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baba mama, awalane bgite ngolikoum balli ana tanbgikoum bazzaf, ou matka-
droch tssawrou chhal, awal nasse fakarte fihoum kbal man siffate hade rap-
port houma ntouma, ana daba tan ktabe likoum baal arbiya bache mayfhamn-
a hta wahade, hade thèse tamrrate sinine taa33 tadhiya, tamrate sinine ta33
flousse takhssarate ala wadde kraya, baba bgiite nchoukrak ala ga33 liyame
li dawaztha maak bache tachrah liya dourousse, ala ga33 liyam illi kanti
kante mna333ni man dkolche l la salle l msslahti, ala ga33 liyam likana tane
saliwe laaidde kbire kbal man lokhrine, ala ga33 la33ssa li kinti kate attini
fache kante kan khabbi noukatte, ou surtout ala ga33 dak lmarde li darte
like fal hikba ta33 al jabr, mama tanti tanbggi nchoukrak ala ga33 dbal-
ajje illi kanti ba33ti bache nakrawe, alla ga33 liyam illi kanti katdini fiha
lmadrassa, ana kan chkarkoum kamline, ana daba salite kraya, ou dazzate
lhajja okhra, araf illi mazal kate hazzou liya lham, walakin danya hiya haddi,
bggite nchkore rim tahiya hiya ou mimi ou ngoulihoum tanbgihoum tahouma,
bgiite nachkore mima ou lala illi ti hassou bal fakhre balli andhoum doctore
fal famila, bgiite nochkore awtani khalli lay hafdou karim ou bibiche ala pc li
kante attatni, jditi tahiya illi salfatna flousse kbal manamchi l franca ou bal
mounassaba floussha khdathoum simana li mbaade , ou bgiite nchkour tata
fatima ou wladha ou ammi lahsan wakha rajawi, bal mounnasaba tata fatima
andi liha htirame kbire, ou fal akhire tanchkore fatima sofi illi rbaatni ou hiya
arfa chnou kine, tan chkore kolchi ou samhou liya illi nssite chi wahade, tahya
famila talbi famila moussamih ou mousti.
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Abstract

Drying of porous media is at the heart of many environmental and industrial
processes. In this thesis, we are interested in capillary porous media, a cate-
gory typically corresponding to pore sizes in the micron range. Modeling of
drying is traditionally carried out within the classical framework of the con-
tinuum approach to porous media. Although widely used, the corresponding
models cannot be considered as fully predictive so that the theory of drying
porous media in the continuous framework can be still considered as incom-
plete. A well-identified difficulty of the continuum approach is the coupling
with external transfers. In this thesis, this point is studied from compar-
isons with simulations on a pore network model by focusing on the regime
dominated by capillary effects and the first period of drying during which
the surface of the porous medium is partially wetted. This coupling is stud-
ied based on the concepts of interfacial resistance and effective surface. The
interfacial resistance is characterized in detail from the pore network simula-
tions. In a second part, we focus on another major characteristic of drying:
the fact that the liquid phase breaks up into numerous clusters. This leads
to the development of a continuum three-equation model in which the liquid
phase is decomposed into a percolating liquid phase and a non-percolating
liquid phase. Very good agreement between this model and the pore network
simulations is obtained. Finally, this three-equation model is extended to the
case where a solute is present in the liquid phase. This leads to a continuum
model with five equations. Here again, a very good agreement is obtained
between the continuum modeling and simulations on a pore network.
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Résumé

Le séchage des milieux poreux est au cœur de nombreux processus environ-
nementaux et procédés industriels. Dans cette thèse, on s’intéresse aux mi-
lieux poreux capillaires, catégorie correspondant typiquement à des tailles de
pores dans la gamme micronique. La modélisation du séchage est tradition-
nellement effectuée dans le cadre classique de l’approche continue des milieux
poreux. Bien que très utilisés, les modèles correspondant ne peuvent pas être
considérés comme totalement prédictifs si bien que la théorie du séchage des
milieux poreux dans la cadre continu est encore incomplète. Une difficulté
bien identifiée de l’approche continue est le couplage avec les transferts ex-
ternes. Dans cette thèse, ce point est étudié à partir de comparaisons avec
des simulations sur réseaux de pores en se focalisant sur le régime dominé
par les effets capillaires et la première période du séchage durant laquelle la
surface du milieu poreux est partiellement mouillée. Ce couplage est étudié à
partir des concepts de résistance interfaciale et de surface effective. La résis-
tance interfaciale est caractérisée de façon détaillée à partir des simulations
sur réseau de pores. Dans une deuxième partie, on se concentre sur une autre
caractéristique majeure du séchage : le fait que la phase liquide se fragmente
en de nombreux amas. Ceci conduit au développement d’un modèle continu
à trois équations dans lequel la phase liquide est décomposée en une phase
liquide percolante et une phase liquide non-percolante. Un très bon accord
entre ce modèle et les simulations sur réseau de pores est obtenu. Enfin ce
modèle à trois équations est étendu au cas où un soluté est présent dans la
phase liquide. Ceci conduit à un modèle continu à cinq équations. Ici encore,
un très bon accord est obtenu entre modélisation continue et simulations sur
réseau de pores.
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Chapter 1

Introduction

In the natural environment, matter is mostly porous. Few solids are rigor-
ously non-porous. Soils and many rocks are porous, and generally contain
water that is rarely pure. A porous medium can be defined as a solid with
sufficient open space where one or more fluids can flow. Historically drying
has always been considered to be a chemical process and has attracted the
attention of human since its existence. During the last century we can no-
tice that a lot of researchers have brought renewed attention to this physical
process. It should be remembered that drying is a key natural, but also an
indutrial process, especially in porous media. Drying in porous media con-
taining a multicomponent liquid occurs in many industrial fields for example
in pharmaceutical production, in soil remediation [Ho and Udell, 1995], in
oil recovry, and also in food stuffs and others. In fact we are particulary
interested here in two-phase drying problems, where there are only immis-
cible fluid phases present in the medium. The water will be considered as
the wetting phase and the gas (water vapor in air) is considered as the non-
wetting phase. Drying phenomena usually involves simultaneous heat and
mass transfers. Industrialists have shown that relying solely on experiments
while neglecting mathematical models can reduce the quality of the dried
product, raising its production cost, and consequently the efficiency of the
drying process. Two-phase flows can be studied at different scales and us-
ing different techniques. We can recall the direct methods, which consist in
solving the Navier-Stokes equations, or approaches of the Lattice Boltzman
type. However these techniques are rather expensive in computation time,
and remain little used until now. Actually, drying has been approached by
two different ways, either by continuum models or by discrete models. In the
applications, the continuum approach is by far the most used. The latter is
based on a representation of the porous medium as a fictitious continuum
[Bear and Bachmat, 2012]. Indeed, despite the fact that numerical computa-
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tional tools are progressing, classical continuum theories are still used since
solving a continuum model is always faster than discrete large and complex
models. The continuum models imply determining effective parameters, over
a REV (representative elementary volume). However, truly predicting dry-
ing with continuum models is still a challenge. Although discrete approaches
cannot be really used in engineering applications, they can be used in order
to try to improve the continuum models. This is the main objective of the
present thesis. In our case the discrete approach will be based on the pore
network model (PNM) technique [Prat, 2002]. The idea is then to partition
the porous medium into a system of cavities separated from each other by
narrower passages corresponding to the pore space constrictions. The net-
work can then be either structured or not. In the case of a structured network
the PNM is seen as a grid (2D square) or cubic (3D), the cavities play the
role of pores while the constrictions will be later called throats. There are
two intrinsic properties of the network which are respectively the porosity
and also the sizes of the pores and throats. The representation of a porous
medium as a lattice permits relatively simple computation of the drying pro-
cess.

Motivation

Thus, in this thesis, the question will not be to put in competition (PNM)
and continuum models, but rather to reconcile them, while being interested
in the following problems:

-Evaporation from discrete surfaces. The contact surface between the PNM
and the external gas is a discrete surface where evaporation takes place from
the surface pore entrances only. This type of problem has been studied
quite early [Suzuki and Maeda, 1968]. Later, Schlünder [Schlünder, 1988]
proposed an analytical formula for parametrizing the evaporation rate from
a discrete surface. However, the pore opening at the surface was uniform in
Schlünder’s work. In this thesis, we explore the more realistic case where the
diameter of the surface pores varies over the surface.

- [Le Bray and Prat, 1999] noticed a sharp drop in the saturation profiles
in the vicinity of the evaporative surface. In this thesis, this edge effect is
studied in details as well as the associated problem of the coupling between
the internal and external transfers.

-The commonly used continuum models are local equilibrium (LE) one-
equation models due to the fact that they consist of an equation with only

7



one variable, the saturation or the capillary pressure, as discussed for exam-
ple in [Attari Moghaddam et al., 2017]. However, PNM simulations
[Attari Moghaddam et al., 2017] suggest that it is more consistent to con-
sider non-local equilibrium (NLE) conditions between the vapor and the liq-
uid at the scale of a REV. This leads to the consideration of a two equation
NLE continuum model. Furthermore, PNM simulations lead to separate the
liquid phase into the percolating liquid phase and the non-percolating liquid
phase. In this thesis, we therefore develop NLE continuum models taking
into account this feature. We obtain a three equation model taking into
account the transfer of mass between the two liquid phases in addition to
the mass transfer between the liquid and vapor. This model is extended to
the case of the presence of a solute within the liquid phase, leading to a five
equation continuum model.

Content outline

The chapters are organized as follows :

Chapter 2 presents a brief survey of literature and the PNM drying algo-
rithm used in our simulations. It also presents the numerical performances
of the computational code and information on how macroscopic parameters
can be determined from PNM simulations.

Chapter 3 focuses on the Schlünder formula. Numerical simulations are com-
pared with this analytical formula. The influence of the pore shape as well as
the impact of the pore size variability are studied. The limits of the formula
are also presented and a modified form of Schlünder formula is presented by
introducing the notion of influence surface so as to take into account the pore
size variability.

Chapter 4 focuses on the edge effect in the so-called capillary regime. It
proposes an in-depth study of the interfacial conditions to couple the exter-
nal and internal transfers by introducing the interfacial resistance approach.

Chapter 5 presents a drying continuum three-equation model. A comparison
with PNM numerical simulations and the continuum model is performed.
The model is extended to the case where there is a solute present in the
liquid phase. A special attention is devoted to the key role of the liquid
fragmentation process occurring during drying on the solute dynamics.

Chapter 6 contains a general conclusion and opens up new perspectives.
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Chapter 2

State of the art. Drying Pore
network model

2.1 State of art(adapted from ANR/DFG
project proposal "DRYCAP")

Drying of porous media is a central process in many environmental and engi-
neering applications. These include the evaporation of water from soils (as-
sociated with the hydrological water balance and climatic issues), the drying
of foodstuffs and building materials, the recovery of volatile hydrocarbons
from underground oil reservoirs or the remediation of polluted soils. Drying
steps are common in many manufacturing processes, which make the drying
of porous materials to an important unit operation in various industries. Due
to the importance of the field, the drying of porous materials has motivated
many studies and is a very active research area.
However, not only the importance of the field and the plethora of applications
are responsible for the tremendous experimental effort invested in drying in-
vestigations and the overwhelming amount of resulting data published every
year. The main aspect, which at the same time is the starting point for the
present thesis, is that the existing theories of drying are not sufficiently pre-
dictive, not even for the simplest type of porous media, as the rigid capillary
porous media. Rigid means that the solid matrix does not deform or frac-
ture during the drying process. Capillary porous means that the maximum
amount of water that the interior surface can fix by adsorption is negligible
compared to the available pore space volume in the medium. This implies
that the minimum pore size in this type of porous medium is greater than
about 100 nm. The water in such a porous medium is thus spatially fixed by
capillarity as a result of direct contact between liquid water and the medium.
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Capillary porous media are an important class of porous media, which are
encountered in numerous engineering applications and natural situations.
Porous stones (sandstones), sandy soils, building materials (fire bricks, tiles,
plaster), fibrous materials (such as the ones used for insulation or in the
gas diffusion layer of proton exchange membrane fuel cells), porous wicks
of many devices (capillary evaporators, vaporisers for volatile perfume or
insect repellent liquids in a room, etc.), various processed foods (especially
those with instant properties), and many pharmaceutical dosage forms are
examples of capillary porous media. An archetypical academic example is a
random packing of particles of an average size larger than 1 µm (up to a few
hundreds of µm). Rigid capillary porous media represent a class of porous
materials which is also of paramount importance in the study of transport
phenomena because of its relative simplicity. A view is that we must first
be able to develop satisfactory theories for drying of this important class of
porous media before hoping to develop satisfactory theories for more complex
porous media involving nano-scale pores and/or mechanical deformations or
fracturing, for example.

Drying theories traditionally result in continuum models, i.e. they are based
on the assumption that drying porous media can be represented by a fictitious
continuum, in which the underlying transport phenomena can be described
(e.g., Bear and Bachmat [11]). The background of this approach is historical,
because discrete representations presuppose the availability of high compu-
tational capacity for their implementation. Though such capacity became
increasingly available, continuum models will not lose their importance, be-
cause solving a continuum model by discretisation will remain very much
faster than the solution of a discrete model in the foreseeable future, espe-
cially for the large solution domains required in most applications.

In the first works on continuum drying models (e.g. Philip and De Vries [12],
Luikov [13]), the coupled heat, mass and momentum transfer equations used
to describe the drying process were obtained from purely phenomenological
considerations. Later (e.g., Whitaker [14, 15]), these equations were derived
more rigorously using up-scaling techniques, such as the volume averaging
method (Whitaker [16]). The corresponding equations have been widely used
to predict the evolution of the moisture, liquid pressure, gas pressure, and
temperature fields. These equations are presented and discussed in many
references, e.g., Whitaker [14], Plumb [17], Perré et al. [18], Geoffroy and
Prat [19]. They involve classical concepts such as a generalised Darcy’s law
and the associated concepts of relative permeabilities and retention curve, as
well as the concept of local capillary equilibrium (the liquid-gas distribution
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at the scale of a representative elementary volume (REV) is controlled by
capillarity only). The corresponding set of equations will be referred to as
the classical continuum model (CCM).

While classical and extremely useful, and in spite of many studies, the CCM
cannot be considered as a successful theory because it is not truly predic-
tive. A major test situation of interest in this context is the slow drying of a
capillary porous medium. This is typically the situation encountered when a
porous sample containing water dries at room temperature under laboratory
conditions. It typically leads to drying with a globally averaged speed of 0.1
to 1 cm of material dried per day. Under these circumstances, temperature
variations can be ignored and the drying process is driven by mass trans-
fer. Again, the view is that we must first develop predictive models for this
simpler situation before considering the coupling with heat transfer (for this
reason the thermal effect is neglected in this thesis).

As first presented by Krischer [20], the slow drying of capillary porous me-
dia is classically described in three main periods as follows. During the first
period, referred to as the constant rate period (CRP), the evaporation rate
is essentially constant and controlled by the external conditions (relative hu-
midity and velocity in the surrounding air). The last period, the receding
front period (RFP), is characterised by an internal evaporation front retreat-
ing into the porous medium, whereas the intermediate period, the falling rate
period (FRP), is a crossover period characterised by a significant drop in the
drying rate. Noting that the evaporation rate is not necessarily constant in
the “constant” rate period, it is often preferred to classify the drying periods
into two main periods stage 1 and stage 2. In this classification, stage 1 cor-
responds to the CRP whereas stage 2 encompasses the FRP and the RFP.
Of paramount importance is the prediction of the duration of stage 1 since
this is the period with the highest evaporation rate. The current situation
is that the CCM basically fails to predict the stage 1/stage 2 transition. At
best, the experimental drying curve (which is a plot of the evaporation rate
as a function of the overall liquid saturation in the sample) can be repro-
duced using fitting parameters such as the mass transfer coefficient at the
surface of the porous medium, e.g. Peishi and Pei [21]. The surface of the
porous medium is the interface between the porous sample and the external
air, whereby it is usually assumed for simplicity that the porous sample is
in contact with the external air only on one of its sides, for instance the top
side. However, reproducing experimental data by use of fitting parameters
is not a prediction. As discussed below, limited predictive capacity is due to
at least three fundamental reasons:
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i) the assumption of local equilibrium regarding the partial water vapor
pressure,

ii) poor modelling of the mass transfer at the interface between the porous
medium surface and the bulk air,

iii) the impact of secondary capillary effects (liquid films, liquid bridges,
etc.).

The fact that the mass transfer at the porous medium surface was a spe-
cific modelling issue has been recognized at least since the sixties with the
pioneering work of Suzuki and Maeda [22]. Suzuki and Maeda essentially ex-
plained why a partially wet surface could lead to the same evaporation rate
as a fully wet surface through compensation mechanisms (the flux from the
wet patches is greater than the average flux and compensates the absence of
evaporation from the dry solid areas of the surface). This problem was also
considered by Schlünder [23] who proposed a simpler analytical model. This
model incorporates the vapor transfer in the boundary layer of the gas phase.
The thickness of this boundary layer is of major importance for the extent
of stage 1. In the limit of a very thin boundary layer, lateral vapor trans-
fer becomes negligible and the drying rate drops from the very beginning of
the process. While this has been clearly helpful to better understand the
“constant” drying rates during stage 1 for only partially wet porous medium
surface, these works are by no means sufficient to solve the surface mass
transfer issue in the context of drying continuum modelling, as discussed in
more depth in the next chapter.
The fact that the CCM cannot be considered as a truly predictive theory
and has major shortcomings is not a novelty. This observation has been ac-
tually in the core of the development of alternative approaches for now about
twenty years. In particular, it has been a strong motivation for the alterna-
tive approach referred to as pore network modelling (PNM). The state of the
art regarding drying PNM will be summarised in what follows. Drying PNM
have been continuously improved since the first model (Prat [1]) and greatly
contributed to a much better understanding of the drying process. The idea
with the present thesis is to exploit the results and experiences accumulated
over the years using PNM simulations as a guide to develop improved con-
tinuum models of drying.

PNM is based on a representation of the void space within a porous medium
as a network of pores connected by narrower passages called throats. All rele-
vant transport phenomena are modelled directly at the pore network level us-
ing basic physical laws. This is in contrast with continuum models, in which
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the physics at the pore scale is more or less "hidden" into the macroscopic
parameters. Review articles on drying PNM are available (Prat [2], Metzger
et al. [24], Prat [25]), in addition to numerous specific articles (for example,
[3, 4, 5, 26]). As schematically illustrated in Figure.2.1a, pore network dry-
ing models can be built using regular (or structured) lattices. Generally, this
type of PNMs is computationally more efficient and can be quite sufficient to
study fundamental issues. However, depending on the objective, structurally
more refined PNMs can be developed so as to better represent a given mi-
crostructure (starting from binarised X-ray micro-tomography images, for
example). They are referred to as unstructured PNMs (Figure.2.1b). For
instance, the Voronoi algorithm [27] can be used to construct unstructured
pore networks from a packing of spherical particles [6, 7, 28] or obtained from
the X-ray images of real glass beads [8].

Figure 2.1: Schematic of (a) structured and (b) unstructured pore network.
Spheres and cylinders correspond to pores and throats, respectively (Figure. from
[19]).

Although PNMs can provide a much more accurate description of the drying
process, it should be clear that they cannot be used directly in most applica-
tions because the maximum number of pores that can be typically considered
with the available drying PNM codes does not exceed 1003, which is several
orders of magnitude smaller than the number of pores typically present in
the porous domains considered in many applications. This is why, as already
stressed, it is still indispensable to develop predictive continuum models.

Here we recall a few results obtained in previous works, which are of key
importance for the present thesis:
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1) PNM simulations clearly show the non-local-equilibrium (NLE) effect for
vapor, i.e. <Pv>/Pvs < 1 for S > 0, where S is the local liquid saturation,
<Pv> is the spatially averaged local partial vapor pressure and Pvs is the
saturation vapor pressure. This is illustrated in Figure.2.2. It is important
to realize that the fact that <Pv>/Pvs < 1 for S greater than zero has noth-
ing to do with adsorption phenomena or Kelvin’s effect since these effects are
not taken into account in the PNM simulations (on the ground that these
effects are negligible in capillary porous media). This result is in complete
contradiction with the CCM, which is based on the assumption of vapor local
equilibrium (LE).

Figure 2.2: Evidence of vapor NLE from drying PN simulations in a 50 x 50 x 50
network. The two-phase zone length is about 20 lattice units in this example (Le
Bray and Prat [3]). In this figure, slice fraction of liquid pores corresponds to S
and slice average vapor partial pressure to <Pv>/Pvs

2)PNM simulations provide detailed information on the phase distribution
at the porous medium surface. This is illustrated in Figure.2.3. Such infor-
mation opens the possibility of detailed analysis of the mass transfer between
the porous medium and the external air, a key issue in the modelling of the
drying process. In contrast with the model by Schlünder [23] or the analysis
by Suzuki and Maeda [22], where the surface is simply split into wet spots
and dry spots (no evaporation flux), the contribution of empty pores at the
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surface of the material (as the result of vapor transfer from menisci located
deeper in the interior of the body) can be taken into account all along the
drying process. It is also obvious that statistical and topological aspects
associated with the evolution of surface clusters (dried or still wet) can be
analysed by means of PNM.

Figure 2.3: PNM computation of phase distribution (liquid phase in blue, gas
phase in white) at the surface of drying porous medium (Le Bray and Prat [3]).

3) In general, liquid clusters can form during drying due to random distribu-
tion of throat sizes. The ability to describe the formation of liquid clusters
is an important feature of PNM, but not explicitly considered in the CCM.
Specifically, PNM simulations provide access to all details of the structure
of the liquid phase in the body during drying, enabling to distinguish be-
tween isolated liquid clusters (which are not connected to each other or to
the boundary of the two-phase region with liquid-filled throats) and the per-
colating liquid cluster (which spans the entire two-phase region of the drying
material). On this basis, it is possible to distinguish between total satura-
tion profiles, saturation profiles that refer to the main liquid cluster, and
saturation profiles that refer to isolated liquid clusters. An example for this
kind of distinction is illustrated in Figure.2.2, where percolating liquid is
referred to as the main cluster. The distinction between percolating and
non-percolating liquid opened the route for improved continuum modelling
of two-phase flows in porous media, as shown by Hilfer [29] and several other
authors in the context of problems of, for instance, immiscible displacement
in tertiary oil recovery. Therefore, it will be an important aspect in the
present thesis (chapter 5).

