the temperature kinetic dispersion coefficient (Kolehmainen et al.,
2018) or by simplifying the covariance transport equation (Montilla et al., 2020; Ray et al.,
2019). As stated before, the formulation proposed by Montilla et al. (2020) is, to the best of
our knowledge, the most general formulation proposed until now. Because it is based on a
less strict formulation for the particle probability density function. So we will compare our
formulation against their algebraic gradient model.

We will study when this algebraic model can be considered as a valid simplification.
We recall that, in order to obtain the charge-velocity covariance algebraic model, we have to
assume an instantaneous steady state and we also have to neglect the effect of the mean shear
stress and the covariance kinetic dispersion effects. By definition, our test case has no mean
shear stress. However, the other two effects could not be negligible in some configurations.
Analyzing the dimensionless covariance transport equation (equation 3.16), we can rewrite
it as:

∂〈c∗′

p ξ∗′

p 〉
∂t∗

+
1

τ ∗

cov

〈c∗′

p ξ∗′

p 〉 = Dcov
p

∂2〈c∗′

p ξ∗′

p 〉
∂x∗2

+ H (3.33)

Here, τ ∗

cov is the covariance characteristic time, Dcov
p is the covariance dispersion coefficient,

and H are the covariance production or destruction terms associated with the mean electric
charge gradient and the macroscopic electric field. As we mentioned, the algebraic gradient
model is derived assuming an instantaneous steady state. This is equivalent to say that the
covariance characteristic time is very small (τ ∗

cov ≪ 1). Also the algebraic model neglects the
effects of the covariance transport due to the random motion of particles (Dcov

p ≪ 1). We
can express these conditions as:

(

1 + ec

3

1

τ ∗

c

+
1

τ ∗

p

+
3 − ec

5

1

τ ∗

ξ

)

≫ 1 (3.34)

[

2 +
1

τ ∗

ξ

L

dp

(2λ2.9 + λ2.10) (1 + ec) + 3λ2.11
1

τ ∗

ξ

L

dp

(1 + ec)
2

]

1

K1 + K2

≪ 1 (3.35)

This was confirmed by comparing the solution given by the two models when the di-
mensionless parameters are set to: τ ∗

c = 10−4, Pe = 102, τ ∗

σ = ∞, τp = ∞, ec = 1, and
L/dp = 192. Figures 3.1 and 3.2 show how the particle electric charge and the velocity charge
covariance evolve as function of time. The dashed line represents the solution given when
solving the two transport equations, while the round markers show the solution given the
algebraic gradient model. As we can see both model predict the same electric charge and
covariance profiles for all time steps, except the initial condition. The initial condition when
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Figure 3.1: Particle dimensionless electric charge evolution as a function of time.
Comparison between the algebraic model and the two transport equations model

solving the full transport equation is set to 〈ξ∗′

p c∗′

p 〉 = 0 while the covariance initial condition
when using the algebraic model is given by the algebraic model itself. We can study the
first time steps of the simulation to see how these two system become equivalent. Figure 3.3
the covariance evolution during the first 5 time steps. Again, the dashed line represents the
solution of the two transport equation and the marker represents the solution of the alge-
braic model, which remains almost constant during those time steps. This figure shows that
the transport equation model reaches the steady state very quickly compared to the particle
electric charge characteristic response time. After this equilibrium is reached the two model
behave identically.

The covariance algebraic model can fail due to two different reasons: either the equilibrium
is not reached fast enough, or the covariance dispersion term is not negligible. This can
be achieved by setting the system’s dimensionless parameters to: Pe = 100, τ ∗

c = 100,
τ ∗

σ = 100, 000, ec = 1, τ ∗

p = ∞, and L/dp = 192 Figures 3.4 and 3.5 illustrate the system’s
dynamics for this configuration. In this case, the covariance transport equation response time
is comparable to the electric charge response time. We appreciate, in the covariance figure,
that the rising velocity of the covariance profile is not fast enough to reach the equilibrium
condition quickly. In addition to this, the dispersion effect, given by the modeling of the
third order moment, decreases the maximum covariance value. In conclusion, we can say
that, when used outside its validity region, defined by equations 3.34 and 3.35, the algebraic
model could overestimate the charge-velocity covariance profile by neglecting the kinetic
dispersion term and assuming a quasi-steady state. This overestimation of the covariance



76 CHAPTER 3. EULERIAN MODEL FOR COVARIANCE AND VARIANCE TERMS

−0.4 −0.2 0.0 0.2 0.4

x∗

−2

−1

0

1

2

〈ξ
∗
′

p
c∗

′

p
〉

×10
−3

TE: t∗=0

Alg: t∗=0

TE: t∗=2.6×10
−1

Alg: t∗=2.6×10
−1

TE: t∗=1.2

Alg: t∗=1.2

TE: t∗=2.4

Alg: t∗=2.4

TE: t∗=3.5

Alg: t∗=3.5

Figure 3.2: Particle dimensionless velocity-charge covariance evolution as a function of
time. Comparison between the algebraic model and the two transport equations model.
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Figure 3.3: Particle dimensionless velocity-charge covariance evolution during the first time
steps.
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Figure 3.4: Dimensionless particle electric charge evolution as a function of time.

term leads also to an overestimation of the kinetic dispersion of the mean electric charge.

3.6 Three transport equation model

As stated at the beginning of the previous section, the particle electric charge variance term
could become important as the potential electric density energy increases. Under these
circumstances, the three equations must be solved in order to correctly predict the mean
particle electric charge dynamics. To illustrate the effect of the charge variance, we will
study a system with the following parameter Pe = 105, τ ∗

σ = ∞, τ ∗

c = 10−4, ue/uk = 300,
τ ∗

p = ∞, ec = 1 and L/dp = 192. We will compare the full three transport equations model
and the simpler model where the charge variance is neglected (〈ξ∗′

p ξ∗′

p 〉 = 0) and therefore
only 2 transport equations are needed.

Figure 3.6 shows a snapshot of the particle mean electric charge, the macroscopic electric
field, the velocity-charge covariance and the electric charge variance at t∗ = 30. We can
observe that taking into account the variance effects significantly changes the system’s dy-
namics. Starting with the electric charge variance, we observe a profile with several peaks.
Analyzing the contribution of each term in equation 3.17, we found that the most important
production term is the second term in the left-hand side. Indeed, we remark in figure 3.6d,
that the regions with high electric charge variance correspond to the zones with high particle
velocity-charge covariance and high particle charge gradient. Conversely, the regions with
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Figure 3.5: Dimensionless particle velocity-charge covariance evolution as a function of time.

low particle charge variance are found where the velocity-charge covariance or the charge
gradient are zero.

This variance term has a noticeable effect in the covariance profile. Equation 3.16 shows
that the electrostatic force term can produce or destroy the particle velocity-charge covariance
depending on the alignment of the macroscopic electric field with the covariance vector. If
the electric field is aligned with the covariance, we will have an increase in the particle electric
charge flux due to the transport generated by the electrostatic force. Figure 3.6c shows that
the charge variance term enhances the particle velocity-charge covariance profile, especially
in the zones where the electric field is strong. The effect of this additional flux term are also
clear in the electric charge profile (figure 3.6a). We can see that the charge has dispersed
faster compared with a simpler no variance model.

This more complete model approach has revealed the importance of the correct modeling
of the electric charge variance, specifically when the potential electric energy of the system
is much higher than the fluctuant kinetic energy. The electric charge flux created by the
electrostatic forces should not be neglected in this situation if we want to correctly predict
the electric charge dynamics. However, the mathematical model presented here, is much more
complex as it requires to simultaneously solve multiple coupled partial differential equations.
In the following sections, we would like to explore possible simplifications to this model while
keeping charge variance effects.
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(a) Dimensionless particle electric charge (b) Dimensionless electric field

(c) Dimensionless particle velocity-charge
covariance

(d) Dimensionless particle electric charge
variance

Figure 3.6: Comparison between the full 3 transport equations model and the 2 transport
equations models where the variance in neglected.
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3.7 Coupled algebraic model

A simpler approach could be to try to extend the algebraic model proposed by Montilla
et al. (2020) to take into account the electric charge variance. This will reduce the model
to a single partial differential equation with 2 algebraic expression for the charge velocity-
covariance and the charge variance. In order to obtain this more general algebraic model, we
can follow the methodology used to derive the previous algebraic model. First, we simplify
the charge-velocity covariance and the charge variance equations neglecting the contributions
of the Lagrangian derivative, the velocity gradient, the third order moments and the disper-
sion terms. This reduces the covariance transport equation (equation 3.1) and the variance
transport equation (equation 3.11) to the following system of algebraic equations:

{

D1〈c′

p,iξ
′

p〉 + D2,i〈ξ′

pξ′

p〉 = D3,i

F1,i〈c′

p,iξ
′

p〉 + F2〈ξ′

pξ′

p〉 = F3
(3.36)

where

D1 =
1 + ec

3

1

τc

+
1

τp

+
2 (3 − e + c)

5

1

τξ

(3.37)

D2,i = − np

mp

Ei (3.38)

D3,i = −


1 + λ2.2ec

√

Θp

dp

Dcoll
p



np
∂Qp

∂xi

+ λ2.1ec

√

Θp

dp

σcoll
p Ei (3.39)

F1,i = 2np
∂Qp

∂xi

(3.40)

F2 = np

(

1

τxi

− λ3.1

(

Dcoll
p

)2 τc

d4
p

)

(3.41)

F3 = λ3.2

(

σcoll
p

)2 τc

npd2
p

EiEi (3.42)

This system of equation can be solved to find an algebraic model coupling the velocity-
charge covariance and the charge variance
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Figure 3.7: Example of a non-physical variance prediction obtained with the coupled
algebraic model.

〈c′

p,iξ
′

p〉 =
D3,i

D1

− D2,i

D1

〈ξ′

pξ′

p〉 (3.43)

〈ξ′

pξ′

p〉 =
F3D1 − F1,iD3,i

D1F2 − D2,jF1,j

(3.44)

Equations 3.43 and 3.44 give us a set of algebraic expression that can be used to close the
mean particle electric charge transport equation. With these expressions, we no longer have
to solve a system of multiple PDEs. We would also like to remark that this model reduces
to the aforementioned simpler algebraic model if 〈ξ′

pξ′

p〉 = 0. So this model is indeed a more
general algebraic model including the effects of the charge variance.

