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Abstract: In Engineer-To-Order (ETO) industrial contexts, decision-making about which
systems to offer for sales or which subsystems to integrate into the systems for sales is based
on various performance indicators. However, the lack of relevant information to evaluate these
indicators challenges the decision-making process. In this article, to face this issue, a CBR
approach is proposed for the evaluation of the performances of ETO systems. The main
contributions are : (i) an object-oriented case representation model which allows to store previous
evaluated systems for an effective and time efficient similar systems retrieval, and (ii) a method
that allows to compute similarity between two systems that can have different structures.
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1. INTRODUCTION

In Engineer-To-Order (ETO) industrial situations, com-
panies must totally or partially define novel or adapted
systems in order to cover the customer requirements Sylla
et al. (2018). When defining such systems, called non-
standard systems, decision-making about which systems
to offer for sales or which subsystems to integrate into
the systems for sales is based on various performance indi-
cators. They characterize the system and its development
process. Some examples of performance indicators are cost,
feasibility, complexity and risks. A reliable evaluation of
these indicators is crucial in order to foster right decisions.

However, most of the time, in ETO contexts, relevant
information to the evaluation of a non-standard system is
not fully available Sylla et al. (2020). In some companies,
to overcome this issue, domain experts, based on their
experiences, extrapolate the evaluation of standard (exist-
ing) systems in order to evaluate the non-standard (new)
one. This may work when dealing with simple system with
few subsystems and few integrations between subsystems.
When dealing with complex systems, composed of numer-
ous subsystems and integrations, the cognitive workload
associated to the evaluation task is high and cannot be
supported by a human brain. Moreover, a highly human-
dependent approach can lead to inaccurate or inexact
evaluation. Therefore, a computerized approach capable of
reproducing human reasoning is needed in order to support
the evaluation of complex systems in Engineer-To-Order
industrial situations.

To face this issue, a Case-Based Reasoning (CBR) ap-
proach is proposed in this article. As explained in several
works as Kolodner (1992) and Aamodt and Plaza (1994),
CBR approach is an artificial intelligence based approach
which allows to solve a new problem by finding similar
past problems and reusing knowledge and information
from those problems. In a CBR terminology, a problem
situation is referred as a “case” or an “experience”. A
past problem situation that has been studied so that its
related knowledge and information can be reused to solve
new similar problems is called “previous case” or “source
case”. Similarly, a new problem situation is called “new
case” or “target case”. CBR approach has been used for
several evaluation problems, especially effort estimation in
software development Wu et al. (2018), cost estimation in
new product development Relich and Pawlewski (2018)
and prediction of the roughness and residual stress of
machined surface Xu et al. (2020). In these works, all
systems are considered to have the same structure, which
means that all systems are defined by the same set of fea-
tures. Consequently, the proposed CBR approaches do not
consider situations where the system to be evaluated has
different structure from the past existing systems. How-
ever, in Engineer-To-Order industrial situations, a non-
standard system maybe defined by adding non-standard
values for standard features or adding non-standard fea-
tures or subsystems to standard systems.

In this article, we consider Engineer-To-Order industrial
situations and propose a CBR approach for the evalua-
tion of complex systems in domains where systems may
have different structures. The main contributions are: (i)
a “complex system performance evaluation” case repre-



sentation model which allows to model and store system
evaluation situations in a way that fosters an effective and
time efficient case retrieval, and (ii) a simple method that
exploits the case base structure to retrieve the most similar
cases from the case base, taking into account common and
non-common features of the target case and the previous
cases. The rest of the paper is structured as follows. Next
section provides the fundamentals of CBR approach for
problem solving. Section 3, 4 and 5 describe the proposed
CBR approach. Section 6 presents an illustrative appli-
cation dealing with the evaluation of the cost of a tower
crane system. Finally, Section 7 presents conclusion and
future research.

2. FUNDAMENTALS OF CBR SYSTEMS

A CBR system is generally described by a cycle composed
of five main phases. They are described in the following
Aamodt and Plaza (1994).

• Define: a new problem is described in order to com-
pare it to past problems stored in the case base.

• Retrieve: using a similarity measure, most similar
problems in the case base are searched and selected.

• Reuse: knowledge or information related to the se-
lected cases are reused to propose an initial solution.

• Revise: if the initial solution is not suitable, it is
revised to make it more convenient.