4)The existence of secondary capillary structures (SCS) in drainage is well
known from the works of other groups, e.g. Scheel et al. [30], and can have
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significant impact on drying. Secondary capillary structures, with an exam-
ple of visualisation given in Figure.2.4, can have the form of corner liquid
films or capillary ring chains. Corner liquid films appear in the margins of
non-circular throats even after the core of such throats has been emptied
by evaporation, increasing the hydraulic connectivity and accelerating the
drying of porous materials. Such films have been studied experimentally
and numerically (Chauvet al. [9]), and their effect has been taken into ac-
count in PNM (Yiotis et al. [31, 32], Prat [33]). This led to a quite good
agreement between drying experiments with model porous media made using
microfluidic techniques and PNM simulations (Prat [33]). The formation of
capillary rings was visualized in random packings of particles using X-ray
micro-tomography (Wang et al. [8, 34]) and in microfluidic model porous
media by optical microscopy (Vorhauer et al. [10]). Structured PNMs that
account for liquid rings were developed and respective simulation results were
successfully compared with measurements [33, 10]. Liquid rings can accel-
erate the drying by establishing saturated air conditions in emptied throats
even if they are not hydraulically interconnected. All these works clearly
show that the impact of SCS must be considered as a specific topic in the
modelling of capillary porous media drying. However, this important aspect
will not be addressed in the present thesis, which therefore focusses on the
simpler situation where the film development is negligible. This corresponds
to situation where the liquid is not too wetting and/or corners are not present
or do not form an interconnected systems in the pore space.

Figure 2.4: Secondary capillary structures forming during drying of a model
porous medium made of glass beads. Liquid bridges are clearly visible (IMFT,
unpublished).
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5) Dissolved species (ions, solute molecules, colloidal particles) can be present
in the liquid and deposited in the course of drying. Such deposition is impor-
tant in many natural or technical processes (for example, salt deposition in
soil, impregnation of catalyst carriers with active material), but it can also
be visualised and exploited as a means for better understanding the drying
process and for still better assessing the quality of a drying model. Salt de-
position at the surface or within the material is exemplarily illustrated in
Figure.2.5. Predicting correctly the distribution of salt crystallisation spots
both at the evaporative surface of a porous medium and within the porous
medium is, obviously, a strong test for PN models, since this implies a satis-
factory modelling of both the internal and the surface transfer mechanisms.
This aspect will be partially addressed in chapter 5 of the present thesis.

Figure 2.5: (a) Formation of discrete salt crystallisation spots at the evapora-
tive surface of porous medium obtained by using optical camera (doc. IMFT).
(b) Three-dimensional visualisation of liquid (in blue) and salt crystals (in grey)
distribution in a packed bed of (here not visible) glass beads obtained by using
X-ray micro-tomography (Wang et al. [34]).

2.2 Drying Pore network model
The drying PNM used in the present work is sketched in Figure. 2.6. It was
introduced by Prat [1] as a modification of the percolation invasion algorithm
(IP). As sketched in Figure.2.6, the PNM model is coupled to a boundary
layer outside the PNM where a diffusion equation is solved.
This IP rules are used to model the capillary effects within the PNM. Other
effects such as gravity or Kelvin effect or viscous effect can also be added,
but in our case we will limit ourselves to the capillary regime.
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Figure 2.6: Three-dimensional representation of a pore network in addition
to a boundary layer in the top. (figure taken from [43] )

As in many previous work a structured network is used. Our network is
composed of cubic pores, linked together by throats of square cross-section
(Figure.2.7).
To each pore we assign a diameter dp which varies between [dp,min dp,max], and
to each throat corresponds a diameter dt which vary between [dt,min dt,max].
The distance between the center of two neighboring pores is noted a. The
distribution of dp and dt is random and follows a uniform law of propability.
In the drying simulation we will have to study the liquid vapor distribution
in our porous medium.
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Figure 2.7: 3D structured pore network considered (figure taken from [44])

The pore space volume is distributed between pore and channels (throats),
However it should be noted that the throats cannot be occupied by gas and
liquid at the same time, unlike the pores. We then have four configurations
of pores during the drying process:

• 1- Pore totally saturated with liquid noted "L", where all the bonds
adjacent to this pore are liquid.

• 2- Pore partially invaded by gas "PE", where liquid-gas interface is
located in the center of this pore, this kind of pore still contains liquid
but is connect to a gas throat.

• 3- Pore completely invaded by gas "CE", but still adjacent to at least
one liquid throat.

• 4- And finally gaseous pore "G", where all adjacent throats are gaseous.
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Figure 2.8: Different types of pore encountered during the simulation (figure
adapted from [45])

The vapor partial pressure is known in the "L" and "PE" pore and is equal
to the saturated vapor pressure Pv,sat. Unknown vapor pressures are those
of the pores "CE" and "G". The mass transfer between two pores "i" and "j"
is expressed by Fick’s law:

Ji,j = DvMv

RT
d2
t,ij(

Pvj − Pvi
l

)

where Dv is the molecular diffusion coefficient of vapor, Pv the partial vapor
pressure, Mv the water molecular weight, T the temperature, R the perfect
gas constant. l is a distance. It can take two values "dp/2" or "a" (lattice
spacing), depending on the nature of the two pores and the position of the
liquid gas interface.
- If pore i is of "G" type and its neighbour j are of "CE" or "G" type , the
throat linking them is gaseous so l = a. If j are of "PE" type the throat is
still gaseous so l = a, and the vapor partial pressure as said before in j are
known and equal to Pv,sat.
- If pore i is of "CE" type and it’s neighbour j are of "PE" type or "L" type we
distinguish two cases, either the throat connecting them is gaseous, in this
case l = a, or the throat connecting them is liquid and in this case l=dp/2.
The computation nodes are located in the center of the pores. By applying
the conservation of mass to each pore "CE" and "G" present in the PNM,∑

j

Ji,j = 0 j represent the neighbor pores linked with pore i

we obtain a linear system to solve. The open surface is the contact area
between the boundary layer and the pore network model (green surface in
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Figure.2.6), this surface will be the subject of a particular study in the next
chapters. Interfacial computational nodes are added (Figure.2.9) at the con-
tact zone because the computational nodes in the PNM are only located at
the pore level. At those interfacial pores we assume that there is no lateral
diffusion. When the throat below the interfacial pore is liquid the vapor
pressure on the interfacial pore is known and is equal to Pv,sat.
Computational nodes are located in the boundary layer in order to better
compute the evaporation rate from the PNM, and also to compute the vapor
partial pressure. A classical finite volume method is used in boundary layer.
The equation solved in the boundary layer is

∆Pv = 0.

Wall condition are imposed at the other surface of the PNM. At the top of
the boundary layer, a dirichlet condition is imposed.

Figure 2.9: Configuration at the contact between the porous medium and
the external boundary layer

The lattice spacing in the boundary layer is equal "a" and is the same as inside
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the PNM, therefore we solve only one linear system; Here are the main steps
of our drying algorithm in the capillary regime :
• (1) The first step is to identify each liquid cluster and give each one a

label. A cluster is therefore a set of liquid pores and throats connected
that share the same label. for more information see first deep search
algorithm [46]

• (2) The second step is to locate all the gas-liquid interfaces in each of
those clusters labelised. Those interfaces are at the boundary throats of
the clusters. The capillary pressure is the difference of pressure between
the gas and the liquid, and it’s given by the Laplace formula

pcap = 4σcos(θ)
dt

σ is the surface tension, and θ the contact angle. It’s obvious from the
Laplace equation that the throat which will be invaded correspond to
the throat with the largest diameter.

• (3) The linear system is solved in order to know the partial vapor
pressure field in the gaseous region.

• (4) At the level of each cluster, the evaporation rate is determined
which is the sum of evaporation rate at the interfacial throat.
Fn =

∑
k

Jk; k runs over all the interfacial throats of the considered cluster.

n is the cluster index (label)

• (5) The time required to fully invade the adjacent pore of the largest
throat determined in step(2) is determined as follows:

t∗n = ρlVp,n
Fn

Vp,n corresponds to the volume of the pore , and ρl is the liquid density.

• (6) Each cluster has now a candidate throat to be invaded, but also
a corresponding time. The pore adjacent with t∗min = min(t∗n) is fully
invaded, while others are partially invaded according to the following
formula:

Vp,n(t+ t∗min) = Vp,n(t)− Fn.t
∗
min

ρl

• (7) The previous steps are repeated until a desired network saturation
is reached .
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2.3 Computing performance
Numerical simulations were carried out at the Calmip research center, which
is a regional computing center (region of Occitania) located in Toulouse.
It includes "Olympe" supercomputer with a power of 1.365 Pflops/s peak.
For more information see the following link: "https://www.calmip.univ-
toulouse.fr".
It is clear that according to the previous algorithm, steps(1) and (4) are the
most demanding in terms of computation. Inded, as our porous medium ,
is totally saturated with liquid at the beginning of simulation, new clusters
appear during the drying process. These new clusters are due to the frag-
mentation of the main cluster into smaller clusters. We can then distinguish
the main or percolating cluster from the non percolating clusters. It should
also be noted that, the more the pores of the PNM are invaded, the more
the size of the linear system to be solved increases. Figure.(2.10) shows the
variation in the number of cluster as a fonction of the saturation of network
(porous domain) for different sizes of PNM.

Figure 2.10: Variation of number of clusters with the saturation of the net-
work, with H = 10a, for the four networks.

Snet represents the saturation of the porous medium and is given by :

Snet = Volume of pores and throats occupied by the liquid
Total volume of the pore space

N represents the number of pores in each direction. In the case of a cubic
network N = Nx = Ny = Nz. The number of clusters varies exponentially
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with N. This leads to a high computational time since step(1) in the drying
algorithm is repeated after each saturation drainage.
In the next chapters, we will consider a PNM of size 30. This is explained by
the fact several realizations are generated for a given network (Monte Carlo
approach). It takes a mouth to simulate the complete drying of a PNM with
50 pores in each of the direction. At Calmip, we are limited to a number of
hours allocated for the computation. The more processors we use , the faster
is the consumption of our allocated number of hours. As shown in the speed
up (Figure. 2.11) one can limit the computation to 20 procs.
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Figure 2.11: Variation of speed up (serial run time/parallel run time) deter-
mined from Calmip simulations with np (number of proc). The linear system
with 100 000 unknowns is solved thanks to the petsc library.

2.4 Macroscopic parameters
The continuum models involve determining macroscopic parameters. These
parameters can be determined from dedicated PNM simulations. This re-
quires to identify a R.E.V. The parameters through which we will determine
the REV for our network are :
• The effective diffusion coefficient given by ,

J

A
= ε.Deff .

Mv

R.T

∆Pv
L

.

where "L" is the length of the PNM (L =lx, or ly or lz, in our case L
= lz), and ∆Pv is the vapor pressure difference between (L = 0) and
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(L = lz). A is the cross-section surface area of the network.

• The intrinsic permeability "k" of the medium given by the darcy formula
neglecting gravity

q = k.∆P
µ.L

where q is the flux discharge per unit area (m/s), L is the same as in
the effective diffusion coefficient computation, and ∆P is the pressure
difference between (L = 0) and (L = lz), µ is the viscosity of the wet-
ting phase (water).

• and the porosity ε

ε = volume of pores and throats of the PNM
`x.`y.`z

To calculate the effective diffusion coefficient we have considered a dry zone
from the drying PNM simulation far from the liquid clusters. While to cal-
culate the intrinsic permeability, we consider a pore network where the flow
rate in the throats is given by Hagen-Poiseuille’s law. (Figure 2.12) shows the
variation of the three parameters according to N (size of porous medium).
One can clearly show that a network of size 103 is reasonable for the R.E.V .
Althought the computations of macroscopic parameters was originally devel-
opped in order to perform comparisons between PNM simulations, it turns
out that a simpler approach, not requiring the use of the effective transport
parameters has been eventually used in the next chapters.
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Figure 2.12: from left to right and from top to bottom, respectively, variation
of porosity, effective diffusion coefficient, permeability as a function of N. For
the porosity figure, these are three different distributions of pores and throats
(blue graph: dp ∈ [0.775 0.825], dt ∈ [0.375 0.425] ; yellow graph dp ∈ [0.675
0.725], dt ∈ [0.275 0.325 ] ; red graph dp ∈ [0.275 0.325], dt ∈ [0.175 0.225] ) ,
while Deff and k curves are the results of the second configuration of throats
and pores, (yellow graph in the porosity figure). For the simulations we took
Dv= 1e-5 m2/s, and µ= 1e-3 Pa.s

2.5 Conclusions
In summary, this overview of previous works indicates a series of major issues
in the present state of the art of continuum modelling of drying of capillary
porous media. These can be briefly listed as follows:

• There is a complete misunderstanding as regards the use of desorption
isotherm in the context of drying capillary porous media. In many
cases, the introduction of desorption isotherms has nothing to do with
adsorption-desorption phenomena but actually is simply an erroneous
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modelling of NLE effects (the average vapor partial pressure is less than
the saturation pressure in a representative element volume (REV) when
the liquid water saturation is sufficiently low in the REV). It is therefore
crucial to fully recognize the possible NLE nature of the drying process
in capillary porous media.

• The modelling of the mass transfer at the surface of the porous medium
is a major issue still poorly understood (as discussed in the next chap-
ter). This has led many authors to adjust ad-hoc modelling such as
a mass transfer coefficient at the surface which is a function of sur-
face saturation, or saturation dependent water vapor pressure at the
surface. Actually, this has nothing to do with a predictive theory, re-
sulting, again, from the fact that the NLE fundamental nature of the
problem has been ignored so far. This point is addressed in Chapter 4
of the present thesis.

• When drying becomes very slow pore network simulations indicate that
the liquid phase can be essentially formed by isolated liquid clusters.
This is in strong contrast with the CCM, which does not make any dis-
tinction between the percolating liquid phase and the non-percolating
clusters. This point is addressed in Chapter 5 of the present thesis.

• Dissolved species can also be transported during drying. This has a
strong impact on the distribution of the considered species in the porous
medium during drying. This aspect is addressed in Chapter 5.

These various points will be studied in the next chapters from comparisons
between PNM simulations and continuum model solutions. The drying PNM
has been presented in this chapter. It is based on the now somewhat classical
algorithm presented in (Prat [1]).
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Chapter 3

About Schlünder’s model: A
numerical study of evaporation
from partially wet surfaces

3.1 Introduction
One of the most puzzling aspects of drying of porous media is the possible
existence of a long constant rate period (CRP), namely a period over which
the evaporation rate varies little whereas the water content varies apprecia-
bly. Since drying is a phenomenon coupling internal transfers, that is, inside
the porous media, and external transfers, that is, in the gas phase at the
evaporative surface of the porous medium, both types of transfer should play
a role in the existence and duration of the CRP. Qualitatively, the CRP is
“explained” from an internal transfer standpoint by the fact that capillary
effects can maintain the surface sufficiently wet. This can also be viewed as a
consequence of the capillary pumping effect (see below). It is now well known
that drying of porous media can be analyzed within the realm of two-phase
flow theory in porous media [1] as an invasion percolation process.[2, 4] This
means that the bigger pores are first invaded whereas smaller pores stay wet
at the surface. For a meniscus to stay at the entrance of a smaller pore at
the surface, a liquid flow in this pore should equilibrate the evaporation rate
from this pore. This is the capillary pumping effect, that is, a net flow from
the inside of the medium toward the smaller pores at the surface. However,
since bigger pores are invaded, the density of wet pores (fraction of the pores
at the surface with a pinned meniscus) decreases during the CRP. In other
terms, the surface is less and less wet but this does not change appreciably
the evaporation rate, at least as long the surface wet fraction is high enough.
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Then we have to explain why the evaporation rate from a partially wet sur-
face can remain approximately unchanged whereas the surface becomes less
and less wet. This is essentially the point studied by Schlünder.[5, 6] Extend-
ing the work of Suzuki and Maeda,[7] Schlünder essentially showed that the
evaporation rate from a surface covered by discrete wet spots is essentially
the same as the evaporation rate from the same surface totally wet provided
that the wet spots are evenly distributed over the surface and their diame-
ter is small compared to the typical thickness of the external mass transfer
layer. This result was obtained assuming that the external mass transfer is
governed by diffusion, at least in a small layer adjacent to the surface (the
viscous sub-layer in the analysis of Schlünder), for example, Haghighi et al.[8]
The analytical relationship proposed by Schlünder reads

J

Jref
= 1

1 + 2
π
rp

H

√
π
4θ

[√
π
4θ − 1

] (3.1)

where J is the evaporation rate, H is the tickness of the diffusive layer adjacent
to the surface, rp is the radius of the wet spots (pores) at the surface. θ = πr2

p

a2

is the wetted fraction of the surface where a is the size of a square unit cell
with a circular pore opening in its center (see Figure 3.1(a) ).

Figure 3.1: Computional domains: (a) single unit cell and (b) 3 x 3 square arrangement
of wet surface pores.

The length a can also be interpreted as the mean distance between the pores
at the surface. In Equation (3.1), Jref is the evaporation rate when the
surface is entirely covered by liquid,

Jref = Mv

RT
Da2 (Pvs − Pv∞)

H
(3.2)
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where Mv, R, and T are the water molecular weight, the universal gas con-
stant, and the temperature. D is the molecular diffusion coefficient of vapor
in the binary mixture formed by air and the vapor. Pvs and Pv∞ are the vapor
pressure at the pore surface (saturated vapor pressure) and in the external
gas at the distance H from the porous surface, respectively.

Hence Equation (3.1) provides an explicit relationship between the evap-
oration rate and the degree of occupancy of the porous surface by the liquid.

Schlünder’s relationship thus analyzes the CRP from a pure external
mass transfer standpoint. However, as discussed in Moghaddam et al. and
Lehmann and Or, [9, 10] drying is less simple than considered in Schlün-
der’s analysis. For instance, the pore sizes are not uniform at the surface
and vary from one pore to another. The impact of this variability must be
assessed. Nevertheless, Schlünder’s relationship is still today the only an-
alytical expression linking the evaporation rate to the degree of occupancy
of the surface by the liquid. Since the evaporation rate decreases according
to Equation (3.1) when θ is sufficiently small, Equation (3.1) was also used
later by Schlünder [11] to explain the end of the CRP and thus the transition
toward the falling rate period (FRP), another key issue in the drying theory.

Since drying is essentially a coupled problem between the transfer inside
the porous medium and in the external gas domain with which the porous
medium is in contact on one or several sides, the correct modeling of the
coupling is crucial. In the simpler approach, the mass transfer at the surface
is modeled using a mass transfer coefficient, for example, Chen and Pei.[12]
Thus in the case, the equations governing the mass transfer in the external
gas are not solved explicitly all along the drying process. The problem with
this approach is that the variation of the mass transfer coefficient during the
drying process is not known. Therefore this approach is rarely truly predic-
tive. A more satisfactory approach consists in solving together the equations
governing the transfer in the external gas and inside the porous medium.
Such an approach when the transfers inside the porous medium are modeled
using the continuum approach to porous media can be found, for example,
in the references.[12, 17] A somewhat similar coupling strategy has also been
developed in relation with the pore network modeling (PNM) of drying, for
example, Xu and Pillai.[18] Although the general approach involving to solve
the Navier–Stokes equations together with the vapor transport equation is
certainly the most versatile in relation with drying problems, simplified ver-
sions can also be useful, for instance in order to perform comparisons with
laboratory experiments, for example, Veran and Prat.[19] Such a simple case
is when the external mass transfer is essentially driven by diffusion, a situ-
ation thus similar to the situation considered by Schlünder. One can thus
wonder whether Schlünder’s formula or a variant of Schlünder’s formula could
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be useful in relation with the PNM of drying. In this respect, it should be
noted that the results presented in Moghaddam et al.[9] as well as in previ-
ous works using a pore network model, for example, Yiotis et al.,[20] were
based on simulations using a quite coarse grid in the external mass transfer
boundary layer. Clearly, this aspect of PNM needs improvement.

To sum up, the objectives of the present paper are triple: (1) assessing
Schlünder’s relationship for a greater variety of wet pore shapes than in
previous works, (2) looking at the asymptotic case where the wet spots are
far apart from each other, and (3) adapting Schlünder’s formula to the case
of heterogeneous surface for application to the PNM simulations of drying.

3.2 Method
The study is based on numerical solutions of the diffusion equation govern-
ing the vapor concentration in the external mass transfer boundary layer. As
depicted in Figure 3.1, the computational domain Ω is a parallelepiped do-
main with the partially wet surface localized at its bottom. Using the vapor
partial pressure Pv as main variable, the problem to be solved in Ω reads

∆Pv = 0 (3.3)

where ∆ is here the Laplacian (Laplace operator). Equation (3.3) thus cor-
responds to the steady-state diffusion equation when the temperature varia-
tions can be ignored and the diffusion coefficient is constant. On the lateral
boundaries, a zero flux condition is imposed (∇Pv.n = 0, where n is the
unit normal vector at the considered surface). On the top surface, the vapor
partial pressure is known,

Pv = Pv∞ at z = H (3.4)

On the partially wet surface ∂Ωb (bottom surface at z = 0), the vapor partial
pressure is known on the wet regions, that is

Pv = Pvs at z = 0 on ∂Ωbw (3.5)

where Pvs is the saturated vapor pressure at the considered temperature (the
temperature is uniform all over the computational domain). On the solid
part of ∂Ωb, a zero flux condition is imposed

∇Pv.n = 0 at z = 0 on ∂Ωbs (3.6)
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Equations (3.3)–(3.6) are solved using the simulation software COMSOL
Multiphysics. Once the vapor pressure field has been computed the evap-
oration rate is computed as

J =
∫

Ωbw

(
−DMv

RT
∇Pv.n

)
dΩ at z = 0 (3.7)

In typical drying experiments, H is on the order of 1 mm while a typical
mean distance between pores is of the order of 100 µm or less. Thus, unless
otherwise mentioned, all the simulations presented in what follows have been
performed for H = 1 mm and a = 100 µm. However, it can be noted that
what matters is actually the ratio H/a. Thus, the presented results directly
apply to other values of a or H as long as H/a = 10.

3.3 Influence of pore shape
To derive his formula, Schlünder has actually considered a system of hemi-
spherical droplets. Assuming a square arrangement of the droplets, he actu-
ally considered a single unit cell of parallelepiped shape with a droplet lying
in the middle of the bottom surface of the parallelepiped domain. Since pores
are not hemi-spherical droplets, it is interesting to examine the impact of the
pore shape. Circular pores are obvious candidates but it is clear that the
pore shape is often quite different from a circular tube. For this reason, we
have also tested other elementary shapes such as square, triangle, and star
shapes.

Figure 3.2: Various surface elementary pore shapes (wet zone in blue, solid surface in
grey): (a) circular, (b) square, (c) triangle, (d) square complement, and (e) Star shapes
corresponding to θ = 0.1, θ = 0.2, and θ = 0.3, respectively.
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The various tested shapes are depicted in Figure 3.2 while a comparison
between the results obtained using Schlünder’s relationship and the results
obtained numerically for the different shapes is presented in Figure 3.3.

To perform this comparison we keep H = 1 mm and a = 100 µm and
vary the wet surface area Sw for the various shapes. Thus, θ = Sw

a2 . To use
Equation 3.1, we also need to specify the pore radius rp.