Before testing this model in our test configuration, we would like to note that this algebraic
closure law could produce nonphysical results. In particular, the positive sign in equation
3.44 cannot be guaranteed. In addition to this, the denominator of this equation could also
approach to zero, leading to indeterminate variance values in some regions. An example of
this is shown in figure 3.7. This figure correspond to the initial prediction of the charge
variance given by equation 3.44 with the following dimensionless parameters: Pe = 105,
τ ∗

σ = ∞, τ ∗

c = 10−4, ue/uk = 300, τ ∗

p = ∞, ec = 1 and L/dp = 192. As we can observe, the
model leads to some regions with negative variance, and some indeterminate points. This
shows that, although it is mathematically possible to derive an algebraic model adding the
variance effects, the resulting expressions can lead to meaningless results.
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(a) Dimensionless particle electric charge (b) Dimensionless electric field

(c) Dimensionless particle velocity-charge
covariance

(d) Dimensionless particle electric charge
variance

Figure 3.8: Comparison of the initial states given by the coupled algebraic model and the
algebraic model neglecting the charge variance.

In our tests, we remarked that this problem is more prone to occur when the electric-
kinetic energy ratio is high. For example, an acceptable initial condition can be obtained if
we decrease this ratio to ue/uk = 30. Figure 3.8 compares the initial prediction of this more
general algebraic model against the initial prediction of the algebraic model neglecting the
variance. First of all, we remark that the regions with high variance also correspond to the
regions with high covariance and high mean charge gradients. These results are similar to
the dynamics observed when solving the complete model. Also, we observe that the initial
covariance profile is also modified. Similar to the results obtained with the full model, the
covariance profile is stretched in the regions with high electric field and high variance. This
shows that this coupled algebraic model does capture the same general dynamics observed
in the solution of the complete model.
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(a) Dimensionless particle electric charge (b) Dimensionless electric field

(c) Dimensionless particle velocity-charge
covariance

(d) Dimensionless particle electric charge
variance

Figure 3.9: Comparison between the coupled algebraic model and the algebraic model
neglecting the charge variance term.

We can also study the evolution of the system using this coupled algebraic model. Figure
3.9 shows the state of the system at t∗ = 60, we can see that this model also seeks the
equilibrium state for all the variables. Although difficult to observe, there is a small difference
in the mean electric charge profile. As observed when solving the three transport equations,
the higher absolute values in the charge-velocity covariance increase the kinetic dispersion
of the mean electric charge. Unfortunately, we could not find a configuration where this
difference was more visible. We noted that, even with a high order solver, we cannot keep a
stable solution for high potential electric energy density configurations.

This results show that, although simpler and mathematically possible, this coupled alge-
braic model presents two important drawbacks. First, in some configurations, the model can
predict negative or infinite variance values. Second, even if the model predicts a reasonable
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profile for the electric charge variance, the numerical solution can be highly unstable, espe-
cially when the potential electric energy is high. In conclusion, this model generalizes the
algebraic model proposed by Montilla et al. (2020), but, it fails to produce useful results in
configuration where the effects of the electric charge variance are dominant, which was the
main objective of this model.

3.8 Semi-Algebraic model

The previous section presented an attempt to simplify the full coupled transport equations
model to a simpler model with only one transport equation for the mean charge and an alge-
braic expression for the two remaining variables. However, we observed that such approach
is very limited. Another possible simplification approach could be to derive the algebraic
expression for one of the variables while keeping the full transport equation for the others.
In this case, we propose to use an algebraic expression for the charge-velocity covariance
(equation 3.43) and solve the full transport equation for the charge variance (equation 3.11).
The reason behind this choice is that the covariance term is a vector quantity that could
add up to three PDEs to the system. Therefore, by simplifying the covariance, we are also
minimizing the number of equations that need to be solved.

We tested this approach using the same parameters for which the algebraic model fails
to provide a physical prediction, as shown in figure 3.7. The solution obtained using this
semi-algebraic model is shown in figure 3.10. In this figure we compare the results of this
model with the solution obtained solving the full model. As we can see, the solution produced
by the semi-algebraic model is not only perfectly physical, but it is identical to the solution
of the full model for all the 4 profiles. According to these results, the semi-algebraic model
proposed in this section can be considered as an effective closure law for the charge-velocity
covariance term.

3.9 Conclusions

In this chapter, we have extended the Eulerian modeling of the mean electric charge transport
equation. The simple algebraic gradient model for the electric charge flux term was replaced
with a more complete model using the full charge-velocity covariance transport equation.
The charge variance term, which was neglected in the algebraic model, was closed using also
the transport equation obtained with the kinetic theory of rapid granular flow. We have also
proposed closure laws for two of the third order moments appearing in the covariance and
variance transport equations.
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(a) Dimensionless particle electric charge (b) Dimensionless electric field

(c) Dimensionless particle velocity-charge
covariance

(d) Dimensionless particle electric charge
variance

Figure 3.10: Comparison between the full 3 transport equations model and the
semi-algebraic model).
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This more accurate modeling approach revealed the limitations of the algebraic model.
Firstly, even if the variance term is neglected, the algebraic model could fail to capture the
correct covariance dynamics if characteristic time of the covariance transport equation is
large enough to invalid the quasi-equilibrium hypothesis assumed in the algebraic model.
Secondly, the three transport equations model showed that the charge variance term cannot
be neglected when the electric potential energy of the system is high. This charge variance
term induces an extra charge flux due to the charge transport generated by the electrostatic
force. Therefore, neglecting the charge variance could lead to an underestimation of the
charge flux in the regions with high electric field.

Because we are aware that adding and solving these additional transport equations can be
very costly, we also proposed and tested some possible simplifications. Our first attempt was
to derived a coupled algebraic model that takes into account the electric charge variance.
Although, mathematically feasible, the final result proved to be nonphysical under some
conditions, especially when the electric potential energy is high. This means that this coupled
algebraic model cannot be used when the variance term is dominant. Which goes against
the main objective of the model. Due to this important shortcoming, we propose a different
alternative in which the charge-velocity covariance retains the algebraic form including the
variance term. But the charge variance is obtained solving its transport equation. This
intermediary model showed excellent agreement compared with the full model. This approach
also solved the non-physicality problem we encountered in the coupled algebraic model.



Appendix

3.A Algebraic gradient closure model for the third or-

der moment 〈ξ′
pc

′
p,ic

′
p,j〉

The transport equation of the particle velocity-charge covariance 〈ξ′

pc′

p,i〉 depends on a higher
order statistical moment 〈ξ′

pc′

p,ic
′

p,j〉. In order to close the 3rd order statistical moment, we
can use the same strategy employed to approximate the 2nd order statistical moments: an
algebraic model. For this, we write the transport equation for this 3rd order moment using
the general mean transport equation with φ = ξ′

pc′

p,ic
′

p,j:

np

D
〈

ξ′

pc′

p,ic
′

p,j

〉

Dt
+ npSp,ijk

∂Qp

∂xk
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〈

ξ′

pc′
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∂
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+ np
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τp
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〉

− np

mp
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mp
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′
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〉

Ej + np

〈
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′

p

〉 ∂Up,i
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+ np

〈
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p,mc′

p,iξ
′

p

〉 ∂Up,j

∂xm

= C
(

ξpc′

p,ic
′

p,j

)

− QpUp,iC (cp,j) − QpUp,jC (cp,i) −
〈

ξ′

pc′

p,i

〉

C (cp,j)

−
〈

ξ′

pc′

p,j

〉

C (cp,i) − Rp,ijC (ξp) ,

(3.45)

with Sp,ijk = 〈c′

p,ic
′

p,jc
′

p,k〉

Here the equations of 〈ξp〉, 〈cp,i〉 〈ξ′

pc′

p,i〉, and 〈c′

p,ic
′

p,j〉 have been used to further simplify
the final expression. We have also treated the force term in the same way as we did in the
covariance equation: the undisturbed flow properties and the macroscopic electric field are
assumed to be uncorrelated to the particles fluctuant electric charge.

In order to derive an algebraic model, we need to close the collision terms, in particular
the term involving the 3rd order moment. To be able to derive an algebraic model we need
a more general model to take into account the particle velocity-charge correlation in the
collision integrals. We, therefore, propose an extension of the collision model proposed by
Montilla et al. (2020). In this work, we suppose that the conditional mean 〈ξp1

| cp1
〉 can be

written as:

〈ξp | cp1
〉 = A + Bic

′

p,i + Cijc
′

p,ic
′

p,j (3.46)
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The tensors A, Bi and Cij are calculated so the first three statistical moments are satisfied:

ˆ

R3

〈ξp | cp1
〉fdcp = np〈ξp〉 (3.47)

ˆ

R3

c′

p,i〈ξp | cp1
〉fdcp = np〈c′

pξp〉 (3.48)

ˆ

R3

c′

p,ic
′

p,j〈ξp | cp1
〉fdcp = np〈c′

p,ic
′

p,jξp〉 (3.49)

If we assume that the particle velocity probability density function follows a Gaussian
distribution, the 4th order tensor 〈c′

p,ic
′

p,jc
′

p,kc′

p,l〉 can be written as:

〈c′

p,ic
′

p,jc
′

p,kc′

p,l〉 = Rp,ijRp,kl + Rp,ikRp,jl + Rp,ilRp,jk, (3.50)

Assuming an isotropic kinetic stress tensor, we obtain:

〈c′

p,ic
′

p,jc
′

p,kc′

p,l〉 = Θ2
p (δijδkl + δikδjl + δilδjk) , (3.51)

This allows us to deduce the expressions for the tensors A, Bi and Cij

A = 〈ξp〉 − 1

2Θp

〈ξpc′

p,ic
′

p,j〉 (3.52)

Bi =
1

Θp

〈c′

p,iξp〉 (3.53)

Cij =
1

Θ2
p

〈c′

p,ic
′

p,jξp〉 (3.54)