• Retain: the new problem and its related information
and knowledge are stored in the case base.

Two major challenges related to the development of an
effective CBR system are to design a suitable case repre-
sentation model and to define a relevant similarity mea-
sure. A case representation model is used to describe the
problems. As explained in Bergmann et al. (2005), it gen-
erally consists of a problem and its solution description. It
makes it possible to compare two cases and to compute
their similarity. It also allows to store already studied
cases in a case base. An appropriate case representation
model combined with a well-organized case base allow for
an effective and time efficient case retrieval and reuse.

Various case representations have been proposed in the
literature, namely feature vector, hierarchical, ontology,
and object oriented Bergmann et al. (2005); Shaker and El-
mogy (2015). With feature vector, each case is represented
as a set of features (attributes-values) which describe the
problem and its associated solution. In this setting, all
cases must have the same structure. The similarity mea-
sure is based on the values of the attributes and the relative
importance of each attribute. In an hierarchical represen-
tation framework, a case is represented at multiple levels
of detail Bergmann and Wilke (1996). This allows, when
finding similar cases to a new one, to retrieve appropriate
cases at the same levels of detail Bergmann et al. (2005).
With Ontologies, cases are represented with formal, ex-
plicit and sharable concepts and properties. Properties are
used to describe the concepts and the relationships (hi-
erarchical or non-hierarchical) between concepts Foguem
et al. (2008). The similarity measure is generally based
on the position of each case related concept in the hier-
archy of concepts. With object-oriented representations,
each case is represented as an object which is described
by a set of attribute-value pairs Bergmann et al. (2005).

Fig. 1. CBR inspired cycle for ETO system evaluation

The object-oriented framework contains powerful relations
which allow to describe complex cases in domains where
cases may have different structures. Bergmann and Stahl
(1998) proposed two measures to compute the similarity
of two cases (Intra-Class and Inter-Class) which are based
on the class attributes.

In this work, as we consider ETO industrial contexts where
systems may have different structures, we have chosen
the object oriented representation to develop the CBR
approach. It is based on the CBR inspired cycle shown
in Figure 1. When a new system must be evaluated, it is
represented using the case representation model proposed
in Section 3. Then, it is mapped to the case base and
the most similar cases are retrieved and selected using
the method proposed in Section 4. Finally, knowledge
and information related to the selected cases are used to
evaluate the performance of the new system using the
method proposed in Section 5. The new system, when
evaluated, is added to the case base along with its related
knowledge and information.

3. CASE REPRESENTATION FOR COMPLEX
SYSTEMS EVALUATION

A complex system can be defined as a set of subsystems
which are integrated through adequate interfaces Hen-
derson and Clark (1990). Each system or subsystem is,
on one hand, defined by a set of properties (example:
length and stiffness of a crane jib) and, on the other
hand, characterized by a set of performance indicators such
as cost, feasibility, complexity and risks. Based on that
and using object-oriented framework, a “complex system
performance evaluation” case representation is defined as
follows:

• a case is a specific “system evaluation situation” and
it is represented by an object which is an instance of
a class;

• a class may be composed of one or several other
classes and classes are organized in a class hierarchy;

• an object’s class determines its attributes which may
be a property, a performance indicator or an object;

• the collection of all objects represents the case base.

The upper part of Figure 2 depicts an UML class diagram
which is an object-oriented case representation of a tower



Fig. 2. An example of object-oriented case representation

crane system. In this diagram, a crane is a kind of sys-
tem defined by the class Crane. It is composed of three
subsystems (a tower, a jib and an engine) which are also
kinds of systems described by the classes Tower, Jib and
Engine, respectively. There are two kinds of crane system:
Cabin Controlled Crane (CC Crane) and Remote con-
trolled Crane (RC Crane). They are specializations of the
class Crane. In addition to attributes (cost, lifting capacity,
engine, jib and tower) inherited from the class Crane,
they have specific attributes: {Cabin} for CC Crane and
{R Control} for RC Crane. At the lower part of Figure
2 are shown examples of previous system performance
evaluation cases. For instance, CCC01 is a case of a cabin
controlled crane system performance evaluation and Ca01
is a case of a cabin system performance evaluation. In the
next section, the method that allows to retrieve similar
previous system evaluations for the evaluation of a new
system is presented.