For shapes different from the circular shape, we define rp as the circular
pore radius having the same wetted area as the considered shape. Hence rp
is determined from the relationship πr2

p ≈ Sw.
As can be seen from Figure 3.3, the variation of the evaporation rate with

θ is sensitive to the pore shape.
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Figure 3.3: Test of Schlünder’s relationship (Eq. (3.1)) for the various pore shapes. H
= 1 mm, a = 0.1 mm (the dashed purple line corresponds to the square shape and the
green solid line to the triangular shape). The inset shows the relative error between the
numerical results and Schlünder’s formula (same color code as for the main plot, the error
for the square complement is not plotted).

Somewhat surprisingly in view of the analytical method used by Schlünder
to derive his formula, the numerical results for the circular pore lead to lower
evaporation rates compared to the estimate with Schlünder’s formula.
It is important to mention here that very refined meshes were used to obtain
the results shown in Figure 3.3. So the discrepancy cannot be attributed to
a lack of mesh refinement. It is attributed to the approximation made by

39



Schlünder in deriving his formula. However, the agreement with Schlünder’s
formula is excellent for the square and triangle pore shapes. The star shape
leads to a greater discrepancy, at least for θ around 0.1. Note that the star
shape is anisotropic (see Figure 3.2(f)) and it is the shape which is obviously
the less closer to a circular shape among the considered shapes. As shown in
the inset in Figure 3.3, the relative error | Jnum − JSchl | /JSchl, is, however,
reasonably low for all shapes, that is, less than 10% and actually on the order
of a few percent only, except with the circular and triangle shapes for θ <
0.05. The case of the very low θ is examined in more details after the next
section, which briefly presents the results obtained for the case of the square
complement (Figure 3.2(d).)

3.4 A counter – example
Since Schlünder’s formula was derived considering a spatially periodic
square arrangement of droplets, it can be expected that it leads to much
less good results when the distribution of the liquid at the surface is
markedly different from an even distribution of isolated wet spots.
Consider, for example, the situation where the central region of the unit cell
corresponds to a solid surface (no flux) whereas the complementary surface
is wet (the case of square unit cell is illustrated in Figure 3.2(d)). The
comparison between the simulations and the predictions using Schlünder’s
formula for this case is depicted in Figure 3.3 (compare the orange line with
the black line with empty circles). As can be seen, using Schlünder’s
formula is not a good idea for this case.
In summary, as illustrated with this example as well as with the star shape
if the wet region shape in the unit cell is too different from a circular pore,
Schlünder’s formula is not reliable. Of course, it can be noted that this
essentially holds when Schlünder’s formula indicates a noticeable impact of
θ on the evaporation rate, that is, when θ is sufficiently low (θ < 0.3 in
Figure 3.3).
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3.5 Evaporation rate for very low wetted sur-
face fractions

The motivation for studying the evaporation rate when the wetted surface
fraction is very low comes from the study of saline evaporation from porous
media, for example, Eloukabi et al.[21] When a salt crust forms at the surface,
it is often observed that the evaporation rate is severely reduced compared
to the situation for pure water. The evaporation rate can be reduced by
at least one order of magnitude. One simple option to explain this very
low evaporation rate is to consider that the crust is still wet but with a
quite low density of active pores at its surface (due to pore clogging by the
precipitation of the salt). Active pores mean wet pores where evaporation
takes place. Thus, we are interested here in Schlünder’s relationship when θ
« 1. In this limit, Equation (3.1) can be written as

J

Jref
= 1

1 + 0.5 rp

θH

≈ 2θH
rp
≈ 2
√
πθ
H

a
≈ 2πrpH

a2 (3.8)

Thus Schlünder’s relationship suggests that the evaporation rate should vary
with the square root of wetted surface fraction θ when θ « 1.

Using Equation (3.2), the evaporation rate from a surface element of size
a is given in this very low wetted surface fraction limit by

J =≈ 2θ
rp

Mv

RT
Da2 (Pvs − Pv∞) = 2πrp

Mv

RT
D (Pvs − Pv∞) (3.9)

As it could be expected, Equation (3.9) is almost identical to the expres-
sion giving the evaporation rate of a single flat droplet (a disk) on a flat plate
in an infinite half-space, for example, Picknett and Bexon [22] and Hu and
Larson. [23] The difference only lies in the numerical factor 2π in
Equation (3.9) versus 4 for the isolated droplet expression.[22, 23] As indi-
cated by Equation (3.9), a key characteristic of diffusive evaporation is that
the evaporation rate is proportional to the perimeter of the droplet and not
to its surface area. The difference in the prefactor is not surprising since
the conditions considered by the different authors to derive their analytical
expression are different. Whereas Schlünder considered the evaporation from
a half sphere in a spatially periodic system, Picknett and Bexon [22] and Hu
and Larson [23] considered the somewhat simpler case of a single droplet
in an infinite half-space. In order to evaluate the applicability of Equation
(3.8), we have computed the evaporation rate for the situation depicted in
Figure 3.1(a) for θ varying in the range [10−6- 10−3] (which corresponds to
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rp/a varying between 5.64 x10−4 and 0.0178 for a circular pore). The results
are shown in Figure 3.4.

As can be seen, the overall tendency between the results from Schlünder’s
formula and the numerical simulations are similar. As shown in the inset in
Figure 3.4, the relative error is greater for this range of very low wetted
surface fractions (except, however, for the circular pore when θ < 10−5)
compared with the results shown in Figure 3.3 for greater θ. The agreement
with the formula for an isolated droplet leads as expected to similar results
as Schlünder’s formula for sufficiently low θ (with the discrepancy due to
the numerical prefactor 2π versus 4). The comparison with the numerical
simulations suggests that Schlünder’s formula is more appropriate. However,
as shown in Figure 3.4, the relative error between the numerical simulations
and Equation (3.9) can be relatively high.
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Figure 3.4: Test of Schlünder’s relationship in the limit of very low wetted surface
fractions as given by Eq. (3.8). The inset shows the relative error between the numerical
results and Schlünder’s formula (same color code as for the main plot).

Further investigations are needed to clarify this point, which might be due
in part to a combination of numerical inaccuracies owing to the very small
region occupied by the wetted surface in the computational domain and the
inaccuracy of the Schlünder’s formula in the limit of very small θ. Based
on the results shown in Figure 3.4, a very low θ, on the order of 10−5, must
be considered here to reduce the evaporation rate by a factor 10 compared
to the evaporation rate for a fully wet surface. This corresponds to rp/a ≈
1.8 x 10−3 (corresponding, for example, to pores of 360 nm in diameter 100
µm away from each other). It can be argued, however, that the boundary
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layer thickness H is probably affected when the active pores are so sparsely
distributed over the surface. Thus, this situation of very low evaporation
probably needs further investigation.

3.6 Influence of disorder
Pore sizes are not uniform in a porous medium but vary from one pore
to another. Thus, it is interesting to look at the impact of the pore size
variability. Here several options are possible. One can play for instance with
the distance between two neighbor pores and/or the pore diameters or the
pore shapes. Varying the shape, for example, sounds a bit less relevant since
the pore shapes should be similar for a given porous medium. So, square
pores are considered. For simplicity, we have decided to only vary the pore
side length (and thus not the distance between the pore centers).

A square arrangement of pore openings at the surface is considered for
a fixed distance between the centers of two neighbor pores. The pore side
lengths are selected randomly as follows. Similarly as in Figure 3.1(b), a
surface with 3 x 3 pore openings is considered (but the openings are square
and their sizes vary). First, we select a range of θ, namely [θmin, θmax]. Then
we select nine values in this range roughly evenly distributed. Then the nine
values are randomly located over the nine locations at the surface. The side
length d of each pore is then deduced from the definition of θ, θ = d2/a2.
A surface with nine values of θ so distributed is called a realization of the
surface. A total of four realizations of the surface are considered in what
follows.

The local wetted surface fraction is defined as

θi = d2
i

a2 (3.10)

where i is the pore index. Thus i varies between 1 and 9 since there are 9
pores at the surface.

The global wetted surface fraction is defined as

θ =

9∑
i=1

d2
i

9a2 = 1
9

9∑
i=1

θi (3.11)

The evaporation rate Ji from each pore is determined by solving Equations
(3.3–3.6) for each realization.

Figure 3.5 shows the variation of Ji as a function of θi with a comparison
with the predictions using locally the Schlünder’s formula (i.e.,Equation (3.1)
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with θ = θi, rpi= di/
√
π ) for values of θ in the range [0.001–0.48]. As can be

seen, using locally Schlünder’s formula, that is, for each cell at the surface,
leads to poor results.The evaporation rate is underestimated for θi approx-
imately greater than 0.15 and overestimated for lower θi . The variability
of the local evaporation rate is quite high (between about 10% of Jref and
150% of Jref ).
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Figure 3.5: Variation of Ji/Jref with θi where Jref is given by Eq.(2), H = 10 mm, a
= 1 mm. Each type of symbol (filled circles,square, diamond, and triangle) corresponds
to one realization of the 3 x 3 surface. The inset shows the variation of the average
evaporation rate with average θ (black symbols: Schlünder’s formula option #1 (i.e., Eq.
(3.1) with Eq. (3.12)), blue symbols: Schlünder’s formula option #2 (i.e., Eq. (3.1) with
Eqs.(3.13–3.14)), red symbols: average values from the numerical simulation over the four
realizations of the 3x3 surface).

Thus the evaporation rate can be locally 50% greater than the evaporation
rate corresponding to a fully wet cell. This is explained by the impact of
neighbor pores. It is expected that the evaporation rate from a given pore is
greater when the neighbor pores are small on average than when the neighbor
pores are greater. This is illustrated in Figure 3.6 for a special 3 x 3 surface
with only two sizes of pore. The pore in the middle of size dmi (corresponding
to θmi) and the eight neighbor pores of size dne (corresponding to θne). Figure
3.6 shows the variation of the evaporation rate from the middle cell for two
different wet surface fraction θmi as a function of neighbor cell wet surface
fraction θne.
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Figure 3.6: 3 x 3 surface with two pore scales. Variation of the evaporation rate from
the middle cell for two different wet surface fraction θmi as a function of neighbor cell wet
surface fraction θne . Main plot θmi = 0.4; inset θmi = 0.001.

As depicted in Figure 3.6, the greater are the neighbor pores, the lower the
evaporation rate from the middle pores. Also, consistently with the results
shown in Figure 3.5, the dimensionless evaporation rate is greater than one
when the middle poresize is greater than the neighbor pore size.

Conversely, the dimensionless evaporation rate is lower than one when
the middle pore is smaller than the neighbor pores. Whereas it is clear from
Figure 3.5 that the simple application of Schlünder’s formula to each cell
does not lead to good results, one can wonder whether Schlünder’s formula
can still be used to predict the overall evaporation rate. To this end, two
options are considered. Option 1 consists in using the radius corresponding
to the whole wet surface area as equivalent pore radius,

rpopt1 =

√√√√√ 9∑
i=1

θia2

π
(3.12)

and for θ,

θpopt1 =

9∑
i=1

θia
2

9a2 = 1
9

9∑
i=1

θi (3.13)

The second option consists in using the average equivalent pore radius, that
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is

rpopt2 = 1
9

9∑
i=1

√
θia2

π
(3.14)

with θpopt2 =θpopt1. Thus the difference between the two options lies in the
definition of the equivalent pore radius. The equivalent pore radius corre-
sponds to the whole wet surface with option 1 and to the average equivalent
pore radius with option 2. As can be seen from the inset in Figure 3.5, op-
tion 2 leads to a good agreement with the numerical values. In other terms,
replacing the heterogeneous surface by a homogenous surface of nine identi-
cal pores having the same size as the average pore size of the heterogeneous
surface leads to the same evaporation rate as for the heterogeneous surface.

3.7 Extension of Schlünder formula to het-
erogeneous surfaces

Since the size of neighbor pores has an impact, a simple idea is to associate an
influence surface Ai with each pore at the surface. How Ai can be determined
is explained below. Then the evaporation rate from pore i can be estimated
using Equation (3.1) as

Ji
Jrefi

= 1

1 + 2
π

rpi

H

√
π

4θi

[√
π

4θi
− 1

] (3.15)

with Jrefi = Mv

RT
DAi

(Pvs−Pv∞)
H

, θi = d2
i

Ai
, rpi = di√

π
. Under these circumstances,

the evaporation rate from pore #i is given by

Ji
Jrefi

= (Ai/a2)

1 + 2
π

rpi

H

√
π

4θi

[√
π

4θi
− 1

] (3.16)

where a2 is the surface area of a cell at the surface and Jref is given by
Equation (3.2).
In addition to Equation (3.16), we have also tested a formula in which the
impact of the influence surface is taken into account with a power of 2, namely

Ji
Jrefi

= (Ai/a2)2

1 + 2
π

rpi

H

√
π

4θi

[√
π

4θi
− 1

] (3.17)

For using Equations (3.16) or (3.17), we have to determine the influence
surface area Ai for each pore i.

46



The idea is simple and consists in making a tessellation of the surface as
illustrated for realization #1 in Figure 3.7. The influence surface area of a
pore is the set of points of the surface which are closer to this pore than to
any other pore. To determine the influence surface we use a discrete method
based on the pixelization of the surface and determine the number of pixels
corresponding to each influence surface.

Figure 3.7: Illustration of the influence surfaces (colored areas) associated with each
pore (black filled square) at the surface. The dashed lines delineate the boundary of
each cell at the surface. The influence surface area of a pore is the surface area of the
pore together with the area of the colored surface surrounding the pore. The stairs at the
boundary between two influence surfaces are due to the discrete method used to determine
the boundary.

To obtain the tessellation shown in Figure 3.7, the whole surface was
tiled by 100 x 100 square pixels of size 3a/100. Application of Equations
(3.16) and (3.17) then leads to the results shown in Figures 3.8 and 3.9.
As can be seen, the use of Equations (3.16) or(3.17) significantly improves
the prediction from simple formula of Schlünder type. This is better seen
in Figure 3.9, which clearly shows that Equation (3.17) is the best option.
Although the overall trend in Figure 3.9 is quite good, the scattering for
some points in Figure 3.8 is noticeable.

Also, it can be noted that the discrepancy between the simulations and
the prediction from Equation (3.17) is greater for the smaller pores, which
correspond to pores where the evaporation rate rapidly varies with θi.
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Figure 3.8: Variation of pore evaporation rate Ji as a function of the corresponding
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i / a2). The black solid line corresponds to
standard Schlünder’s formula Eq. (3.1). The black symbols correspond to the numerical
simulations for the four realizations (each type of symbol, circle, square, diamond, triangle,
corresponds to one realization). The blue symbols correspond to Eq. (3.16) and the red
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Figure 3.9: Comparison between the evaporation rate from each pore computed
numerically and the predictions from the various variants of Schlünder’s formula
for the 3x3 surface. The main plot is the comparison with Eq. (3.17). The inset
on the top left shows the comparison with the standard Schlünder’s formula (Eq.
(3.1)). The inset on the bottom right shows the comparison with Eq. (3.16).
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Another idea is to consider the evaporation rate variable. In this sense,
the streamline comsol method was used. The surface of influence is then
the set of points of the upper surface connected to the pore considered by
evaporation rate streamline, (Figure 3.10)

Figure 3.10: Illustration of the influence surfaces (right figure) associated with
each pore (square at the left figure) at the top of the parallelepiped using streamline
method from comsol.

By applying the two Schlünder formula Equations (3.16) and (3.17) this
time, we notice that contrary to the tesselation based on pixelization, an area
of influence with an order one is sufficient to compare with the numerical
results Figure 3.11.

Figure 3.11: Comparison between the evaporation rate from each pore computed
numerically and the predictions from the various variants of Schlünder’s formula for
the 3 x 3 surface. The blue symbol correspond to surface influence from streamline
method, the red symbol correspond to surface influence from pixelization method.
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Algorithm such as Voronoi tessellation,[24] can also be used to perform
the tesselation. Improving the computational efficiency of the tessellation
will be important for extending the method to surface containing a large
number of pores.

3.8 External mass transfer and PNM
As presented for example in Moghaddam et al.[9] or Metzger et al.,[25] a
method for computing the diffusive external mass transfer in the pore network
models of drying consists in setting computational nodes in the external layer
of size H. However, as illustrated in Figure 3.12, the distance between two
computational nodes is generally taken as the distance between two pores in
the network (also referred to as the lattice spacing a).

Figure 3.12: Typical distribution of computational nodes (red dots) in the
external diffusive mass boundary layer in PNM of drying.

Obviously, this is a quite coarse discretization, sufficient to get qualita-
tive results but questionable if the objective is to quantitatively compute
the transfer by diffusion in this layer.[18] In this context, the objective is to
assess the impact of this coarse discretization on the mass transfer at the
boundary of the network and also to explore whether the use of Equations
(3.1) or (3.17) could be a better option.
Consider the case when the pore size does not vary over the surface. Thus, we
can consider only a unit cell as depicted in Figure 3.1(a). The finite volume
discretization of the diffusive mass transfer using the coarse discretization
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classically used in PNM leads to compute the evaporation rate as (see Ap-
pendix)

JPNM
Jref

= 2θn
2θ(n− 0.5) + 1 (3.18)

where n = H/a is the number of finite volumes used in the vertical direction
to discretize the boundary layer. A comparison between the results obtained
from Equation (3.18) and from Schlünder’s formula (Equation (3.1)) is pre-
sented in Figure 13 considering again the representative values H = 1 mm,
a = 0.1 mm.

We know from previous sections that Schlünder’s formula leads to quite
accurate results for this case. Thus, it is clear from the comparison shown
in Figure 3.13 that the coarse discretization used in several previous works
with PNM is not satisfactory.
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Figure 3.13: Comparison between the results from a coarse finite volume
discretization (CFV, Eq. (3.18)) and from Schlünder’s formula (Eq. (3.1)).
H = 1 mm, a = 0.1 mm.

A finer discretization is necessary for accurate results. Based on the
above, a simpler and better option would be to use the modified Schlünder’s
formula, that is, Equation (3.17), as boundary condition for each cell at the
evaporative surface instead of the coarse discretization. This approach does
not require setting computational points in the boundary layer and therefore
is more computationally efficient than the usual coarse discretization method.
It only needs a pre-processing step for determining the influence surface area
of each pore at the surface.
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3.9 Summary and discussion
The modeling of drying implies to couple the external and internal transfers.
The full coupled approach implies to solve the governing equations also in the
external gas. This is computationally time consuming. Developing simplified
approaches is therefore highly desirable. In fact, this problem is usually
circumvented by the use of a mass transfer coefficient at the surface. This is
not satisfactory in general because the spatial and temporal variations of this
coefficient are generally not known a priori. Actually, this type of coefficient
is rather used as a fitting parameter. This can be useful in practice but
not satisfactory from a modeling/theoretical standpoint. In this context,
Equation (3.1) provides a simple relationship to determine the evaporation
rate from a partially wet surface when the external transfer is dominated by
diffusion.

In this work, we have explored the value of Schlünder’s formula, that is,
Equation (3.1), as a possible relationship for computing the evaporation rate
from the individual pores of a model porous surface. When the surface is
spatially periodic with a uniform pore size, Schlünder’s formula provides a
quite reasonable estimate of the evaporation rate. However, the quality of
the prediction depends on the pore shape, that is, on how the wet fraction
is distributed over the surface cells. Also, the estimate is less good for very
small wet surface fractions.

The consideration of heterogeneous surfaces characterized by a spatial
variability in the pore size leads to interesting results, especially in relation
with the PNM of drying. The standard application of Schlünder’s formula
leads to poor results. The evaporation rate from the bigger pores is signifi-
cantly underestimated whereas the evaporation rate from the smaller pores
is significantly overestimated. This is a consequence of the surface hetero-
geneity. The evaporation rate from a cell depends on the size of neighbor
pores. It is greater when the neighbor pores are smaller and lower when they
are larger than the pore of the considered cell.

These results led to introduce the concept of pore influence surface in or-
der to take into account the pore size heterogeneity while still using Schlün-
der’s formula.

The influence surface of a pore was defined as the set of the points of
the surface closer to this pore than to any other pores. This leads to the
tessellation of the whole surface by the influence surfaces and results in a
greater influence surface for a larger pore than for a smaller pore. Using the
influence surfaces with Schlünder’s formula greatly improves the comparison
between the analytical prediction of the evaporation rate from each pore at
the surface and the evaporation rate obtained from numerical simulations.
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Yet, this was obtained by using a correction factor involving the ratio of the
influence surface to the cell surface with an exponent equal to 2. Why this
value of the exponent leads to better results than an exponent equal to 1
remains to be justified from a theoretical standpoint.

The use of Schlünder’s formula with the influence surfaces provides a
simple mean to impose the boundary condition at the surface in the PNM
of drying when the external transfer is controlled by diffusion over a layer
of given thickness. The relatively classical method consisting in computing
the transfer in the diffusive layer with a coarse discretization using a dis-
cretization step equal to the spacing of the underlying lattice is clearly just a
quite crude and inaccurate method. For accurate computations, a much finer
discretization is mandatory. In order to avoid the corresponding high com-
putational cost, it is thus recommended to use Schlünder’s formula with the
influence surface, that is, Equation (3.17). Although less accurate than a re-
fined computation, this approach is much better than the classical approach
using the lattice spacing as discretization step.

However, it should be recalled that this method has only been tested over
a small surface with only nine pores and only four realizations. More work
is needed to confirm the general validity of the method. Basically, surfaces
with more pores, as well as other types of surfaces, for instance surfaces
where both the distance between two neighbor pores and the pore size vary,
must be tested.

Also, we have considered a surface where the vapor concentration is the
same at the surface of each pore. As illustrated for instance in Moghaddam
et al.[9] from pore network simulations, the vapor concentration at the sur-
face pore entrances actually varies during drying because of the invasion of
an increasing fraction of pores by the gas phase. Both the wet pores and the
dry pores at the surface contribute to the evaporation rate since vapor trans-
port can also occur through the dry pores. Thus, the impact of the vapor
concentration variability on the results obtained from Schlünder’s formula
with the influence surfaces seems an attractive approach, but as seen by Lu,
Tsotsas, Kharaghani,[27] the study of the Schünder’s formula when the vapor
concentration at the surface of the drying PNM is heterogeneous, leads to
poor results, so this formula will not be used in the following chapters.
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Appendix

Derivation of Equation (18)
Although the derivation is performed for the 3D case, consider for simplicity
the 2D mesh illustrated in Figure 3.14 (viewed as a cross-section of the 3D
mesh).

The finite volume discretization of the diffusion equation over this mesh
leads to

πr2
p

(
Pv1 − Pvs
a/2

)
+ a2

(
Pv1 − Pv∞
(n− 0.5)a

)
= 0 (A-1)
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Figure 3.14: Finite volume distribution in the external diffusive mass bound-
ary layer used to obtain Eq. (A-5). The thick blue line materializes the wet
pore at the surface. The red dots correspond to the computational points.