This non-linear model reduces exactly to the already published linear model if we assume
〈ξpc′

p,ic
′

p,j〉 = 0
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With this model, we can now compute the RHS of equation 3.45. For this term, we will as-
sume a isotropic kinetic stress tensor . We also neglect any velocity and granular temperature
gradient, as well as any cross product term between Qp, Ei, 〈c′

p,iξ
′

p〉, 〈ξ′

p〉, 〈ξ′

pξ′

pcp,i〉:

RHS = −np
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(3.55)

with λ2.4 ≈ 6.667, λ2.5 ≈ 1.387, λ2.6 ≈ 3.201, λ2.7 ≈ 0.2667, λ2.8 ≈ 0.2607, λ2.9 ≈ 10.68,
λ2.10 ≈ 208.2, and λ2.11 ≈ 0.2048

Equations 3.45 and 3.55 give the form of a simple governing equation for the 3rd order
moment 〈ξ′

pc′

p,ic
′

p,j〉. To extract an algebraic closure model, we simplify the left hand side of
equation 3.45 by neglecting the contribution of the Lagrangian time derivative, the velocity
and kinetic stress gradient, and the third order tensors Sp,ijk and 〈ξ′

pξ′

pc′

p,i〉. With these
assumptions, we can write equation 3.45 as:

K1〈ξ′

pc′

p,ic
′

p,j〉 + K2〈ξ′

pc′

p,mc′

p,m〉δij = Dij, (3.56)

with



90 CHAPTER 3. EULERIAN MODEL FOR COVARIANCE AND VARIANCE TERMS
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(3.59)

In a 3D flow, equation 3.56 can be solved for the third order moment:

〈ξ′

pc′

p,ic
′

p,j〉 =
1

K1

Dij − K2

K1 (K1 + 3K2)
Dmmδij (3.60)

3.B Algebraic gradient closure model for the third or-

der moment 〈ξ′
pξ

′
pc

′
p,i〉

Similarly to the particle velocity-charge covariance equation, the particle charge variance
equation is function of a higher statistical moment 〈ξ′

pξ′

pc′

p,i〉. To close this term, we follow
the same methodology used to close the previous third order moment. First, we write the full
transport equation for this third order moment using the general mean transport equation
with φ = ξ′
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p,i:
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(3.61)

Here, the force term was treated using the same methodology as before.
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Assuming isotropic kinetic stress tensor and neglecting the particle mean velocity gradient
and the granular temperature gradient, we obtain a simplified form for the right hand side
of equation 3.61
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Similarly to the previous algebraic gradient model, we simplify the left hand side of
equation 3.61 by neglecting the contribution of the Lagrangian time derivative, the velocity
and kinetic stress gradient, and the third order tensors Sp,ijk and 〈ξ′

pc′

p,ic
′

p,j〉. We will also drop
any nonlinear term involving 〈ξ′

pcp,i〉, Ei or Qp. These assumptions lead us to the following
closure model for the third order moment:
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(3.63)

with λ3.4 ≈ 2.806 and λ3.5 ≈ 1.017
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Chapter 4

ECVT Image reconstruction
algorithms for fluidized beds

As we have stated in the introductory chapter, there have been more than 70 years worth of
experimental research on the electrostatic effects on fluidized bed dynamics. This research
can be divided into two types: characterization of the electrodynamics of the solid phase, and
characterization of the hydrodynamics of the bed. The former is usually done using Faraday’s
cups and electrostatic probes to measure the electrical properties of the bed. While the latter
have relied mainly on probes and pressure tabs to estimate the hydrodynamic behavior of
the system. However, these techniques only provide local intrusive measurements that could
affect the dynamics of the bed. Especially given that the charging dynamics is heavily
influenced by solid-solid contacts. To overcome these shortcomings, tomographic devices can
be employed as an alternative to obtain an approximate 2D or 3D representation of the solid
volume fraction distribution inside the bed, without introducing any foreign material. In this
chapter, we explore the use of the Electrical Capacitance Volume Tomography as a way to
examine the dynamics inside the reactor.

4.1 Experimental setup

The main objective of our experimental research is to obtain the most accurate spatial rep-
resentation possible of the solid volume fraction distribution inside a fluidized bed reactor.
To accomplish this, we acquired a state-of-the-art ECVT device from the American com-
pany Tech4Imaging. The system consists of a cylindrical tomograph wit 36 square electrodes
organized in 4 concentric rows with 9 electrodes per row. The sensing region is a cylinder
of 11 cm diameter and 10 cm height. The measuring frequency can be adjusted between 10
and 100 Hz. The 36 electrodes are connected to a Data Acquisition System (DAS) using 36
coaxial cables. The DAS is attached to a computer via an USB cable. Using a proprietary
software, we can start and stop the data acquisition process. The program also provides sim-
ple tools to visualize and explore the reconstructed solid volume fraction distribution. We
can also export either the raw measurements or the reconstructed image for further analysis.
The final reconstructed 3D image is composed of 8000 cubic voxels of 5 mm. At the time of
purchase, this system was superior to any of the ECVT devices used in published literature
that had between 12 and 24 sensors. A detailed explanation of how the ECVT technology
works is provided in the next section.
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The design of the experimental fluidized bed was largely influenced by the previous Ph.D.
thesis done by Nasro Allah (2019) in our same research group. His project aimed primarily
at characterizing the charging dynamics of different types of powders inside a fludizied bed
under different conditions. To accomplish this, he built a laboratory scale fluidized bed using
a PMMA column of 1 m height and 10 cm internal diameter. The system counted with 2
Faraday’s cups, one installed below the windbox allowing him to measure the net charge of
the particles in the bed (inspired from Sowinski et al. (2009)). And another Faraday’s cup
to measure the net charge of the entrained fine particles. He also installed pressure sensors
along the column to monitor the pressure fluctuation along the column. It is the presence
of these pressure sensors that does not allow us to correctly fit the ECVT device around the
fluidized bed.

For this reason, we built an identical fluidized bed using a 1 m height and 10 cm diameter
PMMA column. However, we did not install any pressure sensor, nor any Faraday’s cup.
Similarly to Nasro-Allah’s setup, the inlet gas is evenly distributed to the column using a
porous plate of 3 mm width. To ensure a good fluidization quality, the porosity quality was
chosen so the pressure drop through the distributor is at least equal to 30% of the pressure
drop through the bed. Figure 4.1 shows the fluidized bed column with the ECVT system
installed.

Figure 4.1: Laboratory scale fluidized bed column used with the acquired ECVT device.

Previous experimental studies have shown that the gas humidity plays a major role in the
build up of electrostatic charges inside the bed. Therefore, a humidification control system
was placed before the distributor. This system is composed of two pairs of wet and dry air
lines. One pair can supply the fluidized bed with high volume flow rates as it is equipped
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with a flow meter that can go up to 25 Nm3/h. While the other pair is limited to 2 Nm3/h
and it is used to feed the bed with low volume flow rates. Both flow meters have a precision
of 0.2% if the flow rate is above 20% the maximum value. If it goes below this threshold, the
precision drops to 1%.

The system schematics is shown in figure 4.2. The inlet gas comes from the laboratory
compressed air line. This line delivers dry air at ambient temperature and at a pressure
equal to 5 bar. This air is then divided into the wet lines and the dry lines. The wet lines
are injected into a distilled water tank. After this, the wet air is mixed with the dry air, and
the output is fed to the fluidized bed. The computer installed in the humidification system
is connected to the flow meters and a humidity sensor. Using a PID controller, the computer
can regulate the flow rate passing through each one of the 4 lines to obtain the desired volume
flow rate and humidity. All this is adjusted and monitored through a graphical user interface.

(a) Scheme of the humidification system
used.

(b) Photograph of the humidification
system used.

Figure 4.2: Humidification system used.

4.2 Electrical Tomography Volume Capacitance

The Electrical Capacitance Volume Tomography (ECVT) is a non-invasive measurement
technique that allows us to reconstruct an approximated three-dimensional representation of
the volume fraction of phases in a two phase flow. The ECVT was developed by Marashdeh
(2006) as an improvement over Electrical Capacitance Tomography (ECT) that could only
reconstruct a two-dimensional image.
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This measurement device is composed of a series of electrodes that are located around a
sensing region. These sensors are then connected to the data acquisition system (DAS) that
samples and processes the signals coming from the plates. Finally, the DAS is connected
to a computer where, using a special reconstruction software, the capacitance measurements
are transformed into a full 3D representation of the volume fraction of the phases inside the
volume of interest. Figure 4.3 shows the scheme of how this system works.

Fluidized bed with
ECVT sensors around

DAS Computer Reconstructed
image

Figure 4.3: Electrical capacitance volume tomography system.

The main advantages of this device is that it is easy to build and it can be made to fit
complex non regular shapes (Taruno et al., 2013; Wang et al., 2012). In addition to this, the
whole ECVT equipment (tomograph + data acquisition system) is a relative small and it can
be easily transported to different locations. This device also does not rely on high electric
field nor any radioactive technology, which makes this system very safe and easy to install
without requiring any special security measures. Finally, this device is capable of delivering
a high enough acquisition frequency to accurately capture most of the temporal dynamics in
a two phase flow.

As one might expect, the ECVT technology fits perfectly to study the dynamics of a
fluidized bed reactor in a non-intrusive way. One of the first study was performed by Du
et al. (2007), they compared the volume fraction inside a fluidized bed with the data obtained
from an optical fiber probe located inside the bed. They concluded that the ECVT system
was as accurate as the probe, not only for the volume fraction, but for the bubble size as
well. We can also find the work of Weber and Mei (2013) and Weber et al. (2013). They used
a system of 24 sensors to study the bubble size and frequency in a laboratory scale fluidized
bed. The ECVT system allowed them to study the growth and breakup of bubbles inside a
fluidized bed. They also compared their data to numerical simulation, showing that the inlet
boundary condition can have a big impact on the quality of the simulations.

4.2.1 Physical principle and the sensitivity matrix approach

The ECVT/ECT technology is based on the idea that the capacitance between two electrodes
is a function of the internal composition of the medium between the plates. In particular,
capacitance between a pair of electrode is given by:
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Ci =
1

Vi

‹

A

ε (x, y, z) ∇φ (x, y, z) dA. (4.1)

Where Ci is the capacitance between the electrode pair i, A is the area enclosing one of
the electrodes, Vi is the potential difference between the electrodes, φ is the electric potential
and ε is the medium permittivity distribution.

Given a tomograph with x electrodes, we can measure M = x(x−1)/2 inter-plate capac-
itance values. To find the spatial permittivity distribution, we would need to solve the
system of M integral equations given by 4.1. However, this approach is extremely difficult
to implement. A more common methodology is based on the sensitivity matrix model. We
know that the capacitance between two plates is a function of the permittivity distribution,
#»

C = f (ε (x, y, z)). Therefore, by doing a Taylor expansion around some reference state, we
obtain:

#»

C − #»

C ref = (ε − εref)
df

dε

∣

∣

∣

∣

∣

εref

+ O
[

(ε − εref)
2
]

. (4.2)

Here, εref and Cref are a reference permittivity distribution and its corresponding reference
inter-plate capacitances.

Neglecting the higher order terms, we can write:

∆
#»

C ≈ ∆ε
df

dε

∣

∣

∣

∣

∣

εref

. (4.3)

Assuming that the changes in the medium permittivity are proportional to the volume
fraction α, and taking the reference state as the empty state α = 0:

∆
#»

C ≈ sα. (4.4)

If we divide the sensing region into N voxels, we can relate the M inter-plate capacitance
values to the N volume fraction values in each voxel using the following matrix equation:

∆
#»

C ≈ S #»α. (4.5)
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S is known as the sensitivity matrix and it measures the changes in the capacitance value
on the electrode pair i given an unitary change on the volume fraction in voxel j. We notice
that the dimensions of the matrix S are automatically given by the number of measurements
M and the number of voxels in the target image N , more specifically S ∈ R

M×N . This sensi-
tivity matrix is known for a given tomograph, and it is usually calculated solving equations
4.1.

Therefore, if we have a set of M inter-plate measurements, the volume fraction distribution
should satisfy equation 4.5. However, given that usually M 6= N , equation 4.5 cannot
be explicitly solved by multiplying by S−1, because non-square matrices do not have an
inverse. This constitutes one of the main drawbacks of the ECVT technology: the image
reconstruction problem is ill-posed.

4.2.2 Image reconstruction algorithms for ECVT devices

Over the years, many studies have proposed different approaches to try to find an approxi-
mated solution to the image reconstruction problem in ECT/ECVT systems (equation 4.5).
However, due to the ill-posedness nature of the problem, none of these algorithms can guar-
antee a 100% accurate reconstruction process. In other words, only an approximate volume
fraction distribution can be obtained. In the following section, we will describe some of the
available options found the literature.

Linear BackProjection Algorithm (LBP)

The Linear BackProjection algorithm (LBP) is the simplest approach available (Xie et al.,
1989). The LBP algorithm assumes that the solid volume fraction in one voxel can be
explained as a linear combination of the sensitivity coefficients weighted by the capacitance
measurements. This can be expressed as:

#»α ≈ ST ∆
#»

C. (4.6)

This method is easy to implement and it can be even hard-coded into hardware to produce
very fast results in real-time. This was also the algorithm provided by Tech4Imaging for our
ECVT system.

In order to test the spatial accuracy of this approach, we designed a series of simple
static test cases, where an object of known shape and volume fraction was inserted inside
the sensing region. The output of our ECVT system was then compared with the expected
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output. To place ourselves in fluidized bed-like configurations, our test cases were composed
of a single empty sphere of known diameter placed inside a fixed bed of glass beads (dp =
250 µm). Figure 4.4 shows a vertical slice of the reconstructed and expected images for
the two extreme cases: the biggest sphere available (dsphere = 55 mm) and the smallest
sphere available (dsphere = 27 mm). As we can see, the reconstructed solid volume fraction
distribution is not satisfactory at all. The small sphere is not seen, and the big sphere is
completely blurred. This kind of images will make very difficult to detect and capture the
shape of bubbles inside a fluidized bed. Given this limitation, we chose to study more complex
and accurate image reconstruction algorithms.

(a) True distribution
dsphere = 55 mm.

(b) Reconstructed distribution.

(c) True distribution
dsphere = 27 mm.

(d) Reconstructed distribution.

Figure 4.4: Static test case of a single void sphere in the middle of a fixed bed of glass
beads. Vertical slice comparison between the true solid volume fraction distribution and the

reconstructed image using the LBP algorithm.
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Iterative Linear BackProjection Algorithm (ILBP)

The ILBP was first proposed by Yang et al. (1999). This algorithm uses a Landweber iteration
scheme to improve the solution of the LBP method. This methodology can be seen as finding
the closest volume fraction distribution that satisfies equation 4.5:

Minimize: ‖∆
#»

C − S #»α‖2. (4.7)

It can be shown that this minimization problem has a simple iterative algorithm where
an approximation of the volume fraction for iteration k can be obtained as:

#»αk = #»αk−1 + ST
(

∆
#»

C − S #»αk−1

)

. (4.8)

Where, #»α 0 is chosen to be the solution of the LBP algorithm.

We implemented and tested this approach with the test cases described above. Figure 4.5
shows the reconstructed images obtained with this algorithm. We can see that there is a
significant improvement over the LBP. The reconstructed images clearly show 2 void sphere-
like objects inside a fixed bed of particles. Likewise, the boundaries between the bed and the
objects seem to be well defined.

Given that the objects are now well defined, we can try to calculate the diameter of
the reconstructed objects. For this, we need to establish the boundary between the solid
particles and the sphere. We chose this boundary to be located at αp = 0.3. With this
threshold value, we can compute the 3D surface area of the object Aobject. Then, the object’s
diameter is defined as the diameter of the sphere having the same surface area:

dobject =

√

Aobject

π
(4.9)

For the big sphere of 55 mm, the reconstructed object had an equivalent diameter of
57 mm. And for the small sphere of 27 mm, the obtained equivalent diameter was of 18 mm.
Table 4.1 compares the equivalent diameter of the reconstructed object against the expected
diameter for all test cases. This result shows that the ILBP algorithm can reconstruct very
well big objects, however the accuracy reduces as the object’s size goes down.
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(a) True distribution
dsphere = 55 mm.

(b) Reconstructed distribution.

(c) True distribution
dsphere = 27 mm.

(d) Reconstructed distribution.

Figure 4.5: Static test case of a single void sphere in the middle of a fixed bed of glass
beads. Vertical slice comparison between the true solid volume fraction distribution and the

reconstructed image using the ILBP algorithm.

Multi-Objective Image Reconstruction Technique (MOIRT)

Given that the ILBP scheme was not 100% satisfactory, we tried a third different and more
complex approach. This algorithm is called the Multi-Objective Image Reconstruction Tech-
nique (MOIRT) and it was developed by Warsito and Fan (2001). The MOIRT is based on
a similar minimization problem as the previous approach. However, the objective function is
much more complex as it tries to minimize 3 different aspects:

1. The residual error between the reconstructed image and the capacitance measurements:



104 CHAPTER 4. IMAGE RECONSTRUCTION ALGORITHM FOR ECVT

Table 4.1: Equivalent diameter of the reconstructed objects using the classical
reconstruction algorithms.

dobj 55 mm 50 mm 44 mm 40 mm 27 mm
LBP × × × × ×
ILBP 57 mm 53 mm 49 mm 42 mm 18 mm

f1 = ‖∆
#»

C − S #»α‖2. (4.10)

2. The negative Shannon’s image entropy:

f2 =
N
∑

i

αi ln (αi) . (4.11)

3. The image peakedness

f3 = #»αX #»αT + #»α #»αT . (4.12)

Where X is called the non-uniformity matrix.

Finally, the reconstruction problem is stated as:

minimize:
3
∑

i=1

λifi (4.13)

where λi is a specific weight given to each one of the functions.

Figure 4.6 shows the reconstructed images for the test cases obtained using the MOIRT
algorithm. We notice that we are able to recognize 2 spherical objects in the sensing region.
However, the small sphere looks blurred and the void region inside the sphere is not accurately
captured. We can still calculate the equivalent diameter using the methodology described
above. Table 4.2 summarizes our results. We can see that the MOIRT approach performs
better for small object, but without losing accuracy for big objects.

Although the last two algorithms seemed capable of accurately reconstructing the three
dimensional solid volume fraction distribution inside the sensing region, they rely on an
iterative process to minimize their cost functions. For comparison, the ILBP algorithm takes
in average 2.2 s to converge to a solution for a single image, while the MOIRT scheme takes
25 min. However, for a fluidized bed application, we are interested in gathering images over
a significant amount of time to be able to obtain accurate statistical results. At this rate,
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(a) True distribution
dsphere = 55 mm.

(b) Reconstructed distribution.

(c) True distribution
dsphere = 27 mm.

(d) Reconstructed distribution.

Figure 4.6: Static test case of a single void sphere in the middle of a fixed bed of glass
beads. Vertical slice comparison between the true solid volume fraction distribution and the

reconstructed image using the MOIRT algorithm.

reconstructing 1 minute of a fluidized bed dynamics at a acquisition frequency of 100 images
per second could take around 4 hours for the ILBP algorithm and more than 3 months for
the MOIRT algorithm. Given that neither of the approaches studied was 100% accurate,
and that the reconstruction time is very high, we decided to explore a new approach using
artificial intelligence-based algorithms.
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Table 4.2: Equivalent diameter of the reconstructed objects using the classical
reconstruction algorithms.

dobj 55 mm 50 mm 44 mm 40 mm 27 mm
LBP × × × × ×
ILBP 57 mm 53 mm 49 mm 42 mm 18 mm

MOIRT 56 mm 54 mm 49 mm 43 mm 23 mm

4.3 Machine learning image reconstruction algorithms

for ECVT systems

Machine learning techniques aim at developing a self-tuning mathematical model able to
classify their input into known categories or to predict a likely output of a system given a
set of inputs. The key requirement to implement a machine learning algorithm is a training
dataset. This database is used to adjust the internal parameters of the mathematical model,
so the algorithm can correctly predict the output of a given input. Nowadays, Artificial
Neural Networks (ANN), a type of machine learning algorithm, have attracted significant
attention due to their remarkable performances. ANNs allow to easily build highly non-
linear models, allowing us to predict very complex phenomena. Many fields have already
benefited from this approach: image recognition (He et al., 2016; Krizhevsky et al., 2012),
natural language processing (Mikolov et al., 2013), bioinformatics (Alipanahi et al., 2015),
and even chemical engineering (Venkatasubramanian, 2019).