Equation (A-1) can be expressed as

2θ(n− 0.5)(Pv1 − Pvs) + (Pv1 − Pv∞) = 0 (A-2)

The evaporation rate is expressed as

J = Mv

RT
Dπr2

p

(Pvs − Pv1)
a/2 . (A-3)

Combining Equations (A-3) and (A-2) leads to

J = Mv

RT
D

2πr2
p

a

(Pvs − Pv∞)
2θ(n− 0.5) + 1 (A-4)

Then using Equation (3.2) leads to express Jref here as Jref = Mv

RT
Da2 (Pvs−Pv∞)

na
.

Combining the latter relationship with Equation (A-4) yields
J

Jref
= 2θn

2θ(n− 0.5) + 1 (A-5)

which is Equation (3.18) in the main text.
The mesh illustrated in Figure 3.14 is representative of the mesh used for

instance in Laurindo and Prat. [26] In other works on drying using PNM,
slightly different discretization choices could have been done but most of
them use the same discretization step in the external mass transfer layer as
in the PNM. Thus, the significant discrepancies between Equations (3.1) and
(3.18) in Figure 3.13 are representative of the coarse discretization used in
the external mass transfer layer and should be similar whatever the details
of the finite difference or finite volume formulation.
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Chapter 4

Coupling between internal and
external mass transfer during
stage 1 evaporation in capillary
porous media: interfacial
resistance approach

4.1 Introduction
Predicting evaporation from a porous medium is important in many appli-
cations such as the evaporation from soils [1] or the drying steps occurring
in many industrial processes, e.g [2]. The topic has motivated numerous
studies but is still an active research area because predicting the evaporation
process is still challenging. The commonly used models actually involve one
or more adjustable parameters such as for instance the critical saturation
or critical liquid water pressure, a somewhat controversial concept, or the
heat and mass transfer coefficients at the porous medium surface [3]. In
other words, it has been essentially shown so far that the commonly used
models are adjustable. Therefore, they cannot be considered as really pre-
dictive. In particular, it is considered that the boundary condition at the
evaporative surface is still a somewhat unresolved issue, [3]. By commonly
used models, we mean the classical models based on the continuum approach
to porous media, [4]. For the simple situation where the temperature vari-
ations can be neglected, such a drying model typically takes the form of a
non-linear diffusive equation combining the liquid mass balance equation and
the vapor mass balance equation in a single equation, [5]. In what follows,
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this model is referred to as the local equilibrium (LE) model because it is
based on the assumption that the liquid and its vapor are in equilibrium
at the scale of the representative elementary volume (REV). However, this
widely used model has been criticized [3, 6, 7] and it has been argued that
considering a non-local equilibrium (NLE) model was more relevant. The
most common approach to evaluate a drying continuum model is through
comparisons with experimental data, [3], [8, 9]. However, an alternative is
to proceed via comparisons with macroscopic data obtained from pore scale
numerical simulations. This latter approach has notably been developed us-
ing pore network model (PNM) simulations [7, 10, 13]. Naturally, it is then
expected that the PNM simulations are “sufficiently” representative of the
drying process for the comparison between the continuum models and the
PNM simulations to be also insightful as regards the performance of the con-
tinuum models with respect to the experiments. In this respect, it can be
noted that the PNM simulations have never been quantitatively compared
with experimental data. Naturally, it has been pointed out that the dry-
ing PNMs reproduce quite nicely several important experimental features
[14, 16] but this remains a qualitative comparison. There are at least two
reasons explaining this situation. Most of PNM simulations are performed
with structured cubic networks whereas the pore network is unstructured in
the experiments. However, a more important problem lies in the size of the
networks. Consider for instance the experiments with glass beads reported
in [9]. The size of the particles forming the porous medium was on the order
of 0.2 mm. The glass bead rectangular container diameter was 15 cm in
width and length and 5 cm deep. Thus there was about 250 particles over
the container height and 750 over the width or the length. Thus the size of
the network should be on the order of 250 x 750 x 750 to be representative
of the experiment. The largest network considered so far in drying PNM
simulations is 80 x 80 x 80 [15], thus significantly smaller. It must actually
be noted that most PNM simulations have been performed with even smaller
networks because of computational time and memory size issues. The net-
work should be order of magnitude larger for being representative of many
experiments at the laboratory scale, not to mention the field situations. In
brief, the networks are much smaller that the size that would be necessary
for performing direct comparisons with experimental results. In order to
evaluate a continuum model by comparison with PNM simulations, it is thus
necessary to evaluate the possible impact of the network size, i.e. the finite
size effects, and to develop the comparison so that the latter is not hampered
by the finite size effects. This is one of the objectives of the present paper.
Another issue lies in the drying regime and the possible temperature varia-
tions for the comparison between experiments, PNM simulations and contin-
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uum modelling to be insightful. The regime and the temperate variations,
if any, should be comparable. For simplicity, only the situation where the
temperature variations are negligible is considered. This situation is referred
to as (quasi-) isothermal drying. Various regimes of isothermal drying are
identified and discussed in [17] depending on the competition between the
capillary forces, the gravity forces and the viscous forces, see also [18]. Al-
though the study of the various regimes is certainly of interest, we focus in
the present study on presumably the simpler regime, namely the capillary
regime, where the capillary forces are dominant, at least during the first
period of drying (referred to as the “constant” rate period (CRP) or stage
1 evaporation). The main features of this regime are presented in section
4.3. Also, the emphasis is on stage 1 because this is a period where the de-
tailed understanding of the coupling between the external transfers and the
transfers within the porous media remains challenging.

Figure 4.1: Sketch of the archetypical drying situation considered in the study .

As in many previous works, the archetypical drying situation sketched
in Figure.4.1 is considered. The porous medium is homogeneous and fully
saturated by a volatile liquid initially. Only the top surface of the porous
sample is in contact with the ambient air whereas the other limiting surfaces
are sealed. This situation is deemed to correspond to a 1D transfer situation
as regards the continuum modelling.
As mentioned previously, relying on PNM simulations to analyze the drying
process in conjunction or not with continuum models is not a novelty. In
[14, 15], the focus was on the analysis of the PNM simulations. No attempt
was made to compare the PNM simulations with a continuum model. The
focus in [16] was on the impact of liquid films. Here again no comparison with
a continuum model was reported. By contrast, we focus in the current paper
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on the situation where the effect of the liquid films can be neglected with an
emphasis on the continuum modelling of the “PNM drying”. Comparisons
between a continuum model and PNM simulations are reported in [7] but the
emphasis was not on the capillary regime but on the viscous-capillary regime
without noticeable stage 1. The parametrization of the mass transfer at the
evaporative surface during stage 1 was therefore not addressed. The focus in
[10] was on the velocity field induced in the liquid phase by the evaporation
and thus different than in the present paper. The special case where the
liquid phase is initially distributed in small clusters was considered in [11].
There is no stage 1 in this case either. Comparisons between PNM simu-
lations and a continuum model were presented in [13] but only as regards
the saturation profiles. As in [7], the regime was the capillary-viscous regime
resulting in a very short stage 1 whereas the focus is on the capillary regime
in what follows. Also, the size of the external mass transfer layer was not
varied whereas it appears to be an important factor.

The paper is organized as follows: The PNM drying model is summarized
in Section 4.2. The main features of the capillary regime are presented in
Section 4.3. The saturation profiles are analyzed in Section 4.4. The drying
kinetics is discussed in Section 4.5. The non-local equilibrium (NLE) effect
is discussed in Section 4.6. The coupling between the internal and external
transfers is discussed in Section 4.7. The solution of the continuum model
for the considered drying regime is presented in Section 4.8. This is followed
by Section 4.9 which proposes a discussion. Section 4.10 consists of the main
conclusions of the study.

4.2 Pore network drying model
As in many previous works, e.g. [7, 10, 11, 13, 14, 15, 16], a simple cubic net-
work is considered (Figure.4.2). The distance between two adjacent nodes in
the network is the lattice spacing, denoted by a. In this model, the pore bod-
ies located at the nodes of the cubic grid are cubes of size dp with dp varying
in the range [0.675, 0.725] according to an uniform probability distribution
function, noting that the lengths in the PNM are made dimensionless using
the lattice spacing a as reference length. The pore throats are channels of
square cross section connecting the pore bodies. The throat diameter dt is
distributed in the range [0.075, 0.125] according to an uniform distribution
law. The PNM drying algorithm is the one presented in [19]. As discussed
in [17], this algorithm applies to the isothermal drying situation where cap-
illary effects are dominant and corner film flows [16, 20] can be neglected.
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The interested readers can refer to the afore-mentioned articles for details
on the algorithm and additional information on the pore network modelling
of the drying process. As sketched in Figure.4.2, the coupling between the
internal mass transfer and the external mass transfer is taken into account
by setting computational nodes in an external layer of size H. More details
on this approach can be found in [19], [15] or [21].

Figure 4.2: Sketch of pore network model with external diffusive layer on top .

As mentioned in the introduction, the capillarity dominant regime is con-
sidered, which means that both the effects of gravity and the viscous forces
are assumed to be negligible compared to the capillarity. This regime is re-
ferred to as the capillary regime. As a matter of fact, the special case when
the viscous effects can be neglected compared to the capillary effects even
when the main cluster becomes very ramified as the irreducible saturation is
approached is considered. For this reason, this regime is referred to as the
“asymptotic” capillary regime. Additional details on this regime are given in
the next section.
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4.3 Comparison between experimental and
PNM results

Typical drying experiments aim at measuring i) the cumulative evaporation,
i.e. the evaporated mass as a function of time, or equivalently the drying
kinetics, i.e. the variation of the evaporation rate as a function of the overall
saturation model, ii) the saturation profiles. Figure.4.3 show a few represen-
tative results from the literature together with PNM results obtained using
the algorithm described in [19]. These results are deemed to be representa-
tive of the capillary regime.
As mentioned earlier, several important features are well captured by the
PNM approach: drying can be described in two main periods, referred to as
stage 1 and stage 2, the saturation profiles are flat during stage 1 whereas
a drying zone develops during stage 2 leading to a sharp decrease in the
evaporation rate. However, interesting differences are also clearly visible:

1) The experimental saturation profiles are flat in the experiments during
stage 1 right from the first measured profiles. Flat profiles are also
obtained in the PNM simulations but after a while, i.e. when the
overall saturation is significantly lower than in the experiments (S ∼
0.6 – 0.7 in Figure.4.3).

2) The PNM profiles are not flat in both edge regions, namely the top and
bottom ends of the network. Similar edge effects are not visible in the
experimental profiles.

3) During stage 2, the saturation does not decrease in the bottom region in
the PNM simulations whereas there is clear decrease in the saturation
in the experiment. .

4) The evaporation rate decreases sharply at the beginning of the drying
process, i.e. at the beginning of stage 1, in the PNM simulations. This
is not seen in the experiments.

The following point can also be noted:

5) The evaporation rate is no necessarily always constant in stage 1 in the
experiments. As reported for instance in [9, 23] among others, it can
slightly decrease during stage 1.

These various points are discussed in the next sections

63



Figure 4.3: Top: comparison between typical experimental and drying PNM saturation
profiles in the capillary regime. Bottom: comparison between a typical experimental
drying kinetics and a PNM drying kinetics. MCD indicates the main cluster disconnection
[14, 15]. BT indicates the breakthrough [14, 15]

4.4 Saturation profiles
The computation of saturation profiles from the PNM simulations requires
defining an averaging volume. As in several previous works [7, 11, 13, 14],
horizontal slices of thickness a (where a is the lattice spacing) are considered.
Each slice contains N x N pore bodies located in a horizontal plane and the
half of the vertical throats connecting the pore bodies to the pore bodies
in the two adjacent horizontal planes. The thin-slice averaged saturation is
thus computed as,

Sthin−slice =
∑j=np

j=1 Vplj +∑j=nt
j=1 Vtlj∑j=np

j=1 Vpj +∑j=nt
j=1 Vtj

(4.1)
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where np is the number of pores in the slice (np = N x N), Vplj is the volume
of liquid in pore #j, Vpj is the volume of pore #j, nt is the number of throats
in the slice, Vtlj is the volume of liquid in throat #j within the slice, Vtj is
the volume of throat #j within the slice.
The thin slice averaged saturation profiles were computed in drying for var-
ious size of the external diffusive boundary layer, namely H = 5, 10, 20, 30,
40, 50 (in lattice spacing unit) for a 30 x 30 x 30 network. The profiles
were found to be independent of H. On the one hand, this is not surprising
since the main cluster invasion is controlled by the distribution of throat
sizes (the sequence of throat selection at the boundary of the main cluster
is independent of the evaporation rate in the considered capillary regime).
On the other hand, it will be seen later in the paper than the smaller the
external boundary layer thickness H, the stronger is the NLE effect in the
top region of the network. Thus, an impact on the evolution of the isolated
clusters forming in this top region could be expected. The simulations thus
show that this impact, if any, is indiscernible on the saturation profiles. The
thin-slice saturation profiles are depicted in Figure.4.4.
As indicated with point #3, the experimental saturation profiles are flat in
the experiments during stage 1 right from the first measured profiles. Flat
profiles are also obtained in the PNM simulations but after a while, i.e. when
the overall saturation is significantly lower than in the experiments (S ∼ 0.6
– 0.7 in Figure.4.4). Physically, non-flat profiles are actually expected in the
beginning of drying since the invasion of the porous medium by the gas phase
as the result of evaporation starts in the top region of the network. At some
point, the gas phase reaches the network bottom. The situation when the gas
reaches the bottom for the first time is called the breakthrough (BT). It is
well-known from percolation theory [24] and classical works in drainage [25]
, that the gas phase cluster at BT is fractal. Therefore, some network size
dependence is expected in this initial period and a while after until the sat-
uration becomes uniform over the height of the porous medium. To analyze
further this initial period, it can be first noticed that the saturation profiles
obtained in drying and in drainage using the classical invasion percolation
(IP) algorithm without trapping [26] are very similar. This is illustrated in
Figure.4.4 where Snet is the overall saturation in the network.
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a) b)

Figure 4.4: a) Saturation profiles in drainage and in drying according to IP algorithm
and PNM drying algorithm for a 30 x 30 x 30 network, b) variation of saturation in the
top slice in drying and in drainage (IP). Snet is the overall saturation in the network.

As the result, the impact of the network size can be more easily studied
using the IP algorithm, which is significantly less computationally demanding
compared to the drying algorithm. The IP saturation profiles for two network
sizes, namely 20 x 20 x 20 and 100 x 100 x 100 are compared in Figure.4.5.

Figure 4.5: IP thin slice averaged saturation profiles for Snet = 0.3, 0.4, 05, 0.6, 0.7, 0.8,
0.9 and N = 20 and N = 100.

The comparison between the two network sizes in Figure.4.5 illustrates
the network size dependence of the initial period up to BT and a while after.
The profile is getting flat (in the bulk) for a greater network saturation in the
largest network. The network size dependence at BT is further illustrated
in Figure.4.6 with the IP saturation profiles at BT for various network sizes
showing that the saturation at BT increases with the network size.
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Figure 4.6: IP saturation profiles at breakthrough for various network sizes. The inset
shows the saturation at network top in the first slice (z = 0) as a function of network size.

Actually, it is known from percolation theory [24, 26] that the saturation
at BT obeys the following scaling law in 3D,

1− SBT ∝ N−0.48 (4.2)

Accordingly, SBT ∼ 1 for a sufficiently large network. In other words, the
initial period around BT cannot be detected in the typical laboratory ex-
periments which correspond to much larger networks than those considered
in the simulations because the saturation variation over the BT period is
quite small for large networks. This explains why the saturation profiles are
typically flat right from the first measured profiles in the experiments (as
illustrated in Figure. 4.3). Furthermore, since the commonly used contin-
uum models rely on the concept of length scale separation (a REV can be
defined and its size is significantly smaller than the porous medium size, e.g.
[4] ), the continuum model cannot capture the network size dependence near
BT. It follows that the comparison between continuum models and PNM
simulations must exclude the initial period around BT. In other words, the
comparison should be made for saturations corresponding to a “reasonably”
flat profiles in the PNM simulations.
The second striking difference between the experiments and the PNM simu-
lations as regards the saturation profiles lies in the extend of the edge effects.
Edge effect refers to the fact that the saturation profiles near the top and
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bottom ends of the porous medium during stage 1 are not flat. The satu-
ration is lower than the bulk in the top region whereas this is the opposite
in the bottom region where the saturation is greater than in the bulk. In
what follows, these edge effects are referred to as the top and bottom edge
effects respectively. The edge effects are not really visible in the experimental
profiles reported in Figure.4.3 [22] because of significant fluctuations around
the mean saturation probably due to porous medium heterogeneities in the
sample. The experimental profiles reported in [27] , see Figure.1 in [27] , are
much smoother and almost perfectly flat over almost the full sample height.
The edge effect on the side of the surface open to ambient air (top edge effect)
is quite small, if any. On the side of the closed bottom end, a bottom edge
effect is visible in Figure.1 in [27] but the saturation is lower than in the bulk
contrary to the PNM simulations. It might be due to some experimental arte-
fact, i.e the fact that the MRI measurements are impacted by the presence of
the wall. Another possibility is some looser arrangement of the beads in the
vicinity of the bottom wall. Nevertheless, the main observation is that the
top edge effect is not visible in the experimental profiles. In other words, the
relative extend of the top edge effect region, if any, is less than in the PNM
simulations in Figure.4.4. Interestingly both edge effects are also visible in
the IP profiles displayed in Figures.4.4 and 4.5 and quite similar to the ones
observed in the drying simulations (Figure.4.4). This is an indication that
the top edge effect is not primarily due to a stronger evaporation in the net-
work top region in the drying case. Based on the profile evolution displayed
in Figure.4.4, the top edge effect can be interpreted as a reminiscence of the
very first drying period before and around BT. This initial period is referred
to as the BT period. As mentioned before and illustrated in Figure.4.4, there
is a preferential invasion of the top region before BT is reached.
Then the question arises as to whether the edge effect is also network size
dependent. A first indication is obtained by plotting in the inset in Fig-
ure.4.6 the IP slice averaged saturation at the network top at breakthrough
as a function of network size. This is the saturation at z = 0 in Figure.4.6.
Contrary to the saturation deeper in the network, e.g. at z = 0.2 or z = 0.4
in Figure4.6, this saturation varies very weakly, if any, with the network size.
In other words, the top edge effect is present regardless of the network size.
A similar conclusion holds as regards the bottom edge effect.
Then, we have plotted in Figure.4.7 the thin slice averaged IP saturation
profiles for Snet =0.5 for various network sizes.
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Figure 4.7: Top and bottom edge effect region size. Thin slice averaged IP saturation
profile for Snet = 0.5 for various network size for Snet = 0.5. The inset in the figure on
the left shows a zoom over the top region. The figure on the right shows the overlap of
the profiles for the various network sizes in the bottom region. The inset in the figure on
the right shows a zoom over the bottom region.

This figure also indicates that the extend of the top and bottom edge
effect regions is not network size dependent. An estimate of the extend δ
of the edge effect regions can be obtained from the plots in Figure.4.7. As
can be seen, δ ≈ 6-7a both at the bottom and at the top. Because of the
evaporation at the network top, one can wonder whether this size is also
relevant for the drying case. The comparison of the drying and IP saturation
profiles in Figure.4.4 does indicate that this is indeed the case. As we shall
see, the evaporation is active during stage 1 only in the top edge effect region
of size δ. As a result, the saturation is expected to be lower in the drying
case in the top edge effect region due to the total or partial evaporation of
some isolated clusters in this region but the size of the top edge effect region
is actually about the same as in drainage (IP profiles) and in drying.
In summary, the top edge effect, as well as actually the bottom edge effect,
is expected to be present regardless of the network size. In the case of our
network, its extend is on the order of a few lattice spacing, thus typically
smaller than the size of a REV. The top edge effect is a reminiscence of the
invasion period before and around BT whereas the bottom edge effect devel-
ops after BT until the profiles becomes essentially flat in the bulk. The BT
period is indiscernible in most laboratory experiments because of its network
size dependence. In a large network, this period actually corresponds to a
very small variation of the overall saturation. Although this initial period
cannot be detected in most experiments, it does have an impact regardless
of the network size. The impact is the formation of transition layer at the
very top of the network where the liquid distribution and the transfers (as
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we shall see) are different from the bulk. This transition zone is referred
to as the top edge effect region in the paper. The extend of this top edge
effect region is less than a REV size, on the order of 6-7 lattice spacing in the
case of our simulations. The existence of this top edge effect region has been
overlooked in the modelling of drying according to the continuum approach
to porous media and is, as we shall see, a key element in the analysis of the
drying process.
Although the focus in the present paper is on stage 1, it can be noticed in
Figure.4.3 that the saturation profiles are different in the experiments and
the PNM simulations during stage 2. The saturation does not decrease in the
bottom region in the PNM simulations whereas there is clear decrease in the
saturation in the experiment. This difference is due to the impact of viscous
effects on the pressure field in the liquid, which is completely neglected in the
considered PNM drying algorithm (the pressure is spatially uniform in each
cluster and dictated by capillary effects only). As the result, the liquid phase
is fragmented when stage 2 starts in the PNM simulations, i.e. the saturation
is equal to the irreducible saturation. The end of stage 1 then corresponds to
the main (or percolating) cluster disconnection (MCD), or more precisely in
the case of our PNM simulations to the percolating liquid cluster disappear-
ance. By contrast, the liquid phase still forms a percolating cluster between
the sample bottom and the receding front in the experiments but the liquid
effective permeability is too low for the liquid to be transported up to the
top surface of the sample. As the result, the evaporation front recedes in the
sample. One can refer for instance to [23] for a detailed discussion of this
mechanism. This effect can be captured by the drying PNM with viscous
effects, i.e. [7] and references therein. Since the viscous effects are neglected
in the PNM drying considered in the current study, the regime where the
liquid phase is completely fragmented (no percolating cluster over the region
where the liquid phase is present) is referred to as the “asymptotic” capillary
regime. It is expected at very low capillary numbers, that is when the poten-
tial evaporation is quite low. Since this asymptotic regime is not typically
encountered in the experiments, we focus in what follows on drying up to the
end of stage 1. Over this period, the explicit consideration of viscous effects
in the PNM is not necessary to develop the comparison between experiments,
PNM simulations and continuum modelling in the capillary regime.

4.5 Drying kinetics
The most obvious difference between the drying curve obtained from the
PNM simulation and the experimental one in Figure.4.3 lies in the fact that
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the evaporation rate decreases sharply at the beginning of the drying pro-
cess in the PNM simulations. This is not seen in the experiments. In the
particular case of the PNM simulation shown in Figure.4.3, it can be seen
that the mean evaporation rate in most of stage 1 after the BT period is only
about 30% of the potential evaporation, i.e. the evaporation rate when the
network is fully saturated at the very beginning of drying. The initial period
of sharp decrease in the evaporation rate corresponds to the “breakthrough
period” discussed in section 4.4, i.e. the period up to BT and a while after.
As discussed in section 4.4, this period is typically not discernable in the
commonly performed laboratory experiments since it corresponds to a quite
weak mass loss in a large network. However, since it has been argued that
a top edge effect region forms on top of the sample during the breakthrough
period regardless of the network size, the question arises as to whether the
30% decrease in the evaporation rate compared to the potential evaporation
is representative of the experiments. To discuss this point, one starts from
some typical values of the evaporation flux in experiments at the beginning
of drying. For instance, this evaporation flux is ∼ 6.6 x 10−4 kg/m2/s in
[22] and ∼ 1.4 x 10−4 kg/m2/s in [27] . This flux can be characterized by a
diffusion length H from the Fickian relationship,

j = Dv
Mv

RT

(Pvs − Pv∞)
H

(4.3)

Where Dv is the vapor molecular diffusion coefficient in air, Pv∞ is the vapor
partial pressure in the ambience, Pvs is the saturated vapor pressure, Mv,
R and T represent the molar mass of the volatile species (water typically
in many experiments), universal gas constant, and temperature. Applied to
the experimental data reported in [22] and [27], one obtains, H ≈ 0.7 mm
and H ≈ 3.3 mm respectively. These values are representative of many other
experiments. Hence, H ∼ O(1mm). Thus, a first conclusion is that this size
is small compared to the size of the sample in the experiments, which is typi-
cally on the order of a few cm. On the other hand, the grain / pore size in the
experiments is most of the time quite small compared to H. For instance, the
mean pore size in [22] is on the order of a few microns. The greater particle
size in the experiments reported in [27] is 45 nm. Thus, the experimental
situations typically correspond to d « H where d is the pore or particle size.
Since the top edge effect region is only a few lattice spacing, i.e. particle
sizes, thick, its size δ is typically small compared to the external boundary
layer thickness, i.e. δ « H. In the case of the PNM simulation reported in
Figure.4.3, the situation is different since H=10a . Thus, H is comparable
to the top edge effect region extend ≈ 6-7a . In other words, the question
arises as to whether the initial sharp drop in the evaporation flux in the PNM
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simulation in Figure.4.3 is related to the difference in the ratio H/δ between
the experiments, where this ratio is presumably quite large, and the PNM
simulation where this ratio is O(1). This question is explored by varying the
external mass transfer boundary layer size H in the PNM simulations.

Figure 4.8: PNM simulation drying curve over stage 1 for a 30 x 30 x 30 network for
various external mass transfer boundary layer thickness H (measured in lattice spacing
unit a). Jref is the evaporation rate at the very beginning of drying for H = 5. Snet is
the overall saturation in the network.

The results are reported in Figure.4.8. As can be seen, the impact of the ini-
tial breakthrough period becomes much less as the external boundary layer
thickness is increased. Since H / δ » 1 in the experiments, the results dis-
played in Figure.4.8 are consistent with the fact that the evaporation flux
in stage 1 must be close to the potential evaporation in most experiments.
Another interesting feature shown in Figure.4.8 lies in the fact that the evap-
oration rate is actually not really constant during stage 1 (after the initial
BT period). In fact, the evaporation rate decreases smoothly during stage
1. As noted in [15], this is also observed in some experiments, e.g. [9], [23].
The variation of the evaporation rate in stage 1 also depends on the ratio
H/d (or equivalently H/δ). The greater this ratio, the smaller is the variation
of the evaporation rate during stage 1. As a result, the evaporation rate is
practically constant over stage 1 only when H/δ »1, i.e. when the thickness
of the external boundary layer is sufficiently large compared to the grain size
or the top edge effect region size.
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4.6 NLE effect. Tranfer in the top edge effect
region

A debated issue, i.e. [3, 6] and references therein, in the drying theory is
whether the vapor pressure at the scale of the REV can be considered as
sufficiently close to the equilibrium vapor pressure or not. As mentioned
in the introduction, the continuum models assuming the local equilibrium at
the scale of the REV are referred to as local equilibrium (LE) models whereas
the models considering that the vapor pressure at the scale of the REV can
be different from the equilibrium vapor pressure are referred to as non - local
equilibrium (NLE) models. The most commonly used continuum models, i.e.
[4, 8, 9], are LE models.

Figure 4.9: thin slice averaged vapor pressure profiles for Snet = 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9 and H = 5. The inset shows the variation of the thin slice averaged vapor pressure
on top of network as a function of H for Snet = 0.4.

In the LE models, the equilibrium is described via the equilibrium re-
lationships relating the equilibrium vapor pressure and the saturation. The
equilibrium vapour pressure is less than the saturated vapor pressure because
of a combination of capillary effects (Kelvin effect) and physi-sorption phe-
nomena corresponding to the existence of thin liquid films over the pore wall.
The equilibrium relationship is thus generally referred to as the desorption
isotherm. However, in the PNM drying, physi-sorption phenomena and the
Kelvin effect are not considered on the ground that their impact should be
negligible in capillary porous media (an argument is that the drying of a
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circular or a square capillary tube can be quite well predicted [29] without
considering adsorbed films and/or the Kelvin effect, the latter being non neg-
ligible in sub-micronic pores only). In other words, LE equilibrium in the
case of the “PNM drying” means that <Pv> ≈ Pvs if S > 0 where <Pv> is
the averaged vapor pressure over a REV. Using as averaging volume the thin
slices previously considered, the PNM simulations lead to the slice averaged
vapor pressure profiles displayed in Figure.4.9.

Figure 4.10: NLE signature in the top edge effect region. Variation of the thin slice
averaged vapor pressure as a function of the thin slice averaged saturation for various
values of Snet (in the range 0.3 – 0.7) for various external mass transfer layer thicknesses
H. The inset shows the variation of the thin slice averaged vapor pressure as a function of
the thin slice averaged saturation for H = 5 and two values of Snet.

The figure makes clear that: i) the NLE is noticeable only in the top edge
effect region, ii) the greater the external mass transfer layer thickness, the
less is the NLE effect in the top edge effect region (as shown in the inset in
Figure.4.9). The results shown in Figure.4.9 indicates that the NLE effect in
the top edge effect region cannot be represented by a desorption isotherm like
relationship. This is better illustrated in Figure.4.10 where the slice averaged
vapor pressure is plotted as a function of the corresponding slice averaged
saturation for various values of Snet and H, i.e. Pv−thin−slice(z,Snet,H) as a
function of Sthin−slice(z,Snet,H) for given values of Snet and H.

An obvious consequence of the NLE effect in the network top region is that
the average vapor pressure at the network top surface is less than the
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saturated vapor pressure during stage 1. However as indicated in Figure.4.9,
Pv−thin−slice(0)→ Pvs for H » δ. When the interfacial resistance becomes
negligible compared to the external mass transfer resistance, then the ap-
proximation Pv−thin−slice(0) ≈ Pvs becomes acceptable. These concepts of
interfacial and external resistances are discussed in more details in the next
section.

4.7 On the transfer coupling at the porous
medium surface

Within the framework of the drying models based on the continuum approach
to porous, the top boundary condition (TBC) to be imposed is still considered
as a somewhat unresolved issue [23]. Three main different approaches to this
problem have been considered in the literature. The simpler approach is
based on the concept of critical saturation Scr (or equivalently of critical
water pressure) [3]. The boundary condition is then expressed as

j = jpot when S(0) > Scr

S(0) = Scr else
(4.4)

Thus, the evaporation flux is equal to the potential evaporation jpot as
long as the saturation computed at the surface is greater than Scr. As soon
as S(0) = Scr, the boundary condition switches to the constant saturation
condition S(0) = Scr. In the case of the PNM simulation, the saturation
decreases to zero at the surface during stage 2 (Figure.4.3). Thus, one should
take Scr = 0. However, the end of stage 1 is observed at a much greater
saturation ∼ 0.3 and j ≈ jpot in stage 1 only when H » δ. Although the
critical saturation concept is commonly used, it is also oftentimes debated
[3]. In any case, Eq.(4.4) is clearly inappropriate to model the PNM drying.
In many studies based on the LE continuum model, e.g. [8, 9] among others,
a mass transfer coefficient hm at the surface is introduced and the boundary
condition is typically expressed as

j = hmMv

RT
(Pvi − Pv∞) (4.5)

where Pvi and Pv∞ are the vapor pressure at the porous medium surface and
in the external gas away from the porous surface, respectively. Expressing
the mass transfer coefficient in terms of external flow parameters, such as the
Reynolds or Schmidt numbers, is however generally not sufficient to repro-
duce the experimental data, e.g. [8] . The mass transfer coefficient is actually
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fitted assuming that it depends on the saturation at the surface. Actually,
since the saturation is the main variable in the LE continuum model, the sur-
face vapor pressure Pvi should be also expressed as a function of saturation.
The commonly used approach is to assume that the LE relationhip corre-
sponding to the desorption isotherm Pv

Pvs
= φ(S) is still valid at the surface.

This leads to

j = hm(S)Mv

RT
(Pvsφ(S)− Pv∞) (4.6)

This boundary is referred to as TBC2. As discussed in previous works [7, 28],
this approach is clearly not applicable in the case of the comparison with the
PNM simulations since, as discussed before, the fact that the vapor pressure
can be lower than the saturated vapor pressure for S > 0 is the signature of
a NLE effect and has nothing to do with adsorption phenomena of Kelvin
effect. Furthermore, the network top surface is actually the place where the
NLE effect is the strongest as illustrated in Figure.4.9. A somewhat naïve
idea could be to introduce a pseudo-desorption isotherm or more appropri-
ately a NLE relationship φNLE=Pv(S)

Pvs
but actually such a simple one to one

relationship does not exist since Pv(S)
Pvs

can take different values for the same
value of the local saturation depending on the boundary layer thickness H or
the overall saturation as illustrated in Figures.4.9 and 4.10.
An alternative boundary condition (TBC3) used mainly by soil scientists, e.g.
[3, 30] and reference therein, consists in expressing the boundary condition
at the top surface as

j = Mv

RT

(Pvs − Pv∞)
ra + rpm

(4.7)

where ra represents the external boundary layer resistance and rpm is the
resistance due to the mass transfer in the porous medium. In this approach,
it is assumed that the external boundary layer resistance ra can be deter-
mined only from the consideration of the external transfer at the beginning
of the drying process. In other words, this resistance is considered as being
independent of the changes occurring in the fluid distribution at the surface
during stage 1. By contrast, rpm does depend on the saturation [30] . At first
glance, this approach is attractive because of the existence of the top edge
effect region in which the NLE effect is present. The mass transfer resistance
rpm would be associated with the transfers within the top edge effect region
noting furthermore that the vapor partial pressure is indeed very close to Pvs
at the bottom of the top edge effect region (Figure.4.9). Since the external
transfer is purely diffusive in our PNM simulations, ra can be expressed as
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ra ≈ H
Dv

, where Dv is the molecular diffusion of vapor in the binary mix-
ture (vapor + air). From the PNM simulations, i.e. the computation of the
evaporation flux j, rpm can therefore be computed as

rpm = Mv

RT

Pvs − Pv∞
j

− ra (4.8)

Figure 4.11: Interfacial resistance from Eq.(4.8) as a function of Sbulk for various bound-
ary layer thicknesses H.

The variation of rpm over stage 1 for various boundary layer thickness H
is depicted in Figure.4.11. The saturation Sbulk is representative of the satu-
ration in the bulk of the network away from the edges where the saturation
profiles are flat (Figure.4.4). It corresponds to the slice averaged saturation
Sthin−slice in the middle of the network (at z = 16a).
As can be seen, the interfacial resistance increases along the drying process
during stage 1, i.e. increases as the saturation in the medium decreases. This
variation is qualitatively in agreement with the parametrization used by soil
scientists [30, 31], which reads,

rpm = 10e0.3563ε(Sr−Stop) (4.9)

where Sr is the residual saturation and Stop is the saturation in the top 1 cm
layer of the soil.
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Figure 4.12: Interfacial resistance as a function of Sbulk. Test of Eq.(4.9) with modified
coefficients. The red curve (data 22/02/2021) corresponds to a single realization whereas
the black solid (3eq. data) curve was obtained from data averaged over 15 realizations of
the network.

The use of Eq.(4.9) first requires to specify Sr and Stop. In the case of
our PNM simulations, Sr can either be specified as 0.3 which corresponds to
the saturation when the liquid phase ceases to be percolating (MCD) and
becomes formed by isolated clusters (this would correspond to the standard
definition of the residual saturation) or as 0 since adsorption phenomena are
not considered (as exemplified in Figure.4.3, the surface eventually fully dries
in the PNM drying).
Both options have been tested. They lead to similar results. Thus, the
results obtained considering Sr= 0 are presented in what follows. Then,
there is the question of Stop . One option could be to consider the average
saturation in the top edge effect region, which could play a role similar to
the soil top layer. However, the boundary condition expressed by Eq.(4.7) is
to be used in conjunction with continuum models. Since the top edge region
is quite thin, thinner than the size expected for a REV, we argue that the
target of continuum models for the considered capillary regime is to predict
the saturation in the bulk and not the rapid saturation variation in the top
edge effect region. For this reason, we took Stop = Sbulk. Then the direct
application of Eq.(4.9) led to quite poor results. However, if one adjusts the
two coefficients in the equation, one obtains the results shown in Figure.4.12,
which indicates that the parametrization of the interfacial resistance with an
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expression similar to Eq.(4.9) is fair for the considered case, namely H =10,

rpm
ra

= 3.07e0.5Sbulk (4.10)

This is for a given value of the boundary layer thickness. It can be noted that
Eq.(4.9) does not depend on the boundary layer thickness H or equivalently
on the external mass transfer resistance ra. This feature is not in agreement
with the PNM simulations as illustrated in Figure.4.13a where the computed
value of rpm for a given boundary thickness H and a given Sbulk are rescaled by
the value computed for H = 50 for the same value of Sbulk. This figure makes
clear that rpm does depend on H. The greater H, the greater is the interfacial
resistance. However, as illustrated in Figure.4.11, the relative significance of
the interfacial resistance compared to the external mass transfer resistance
ra decreases with an increasing H, consistently with the expected result that
the interfacial resistance can be neglected for very large H.

a) b)

Figure 4.13: a) Interfacial resistance rescaled by its value for H = 50 as a function
of Sbulk. The vertical dashed line corresponds to the saturation 0.7 below which the
saturation profiles are considered as sufficiently flat (see section 4.8); b) Variation of the
average value of the interfacial resistance over the bulk saturation range [0.3 – 0.7] as a
function of external boundary layer thickness H.

As illustrated in Figure.3.13b, the dependence of rpm with H can be
parametrized. Knowing the variation of rpm with Sbulk for a given H, i.e.
rpm−Href

= ra−Href
f(Sbulk) (Figure.4.12), then rpm(H)= rpm−Href

g(H). In the
example illustrated in Figure.4.13b, g(H) can be represented by a quadratic
polynomial. In other words, the interfacial resistance can be expressed ac-
cording to a relationship based on the separation of the variables H and Sbulk.
In summary while TBC3 is by far the most satisfactory option, compared
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to TBC1 or TBC2, to express the boundary condition for the continuum
modelling of the PNM drying, it is not easy to use since it requires a careful
characterization of its variation with both the saturation and the external
mass transfer resistance. This situation is a consequence of the strong cou-
pling between the transfer in the external boundary layer and in the porous
medium top edge effect region.
Although TBC3 appears as the most satisfactory, or perhaps the least bad,
approach to model evaporation during stage 1, it can be noted that the in-
terpretation of Eq.(4.7) is not as obvious as it may at first appear. Eq.(4.9)
looks like the combination of the steady-state diffusive transfer in the top
edge effect region and the external boundary layer. Expressing the evapora-
tion flux as

j = Dv
Mv

RT

(Pvi − Pv∞)
H

(4.11)

in the external boundary layer and as

j = εSteDeff−te(Ste)
Mv

RT

(Pvs − Pvi)
δ

(4.12)

in the top edge effect region zone (where Ste and Deff−te are the average satu-
ration and the effective diffusion coefficient of the vapor in the top edge effect
region, respectively) and combining Eq.(4.11) and (4.12) leads to Eq.(4.7)
with ra ≈ H

Dv
and rpm ≈ δ

εSteDeff−te
. This approach to Eq.(4.7) seems in line

with the mention that rpm is linked to the transfers within the soil 1 cm top
layer in [30, 31]. Then, it would make sense to apply this condition in our
case at z = δ (bottom of the top edge effect region) rather than at z = 0.
Since very often δ « `z this should actually have no serious significance for the
modelling of the numerous situations where the constraint δ « `z is satisfied.
However, in the case of the PNM simulations discussed in the current arti-
cle, the situation is different since δ ≈ 6a is not negligible compared to the
height of the network `z ≈ 30a. More importantly, there is an inconsistency
between the derivation leading to Eq.(4.7) from Eq.(4.11) and (4.12) and the
PNM results. The derivation is actually based on the assumption that the
evaporation flux j is constant over the top edge effect region. In other words,
the evaporation flux at the bottom of the top edge effect region is assumed to
be identical to the evaporation flux at the top of the top edge effect region.
This is not in agreement with the PNM simulations which shows that the
vapor diffusive flux actually vanishes over the top edge effect region, i.e. jv
= 0 at z = δ This is illustrated in Figure.4.14. Therefore, this observation
suggests that TBC3 must be applied at z = 0 and not at z = δ.
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Figure 4.14: Distribution of vapor diffusive flux over the top edge effect region from
PNM simulations.

Thus, the interpretation of rpm must be different than simply a vapor
diffusion resistance within the top edge effect region. Actually, evaporation
takes place within the top edge effect region, i.e. at menisci located within the
top edge effect region, as well as at the upper limiting surface of the top edge
effect region where a fraction of the pores is filled with the liquid. Thus, the
modelling of the evaporation flux with Eq.(4.7) should rather be interpreted
as follows in relation with the concept of effective surface, e.g. [32] among
others. Within this view of the continuum modelling approach, the layer
formed by the top edge effect region is replaced by a fictitious “bulk” layer of
same thickness, thus a zone where the internal evaporation is negligible and
the saturation is equal to the bulk saturation and thus does not vary spatially
over this fictitious layer, at least in the case of the considered capillary regime.
The boundary condition TBC3, i.e. Eq.(4.7), is applied on top of the domain
formed by the fictitious layer and the remaining porous medium. Thus, in
this approach the total height of the porous medium `z is not modified and
is the same as in the experiments (or the pore network in our case). Then,
the resistance rpm is interpreted as an interfacial resistance at the porous
medium top surface accounting for the complex transfer occurring actually
within and at the top of the top edge effect region.
This view of the interfacial resistance rpm is further discussed in the next
section.
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4.8 Capillary regime continuum model solu-
tion

As discussed in previous works, e.g. [11] and references, the NLE continuum
model reads (for the 1D situation considered in the current paper),

ερl
∂S

∂t
= ∂

∂z

(
ρlDl(S)∂S

∂z

)
− ṁ (4.13)

∂

∂z

(
ε(1− S)Deff

Mv

RT

∂Pv
∂z

)
+ ṁ = 0 (4.14)

Where Dl(S) is the liquid diffusivity, ε is the porosity, Deff is the vapor
effective diffusivity; ṁ is the NLE phase change term, which is expressed as
[11],

ṁ ≈ agl
Mv

RT
β(Pvs − Pv) (4.15)

where agl is the specific interfacial area between the liquid and gaseous phases
and β is a coefficient, Pvs is the saturated vapor pressure.
The saturation is supposed to be spatially uniform initially S = S0. The
boundary conditions at the bottom read

− ρlDl(S)∂S
∂z

= 0 at z = `z (4.16)

and
− ε(1− S)Deff

Mv

RT

∂Pv
∂z

= 0 at z = `z (4.17)

Focusing on stage 1, the boundary condition at the top is expressed using
the concept of fictitious effective surface discussed in the previous section by
Eq.(4.7), namely,

ρlDl(S)∂S
∂z

= j = Mv

RT

(Pvs − Pv∞)
ra + rpm

at z = 0 (4.18)

As explained, in the previous section, the NLE effect is confined in the top
edge effect region. Elsewhere, Pv = Pvs. The mass transfer in this region is
taken into account via the interfacial resistance rpm. Consistently with the
interfacial resistance approach, Eq.(4.17) can be therefore be discarded. The
problem to be solved over stage 1 is therefore

ερl
∂S

∂t
= ∂

∂z

(
ρlDl(S)∂S

∂z

)
(4.19)
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together with Eqs.(4.16) and (4.18). The above problem is expressed in di-
mensionless form using the height of the sample `z as characteristic length
and the time τ= `z

ji0/ρl
as characteristic time, where ji0 is the initial evapo-

ration flux (at t = 0 in practice, after the BT period in the case of our PNM
simulations). This yields,

ε
∂S

∂t∗
= τ

`2
z

∂

∂z∗

(
Dl(S) ∂S

∂z∗

)
(4.20)

∂S

∂z∗
= j`z

ρl

1
Dl(S) at z∗ = 0 (4.21)

∂S

∂z∗
= 0 at z∗ = 1 (4.22)

First, it can be noted that a solution where the saturation profile is perfectly
flat, i.e. ∂S

∂z∗
= 0 cannot verify Eqs.(4.20) and (4.21). Thus a solution where

∂2S
∂z∗2

= η1 where η1 is small, i.e. η1 « 1, is sought, that is a solution where
the saturation profile is almost flat. This gives a saturation profile of the
form S= 1

2η1(1 − z∗)2 + S0(t) since the boundary condition Eq.(4.22) must
be satisfied.
Since the spatial variation of is quite weak, Eq.(4.20) can be actually ex-
pressed as

ε
∂S

∂t∗
= Dl(S0(t))
`z(ji0/ρl)

∂2S

∂z∗2 (4.23)

It can be seen that the expression S= 1
2η1(1−z∗)2 +S0(t) is indeed a solution

to the above considered problem under the approximation ∂S0
∂t∗

» 1
2 (1− z∗)2

∂η1
∂t∗

. Substituting the proposed solution in Eq.(4.26) yields η1=- j`z
ρl

1
Dl(S) Re-

calling the definition of the liquid diffusivity Dl(S)=-kkr

µ
dPc

dS
where k is the

permeability, kr is the liquid phase relative permeability, Pc is the capillary
pressure curve and µ is the liquid dynamic viscosity, it can be seen that

η1 = j`z
ρl

µ

kkr
dPc

dS

(4.24)

Introducing a reference capillary pressure Pcref=2γ
r
where r is a representative

pore size, Eq.(4.24) is expressed as

η1 = j`z
ρl

µ

Pcrefkkr
dP ∗c
dS

= µυev
γ

`zr

2kkr dP
∗
c

dS

= Ca (4.25)

Where υev is the evaporation velocity (υev=j/ρl) ( Eq.(4.25) makes clear that
η1 is actually a capillary number also taking into account the ratio between
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the macroscopic length `z , which is the relevant length for estimating the
viscous pressure drop and the pore size r (it is recalled that k∝ r2, r

k
∝ r−1 ) ,

which is the relevant length for characterizing the capillary pressure. Hence
η1= Ca. This makes clear that the considered solution is valid in the limit
of small capillary numbers Ca, that is in the so-called capillary regime. In
summary the saturation profile is given by S= 1

2Ca(t)(1 − z
∗)2 + S0(t) with

1
2 Ca (1− z∗)2 « S0(t) whereas S0(t) is obtained by solving the equation,

ε
∂S0(t)
∂t∗

= − j

ji0
(4.26)

Together with the Eq. j = Mv

RT
(Pvs−Pv∞)
ra+rpm

where rpm is a function of S0(t) .
This solution can thus be considered as the asymptotic solution to the con-
tinuum model in the limit of sufficiently small capillary numbers (note that
Ca varies during stage 1 with the definition of Ca given by Eq.(4.25)).