4.3.1 Artificial neural networks

An ANN is a set of nodes, called neurons, organized in inter-connected layers (figure 4.7).
In a feed-forward ANN, a signal transits through the network from the input layer to the
output layer. Each connection between two neurons i and j has a weight wij associated
to it. A single neuron receives the inputs from all the neurons in the previous layer and
then computes the sum of all these values. After this, the final results is passed through a
predefined activation function. The result from that activation function is the output of the
neuron that is propagated into the next layer (figure 4.8).

The network can be trained so that the last layer outputs a desired signal for a given
input signal in the first layer. To do so, a training database containing pairs of input and
output vectors of values is used. An input vector is propagated through the network, and
the error between the observed and expected output vector is measured via a loss function.
The weights of the networks are subsequently modified by back-propagation so that the loss
function is minimized.
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Figure 4.7: Illustration of a feed-forward artificial neural network with one input layer, two
hidden layers and one output layer.
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Figure 4.8: Illustration of how a single neuron works in an artificial neural network

Recently, ANN-based approach algorithms have been applied to the tomography image
reconstruction problem. In the medical field there have already been some attempts to
obtain more accurate images for the different imaging techniques. PET (Gong et al., 2019),
X-ray CT (Cierniak, 2009; Gupta et al., 2018), MRI (Schlemper et al., 2018), and SPECT
(Floyd, 1991), are some of the systems that have explored the pertinence of deep learning
algorithms for the image reconstruction problem. The results show that a deep learning
approach might be suitable for this type of problem; even in some cases outperforming the
classical reconstruction algorithms.

In the last years, some efforts have been made towards the use of deep learning strategies
for the image reconstruction problem in 2D ECT systems. Some approaches have used
the raw capacitance data to try to predict the key hydrodynamics parameters: the average
volume fraction, flow patters and bubble diameter (Garbaa et al., 2014; Guo et al., 2019;
Zainal-Mokhtar and Mohamad-Saleh, 2013). These studies, however, did not tackle the
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image reconstruction problem directly.

Recently, some works have been conducted to use artificial neural networks to address
the image reconstruction problem of ECT devices. The ANN takes the capacitance measure-
ments as input and it aims to predict the 2D volume fraction distribution. This technique
has been very successful, with results that can compare with the most performing algorithm
already found in the literature. As we mentioned, machine learning algorithms require a
training database from which to learn. In our case, this database should be composed by
pairs of capacitance measurements and their corresponding solid volume fraction. Never-
theless, previous studies on the topic do not offer a satisfactory methodology to build this
training database. Lei et al. (2018) proposed to use images reconstructed with classical al-
gorithms. However, the ANN risks of learning the shortcomings of the algorithm used. A
different approach was taken by Zheng et al. (2018). They build a software that creates
random 2D volume fraction distribution resembling patterns found in liquid-gas systems
(stratified, annular and core flows). Then, using an electrodynamics simulation software,
they calculated the capacitance values associated to the volume fraction distribution. The
main drawback of this approach is that generating random volume fraction distribution for
fluidized beds applications is much more difficult. Unlike the liquid-gas patterns, the 3D solid
volume fraction distribution inside a fluidized bed is much more complex and unpredictable.
Also, we would need an additional software and knowledge to perform the electrodynamics
simulations. The proposed methodologies and training databases in these previous works
are very difficult to apply to research groups that just acquired a new ECT/ECVT device
with a different geometry or number of sensors. In the following sections we will propose two
different strategies to generate a training database that can be easily implemented in any
ECVT device.

4.4 CFD-Generated training database

The first strategy we used to generate the training dataset is based on CFD simulations.
As mentioned before, previous works have already trained ANNs using artificially generated
volume fraction distributions and computing the associated capacitance values using electro-
dynamics simulations (Zheng et al., 2018). Although this approach might be suitable for some
patterns present in gas-liquid system, it is difficult to generalize to more complex configura-
tions. For example, fluidized beds are known to have very complicated and chaotic behaviors,
like bubbles breakup and coalescence or turbulent dynamics. These volume fraction distri-
butions are much harder to generate artificially due to their complexity and unpredictability.
Therefore, an artificially generated database with structured patterns might not be suitable
for fluidized bed applications.

Nevertheless, modern CFD packages are very capable of accurately reproducing the inter-
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nal dynamics of fluidized bed reactors, including these complex patterns. These simulations
provide us with information about the instantaneous solid volume fraction distribution at
each time step. We can couple this data with the sensitivity matrix approach and calculate
the inter-plate capacitance values associated with the 3D distribution (equation 4.5). If we
do this for different time steps, we can build a database containing 3D solid volume fraction
distributions and their corresponding inter-plate capacitance measurements (figure 4.9).
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Figure 4.9: Strategy used to generate the training database for the artificial neural network.

Using this { #»

C ; #»α} training database, we then can fit our neural network using a supervised
learning approach. In this approach, the training algorithm works as follows:

1. The structure of the neural network must be defined (i.e. number of layers, number of
neurons per layer and activation functions for each neuron).

2. The connection weights are randomly initialized.

3. A capacitance vector in the training database is chosen and fed to the neural network.

4. The output of the neural network #»α ′ is compared against the expected output in the
training database.

5. The error between the expected output and the ANN’s output is used to modify the
weights by back propagation.

6. If the error is small enough, we can stop the process and we have a trained neural
network, if not we go back to step 3.
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This algorithm is repeated until the error is below some threshold or until the error does
not decrease further. Figure 4.10 visually summarizes the training algorithm.
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Figure 4.10: Training strategy using CFD generated data.

4.4.1 Implementation

To achieve this idea, we established a collaboration with the Computer Science Institute of
Toulouse (IRIT by its acronym in French). They have the sufficient knowledge and equipment
to efficiently design, train and evaluate machine learning algorithms. They proposed to build
an feed-forward artificial neural network using Keras and TensorFlow, two Python libraries
developed at Google (Abadi et al., 2015; Chollet and Others, 2015). The objective was to
train a model to be able to reconstruct the images associated to our ECVT device.

The artificial neural network used is composed of an input layer of 630 neurons (corre-
sponding to the 630 capacitance measurements in our ECVT system) followed by 3 hidden
layers of 1,024, 2,048 and 4,096 neurons respectively and a final output layer of 8,000 neurons
corresponding to the 8,000 values of solid volume fraction. In order to ensure that the solid
volume fraction predicted by the neural network is bounded between 0 and 0.64 (the solid
volume fraction at maximum packing), we enforced a scaled sigmoid activation function for
the output layer of the ANN:

αp,i = 0.64
1

1 + e−ui
(4.14)
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Meanwhile, the intermediate layers have a standard ReLU (Rectified Linear Unit) acti-
vation function:

f(ui) = max (0, ui) (4.15)

4.4.2 CFD Simulations

In order to simulate our fluidized bed reactor, we used the CFD software NEPTUNE CFD.
This is a multiphase Euler-nfluid code developed in the framework of the NEPTUNE project,
financially supported by CEA, EDF, IRSN and Framatome. It is capable of solving particle–
laden flow problems in complex geometries using structured and non-structured meshes.
This code has been extensively validated for fluidized bed configurations using very accurate
experimental techniques such as PEPT and RPT (Ansart et al., 2017; Fede et al., 2016;
Fotovat et al., 2015; Sabatier et al., 2020). NEPTUNE CFD is a massively parallel code
(Neau et al., 2020), which allows us to obtain enough simulated data to build our training
database. The simulated geometry is a replica of our experimental column of 10 cm internal
diameter and 1 m height. We used an O-grid mesh with 400,000 cells of approximately 3 mm
length (figure 4.11). For the solid phase we used glass beads of 250 µm diameter with a
density equal to 2, 700 kg/m3. The gas phase is air at 20 oC and atmospheric pressure. The
initial height of the fluidized bed is set to 17 cm.

Figure 4.11: Geometry and mesh used in the numerical simulations.

If we want the neural network to generalize well, the training database must contain as
much diverse information as possible. To achieve this, we simulated 4 different cases, each
one with a different inlet velocity (3Umf , 4Umf , 6Umf and 7Umf ), where Umf = 6.3 cm/s is the
minimum fluidization velocity obtained using Ergun’s correlation (Ergun and Orning, 1949).
For each simulation, we recorded the solid volume fraction distribution in the 8,000 voxels
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corresponding to the exact location of the voxels reconstructed by the ECVT system. For
each case, we simulated 30 s of physical time. We extracted the solid volume fraction inside
a 10 cm height region between h1 = 6 cm and h2 = 16 cm, where h = 0 cm represents the
column inlet. The acquisition frequency was set to 100 images per second. This frequency is
high enough to capture the bubbles passing through the sensing region. The final database,
is, therefore, composed of 12,000 pairs of capacitance/solid volume fraction vectors.

4.4.3 Training phase

A common practice before the training phase of any machine learning algorithm is to split
the training database into two smaller subsets: a training subset and a validation subset.
The training subset is used to train the model using the methodology described earlier. The
validation subset is used to monitor the performance of the model with data that is not
present in the training subset. In our case, we split the training database into 80% for the
training subset and 20% for the validation subset.

For the training phase itself, there are two key parameters to specify: the batch size
and the number of epochs. The first one refers to the number of samples of the training
database that will be used to compute the loss function before updating the ANN weights.
For example, if our training database consists of 9,000 samples, and if we choose the batch size
equal to 20, first, the entries 1-20 in the training database will be fed to our neural network
and the loss function of these 20 entries will be used to change the weights wij. Then, we will
feed the entries 21-40 to the updated ANN and the new loss function value is used to change
again the weight values. This process is repeated until all 9,000 entries are used. A small
batch size could allow us to train the database faster because the weights are updated more
frequently. However, choosing a very small batch size could generate important fluctuations
that could harm the convergence rate. The second parameter that has to be specified is the
number of epochs. The epochs are the number of times the whole database is used during the
training phase. If the number of epochs is set to 10 this means that the learning algorithm
will go over the 9,000 samples 10 times. A high number of epochs can improve the quality of
the ANN, but this could be also very time–consuming. In our example we chose the batch
size equals to 20 and we trained for 3,000 epochs.