Futhermore, based on the elements presented in the previous sections, it
is first considered that the target of the continuum model must be the period
after the BT period for two main reasons: i) the BT period corresponds to
the formation of a fractal object, a percolation cluster, which is incompatible
with the length scale separation concept underlying the continuum approach
to porous media, ii) the BT period is actually indiscernible in most practical
situations of interest. Second, since the top edge effect region is expected
to be extremely thin compared to the typical total height of porous samples
in practice and typically thinner than the size of a REV, the objective of a
continuum model should not to capture the rapid saturation variation in the
top edge effect region, nor actually in the bottom edge effect region which is
also very thin. In other words, the main objective of a continuum model is
to predict the (quasi-)uniform distribution of the saturation over the height
of the porous sample observed after the very short initial BT period and over
most of the sample height in conjunction with the evolution of the evapo-
ration rate. The latter would be obtained from Eq. (4.7) via the adequate
parametrization of the interfacial resistance In what follows, we argue that
the above continuum model can be tested from comparisons with the PNM
simulation results despite the small size of the considered network. To this
end, the NLE continuum model, i.e. Eqs.(4.13) and (4.14); is considered also
in the edge effect regions (although the model is a priori not really valid ! in
these thin region owing to the obvious lack of length scale separation)
Integrating Eq.(4.14) over the top edge effect region leads to,

jv =
∫ δt

0
ṁdz (4.27)
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Where jv corresponds to the vapor mass flux from the liquid free pores at the
porous medium top surface and δt is the size of the top edge effect region.
Integrating Eq. (4.13) leads to

ερl
∂

∂t

(∫ δt

0
Sdz

)
= −jl(0) + jl(δt)−

∫ δt

0
ṁdz (4.28)

where jl(0) is the evaporation flux from the menisci located at the entrance
of the liquid filled pores at the porous medium top surface and jl(δt) is the
liquid flow rate per unit surface area in the liquid phase at the bottom of
the top edge effect region. Combining Eq.(4.27) and (4.28) and noting that
jl(0)+ jv = j yield

j = jl(δt)− ερl
∂

∂t

(∫ δt

0
Sdz

)
(4.29)

Since evaporation is negligible below the top edge effect region (Figure.4.14),
integrating Eq.(4.13) over the “bulk” region and the bottom edge effect region
leads to

ερl
∂

∂t

(∫ `z−δb

δt

Sbulk dz

)
+ ερl

∂

∂t

(∫ `z

`z−δb

S dz

)
= −jl(δt) (4.30)

where δb is the size of the bottom edge effect region.
Since Sbulk is expected to be spatially uniform in the considered regime,
Eq.(4.30) is expressed as

ερl(`z − δt − δb)
∂Sbulk
∂t

+ ερlδb
∂ < S >bz

∂t
= −jl(δ) (4.31)

where < S >bz= 1
δb

∫ `z
`l−δb

S dz is the averaged saturation in the bottom edge
effect zone.
Eq.(4.29) is then expressed as

ερlδt
∂ < S >tz

∂t
= jl(δt)− j (4.32)

where < S >tz is the averaged saturation in the top edge effect zone. Com-
bining Eqs.(4.31) and (4.32) leads to

ρlε (`z − δt − δb)
∂Sbulk
∂t

+ ερlδt
∂ < S >tz

∂t
+ ερlδb

∂ < S >bz

∂t
= −j (4.33)
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Which is finally expressed as

ρlε

[
`z + δt

(
∂ < S >tz

∂Sbulk
− 1

)
+ δb

(
∂ < S >bz

∂Sbulk
− 1

)]
∂Sbulk
∂t

= −j (4.34)

The variations of the mean saturation in the top edge region < S >tz and
the mean saturation in the bottom edge effect region < S >bz with Sbulk are
displayed in Figure.4.15 for the case of the 30 x 30 x 30 network.

Figure 4.15: Mean saturation < S >tz in the top edge effect region, mean saturation in
the bottom edge effect region < S >bz and overall network saturation Snet as a function
of the saturation in the bulk.

The results for < S >bz has been obtained by IP simulations considering
200 realizations. IP simulations are much faster than drying simulations,
which allows obtaining smoother results via the consideration of a greater
number of realization. It is recalled that the profiles in drying and in IP are
identical in the edge bottom region (Figure.4.4). The results for < S >tz were
obtained from drying PNM simulations considering 15 realizations. The focus
is on the range of saturations away from the BT period where the saturation
profiles are flat in the bulk. We have somewhat approximately considered
the bulk saturation range [0.3 – 0.7] although the profile in not yet flat in the
bulk for Sbulk ∼ 0.7 so as to consider a not too narrow range of saturations.
This corresponds to the range of saturations on the left of the vertical dashed
line in Figure.4.15.

86



As shown in Figure.4.15, < S >tz and < S >bz vary linearly with Sbulk
in the period of interest with < S >tz < Sbulk and < S >bz > Sbulk . A rough
approximation then is to consider that the saturation in excess compared to
Sbulk in the bottom edge effect compensates the deficit in saturation in the
top edge effect region. In other words, referring to Eq. (4.34), this approxi-
mation consists in considering that δt

(
∂<S>tz

∂Sbulk
− 1

)
+ δb

(
∂<S>bz

∂Sbulk
− 1

)
≈ 0.

The latter is supported by the fact that Snet and Sbulk are actually reason-
ably close over the period of interest as illustrated in Figure.4.15. This finally
leads to express Eq.(4.34) as

ερl`z
∂Sbulk
∂t

= −j (4.35)

which is actually identical to Eq.(4.26), Eq.(4.26) being simply a dimension-
less version.
Eq.(4.35) is to be solved in conjunction with Eq.(4.7), namely

j = Mv

RT

(Pvs − Pv∞)
ra + rpm

(4.36)

With ra ≈ H
Dv

. Regarding the interfacial resistance rpm two options are com-
pared. The first one consists in using directly the value of rpm (Sbulk) deduced
from the PNM simulations (black solid line in Figure.3.12) whereas in the sec-
ond option rpm (Sbulk) is computed from the parametrization rpm(Sbulk)/ra=
3.07 exp(0.5 Sbulk) (black dashed line in Figure.4.12). Eq.(4.35) is discretized
according to a first order finite difference scheme as Sbulk(t+ δt) = Sbulk - j(t)

ερl`z

where j(t) is computed using Eq.(4.36) where rpm(Sbulk) is determined as
rpm(Sbulk(t)) using either the parametrization rpm(Sbulk)

ra
= 3.07 exp(0.5.Sbulk)

(option #2) or the value of rpm corresponding to Sbulk(t) directly deduced
from the PNM simulations (option #1).
As can be seen from Figure.4.16, the agreement between the PNM data and
the CM model is quite good. This is not surprising when the interfacial re-
sistance is directly estimated from the PNM data (option #1) because the
evaporation flux is of course very well predicted in this case since the interfa-
cial resistance has been determined from the PNM data using Eq.(4.8), i.e. in
fact adjusted so that Eq.(4.8) reproduces the evaporation flux. The evapora-
tion flux variation as a function of time is depicted in the inset in Figure.4.16.
The result obtained with option #1 is actually indiscernible from the PNM
computed evaporation flux (for this reason the latter is not shown in the inset
in Figure.4.15). Somewhat surprisingly at first glance since the considered
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parametrization seems to be only a crude representation of the interfacial re-
sistance variation in Figure.4.12, using the proposed parametrization of rpm,
i.e. option #2, also leads to quite good results as regards the prediction of
Sbulk as shown in Figure.4.16. The impact of the approximation is clearly
more visible on the evaporation flux (inset in Figure.4.16). Nevertheless, it
can be considered that these results are quite encouraging. Based on these
results, it is tempting to conclude that the interfacial resistance concept, as
introduced with Eq.(4.7), is fully adequate to perform the coupling at the
surface.

Figure 4.16: Variation of Sbulk as a function of time during stage 1. Comparison between
the PNM data and the results from the continuum model. The comparison is performed
for overal saturations lower than 0.7 (part of the figure on the right side of the vertical
dashed line) for the comparison not to be hampered by the initial significant finite size
effect associated with the BT period (see text). The reference time is the time at the end
of stage 1. The inset shows the variation of the evaporation flux for the two considered
options (see text).

However, there is a flaw in the interfacial resistance approach used so far.
To be fully consistent, this approach should lead to a fair estimate of the
mean vapor pressure at the surface. From Eq.(4.7), the mean vapor pressure
at the porous medium could therefore be expected to be given by

Pvi
Pvs

= 1− jrpm
Pvs

RT

Mv

(4.37)

The results obtained using Eq.(4.16) are compared in Figure.4.17 with the
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spatially averaged vapor partial pressure at the surface computed from the
PNM simulations. The latter is computed as

< Pvi >surf=
∑
i=1,n d2

tiPvi∑
i=1,n d2

ti

(4.38)

where n is the total number of pores (opening) at the surface (n = N x N),
dti denotes the size of the interfacial throats connecting the network to the
external boundary layer at the network top surface, Pvi is the vapor pressure
at the entrance of surface throat # i.

Figure 4.17: Variation of the mean vapor partial pressure at the porous surface Pvi as
a function of Sbulk for various boundary layer thicknesses H with comparison with PNM
results. The black curves (CM) are obtained using Eq.(4.37).

As can be seen from Figure.4.17, Eq.(4.37) (which corresponds to the
black curves in Figure.4.17) significantly underpredicts the mean vapor pres-
sure at the surface.
The discrepancy is attributed to the fact that the vapor pressure is not
spatially uniform at the surface except at the very beginning of the drying
process. In other words, Pvi in Eq.(4.38) varies from one interfacial throat
to the other at the surface with Pvi=Pvs at the entrance of the interfacial
throats filled by liquid and Pvi < Pvs at the entrance of the gaseous interfa-
cial throats. This spatial variability has been documented in previous works,
[14, 28] and is illustrated again in Figure.4.18, which shows the standard de-
viation of the distribution of Pvi at the surface divided by the mean vapour
pressure at the surface (Eq.(4.38)), a quantity referred to as the coefficient
of variation.
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Figure 4.18: Standard deviation of the vapor partial pressure distribution at the surface
as a function of Sbulk for various mass transfer external layer thicknesses.

As can be seen from Figure.4.18, σPvi
first increases rapidly during the BT

period (during which Sbulk ∼ 1). Once the top edge effect region is formed,
the variation of σPvi

is less but it can be seen that σPvi

<Pvi>surf
increases during

stage 1 and can be as high as about 0.15 for the lower mass transfer external
layer thickness considered in Figure.4.18. This indicates quite significant
variations of Pvi over the surface. This necessarily affects the external mass
transfer because the structure of the vapor partial pressure field near a surface
where the vapor partial pressure is not spatially uniform is different from
the structure for a spatially uniform distribution of the vapor pressure at
the surface. This means that is erroneous to consider the external mass
transfer resistance ra as constant in Eq.(4.7) for a given H. Thus, we consider
Eq.(4.39) where the crucial difference compared to Eq.(4.7) lies in the fact
that both ra and rpm are deemed to depend on Sbulk for a given H.

j = Mv

RT

(Pvs − Pv∞)
ra + rpm

(4.39)

Then, ra is estimated using the PNM data from the equation,

ra = Mv

RT

(< Pv >surf −Pv∞)
j

(4.40)

while rpm is determined from the equation

rpm = Mv

RT

(Pvs− < Pv >surf )
j

(4.41)
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This leads to the results reported in Figure.4.19 for both ra and rpm.

a) b)

Figure 4.19: a)Variation of the external mass transfer resistance and interfacial resis-
tance (inset) with Sbulk for various external mass transfer layer thickness H; ra0= H/Dv

is the external mass transfer resistance for the considered value of H at the very beginning
of drying when the vapor pressure is spatially uniform at the surface; b) External mass
transfer resistance rescaled by its value for H = 50 as a function of Sbulk. The inset
shows the interfacial resistance rescaled by its value for H = 50 as a function of Sbulk
The vertical dashed lines correspond to Sbulk = 0.7 considered as the upper bound of the
saturation range over which the comparison with the CM should be performed.

As can be seen from Figure.4.19a, both ra and rpm increases during stage
1. rpm varies roughly linearly with Sbulk for a given H (except at the very
end of stage 1 when the MCD is approached) whereas expressions such as
Eq.(4.10) seems to be reasonable as regards . It can be noted that both ra
and rpm vary with H. Similarly as in section 4.7 (Figure.4.13), the values of
ra and rpm for a given H were divided by the corresponding values for a refer-
ence H, here H = 50. The results are depicted in Figure.4.19b. These results
suggest a possible variable separation with ra(Sbulk,H)= fra(H).ra−Href

(Sbulk)
and rpm(Sbulk,H)= frpm(H).rpm−Href

(Sbulk) , at least over the range of satura-
tion over which the CM can be considered as relevant, i.e. sufficiently away
from the BT period.

In summary, the present study suggests that none of the coupling bound-
ary conditions considered in previous works is fully satisfactory. However,
the study indicates that expressing the coupling conditions via the concept of
interfacial and external resistances can be a satisfactory approach provided
that the impact of the evolution of the vapor partial pressure distribution
at the surface during stage 1 is adequately taken into account. The most
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consistent approach implies to consider that both the interfacial and exter-
nal resistances vary during stage 1 and not only the interfacial resistance as
commonly considered.

4.9 Discussion
Several issues still need clarification as regards the modelling of drying within
the framework of the continuum approach to porous media. The present pa-
per proposes a contribution from the consideration of the special case of the
PNM drying in the capillary regime. The underlying idea was to test the
continuum approach in the case of the drying process obtained via PNM
simulations. In the case of the considered PNM drying, the NLE effect, the
fact that the vapour pressure in less than the saturated vapor pressure in the
presence of liquid, is a major feature, which should not be confused with ad-
sorption or Kelvin effects since these effects are not taken into account in the
considered drying PNM. In principle, the consideration of the NLE effects
implies to consider a two equation continuum model (CM) as exemplified in
[11] for instance. Then the question arises which boundary conditions must
be imposed at the porous medium open surface. The boundary condition
at the top is indeed presumably much more tricky than for the commonly
used one equation model since in principle a boundary condition for each
equation, i.e. Eq. (4.18) and (4.19), must be imposed at the medium top
surface. If one considers that the evaporation flux at the surface can be sepa-
rated into a contribution from the dry pores at the surface and a contribution
from the wet pores, then the partition of the total evaporation flux into a
dry pore contribution and a wet pore contribution should be parametrized
[28, 33], noting that information on this partition is typically not available
from the usual experimental data. For the particular case considered in the
present study, i.e. stage 1 in the capillary regime, this difficulty has been
circumvented through the concept of interfacial resistance and the fact that
the NLE effect is actually confined in a very thin region on top of the porous
medium. In this approach, the two equation CM model reduces to a one
equation model. The important difference compared to the commonly used
LE CM model is that the remaining equation takes into account the trans-
port in liquid phase only whereas in the usual LE CM model the liquid mass
balance equation and the vapor mass balance equation are combined to ob-
tain a single equation. The modelling of transfer in the interfacial region
between a porous medium and a free fluid has actually been the subject of
many studies, mostly as regards the single phase flow modelling, a problem
often referred to as the Beavers and Joseph problem, e.g. [34, 35] and refer-
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ences therein. Other transfers have also been studied, e.g. [36, 37] but not,
to the best of our knowledge, the drying problem considered in the present
paper. Our approach to this problem can be considered as heuristic since we
have not mathematically derived Eq.(4.7) but merely postulated it. In this
respect, some of the techniques used in the above-mentioned references could
help setting Eq.(4.7) on a more firm theoretical basis. Although the concept
of interfacial resistance via Eq.(4.7) seems a promising approach as regards
the long standing issue of the modelling of the coupling between the transfers
in the porous medium and the external transfers in drying, many questions
remain open and should be studied further. As noted before, stage 1 ends
in practice not primarily because of the fragmentation of the liquid phases
in many non-percolating clusters as in our PNM simulations but because of
the impact of viscous effects in the liquid phase, thus because of a transition
from the capillary regime to the viscous-capillary regime. In this context, it
is unclear whether the parametrization of the interfacial resistance rpm and
the external resistance ra determined from the consideration of the capillary
regime, i.e. from Eqs.(4.40) and (4.41) in the case of the PNM simulations,
still fully applies in the viscous-capillary regime. Also, the modelling of the
full drying process is to be clarified, especially at the stage 1 – stage 2 tran-
sition. It is tempting to extend the concept of interfacial resistance to the
transition zone between the dry zone and the wet zone during the receding
front period (RFP) occurring in stage 2 but it can be argued that the size
of the NLE zone in the vicinity of the receding front is perhaps not very
thin anymore, which could question the applicability of the interfacial resis-
tance concept to the other drying periods. Naturally, it is expected that the
consideration of the continuous modelling of the PNM drying is also insight-
ful for the drying process observed in the experiments. In this respect, it
has been pointing out that the PNM simulations are consistent with many
features observed experimentally. Nevertheless, a recurrent question is the
impact of liquid films, [16, 20, 38] that can form during the drying process.
The liquid films were not considered in the PNM version used for the present
study, which therefore is representative of the situations where the pore ge-
ometry and the contact angle are such that liquid films can be ignored. The
liquid films can potentially greatly reduce the interfacial resistance if they
are present within the top edge effect region since they help maintaining the
vapor pressure closer to the saturation vapor pressure in this region com-
pared to the situation in the absence of films [16, 20]. The detailed study of
the liquid film impact on the interfacial and external resistances is thus an
interesting open question.
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4.10 Conclusions
The often debated problem of the modelling of the drying process during
the CRP, or stage 1 evaporation drying period, within the framework of the
continuum approach to porous media has been studied from comparison with
PNM simulations focusing on the (asymptotic) capillary regime in the clas-
sical situation of a porous medium column open at the top.
The study first shows that the drying process results in the formation of two
edge effect regions, at the top and the bottom. The top edge effect region is
of special interest since this region is where the phase change, i.e. the evap-
oration, takes place. It has been shown that this region is a reminiscence of
the breakthrough (BT) period occurring at the very beginning of the drying
process. It has been argued that this initial period is very difficult to detect
in the experiments because it typically corresponds to a very small mass loss
compared to the liquid mass initially present in the porous medium. The
size of the edge effect regions has been characterized and has been found to
be on the order of a few lattice spacing only, independently of the network
size, thus typically less than the size of a REV. Also, it has been shown that
the non-local equilibrium (NLE) effect is confined within the top edge effect
region.
Since this region is quite thin, it has been argued that the concept of in-
terfacial resistance in which the top edge effect region is represented by a
surface of zero thickness (a representation of the interfacial zone referred to
as a Gibbs representation) was adapted for describing the coupling between
the external mass transfer and the transfer in the porous medium at the top
of the porous medium. The interfacial resistance was computed from the
PNM simulations and shown to increase along stage 1. For a given external
mass transfer resistance, the interfacial resistance can be parametrized using
an expression similar to the one used in previous works by soil scientists.
However, the numerical factors are different. More importantly, the inter-
facial resistance was found to depend not only on the saturation but also
on the external mass transfer resistance. Also, the interfacial resistance was
parametrized using the “bulk” saturation and not the saturation in the top
edge effect region on the ground that the continuum model cannot predict
the saturation variation in this very thin region. Most importantly, it has
been shown that both the interfacial resistance and the external mass trans-
fer resistance must be parametrized as a function of both the bulk saturation
and the external boundary layer thickness.
In summary, the main outcome of the present article is to clarify the bound-
ary condition to be specified at the (evaporative) top surface via the concept
of effective interfacial resistance. In addition, the present paper clarifies how
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to handle the comparison between PNM simulations and continuum models
so as to limit the impact on the comparison of the finite size effects inherent
in the PNM simulations. In brief, the small size of the networks typically
considered in the PNM simulations lead to a BT period much longer than
in the experiments. This period cannot be captured by the commonly used
continuum models. As a result, the comparison should start a while after the
end of the BT period so that the length scale separation concept underlying
the continuum approach is verified.
As mentioned before, all this has been developed considering only stage 1
and the so-called asymptotic capillary regime in the absence of noticeable
temperature variations. Much work is still needed to explore whether the
concept of interfacial resistance is still pertinent beyond the situation con-
sidered in the present paper and can be extended to other drying regimes as
well as to the modelling of the full drying process.
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Chapter 5

Percolating and
non-percolating liquid phase
continuum model of drying in
capillary porous media.
Application to solute transport
in the very low Peclet number
limit

5.1 Introduction
The drying process in capillary porous media is commonly modelled within
the framework of the continuum approach to porous media using a strongly
non-linear diffusion equation governing the evolution of the saturation in the
medium [1]. As discussed in some details in [2], this conventional approach
poses a first problem because it is based on the use of a equilibrium des-
orption isotherm to relate the vapour pressure and the saturation whereas
the impact of adsorption phenomena is presumably negligible in the rela-
tively big pores of capillary porous media (typically defined as porous media
with pores greater than about 1 µm in equivalent diameter). As discussed
in [2], this questionable aspect can be circumvented by a non local equilib-
rium (NLE) two equations model whose main variables are the saturation
and the vapour pressure. However, this approach, as well as the conven-
tional approach, does not explicitly take into account an important feature
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of the drying process, namely the fact that the gradual replacement of the
liquid by the gas phase in the pores resulting from the evaporation process
leads to the fragmentation of the liquid phase into liquid clusters [3]. As
discussed for instance in [3], one can distinguish a first period in the dry-
ing process where the liquid phase is distributed between the largest liquid
cluster spanning the porous medium and a number of smaller clusters. The
largest cluster is referred to as the main cluster whereas the smaller clusters
are referred to as the isolated clusters. As shown in [4], this structuration
of the liquid phase has an impact on the evolution of the spatial and tem-
poral distribution of a dissolved species during drying. In other words, the
question arises as to whether the liquid phase fragmentation process can be
taken into account in the continuum approach to porous media so as to de-
velop better models of the transport of a solute during drying. To this end,
we present in the current paper a three equation continuum model whose
main variables are the vapour pressure, the main cluster saturation and the
isolated clusters saturation. Regarding the liquid phase evolution, the three
equation continuum model is based on the theory of biphasic flow in porous
media presented in [5, 8] proposing to treat microscopically percolating fluid
regions differently from microscopically non-percolating regions. With our
definitions, the microscopically percolating liquid region corresponds to the
main cluster whereas the isolated clusters correspond to the microscopically
non-percolating regions. As in a series of previous works [2, 4, 9, 10], the
method to discuss the relevance of the continuum model is to proceed via
comparisons with simulations with a pore network model (PNM) of drying.
The drying process is commonly described in three main periods [11]: the
constant rate period, the falling rate period (FRP) and the receding front
period (RFP). As in [4], we mainly focus on the period where the main clus-
ter spans the porous sample, i.e. the CRP. Also, we consider the archetypical
macroscopically 1D situation sketched in Figure.5.1 where only the sample
top surface is in contact with the external air.
Note that we are interested here in the situations where the evaporation rate
is sufficiently low for the temperature variations to be negligible. This situ-
ation is frequently encountered in the laboratory experiments with water at
the room temperature and referred to as “isothermal” drying.
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Figure 5.1: Basic drying situation referred to as 1D drying.