In order to monitor the convergence of the ANN, we can calculate the Root Mean Squared
Error (RMSE) between the predicted (α′

p) and the expected (αp) solid volume fractions values
(equation 4.16)

RMSEαp
=

√

√

√

√

1

n

n
∑

i=1

(

αp,i − α′

p,i

)2
(4.16)
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Where n is the total number of voxels in the sensing region.

In figure 4.12, we can see the RMSE during the training phase using the training and
the validation subsets. As we can observe, the RMSE decreases as the number of epochs
increases for the training subset. This means that for each epoch the output predicted by
the neural network is closer to the expected output. We observe the same trend when we
evaluate the accuracy of the neural network using the validation subset. This highlights that
the trained ANN generalizes well for data outside the training subset. After 3,000 epochs, we
see that RMSE is decreasing slowly which means that the training algorithm has converged.
Now, we can take the neural network obtained in the last epoch and use it to reconstruct
images using new data.
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Figure 4.12: Root mean square error as a function of the training epochs.

4.4.4 Neural network evaluation

Once the training stage was completed, we can evaluate the performance of the model. First,
we analyzed the neural network using simulated data. Using NEPTUNE CFD, we performed
another numerical simulation for a gas inlet velocity different to those present in the training
database (5Umf ). From this simulation, we extracted the solid volume fraction distribution
and we computed the capacitance values associated to those distributions. Then, we fed these
capacitance values to the trained ANN, and we compared the output against the numerical
simulation. This is done in figure 4.13, where we contrast a 2D axial slice in the middle of
the column at three different time steps. The first 2 images corresponds to the first moments
after fluidization started, where we have two symmetrical bubbles rising. The second pair of
images is the moment where a big air bubble rises and finally the last 2 images correspond to
a more complex structure appearing in the reactor. We remark that for all three cases, the
reconstructed images are very close to the output of the numerical simulation. These results
show that our ANN is capable of accurately reconstructing ECVT images of a fluidized bed.
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We can extend our analysis further by looking at the RMSE between the ANN’s output
and the numerical simulation (which is the expected distribution). Figure 4.14 shows exactly
this. The black line represent the instantaneous error of the ANN’s prediction, while the
blue dashed line is the average over all time. As a comparison, we also drew in dashed lines
the mean RMSE of the images obtained with the classical algorithms. This shows that the
ANN is very close to the most accurate algorithms. If we compute the mean absolute error
between the simulated values and the predicted values, we get that the ANN predictions have
an error in αp of 0.06. Given that the average αp value in a fluidized bed is of the order of
0.40, our ANN model has a prediction error of 15%.

(a) Simulation at
t ≈ 0.6 s

(b) Reconstructed
image at t ≈ 0.6 s

(c) Simulation at
t ≈ 4 s

(d) Reconstructed
image at t ≈ 4 s

(e) Simulation at
t ≈ 12 s

(f) Reconstructed
image at t ≈ 12 s

Figure 4.13: Comparison of some instantaneous solid volume fraction distributions between
the numerical simulations and the reconstructed image using an ANN (2D axial slice

representation).

We can also test this neural network using the experimental data obtained with the void
spheres in a fixed bed of glass beads. Figures 4.15 and 4.16 show a slice of the reconstructed
volume for both the small and the big sphere. These images show that the ANN was able to
detect a spherical object inside the volume. Like for the classical algorithms, the big sphere
is much easier to recognize than the small sphere. We can characterize the diameter of all
test spheres using the same criteria as before (see table 4.3). As we can see, we have an
overestimation for every object. However, these values are still close to the real expected
value.

Once the neural network has been trained, the reconstruction process is very fast because
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Figure 4.14: Root mean square error as a function of time between the numerical
simulation and the image reconstructed by the ANN. The blue dashed line represent the

time average, and the rest of colored dashed lines represent the time average of the RMSE
using the classical algorithms.

(a) True distribution (b) Reconstructed image

Figure 4.15: Comparison between the expected solid volume fraction distribution and the
reconstructed solid volume fraction distribution for a void sphere of dsphere = 55 mm (2D

axial slice representation).

it only requires to propagate the capacitance signal through the network. This makes this
strategy much more efficient than the traditional iterative algorithms. However, the training
phase can be computationally expensive depending on the size and complexity of the network,
the number of epochs, and the size of the training database. Our neural network took around
10 hours to perform the entire training phase, for the same computing power described above.
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(a) True distribution (b) Reconstructed image

Figure 4.16: Comparison between the expected solid volume fraction distribution and the
reconstructed solid volume fraction distribution for a void sphere of dsphere = 27 mm (2D

axial slice representation).

Table 4.3: Equivalent diameter of the reconstructed objects using the classical algorithms
and an artificial neural network trained using a supervised learning technique.

dobj 55 mm 50 mm 44 mm 40 mm 27 mm
LBP × × × × ×
ILBP 57 mm 53 mm 49 mm 42 mm 18 mm

MOIRT 56 mm 54 mm 49 mm 43 mm 23 mm
ANN 60 mm 59 mm 55 mm 50 mm 31 mm

Nevertheless, this neural network can reconstruct 1 image in around 50 ms. This shows, that
ANN-based reconstruction models can be very accurate and very fast at the same time.

Our results prove that an artificial neural network trained using CFD-generated data
is a valid approach to address the ECVT reconstruction problem. Our system was tested
against dynamic simulated and real static data for which the expected solid volume fraction
distributions are known. In both cases the ANN performed as well as the already known
approaches. However, we observe a significant gain in post-processing time without loosing
accuracy. This makes this approach suitable for system where an instantaneous feedback is
needed, or when we need to reconstruct a large number of images. However, an non-negligible
drawback is the necessity of a CFD software to generate the simulated data. This means that
this approach depends on other simulation tools. In addition to this, we need to make sure
that the simulated data represents accurately the physical phenomenon; any bias or error
present in the simulated data could also be reproduced by the neural network. In the next
section we present a different approach to make a standalone artificial neural network.
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Figure 4.17: Training strategy using a training database with only experimental data.

4.5 Experimental data-generated database

In the previous section, we were able to successfully train an artificial neural network using
simulated data coming from CFD software. However, this approach makes the ANN depend-
able on an external tool. In addition to this, doing high resolution numerical simulations can
be computationally expensive and even inaccurate if the current models are not well adapted
to the physical phenomenon. To remedy these problems, we propose a second strategy to
build the training database needed for the training phase of the ANN. In this approach, we
no longer need a database composed of input/outputs. Instead, we use directly experimental
data even without knowing the solid volume fraction distribution.

The key aspect of this approach is that we know how to estimate the capacitance mea-
surements given a solid volume fraction distribution. Therefore, during the training phase,
we can directly feed experimental data

#»

C into the ANN. Instead of comparing the AAN’s
output # »αp

′ to some true # »αp distribution, we are going to use equation 4.5 to transform our

predicted # »αp
′ into predicted capacitance values

#»

C ′. If the neural network is well trained,

the values
#»

C and
#»

C ′ must be similar (figure 4.17). If this is not the case, then the internal
weights have to be adjusted. Hence, our neural network will be trained so it minimizes the
RMSE between

#»

C and
#»

C ′:

RMSEC =

√

√

√

√

1

m

m
∑

i=1

(Ci − C ′

i)
2 (4.17)

This approach has the advantage of not needing computer–simulated data to train the
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model. We can now directly use experimental data, even without having previous knowledge
of the true solid volume fraction distribution. This makes this technique completely inde-
pendent of any external tool. Another advantage is that we can use any new experimental
data to simultaneously reconstruct the solid volume fraction and to train even further the
neural network. In contrast with the previous approach, where the experimental data cannot
be used to improve the neural network. So this technique allows us to have a self-sufficient
ANN that can be in a constant learning process.

4.5.1 Experiments

To be able to compare this strategy with the previous approach, we built a training database
as similar as possible to the one generated by CFD. We ran experiments in the fluidized bed
column described in section 4.1. The dimensions of this column are identical to the simulated
fluidized bed. The solid phase is composed of spherical glass beads. The characterization of
this granular material was already performed by Nasro Allah (2019). The median diameter
is equal to d50 = 267 µm, the span of the particle size distribution is equal to 0.43, which
allows us to consider the powder as monodisperse. Finally, the density of the material is
equal to ρp = 2476.1 ± 0.3 kg/m3

The gas phase is air at ambient pressure and ambient temperature. Using the humidifi-
cation control system, we set the relative humidity equal to 50%, to remove any electrostatic
effects in the solid phase. Similarly to the numerical simulations, we performed 4 different
experiments with 4 different inlet velocities (3Umf , 4Umf , 6Umf and 7Umf ). The ECVT de-
vice was placed between h1 = 6 cm and h2 = 16 cm (h = 0 cm corresponds to the inlet of the
fluidized bed). The acquisition frequency was set to 50 frames per second. For each inlet
velocity, we gathered 3,000 measurements of capacitance. This allows us to obtain a training
composed of 12,000 capacitance vectors.

The neural network used has the exact same architecture as the one used before. To
transform the solid volume fraction distribution predicted by the neural network to capaci-
tance values, we used the sensitivity matrix associated with our ECVT device. The training
parameters were also similar, we set the batch size to 20 and we ran the training for 3,000
epochs.

Figure 4.18 shows the evolution of the RMSE as a function of the training epochs. We
remark that the RMSE decreases when the number of training epochs increases. This means
that the neural network is converging to a better solution. This behavior is true for both the
training and the validation databases. This shows that this ANN can also be used for data
that was not present in the training database
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Figure 4.18: Root mean square error as a function of the training epochs.

Neural network evaluation

With this trained artificial neural network, we can perform the same analysis as we did for the
previous one. First, we can feed our ANN with simulated data and compare the reconstructed
images with the numerical simulation. In figure 4.19, we can see that, qualitatively, the results
produced by this approach are in good agreement with the expected results. However, they
are not as good as the results produced by the CFD-trained ANN. The two symmetrical
bubbles rising at the start of the simulation are not well captured (figure 4.19a and 4.19b).
For the big bubble (figure 4.19c and 4.19d) and the complex structure near the wall (figure
4.19e and 4.19f) we obtain a more accurate reconstruction. Nevertheless, the results are
worse than the previous ANN strategy.

Figure 4.20 represents the root mean squared error between the numerical simulation and
the reconstructed image as a function of the simulation time. We can see that the mean
RMSE value is around 0.13, which is worse than the previous ANN. This curve also shows
that this ANN is also not as good as the ILBP and MOIRT algorithms. However, it does
perform better than the LBP scheme. For this approach, the mean absolute error between
the predicted and the expected solid volume fraction values is equal to 0.08. This means that
this approach has an error of 22% compared to the mean solid volume fraction found in a
fluidized bed.

We can also test this approach using the data gathered from the real ECVT system with
known object inside a fixed bed of particles. We fed the experimental data as input of the
trained ANN and then we calculated the equivalent diameter of the reconstructed objects
dobj. We summarized our results in table 4.4. Firstly, we noticed that our new approach
failed to reconstruct the two smallest objects we tested. This means that the performance of
this ANN has deteriorated compared to our previous approach. Nevertheless, this technique
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(a) Simulation at
t ≈ 0.6 s

(b) Reconstructed
image

(c) Simulation at
t ≈ 4 s

(d) Reconstructed
image

(e) Simulation at
t ≈ 12 s

(f) Reconstructed
image

Figure 4.19: Comparison of some instantaneous solid volume fraction distributions between
the numerical simulations (left) and the reconstructed image using an ANN trained with

experimental data (right) (2D axial slice representation).

was able to reconstruct accurately the bigger void spheres with an equivalent diameter which
is close to the real diameter. A visual comparison is made in figures 4.21 and 4.22. These
images reveal that our ANN has no problem detecting big void objects inside a fixed bed
of glass particles. It does however fail to reconstruct the smallest of our test objects. This
shows that for a similar training database and network architecture, the ANN trained using
experimental data does not perform as well as the ANN trained using CFD simulations.

These results prove that we can train an artificial neural network using solely experimental
data in order to address the image reconstruction problem for 3D ECVT systems. Our ANN
was tested against both simulated and real data. The results highlight that this approach is
also suitable as an image reconstruction algorithm. Although the results were slightly worse
compared to the first strategy, this approach is completely self-sufficient and does not need
any external tool. This strategy will also benefit from any new experimental data to further
learn and increase its quality.

Despite the fact that this training technique did not perform as well as the previous one,
it is worth noting that there are some fundamental differences between these two approaches.
The CFD data used to train our first artificial neural network was totally free from noise,



CHAPTER 4. IMAGE RECONSTRUCTION ALGORITHM FOR ECVT 121

0 10 20 30
0.05

0.1

0.15

0.2

0.127
0.136

0.063

0.1

Time [s]

R
M

S
E

α
p

Instantaneous ANN
Mean ANN Mean LBP
Mean ILBP Mean MOIRT

Figure 4.20: Root mean square error as a function of time between the numerical
simulation and the image reconstructed by the ANN. The blue dashed line represent the

time average, and the rest of colored dashed lines represent the time average of the RMSE
using the classical algorithms.

while the experimental data is always convoluted with noise generated by the acquisition
configuration. At this stage it is unknown the effect of this noise on the quality of the
training process. This is something that should be taken into account when working with
this approach, however it is unclear how this effect could be modeled.

Table 4.4: Equivalent diameter of the reconstructed objects using the classical algorithms
and artificial neural network trained using CFD simulations and the artificial neural

network trained using experimental data.

dobj 55 mm 50 mm 44 mm 40 mm 27 mm
LBP × × × × ×
ILBP 57 mm 53 mm 49 mm 42 mm 18 mm

MOIRT 56 mm 54 mm 49 mm 43 mm 23 mm
CFD-trained 60 mm 59 mm 55 mm 50 mm 31 mm
Exp-trained 56 mm 53 mm 43 mm × ×
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(a) True distribution.
(b) Reconstructed

image.

Figure 4.21: Comparison between the expected solid volume fraction distribution and the
reconstructed solid volume fraction distribution for a void sphere of dobject = 55 mm using a

the reinforcement learning technique (2D axial slice representation).

(a) True distribution.
(b) Reconstructed

image.

Figure 4.22: Comparison between the expected solid volume fraction distribution and the
reconstructed solid volume fraction distribution for a void sphere of dobject = 27 mm using a

the reinforcement learning technique (2D axial slice representation).
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4.6 Conclusion

In this chapter, we presented two different strategies to build a training database for a machine
learning based algorithm for ECVT systems applied to fluidized beds. A first proposition
is based on accurate 3D numerical simulations. From these simulations, we can extract the
solid volume fraction distribution in different regimes and conditions; and we can deduce
the capacitance measurements using the sensitivity matrix model. This data allowed us to
train an artificial neural network that tackles the image reconstruction problem in ECVT
devices. This technique performed very well compared to the classical algorithms found in
the literature. We were able to accurately reconstruct images coming from both simulated
and real experimental data. The reconstructed images using simulated data was as accurate
as the already known algorithms. We also tested the system with real experimental data.
We placed different void spheres inside a fixed bed of glass particles. Using this ANN, we
reconstructed the image and we calculated the diameter of the object seen. Our results showed
a slight overestimation of the diameter. Although this approach was able to successfully
rebuild images of an ECVT system, it depends on an external tool to generate the simulated
training data.

The second approach is based experimental data without needing a previous knowledge of
the solid volume fraction distribution. In this case, we aim at getting a reconstructed image
that corresponds as closely as possible to the input capacitance values. In this way, we get a
self-sufficient technique that does not depend on any other tool. This approach was trained
using an equivalent experimental database to the one generated for the first approach. Our
results show that this methodology is not as good as the previous approach, especially for
small objects. Nonetheless, we obtained acceptable results when we need to reconstruct big
objects.

For the sake of simplicity, this work only studied the most simple neural network config-
uration: a feedforward neural network. However, a more complex solution could be studied.
Recurrent neural networks models such as LSTM (Hochreiter and Urgen Schmidhuber, 1997),
or attention models inspired from the recent transformer architecture (Vaswani et al., 2017)
would allow us to exploit the sequential nature of the inputs, which is ignored in the feed-
forward model. Another perspective of this work would be to use recurrent neural networks
to predict the capacitance values at time t knowing the values at times [t0..t−1]. These pre-
dictions could be used for capacitance captors failure detection in ECVT systems. Another
important aspect that was not investigated in this study is the effect that measurement noise
can have in the quality of the results. Indeed, the CFD generated data was noiseless, while
the experimental data is always convoluted with noise, this could explain some of the dif-
ferences between the two approaches presented in this study. Finally, this research can be
regarded as a proof of concept that artificial neural networks can be used as reconstruction
techniques for ECVT images in fluidized bed applications. As such, the database used was
relatively small and limited. Currently, there is an ongoing study using training databases
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almost 20 times bigger than the ones presented here. This allows us, not only to better
characterize the quality and efficiency of ANN-based reconstruction algorithms, but also it
allows to test more complex network architectures.
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Chapter 5

Conclusions and perspectives

The main objective of this research work was to lay the foundations for the numerical and
experimental study of electrostatic forces in fluidized beds in our research group. From the
numerical side, we chose to address the Eulerian modeling of the mean particle electric charge.
The Eulerian approach was selected as it is the only modeling strategy capable of handling
industrial size problems. Yet no work on the subject had been published when this research
project started. From the experimental side, we wanted to study the effect of electrostatic
forces in a laboratory scale fluidized bed using a novel technique: The Electrical Capacitance
Volume Tomography (ECVT). Experimental research on the hydrodynamics of fluidized bed
with electrostatic forces was mainly conducted using intrusive local probes. Therefore, the
ECVT system represents a step forward as it can provide the global information about the
dynamics of the bed.

The first part of this thesis was dedicated to the modeling of the mean particle electric
charge transport equation. Previous works published at the beginning of this project already
derived a mean electric charge transport equation using the kinetic theory of granular flow.
However, these studies assumed an uncorrelated form for the particle probability density
function. In this thesis, we showed a methodology to overcome this limitation. Using linear
approach to model the conditional mean electric charge, we were able to derive a more
general transport equations for the mean particle electric charge and particle charge-velocity
covariance. This allowed us to propose a simple algebraic model for the charge velocity-
covariance term. Our results showed that, using an algebraic model, the covariance term takes
the form of an extra kinetic triboconductivity and dispersion coefficients. These coefficients
proved to be a more general version than the ones proposed in the previous works. The early
results of this work were published in the proceedings of the Fluidization XVI conference
held in Guilin, China in 2019 organized by the American Institute of Chemical Engineers
(AIChE). A similar work was also the subject of an oral presentation in 10th International
Congress of Multiphase Flow (ICMF) held in Rio de Janeiro, Brazil in 2019. Finally, a full
and detailed analysis was published in the Journal of Fluid Mechanics in 2020.

With this methodology, we also extended our approach to a more complete model taking
into account not only the charge-velocity covariance but also the electric charge variance,
which was neglected in the previous study. We were able to derive the transport equation for
both the electric charge variance and the charge-velocity covariance. To fully close these equa-
tion we proposed simple algebraic closure models for the third order moments derived from a
simplification of their transport equations. This model highlighted that charge variance term
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induces an additional charge flux due to the electrostatic force. Therefore, neglecting the
electric charge variance results in an underestimation of the charge kinetic dispersion in the
regions with a strong electric field. However, we also analyzed possible simplifications to this
complex model. We were able to derived a coupled algebraic model that takes into account
the variance effects. Unfortunately, the resulting model could lead to non-physical results,
especially in configurations where the potential electric energy is high. Given this important
drawback, we explored an intermediary model where the covariance equation was simplified
to an algebraic equation but the variance transport equation is kept. This modeling approach
was more successful with similar results to the full 3 transport equation model. A prelimi-
nary analysis of this work was published in the proceedings 13th Conference of Fluidized Bed
Technology (CFB) in 2021. Finally, the main results of this chapter will soon be submitted
to a peer-reviewed journal.