The paper is organized as follows: In Section 5.2, the NLE two equa-
tion model is briefly recalled and the three equations continuum model is
described. The drying PNM is summarized in Section 5.3. Results of PNM
simulations are presented in Section 5.4. A comparison between PNM results
and the three equation continuum model solution is presented in Section 5.5.
The model is extended so as to consider the presence of a solute in Section 5.6
where comparisons between the continuum model and PNM simulations are
also presented. This is followed by Section 5.7 which proposes a discussion.
Section 5.7 consists of the main conclusions of the study.

5.2 Continuum models

5.2.1 NLE two equation continuum model
The two-equation model is first recalled. As described in [10], the non local
equilibrium (NLE) two-equation model can be expressed as

ε.ρ
∂S

∂t
+∇.(ρlUl) = −ṁ (5.1)

∇.
(
ε.(1− S)Deff

Mv

R.T
∇Pv

)
+ ṁ = 0 (5.2)
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where ε, t, Deff , S, ρl and Pv denote the porosity, time, effective vapor
diffusivity, liquid saturation, water density and water vapor partial pressure,
respectively. Mv, R and T represent the molar mass of water, universal gas
constant, and temperature; ṁ is the phase change rate between the liquid
and vapor phases. The latter is also referred to as the NLE phase change
term. As shown in [10], ṁ can be expressed as

ṁ ≈ −agl
Mv

R.T
β(Pvs − Pv) (5.3)

where agl is the specific interfacial area and β is a coefficient, Pvs is the
saturation vapor pressure since adsorption phenomena are not considered.

5.2.2 Three equation continuum model
The main novelty with the three equation model is to explicitly consider that
the liquid phase can be split in the percolating liquid phase, also referred to as
the main cluster, and the non-percolating liquid phase. In the three equation
model, the liquid saturation is thus expressed as

S = S1 + S2 (5.4)

where subscript 1 is for the percolating liquid phase, i.e. the main cluster,
and subscript 2 for the non-percolating liquid phase, i.e. the isolated clusters.
Subscript 3 refers to the vapor (the gas phase is a binary gas formed by air
and the vapor of the evaporating species). Assuming a homogeneous porous
medium, mass balance equations for the percolating and non-percolating
liquid phases are expressed as

ερ
∂S1

∂t
+∇.(ρlUl1) = −ṁ12 − ṁ13 (5.5)

ερl
∂S2

∂t
+∇(ρl.Ul2) = −ṁ21 − ṁ23 (5.6)

where ε is the porous medium porosity, ρl is the liquid density, Ul1 is the
filtration velocity in the percolating liquid phase, Ul2 is the filtration velocity
in the non-percolating liquid phase, ṁ12 is the mass transfer rate between
phase 1 and phase 2, ṁ13 is the evaporation rate of phase 1 per unit volume
of porous medium, ṁ21 is the mass transfer rate between phase 2 and phase
1, ṁ23 is the evaporation rate of phase 2 per unit volume of porous medium.
Since a new isolated cluster actually forms as the result of the fragmentation
of the main cluster, we also have,
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ṁ12 = −ṁ21 (5.7)
It can be noted that in isothermal drying an isolated cluster cannot reconnect
to the main cluster, hence ṁ12 > 0. The gas phase forms a single cluster in
the drying process. The mass conservation of the vapor is expressed as for
the NLE two equation continuum model; i.e. Eq.(5.2),

∇.
(
ε(1− S)Deff

Mv

R.T
∇Pv

)
+ ṁ = 0 (5.8)

where

ṁ = ṁ13 + ṁ23 (5.9)
The phase change rate is expressed as for the NLE two equation continuum
model as

ṁ = alg
Mv

R.T
β(Pvs − Pv) (5.10)

with

ṁ13 = al1g
Mv

R.T
β(Pvs − Pv) (5.11)

ṁ23 = al2g
Mv

R.T
β(Pvs − Pv) (5.12)

Where al1g (respectively al2g) is the specific interfacial area between phase 1
(phase 2 respectively) and the gas phase. It can be noted that alg = al1g+al2g.
Following [8], the mass transfer rate ṁ12 between the percolating and non-
percolating liquid phases is expressed as

− ṁ12 = η.ε.ρl

(
S2 − Sirr
Sirr − S

)
∂S

∂t
(5.13)

where η is a numerical factor. Sirr is the irreducible saturation. The above
model is simplified by introducing additional assumptions. The flow in the
percolating phase is modelled using the generalized Darcy’s law,

Ul1 = −k.kr1
µ
∇Pl1 (5.14)

where Ul1 is the percolating liquid phase filtration velocity, Pl1 is the pres-
sure in the percolating liquid phase, k is the medium permeability, kr1 is the
percolating phase relative permeability, µ is the liquid viscosity. By introduc-
ing the capillary pressure curve Pc1(S1), where Pc1(S1) is the local pressure
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difference between the gas phase and the percolating liquid phase, Eq.(5.5)
be expressed as

ερl
∂S1

∂t
+∇. (ρlDl1(S1)∇S1) = −ṁ12 − ṁ13 (5.15)

where
Dl1(S1) = −k.kr1

µ

dPc1
dS1

(5.16)

The non-percolating liquid phase is assumed immobile. Eq.(5.6) is thus sim-
plified as

ερl
∂S2

∂t
= −ṁ21 − ṁ23 (5.17)

Boundary conditions

For the 1D case sketched in Figure.(5.1), the boundary conditions at the
bottom read,

− ρl.Dl1(S1)∇S1.n = 0 (5.18)

− ε(1− S)Deff
Mv

R.T
∇Pv.n = 0 (5.19)

The definition of the boundary conditions at the top surface is still an open
question in the drying theory [10, 12, 13]. In other words, the coupling at
the surface between the transport phenomena in the porous medium and in
the external air in contact with the porous medium surface is still not suf-
ficiently well understood and modelled. In the case of the three equation
continuum model, the detailed modelling of the mass transfer at the top
surface is particularly challenging since one has to consider that the vapor
leaves the porous medium surface from three categories of pores: i) by evap-
oration from pores belonging to the main cluster (percolating liquid phase),
ii) by evaporation from pores belonging to isolated clusters connected to the
surface (non-percolating liquid phase), iii) gaseous pores. However, this chal-
lenging modelling issue is left for a future work. In the present study, the
focus is on the modelling of the liquid phase internal fragmentation. A sim-
plified approach is therefore adopted. As explained in more details later in
the paper, this simplified approach essentially consists in assuming that the
overall evaporation rate is an input data for the model and not an outcome.

5.3 Pore network model
As in [3], a simple cubic network is considered (Figure 5.2). The distance
between two adjacent nodes in the network is the lattice spacing, denoted
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by a. In this model, the pore bodies located at the nodes of the cubic grid
are cubes of size dp with dp varying in the range [0.675, 0.725] according to
an uniform probability distribution function, noting that the lengths in the
PNM are made dimensionless using the lattice spacing a as reference length.

Figure 5.2: Sketch of pore network model with external diffusive layer on top.

The pore throats are square face beams connecting the pore bodies. The
throat diameter dt is distributed in the range [0.075, 0.125] according to an
uniform distribution law. The drying algorithm is the one presented in [14].
As discussed in [15, 16] or [17] this algorithm applies to the isothermal drying
situation where capillary effects are dominant and corner film flows [18, 19]
can be neglected.
The interested readers can refer to the aforementioned articles for details on
the algorithm and additional information on the pore network modelling of
the drying process. It must be recalled that the viscous effects are not explic-
itly considered in the liquid phase in the version of the algorithm considered
in the present paper. As discussed in [15], various drying regimes can be
actually distinguished depending on the competition between the capillary
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forces, the gravity and the viscous forces. Here, the capillarity dominant
regime is considered since both the effects of gravity and the viscous forces
are assumed to be negligible compared to the capillarity.
This regime is referred to as the capillary regime. As a matter of fact, the spe-
cial case when the viscous effects can be neglected compared to the capillary
effects even when the main cluster becomes very ramified as the irreducible
saturation is approached is considered.
For this reason, this regime is referred to as the “asymptotic” capillary
regime. Additional details on this regime are given later in the paper.

5.4 Pore network simulations
PNM simulations of the drying process were performed with a N x N x N
cubic network, where N is the number of nodes in the network along each di-
rection of a 3D Cartesian coordinate system (N = 4 for the network sketched
in Figure.5.2). The results presented in what follows were obtained for N =
30. The external boundary layer thickness (Figure.5.2) was 10.

Figure.5.3-a) shows the variation of the computed evaporation rate (nor-
malized by the evaporation rate at t =0) as a function of Snet, i.e. the overall
network liquid saturation. Note that these data as well as the other PNM
data presented in the paper are averages over 15 realizations of the network
unless otherwise mentioned.
The classical evolution [11] is retrieved with a relatively long period, for Snet
varying about between 0.8 and 0.31, where the evaporation rate varies weakly.
This period is referred to as the “constant” rate period (CRP). As can be
seen in Figure.5.3-a), the CRP ends when Snet is about equal to 0.31, which
corresponds to the vertical dashed line in Figure.5.3-a) Then the evaporation
rate drops.
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a) b)

Figure 5.3: Evolution of : a) evaporation rate (drying curve); the vertical dashed line
indicates the end of the “CRP”, b) the overall network liquid saturation Snet in the range
[0.31 -1], the reference time is the time when Snet = 0.31 ,which about corresponds to
the end of the CRP, the vertical line corresponds to Snet = 0.7, which is the maximum
saturation considered for comparison with the continuum model (see text).

This corresponds to the falling rate (FRP) and receding front period
(RFP). However, contrary to the classical experimental results [11], an ini-
tial period where the evaporation rate drops can be observed before the quasi
constant rate period starts (this approximately corresponds to Snet in the
range [0.9 – 1] in Figure.5.3-a). This period is discussed below with the re-
sults on the saturation profiles. Figure.5.3-b shows the evolution of Snet as
a function of time. The reference time is the time when Snet = 0.31 (tref
= tSnet=0.31). Since the focus in what follows is on the CRP the evolution
of Snet in Figure.5.3-b) is shown down to Snet = 0.31, which approximately
corresponds to the end of the CRP. Consistently with the variation of the
evaporation rate in Figure.5.3-a), the evolution of Snet shows a first period
where Snet decreases faster compared with the longer period that follows
where the slope of the curve in Figure.5.3-b) is smaller and varies weakly.
Figure.5.4 illustrates the liquid phase fragmentation process occurring during
the drying process. As can be seen, the number of liquid clusters increases
during the CRP. The liquid phase is actually formed during this period by
a main or percolating cluster and an increasing number of isolated or non-
percolating clusters.
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Figure 5.4: Number of liquid clusters in the network as a function of time up to the end
of the CRP. The vertical line corresponds to Snet = 0.7.

Saturation profiles during the drying process up to the end of the CRP are
depicted in Figure.5.5.
These profiles are horizontal slice averaged profiles according to a procedure
similar to the one used in previous works [2, 9, 10]. The slices are 10 lattice
spacing thick in the present work. This choice is motivated by the fact that
the computations of macroscopic parameters from PNM simulations, such as
for instance the local porosity as illustrated in Figure.5.6, indicate that an
averaging volume of size 10a can be considered as a reasonable Representa-
tive Elementary Volume (REV). Thus a running averaging procedure is used
considering slices of size N x N x 10 . The computed values are affected to
the center of the slices. It can be also noted that slice saturations are actually
typically considered in the experiments [20, 21]. The selected slice thickness
explains why the profiles start at z = 5 (in lattice spacing unit) and ends at
z = 25 in Figure.5.5. The slice averaged saturations are denoted by Ssl, S1sl
and S2sl respectively.
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Figure 5.5: Liquid phase saturation profiles (Ssl), percolating liquid phase (S1sl) and
non-percolating liquid phase (S2sl) saturation profiles (corresponding to Snet = 0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3); z = 0 corresponds to the network top surface (Figure.5.2) whereas
z = 30 to the network bottom limiting surface

110



Figure 5.6: Variation of the porosity as a function of averaging volume size obtained by
computing the porosity over a cubic volume of increasing size located within the network

The liquid phase saturation profiles in Figure.5.5 present several differ-
ences compared to the profiles typically obtained in the experiments. For the
capillary regime considered in the present paper, the latter are typically flat,
e.g. [20, 21]. By contrast, edge effects are noticeable at both ends of each
profile in Figure.5.5. The profiles are flat only in the region away from the
edges. Also, they become flat in this region only when Snet is sufficiently low,
i.e. when Snet ∼ 0.6 - 0.7. These differences with the experimental profiles
are discussed in details in [22]. The initial period where the profiles are not
flat in the central region is associated with a finite size effect and corresponds
to the period where Snet varies from 1 to SBT , where SBT is the saturation
at breakthrough. Since the saturation at breakthrough, i.e. when the gas
phase reaches for the first time the network bottom scales as 1−Nα where
α = 0.48 in 3D according to the percolation theory [23], this initial period
becomes negligible for a sufficiently large network, and thus cannot be seen
typically in the experiments. By contrast, the edge effect size is found to be
independent of the network size and on the order of a few lattice spacing [22].
As a result, the corresponding variations of the saturation in the edge regions
is difficult to detect in the experiments since the size of the edge effect regions
is typically very small compared to the sample size in the experiments. For
these reasons, we believe that the main objective of continuum models as
regards the saturation profiles should be to predict the flat profile evolutions
since the finite size effect impacted period is negligible in most experiments
as well as the extension of the edge effect regions. For the sake of comparison
with the continuum model, we therefore consider as main targets Sbulk, S1bulk
and S2bulk where Sbulk, S1bulk and S2bulk are the values of Ssl, S1sl and S2sl
in the middle of the network, i.e. at z =16 in Figure.5.5. The variations of
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Sbulk, S1bulk and S2bulk are depicted in Figure.5.7.

Figure 5.7: Variation of Sbulk, S1bulk and S2bulk as a function of time during the CRP.
Comparison between the PNM data and the results from the three equation continuum
model. The comparison is performed for overall saturations lower than 0.7 for the compar-
ison to be not hampered by the initial significant finite size effect (see text). The overall
saturation 0.7 corresponds to the vertical dashed line in the figure.

The variations are shown over the period corresponding to Snet in the range
[0.3, 0.7] which is defined as the period of interest. From the above data, the
period of interest in what follows is defined as the period of the CRP not
affected by the finite size effect. It approximately corresponds to the range of
overall saturation [0.3-0.7]. As illustrated in Figure.5.5, the saturation pro-
files in the bulk are reasonably flat for Snet < 0.7. As can be seen, the perco-
lating phase saturation decreases over the CRP whereas the non-percolating
liquid phase saturation increases. The variations of both saturation is much
faster and more important as the end of the CRP is approached. As discussed
in [3], the end of the CRP corresponds to the situation when the percolating
liquid phase is about to cease percolating. In the considered asymptotic cap-
illary regime, this corresponds to when the irreducible saturation is about to
be reached. From Figure.5.3-a), it can therefore be considered that Sirr ≈
0.31.
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5.5 Continuum model solution
In order to solve the three equation continuum model, Eqs.(5.4-5.17), the
following parameters must be in principle determined: ε, Deff (S), al1g, al2g,
β, η, Sirr, k, kr1, Pc1(S1) nothing that the parameters Deff , al1g, al2g, kr1,
Pc1 are non-linear functions of the saturation. As exemplified in [2, 10, 24],
these parameters can be determined from PNM simulations. Also, because of
the non-linearity, Eqs.(5.4-5.17) must generally be solved using a numerical
method. However, it can be observed from Figure.5.5 that the profiles are
spatially uniform (when as discussed before the edge effects are not taken
into consideration and the initial period affected by the finite size effect
is discarded). Under these circumstances, the numerical solution can be
greatly simplified and the determination of most of the three equation con-
tinuum model parameters from specific PNM numerical simulations can be
avoided. Integrating Eq.(5.15) over the porous medium height `z using the
z-coordinate depicted in Figure.5.1 leads to

ερl`z.
∂S1

∂t
= −jper −

∫ `z

0
ṁ12 dz −

∫ `z

0
ṁ13 dz (5.20)

Where jper is the evaporation flux of the percolating liquid phase at the
porous medium top surface. A further simplification is to neglect the phase
change, i.e. the evaporation inside the porous medium in the bulk region.
This assumption is supported by the results shown in Figure.5.8 showing
that the evaporation essentially takes place in the top region of the network
over the considered period.
Then it is argued that the evolution of the main cluster results from the evap-
oration flux at the surface jper , from the fragmentation in the bulk region but
also from the fragmentation occurring in the top region of the network. Then
it is assumed that the latter approximately corresponds to the evaporation
from the isolated clusters in the top region of the network. This is simply
taken into account by considering that the effective evaporation flux of the
percolating liquid phase to be considered is j, i.e. to the total evaporation
flux, and not jper.
An additional simplification with the consideration of the bulk region only
lies in the fact there is no need to consider the vapor mass conservation equa-
tion (5.8) because the NLE effect is actually noticeable only in the top region
of the network during the CRP [22], which, as illustrated in Figure.5.8, is
the evaporation active region.
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Figure 5.8: Variation of evaporation rate from percolating cluster (J1) and non-
percolating clusters (J2) in the slices as a function of z for various network saturations
(the colours in the inset corresponds to the same overall saturations as in the main figure).

Deeper in the network, and thus in the bulk region, Pv ≈ Pvs . All this finally
leads to express Eq.(5.20) as,

ερl`z
∂S1bulk

∂t
≈ −j −

∫ `z

0
ṁ12 dz (5.21)

Since S1 and S2 are approximately uniform in the bulk, it can be inferred from
Eq.(5.13) that ṁ12 is also uniform in the bulk. Eq.(5.21) is thus expressed
as,

ερl
∂S1bulk

∂t
≈ − j

`z
− ṁ12 (5.22)

In the bulk, S2 is also approximately uniform and the internal evaporation
is negligible. Thus, Eq.(5.17) is expressed everywhere in the bulk as,

ερl
∂S2bulk

∂t
= −ṁ21 (5.23)

Where, as mentioned before, it is proposed to express ṁ12 as in [6],

− ṁ12 = ηερl

(
S2bulk − Sirr
Sirr − Sbulk

)
∂Sbulk
∂t

(5.24)

We have tested Eqs.(5.22-5.24) from the PNM data. Eqs.(5.22) and (5.23)
together with Eq.(5.24) were solved using a first order finite difference scheme
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to express the derivatives with respect to time, i.e. expressions of the form
∂S2bulk

∂t
= S2bulk(t+δt)−S2bulk(t)

∂t
. The method was explicit, i.e. the values of the

saturations involved in the expression of the source term ṁ12 were taken
at the previous time step. The saturation Sbulk was obtained from Sbulk =
S1bulk + S2bulk. Since the initial period affected by the finite size effect is
not considered, the simulations started with the following initial conditions
imported from the PNM simulations: Sbulk= 0.6833, S1bulk= 0.678, S2bulk=
0.00511. Since the focus is on the evolution of the percolating and non-
percolating phases, the evaporation rate was considered as an input data.
Thus, the evaporation flux j computed from the PNM simulations was used.
This led to the results depicted in Figure.5.7, which were obtained with η
=0.1 and Sirr =0.3138 . As can be seen, the three equation continuum
model leads to a quite reasonable agreement with the PNM data. This is an
interesting confirmation in the context of drying of the approach proposed
in [8].

5.6 Solute concentration evolution in the hy-
perdiffusive limit

As pointed out in [4] or in [25], the evolution of the concentration of a solute
in a drying porous medium generally results from two main effects: i) the
solute convective transport in the percolating liquid phase which leads to
the accumulation of solute in the porous medium top surface region (for the
configuration depicted in Figure.5.1), ii) the fact that the volume occupied by
the liquid phase shrinks during drying whereas the total amount of solute in
this volume does not change (precipitation or wall deposit phenomena being
assumed negligible). It was shown in [4] that the commonly used continuum
model of solute transport [26, 28] did not lead to a good agreement with PNM
simulations. This was attributed to the fact that the classical approach does
not distinguish between the percolating liquid phase and the non-percolating
liquid phase. The objective in what follows is to explore whether the three
equation continuum model can help alleviating the discrepancies between the
PNM simulations and the continuum approach. To this end, we focus on the
second mechanism as regards the variation of the solute concentration. This
mechanism is referred to as the liquid phase shrinking effect since the increase
in the concentration due to this mechanism results from the decrease in the
volume occupied by the liquid phase in the porous medium. We only consider
the limiting situation where convective effect on the solute transport can be
neglected, i.e. the very low Peclet number case [26]. This corresponds for
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instance to a very low evaporation rate. This limiting situation is referred
to as the hyperdiffusive limit since the solute concentration is consistently
assumed to be spatially uniform in each liquid cluster. The solution is dilute
so that impact of the solute on the surface tension, the liquid density or the
equilibrium vapour pressure at the menisci can be neglected.

5.6.1 PNM computations
Initially, the concentration is uniform in the liquid phase and denoted by
C0. Then the concentration is updated in each cluster according to the mass
conservation equation,

Ci(t+ δt)Vi(t+ δt) = Ci(t)Vi(t) (5.25)

where Ci is the concentration in cluster #i and Vi is the volume of liquid
cluster #i. The time step δt in Eq.(5.25) is the time step of the PNM drying
algorithm. Eq.(5.25) is for a shrinking cluster. A cluster can also split into
two smaller clusters as the result of the invasion of a pore by the gas phase.
In this case, the concentration Ci1=Ci2=Ci1/i2 in the newly formed cluster i1
and i2 is computed from the equation,

Ci1/i2(t+ δt)(Vi1(t+ δt) + Vi2(t+ δt)) = Ci(t)Vi(t) (5.26)

Where Vi1,Vi2 and Vi are the volumes of cluster # i1, # i2 and #i respectively.
Then the slice averaged concentrations are computed by volume averaging
the concentration in each slice,

Csl(t, z) =
∑n
i=1Ci(t).Visl(t)∑n

i=1 Visl(t)
=
∑n
i=1Ci(t).Visl(t)
ε.Ssl.A.h

(5.27)

C2sl(t, z) =
∑n
i=2C2i(t).Visl(t)∑n

i=2 Visl(t)
=
∑n
i=2C2i(t).Visl(t)
ε.S2sl.A.h

(5.28)

where Visl is the volume of cluster #i present in the considered slice, h= 10.a
is the slice thickness.
It is recalled that label #1 is for the percolating cluster. The concentration
in the later is spatially uniform over the whole network. Since C1 is uniform
of the network, it is obvious the slice averaged concentration C1sl is spatially
uniform and equal to C1net.
The evolution of the three slice average concentration profiles, namely Csl,
C1sl and C2sl, during the CRP is depicted in Figure.5.9. As expected the
concentration increases during the CRP because of the liquid cluster dynam-
ics, i.e. the fact that clusters split and shrink. However, it can be noticed
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that the fragmentation process occurs essentially in the main cluster, i.e. the
cluster forming the percolating liquid phase, when only the bulk region is
considered since the evaporation rate of the isolated clusters located within
the bulk region is quite small (Figure.5.8).