The second part of this thesis focused on the development of an ECVT system to ex-
perimentally study the effect of electrostatic forces in fluidized beds in our research group.
To accomplish this, we acquired a state-of-the-art ECVT device and we built an laboratory-
scale fluidized bed. However, the default algorithm used to reconstruct the 3D solid volume
fraction, was not accurate enough to allow us to perform any meaningful analysis. For this
reason, we searched and try different reconstruction algorithms found in the literature. Al-
though, some of these algorithms were very accurate, they relied in complex minimization
problems which might be very time consuming to solve for a large volume of data.

This limitation motivated us to explore a different type of reconstruction algorithm based
on machine learning techniques. We sought the collaboration of 2 different research groups:
the department of Process and System Engineering in our laboratory and the Computer
Science Research Institute of Toulouse (IRIT). From this partnership we developed the idea
of training a feed forward artificial neural network to reconstruct images coming from our
ECVT system. The key aspect of any machine learning algorithm is the training database
used to fit the neural network coefficients. Previous studies had proposed some strategies to
build a training database, however they were not suitable for fluidized bed configurations.
In this thesis, we proposed two different methods to build such database for fluidized bed
applications. The first proposition used CFD-generated data to simulate the capacitance
measurements. This approach was very successful achieving performance comparable to the
most accurate classical algorithms. The second proposition proposed relies exclusively in
real experimental measurements, and no previous knowledge of the solid volume fraction
distribution is required. This method was less accurate, but still it provided satisfactory
results. The main advantage of a machine learning-based algorithm is that the computing
time required to reconstruct the 3D image is much faster than any of the accurate classical
approaches. This can speedup the analysis pipeline of experimental results. This research
was presented in 2 different posters in the Dispersed Two-Phase flow meeting in Toulouse,
France in 2018 and in the French Chemical Engineering Congress in 2019 in Nantes, France.
Also, the results were published in the proceedings of the 13th CFB Conference. This research
topic was also the subject of an invited presentation in the research FERMaT federation.
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Finally, the main results of this work will soon be submitted to a peer-reviewed journal.

Many questions were left unanswered in this research work and some other have been
opened. First of all, although we were able to derive the governing transport equations for the
particle mean electric charge and the second order moments, their corresponding boundary
conditions are still an open problem. These boundary conditions could probe to be a crucial
part of the mathematical model. Especially because, as experimental evidence shows, the
particle motion and charging dynamics near the walls are very peculiar and they heavily
influence the evolution of the system. To tackle this problem, DNS or DEM simulations, or
even experimental techniques such as RPT or PEPT, could provide very useful and detailed
information about the behavior of the solid particles near the solid boundaries of the domain.
This information could later be used to derive accurate Eulerian boundary conditions. Once
these boundary conditions have been derived, we could proceed to the validation of the
whole formulation. The resulting equations should be implemented in a CFD software and
the results should be compared against experimental data.

Another open problem is the extension of the modeling approach presented in this work
to polydisperse configurations. However, experimental data have shown that particles of dif-
ferent size could lead to a bipolar charging phenomenon. In this configuration, the attractive
electrostatic force between particles with different polarities can create agglomerates or non-
instantaneous non-binary collisions. These two phenomena go against the main hypotheses
in the kinetic theory. Therefore, we believe that the development of an accurate Eulerian
polydisperse mathematical model is far from straightforward.

In the experimental part, the main objective of using the ECVT technology to analyze
effects of electrostatic force in a fluidized bed was not achieved and therefore should be the
logical next step. The machine learning-based algorithms presented in this should be accurate
enough to detect the presence of bubbles as well as their shape and velocity. This information
can be used to compare the effect of electrostatic forces in the bubble’s dynamics. Another
effects that can be easily quantified with this technology is the effects of the electrostatic
forces in the spatial distribution of the solid volume fraction. In particular, we could be
able to distinguish the radial segregation of the solid phase towards the reactor’s wall. Also,
the fact that ANNs can reconstruct ECVT images almost instantly will allow us to record a
large amount of data to have meaningful statistical results that can be used to validate the
Eulerian model developed in this work.

The machine learning-based algorithm also opened some questions. In this work, a simple
feed forward neural network was used. However, we do not claim that this is the optimal ar-
chitecture to reconstruct ECVT images. Recursive neural networks, long/short term memory
neural networks, convolution neural networks are all types of neural networks that have been
used in image processing analysis and they could be valuable to address the ECVT image
reconstruction problem. In addition to this, there are several points that are still unknown
at this stage: optimal size of the training database, accounting for the noise present in the
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real experimental measurements, and the performance of the algorithm when extrapolating
with data way outside the training database.
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A. Ozel, J. C. Brändle de Motta, M. Abbas, P. Fede, O. Masbernat, S. Vincent, J. L.
Estivalezes, and O. Simonin. Particle resolved direct numerical simulation of a liquid–solid
fluidized bed: Comparison with experimental data. International Journal of Multiphase
Flow, 89:228–240, 2017.

D. J. Parker. Positron emission particle tracking and its application to granular media.
Review of Scientific Instruments, 88(5):051803–1–8, 2017.

D. J. Parker, C. J. Broadbent, P. Fowles, M. R. Hawkesworth, and P. McNeil. Positron
emission particle tracking - a technique for studying flow within engineering equipment.
Nuclear Inst. and Methods in Physics Research, A, 326(3):592–607, 1993.

C. Pei, C. Y. Wu, D. England, S. Byard, H. Berchtold, and M. Adams. Numerical analysis
of contact electrification using DEM-CFD. Powder Technology, 248:34–43, 2013.

C. Pei, C. Y. Wu, and M. Adams. DEM-CFD analysis of contact electrification and elec-
trostatic interactions during fluidization. Powder Technology, 304(September):208–217,
2016.



142 GENERAL BIBLIOGRAPHY
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M. Rüdisüli, T. J. Schildhauer, S. M. Biollaz, and J. Ruud van Ommen. Bubble characteri-
zation in a fluidized bed by means of optical probes. International Journal of Multiphase
Flow, 41:56–67, 2012.

F. Sabatier, R. Ansart, H. Zhang, J. Baeyens, and O. Simonin. Experiments support simula-
tions by the NEPTUNE CFD code in an Upflow Bubbling Fluidized Bed reactor. Chemical
Engineering Journal, 385(June 2019):123568, 2020.

M. Sakiz and S. Olivier. Numerical experiments and modelling of non-equilibrium effects in
dilute granular flows. In 21st Int. Symp. on Rarefied Gas Dynamics, pages 287–294, 1999.

M. Sakiz and O. Simonin. Development and validation of continuum particle wall bound-
ary conditions using lagrangian simulation of a vertical gas/solid channel flow. In 3rd
ASME/JSME Joint Fluids Engineering Conference, pages 1–8. ASME, 1999.

F. Salama, A. Sowinski, K. Atieh, and P. Mehrani. Investigation of electrostatic charge
distribution within the reactor wall fouling and bulk regions of a gas-solid fluidized bed.
Journal of Electrostatics, 71(1):21–27, 2013.

L. B. Schein, M. LaHa, and D. Novotny. Theory of insulator charging. Physics Letters A,
167(1):79–83, 1992.



GENERAL BIBLIOGRAPHY 143

J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. A Deep Cascade of
Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE Transac-
tions on Medical Imaging, 37(2):491–503, 2018.

S. Schneiderbauer, S. Puttinger, S. Pirker, P. Aguayo, and V. Kanellopoulos. CFD modeling
and simulation of industrial scale olefin polymerization fluidized bed reactors. Chemical
Engineering Journal, 264:99–112, 2015.

Y. T. Shih, D. Gidaspow, and D. Wasan. Hydrodynamics of electroluidization: Separation
of pyrites from coal. AIChE Journal, 33(8):1322–1333, 1987.

O. Simonin, E. Deutsch, and M. Boivin. Large Eddy Simulation and Second-Moment Closure
Model of Particle Fluctuating Motion in Two-Phase Turbulent Shear Flows. In Turbulent
Shear Flows 9, pages 85–115. Springer, 1995.

O. Simonin, P. Février, and J. Laviéville. On the spatial distribution of heavy-particle veloc-
ities in turbulent flow: from continuous field to particulate chaos. Journal of Turbulence,
3(40):1–18, 2002.

D. Song and P. Mehrani. Mechanism of particle build-up on gas-solid fluidization column
wall due to electrostatic charge generation. Powder Technology, 316:166–170, 2017.

D. Song, F. Salama, J. Matta, and P. Mehrani. Implementation of Faraday cup electrostatic
charge measurement technique in high-pressure gas-solid fluidized beds at pilot-scale. Pow-
der Technology, 290:21–26, 2016.

A. Sowinski, F. Salama, and P. Mehrani. New technique for electrostatic charge measurement
in gas-solid fluidized beds. Journal of Electrostatics, 67(4):568–573, 2009.

A. Sowinski, L. Miller, and P. Mehrani. Investigation of electrostatic charge distribution in
gas-solid fluidized beds. Chemical Engineering Science, 65(9):2771–2781, 2010.

A. Sowinski, A. Mayne, and P. Mehrani. Effect of fluidizing particle size on electrostatic
charge generation and reactor wall fouling in gas-solid fluidized beds. Chemical Engineering
Science, 71:552–563, 2012.

G. Tardos and R. Pfeffer. A method to measure electrostatic charge on a granule in a fluidized
bed. Chemical Engineering Communications, 4(6):665–671, 1980.

W. P. Taruno, M. R. Baidillah, R. I. Sulaiman, M. F. Ihsan, S. E. Fatmi, A. H. Muhtadi,
F. Haryanto, and M. Aljohani. 4D brain activity scanner using Electrical Capacitance
Volume Tomography (ECVT). In Proceedings - International Symposium on Biomedical
Imaging, pages 1006–1009. IEEE, 2013.
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