Figure 5.9: Profiles of Csl, C1sl and C2sl in the network corresponding to Snet =0.9, 0.8,
0.7, 0.6, 0.5, 0.4, 0.3; z = 0 corresponds to the network top surface (Figure.5.2) whereas z
= 30 to the network bottom limiting surface.

Interestingly, the concentration profiles are flat. This was of course expected
for C1sl since the concentration is uniform in the percolating liquid phase
but somewhat less obvious as regards the non-percolating liquid phase slice
averaged concentration, i.e. C2sl.
This point is discussed further below and explained in the discussion section
(section 5.7).
Also, the results shown in Figure.5.9 indicate that the concentration is greater
in the percolating liquid phase than in the non-percolating liquid phase and
thus greater than the average concentration in the liquid phase. This is better
illustrated in Figure.5.10 showing the variations of Cbulk , C1bulk and C2bulk .
As for the saturations Sbulk, S1bulk and S2bulk, Cbulk , C1bulk and C2bulk are the
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averaged concentrations over the slice located at z = 16. Cbulk is computed
as,

Cbulk(t) =
∑n
i=1Ci(t).Visl(t)∑n

i=1 Visl(t)
(5.29)

Where i = 1 is for the percolating cluster and n is the number of liquid clusters
present in the considered slice. Similarly, the average solution concentration
in the non-percolating clusters is computed as

C2bulk(t) =
∑n
i=2Ci(t).Visl(t)∑n

i=2 Visl(t)
(5.30)

Note again that the concentration is uniform over the percolating cluster and
therefore the slice concentration C1bulk is equal to the concentration over the
whole percolation cluster.

Figure 5.10: Variation of Cbulk ,C1bulk and C2bulk in the network as a function of time
during the CRP. The reference time is the time at the end of the CRP defined as the time
when Snet =0.31 The vertical dashed line indicates the beginning of the period of interest
for the comparison with the three equation continuum model (see text)

Figure.5.10 clearly illustrates why it is important to distinguish the perco-
lating and non-percolating liquid phases. Not making this distinction, as in
the commonly used approach, i.e. [26, 28], leads to underestimate the con-
centration and thus for instance to overestimate the time corresponding to
the onset of crystallization when C corresponds to a dissolved salt concen-
tration [29]. Then the question arises as to whether the evolution depicted
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in Figure.5.10 can be captured by an extended version of the three equation
continuum model considering also the presence of the solute. This is studied
in the section that follows.

5.6.2 Continuum approaches
Within the framework of the three equation continuum model, the solute
transport equation in the percolating liquid phase is expressed as

ε
∂S1C1

∂t
= ∇.(εS1D

∗
S1∇C1)− ˙m12S (5.31)

Where ˙m12S (kg/m3/s) is the solute mass exchange term between the perco-
lating liquid phase and the non-percolating liquid phase. Eq.(5.31) is similar
to the solute transport equation in the classical approach [26, 28]. The differ-
ence lies in the fact that the considered liquid phase is the percolating liquid
phase and not the whole liquid phase. For the non-percolating liquid phase,
the solute conservation equation is simply expressed as

ε
∂S2C2

∂t
= ˙m12S (5.32)

since the convective transport is assumed negligible in the isolated clusters.
Integrating Eqs. (5.31) and (5.32) over the porous medium height leads to.

ε.`z.
∂S1C1

∂t
= −

∫ `z

0
˙m12S dz. (5.33)

ε.`z.
∂S2C2

∂t
=
∫ `z

0
˙m12S dz (5.34)

Since the profiles are approximately spatially uniform in the bulk (Figures.5.5
and 5.11), Eqs. (5.33) and (5.34) can be expressed as

ε.
∂S1bulkC1bulk

∂t
= − ˙m12S (5.35)

ε.
∂S2bulkC2bulk

∂t
= ˙m12S. (5.36)

The exchange term ˙m12S in Eqs.(5.35-5.36) is modelled using an expression
similar to the one for ṁ12 since the solute mass transfer between the per-
colating liquid phase and the non-percolating liquid phase is due to clusters
separating from the main cluster. Furthermore, since the solute concentra-
tion in the main cluster is C1 it is reasonable to consider that ˙m12S should
be proportional to C1 . This finally leads to express as,
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− ˙m12S = η.ε.C1bulk

(
S2bulk − Sirr
Sirr − Sbulk

)
∂Sbulk
∂t

(5.37)

Eqs. (5.35) and (5.36) combined with Eq.(5.37) were solved using a method
similar to the one used for solving Eqs.(5.22) and (5.23) with, as for the
saturation problem, η =0.1 and Sirr = 0.3138. A first order finite differ-
ence scheme to express the derivatives with respect to time was used, i.e.
expressions of the form ∂S1bulkC1bulk

∂t
= (S1bulkC1bulk)(t+δt)−(S1bulkC1bulk)(t)

∂t
. The

method was explicit, i.e. the values of the saturations and the value of
C1bulk involved in the expression of the source term ˙m12S were taken at
the previous time step. Then SbulkCbulk was obtained from. Sbulk.Cbulk =
S1bulk.C1bulk + S2bulk.C2bulk.

Figure 5.11: Variation of Sbulk.Cbulk, S1bulk.C1bulk and S2bulk.C2bulk in the network as
a function of time during the CRP. The reference time is the time at the end of the CRP
defined as the time when Snet =0.31 The vertical dashed line corresponds to the time when
Snet = 0.7 (as explained in the text, only the times greater than the time corresponding
to Snet = 0.7 are considered for the comparison between the continuum model and the
PNM data).

This led to the results depicted in Figure.5.11. As can be seen, the three
equation continuum model leads here again to a quite reasonably good agree-
ment with the PNM data. As explained before, only the range of saturations
not significantly affected by the initial finite size effect is considered for the
comparison between the continuum model and the PNM data. This cor-
responds to the overall network saturations lower than approximately Snet
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=0.7. The time corresponding to Snet =0.7 is indicated by a vertical dashed
line in Figure.5.11. As expected the product Sbulk.Cbulk is constant over the
period of interest. This simply means that the total mass of solute in the
bulk region is conserved. The total mass of solute in the percolating phase,
i.e. S1bulk.C1bulk , decreases. This is because the percolating liquid phase
loses mass as the result of the fragmentation process. The corresponding
mass loss corresponds to the mass of solute gained by the non-percolating
liquid phase, which therefore increases during the CRP. The latter corre-
sponds to S2bulk.C2bulk in Figure.5.11. From the computation of Sbulk.Cbulk,
S1bulk.C1bulk and S2bulk.C2bulk depicted in Figure.5.11 and the computation of
S1bulk ,S1bulk and S2bulk depicted in Figure.5.7, the solute concentrations Cbulk,
C1bulk and C2bulk were obtained as Cbulk = SbulkCbulk

Sbulk
, C1bulk = S1bulkC1bulk

S1bulk
, and

C2bulk = S2bulkC2bulk

S2bulk
. The corresponding results are compared to the PNM

simulation data in Figure.5.10. As can be seen, the 3 equation continuum
model predicts quite well the variations of the three considered solute con-
centrations. In particular, the important fact that the solute concentration
is greater in the percolating liquid phase is well captured.

5.7 Discussions
The classical one equation continuum model [26, 28] predicts that the solute
concentration is uniform over the liquid phase in the considered very low
Peclet number limit during the CRP. This solute concentration is simply
given by

C(t) = Snet0.C0

Snet(t)
(5.38)

Where Snet0 and C0 are the initial saturation and solute concentration in the
network respectively. C(t) corresponds to Cbulk in the results presented in
the previous section.
The results presented in the previous section clearly show that the solute
concentration predicted by this quite classical model in the very low Peclet
number limit should not be understood as the solute concentration all over
the liquid.
The liquid phase is actually fragmented and the solute concentration can
vary from one liquid cluster to another. As a result, the solute concentration
computed with the classical model must be interpreted as an average concen-
tration over the various liquid clusters, more exactly as a weighted average
concentration where the weights are the cluster volume fractions, i.e.
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< C >=
∑i=n
i=1 Vi.Ci∑i=n
i=1 Vi

=
i=n∑
i=1

(
Vi∑i=n
i=1 Vi

)
Ci (5.39)

where Vi is the volume of liquid cluster #i and Ci is the solute concentration
in cluster #i, n is the number of liquid clusters at the considered time.
In other words, although diffusion is the dominant transport mechanism in
the very low Peclet number limit, this does not mean that the solute con-
centration is spatially uniform in the liquid phase. To illustrate further this
feature, the standard deviation of the solute concentration over the various
clusters can be computed from the PNM results.
Since the percolating and the non – percolating liquid phases are distin-
guished with the three equation continuum model, the spatial variability of
the solute concentration is illustrated considering the non-percolating liquid
phase. The average solute concentration in the non-percolating liquid phase
is computed as

< C >2=
∑i=n
i=2 Vi.Ci∑i=n
i=2 Vi

=
i=n∑
i=2

(
Vi∑i=n
i=2 Vi

)
Ci (5.40)

Noting that i =1 corresponds to the main cluster. Thus i in the range [2, n]
corresponds to the isolated clusters (n-1 is thus the total number of isolated
clusters). The standard deviation of the solute concentration over the non-
percolating liquid phase is then computed as,

σC2 =

√√√√∑i=n
i=2 Vi(Ci− < C >2)2∑i=n

i=2 Vi
(5.41)

The variation of σC2 over the CRP is shown in Figure.5.12.
As can be seen, the standard deviation relative to the mean increases during
most of the CRP. The decrease toward the end of the CRP is due to the
fact that the mean increases faster than the standard deviation because of
the formation of many clusters of higher concentration toward the end of the
CRP (Figure.5.4). As illustrated in the inset in Figure.5.12, the variation of
the solute concentration over the non-percolating liquid phase is significant
with about a factor 2 between the concentration in the clusters of lowest
concentration and the clusters of highest concentrations.
The existence of the concentration spatial variability in the considered diffu-
sion dominant regime is directly due to the fact that isolated clusters form
from the main cluster all along the CRP (as illustrated in Figure.5.4).
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Figure 5.12: Variation of the standard deviation σC2 relative to the mean of the
solute concentration distribution in the non-percolating liquid phase over the network
bulk region during the CRP. The inset shows the distribution of the concentration in the
isolated clusters for Snet = 0.4.

The concentration in an isolated cluster in the bulk region is the concentra-
tion in the main cluster at the time when the isolated cluster forms. Since
the concentration in the main cluster increases during the CRP (Figure.5.10),
the later an isolated cluster forms in the bulk region, the greater its concen-
tration is. Based on the main cluster concentration variations depicted in
Figure.5.10, it can be readily inferred that the concentration over the non-
percolating phase varies at a given time in the range [C0, C1(t) ]. However,
this spatial variability due to the historicity of the isolated clusters formation
from the main cluster does not imply a spatial variation along the network
depth. As illustrated in Figure.5.9, the mean concentration profiles are flat.
This is due to the fact that the probability of forming a new cluster from the
main cluster in the bulk region does not depend of the position [9].
The fragmentation of the liquid phase in isolated clusters also leads to a
somewhat counter-intuitive result after the CRP in the RFP (Receding Front
Period). As described in [3], the percolating liquid phase disappears at the
end of the CRP in the considered “asymptotic” regime purely controlled by
capillary effects. This regime is described as asymptotic because it is rarely
observed in the standard laboratory experiments due to the viscous effects.
In most experiments, the liquid phase is actually percolating up to the reced-
ing front forming the lower edge of the dry region developing in the network
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during the RFP. By contrast, in the considered asymptotic regime, the liq-
uid phase is formed by isolated clusters only and the development of the dry
zone results from the gradual evaporation of the isolated clusters [3]. This
asymptotic regime is expected when evaporation is quite low and/or with
sufficiently thin systems. In the considered very low Peclet number limit,
the concentration profiles could be expected to be flat due to the dominant
diffusion transport in the liquid phase. However, since the isolated clusters
evaporation dynamics is not spatially uniform during the RFP, the concen-
tration profiles are actually not flat. This is illustrated in Figure.5.13.

Figure 5.13: Evolution of saturation and concentration profiles after the CRP; z = 0
corresponds to the network top surface (Figure.5.2) whereas z = 30 to the network bottom
limiting surface .

The evaporation rate at the boundary of the isolated clusters is significantly
greater for the clusters in contact with the dry zone. In other words, the
cluster evaporation rate rapidly decreases with the increasing depth in the
network. Since the concentration increase is due to the clusters shrinking,
the concentration increases faster in the region where the cluster evapora-
tion rate is greater. This leads to the remarkably non-linear concentration
variations depicted in Figure.5.13. Interestingly, the concentration profiles
roughly tend to resemble the exponential like profiles typically resulting from
the competition between advection and diffusion effects [26]. The mechanism
leading to the strongly non-linear shape is of course completely different here
and is due to the combination of the fragmentation of the liquid phase in
isolated clusters and the screening of the evaporation at the boundary of the
clusters located deeper in the network. One can refer to [30] for more details
on the screening phenomenon. The screening phenomenon during the CRP
is illustrated in Figure.5.8. A similar rapid decrease in the evaporation flux
with the distance from the interface between the dry zone and the shrinking

124



liquid cluster zone exists during the RFP. Since it has been shown that the
liquid films can have a strong impact in drying [18, 19, 31, 32], it must be clear
that the results presented in this article as regards the solute distribution are
for the situations where the impact of the films on the solute distribution is
negligible. For instance, it has been shown [33] that the contact angle for an
aqueous solution in the presence of a dissolved salt can be relatively high, on
the order of 40◦ or more. With such values of the contact angle, the develop-
ment of corner films is significantly hampered. By contrast, for significantly
lower contact angles, when the liquid films can develop so as to maintain a
hydraulic connection between the “isolated” clusters, some solute transport
can occur through the films. This should reduce the concentration variation
between clusters. In the case of a sufficiently low evaporation rate for the
solute distribution to reach a quasi-steady state during drying, solute diffu-
sion in the films might even lead to a uniform concentration distribution all
over the liquid phase. As for the drying process in general, the consideration
of liquid films within the framework of the three equation continuum model
would deserve to be studied. Although the whole set of equations of the three
equation continuum model was presented, only a rather simple situation, al-
lowing solving the model quite easily without resorting to the determination
of the various transport parameters of the model, was considered. In this
respect, it would be interesting to extend the present work by developing a
numerical procedure allowing solving the full set of equations. This would
notably permit to simulate the full drying process and not only the CRP and
to consider other regimes than the capillary regime and the very low Peclet
number regime. Also, the edge regions, especially the top edge region in the
considered drying configuration, were not studied on the ground that this is
the bulk region which is of primary interest for the evaluating the continuum
models. However, the top region can be of special interest for predicting or
analyzing certain phenomena, such as the formation of salt efflorescence at
the evaporative surface of porous media for instance, e.g. [20, 25, 29, 34, 35].
Thus, some works should be dedicated to the modelling of the transfers in
the top edge region in the future.

5.8 Conclusions
A continuum model of drying in capillary porous media, referred to as the
three equation continuum model, has been presented. Contrary to the com-
monly used continuum models of drying, the present model makes an explicit
distinction between the percolating and non-percolating liquid phases. From
the consideration of the frequently encountered capillary regime, it has been
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shown that the model was able to predict the variations of the saturation
in both the percolating and non-percolating liquid phases during the con-
stant rate period (CRP). Then, the model was extended so as to predict
the evolution of the concentration of a solute in both the percolating and
non-percolating liquid phases. Comparisons with data obtained from pore
network simulations were quite satisfactory. In particular, the continuum
model consistently predicts that the solute concentration is higher in the
percolating phase than in the non-percolating phase. However, only the very
low Peclet number regime was considered. Nevertheless, the results presented
in this article also clarify the meaning of the solute concentration predicted
by the continuum models, which should be considered as an average con-
centration over the fragmented liquid phase. Counter-intuitively, it has been
shown that the concentration is not necessarily uniform over the liquid phase
in the considered very low Peclet number regime. As the result of the liquid
fragmentation in numerous clusters, spatial fluctuations of the concentration
are expected even in the very low Peclet number limit. In summary, the
three equation continuum model allows significantly more accurate predic-
tions of the solute distribution during drying. In the more general context of
the macroscopic theory of biphasic flow in porous media, the present paper
presents both an extension to drying, with and without the presence of a
solute, of the model proposed in [5, 8] and an additional validation of this
model, in particular as regards the formulation of the mass exchange term
between the percolating and non-percolating liquid phases.
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Chapter 6

General Conclusion

Drying in porous media is a physical phenomenon involving transfer between
a porous medium and the external environment. In this study, a numeri-
cal version of the drying process was studied: the PNM drying. PNMs are
based on a simplified representation of the pore space, allowing using simpli-
fied solutions to the transport between pores. In this work we have performed
drying PNM simulations in the case of the (quasi-)isothermal capillary regime
and studied the continuum modelling of the PNM drying. A first issue in
the PNM approach lies in the modelling of the transfer at the network sur-
face open to external gas. A somewhat classical approach consists in setting
computational nodes in the external boundary layer. An alternative would
be to parametrize the evaporation flux (or the vapor flux if the pore is dried)
from every surface pore. Such a type of parametrization was proposed by
Schlünder but for the very simplified situation of a spatially periodic surface
where all the pores have the same size and are filled with liquid. This allowed
him to proposed an analytical formula linking the thickness of the boundary
layer, the evaporation rate from each individual surface pore and the wet-
ted fraction of the porous surface. The validity of Schlünder’s formula was
studied from comparisons with numerical simulations. It was shown that
the results were dependent on the pore shape whereas a poor agreement was
observed with numerical simulations in the case of very small wet surface
fraction. Then it was shown that the direct application of Schlünder’s for-
mula leads to poor results when the pore size varies over the surface because
the influence of neighbouring pores is not adequately taken into account.
This led to introduce the concept of influence surface area. This greatly im-
proves the comparison between Schünder’s formula (modified so as to taken
into account the influence surfaces) and the numerical simulations. It should
be noted that only the case where all the surface pores are filled with liquid
was considered in the corresponding Chapter (Chapter 3). In other words,
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the vapor partial pressure was uniform and equal to the saturated vapor
pressure at the entrance of all the pores at the surface. However, during the
drying process, the vapor partial pressure varies from one pore to another
as the result of the gradual invasion of the surface pores by the gas phase.
It turns out that the Schlünder’s formula is not adapted to the case of the
vapor partial pressure heterogeneous distribution encountered in the PNM
simulations. Although attractive at first glance, Schlünder’s approach was
therefore abandoned in the subsequent chapters.

The numerical PNM simulations show the existence of edge effects located
in the interfacial zones, interface between the PNM and the external gas or
between the PNM and the wall (upper and bottom zone of the PNM in the
studied configuration). Both edge effects have been characterized and show
to not depend on the size of the network (Chapter 4). Furthermore, the size
of the edge effect zones was found to be smaller than the expected size of
a REV. It was also shown that the upper edge effect zone was the place of
the evaporation and the region where the non-local equilibrium effect is no-
ticeable. The identification and characterization of the top edge effect region
led to the development of a coupling condition between the internal transfer
and the external transfer based on the concept of interfacial resistance. The
interfacial resistance was studied in details over stage 1 evaporation (corre-
sponding to the classical "constant" rate period (CRP)). It was shown that
both the evolution of the interfacial resistance and the external mass transfer
resistance must be taken into account because of the impact of the variability
of the vapor partial pressure at the surface.

Chapter 5 was devoted to the development of a new continuum model based
on the observation that the gradual fragmentation of the liquid phase during
drying is a key feature. This led to separate the liquid phase into the per-
colating liquid phase, corresponding to the main liquid cluster spanning the
network, and the non-percolating liquid phase. The resulting CM model was
a three equation continuum model (CM) based on three mass conservation
equations for the liquid percolating phase the non-percolating liquid phase
and the vapor respectively. The source/ sink term coupling the liquid perco-
lating and liquid non-percolating mass conservation equations was based on
an earlier work by Hilfer and coll. on the theory of two-phase flows in porous
media. This three equation CM model led to a quite good agreement with
the PNM simulations over the considered period of drying (stage 1). The
interest of this new model was further illustrated with the consideration of
a solute in the liquid phase (in the very low Peclet number limit). This led
to a five equation CM model with the two additional solute mass transfer
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conservation equations. The sink / source term between the two solute mass
conservation equations was a rather simple adaptation of the sink/source
term developed for the percolating and non-percolating liquid mass conser-
vation equations. The five equation CM led again to a quite good agreement
with the PNM simulations. In particular, it was shown that the solute con-
centration was higher in the percolating cluster, an effect which, of course,
cannot be captured by the commonly used 1 equation solute transport model.
Therefore, the latter overestimates the crystallization onset time for example.

Although the present work shed new lights on the "drying problem", a com-
pletely satisfactory drying theory remains an open problem. In this work,
we have mainly considered stage 1 evaporation. The work must therefore be
extended so as to consider the full drying process. In particular, the stage
1/stage 2 (or CRP/FRP) transition, a key issue in the drying problem, must
be studied. It is unclear whether the concept of interfacial resistance is still
the best choice to model this transition as well as the full drying. Also, only
the capillary regime was considered. The other regimes should be studied.
For instance, the impact of the gravity or viscous forces, when non-negligible
compared to capillary effects, on the top edge effect and therefore the in-
terfacial resistance must be clarified. Another key aspect lies in the impact
of liquid films. Liquid films were completely ignored in the present work.
Several works have highlighted the impact of liquid films, especially when
the liquid is perfectly wetting or when the contact angle is sufficiently small.
Thus, the consideration of liquid films is also a necessary next step. Also, it
is customary to distinguish the capillary porous media from the hygroscopic
porous media. In this work, only the first type of porous media, i.e. capillary,
was considered. Owing to the significance of hygroscopic porous media in the
applications, it would be interesting to consider hygroscopic porous media as
well.

A last point concerns the approach considered in this thesis based on PNM
simulations. Although we have shown that the evaluation of continuum mod-
els was possible considering small networks, it is obvious that the consider-
ation of larger networks would facilitate the comparison and make it more
straightforwardly meaningful. In this respect, high performance computa-
tions remain a desirable objective.
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