4. CASES RETRIEVAL AND SIMILARITY
MEASURE FOR COMPLEX SYSTEMS

We assume that one may use our CBR system to evaluate
a system for sale (crane system in the example of Figure
2) or a system which is a part of the system for sale
(Jib system in Figure 2). In the latter situation, the CBR
system provides an evaluation of a part of the system
for sale, which can be used through another evaluation
method to evaluate the system for sale. This is particularly
appropriate in ETO situations where few parts of an
existing system must be modified to develop a new system.
In this article, we propose a generic approach which allows
to retrieve the most similar cases in both situations (see
Figure 3). The main steps are described in the following.

1.Relevant case retrieval. At the first step, the struc-
ture of the case base is exploited to directly retrieve rel-
evant previous cases to the target case. In fact, as each

Fig. 3. The selection process of the most similar cases

class of the case base is built based on a set of common
properties of systems, the case base structure contains
general knowledge about which systems are of the same
type and which systems are not of the same type. For
instance, CCC01 and RCC01 are of the same type, they
are all cranes. In the contrary, CCC01 and CaO1 are not of
the same type, CaO1 is a cabin and not a crane. Exploiting
the case base structure allows to reduce the computational
time related to search and similarity computation. Practi-
cally, once a new system must be evaluated, its properties
are extracted in order to identify the relevant class in the
case base class hierarchy. Only cases that are instances of
the class of the target case and those that are instances



of its “sisters’ classes” are retrieved. We define “sisters’
classes” as classes that have a Direct Common Superclass
(DCS). For example, in Figure 2, CC Crane is a sister class
of RC Crane. The DCS of CC Crane and RC Crane is the
class Crane. Therefore, if the target case is an instance
of the class CC Crane, all systems that are instances of
the classes CC Crane and RC Crane are retrieved for
further similarity computation. The other cases that are
not instances of CC Crane and RC Crane, CaO1 for
example, are not compared to the target case.

2.Similarity computation. After that, the similarity of
the target case Ct with each retrieved previous case Cp is
computed. The two situations that can be encountered are
considered. In the first situation, the target case and the
previous case are instances of the same class. The two cases
have the same set of attributes Ω(Ct) = Ω(Cp), see the
upper part of Figure 4. In the second situation, the target
case and the previous case are instances of different classes.
The two cases have a set of common attributes Ω(Ct)
∩ Ω(Cp) inherited from their Direct Common Superclass
(DCS). In addition, at least, one case has one or more
attributes that the other case does not have, see lower
part of Figure 4. Based on the similarity computation
method in feature-vector approach, a simple, effective
and easy to implement method is proposed to compute
similarity of two cases in any of the above mentioned two
situations. The global similarity of the two cases, noted
Sim(Ct, Cp), is a real number between 0 and 1. It is
computed as a weighted average of the local similarities
of attributes, noted Sim(attti, att

p
i ), see Equation 1. The

weight wi of an attribute indicates its relative importance
to the performance indicator being evaluated. In order to
take into account the two situations mentioned above, the
following hypothesis are considered for the computation of
the local similarities:

• For an attribute that characterizes both target and
previous cases, the local similarity is a real number
between 0 and 1. In fact, such an attribute tends to
increase the global similarity of the two systems. If the
values for the attributes for the two systems are the
same, the total weight wi of the attribute is added
to the global similarity. If not, a percentage (which
corresponds to the local similarity) of wi is added to
the global similarity.

• For an attribute that characterizes only one of both
cases (target or previous) the local similarity is equal
to 0. In fact, such an attribute tends to decrease the
global similarity of the two systems. By setting the
local similarity to 0, the weight wi of the attribute is
not added to the global similarity. It is removed from
the maximum global similarity which becomes 1 - wi.
So that, if the attribute in consideration has a strong
impact on the performance indicator to evaluate, the
global similarity of the two cases will be low.

In the context of complex systems evaluation, the at-
tributes may be simple or relational. The values of simple
attributes can take multiple forms, namely crisp symbols
and crisp numbers. In example of Figure 2, for the “jib
system”, the value of its attribute “stiffness” may be
“strong” and the value of its attribute “length” may be
“100 meters”. The value of a relational attribute is an
object. Depending on the form of an attribute, a different

Fig. 4. Two situations of similarity computation

Fig. 5. A similarity matrix for the ergonomics attribute

method is used to compute the local similarity. Let qpi and
qti denote the values of an attribute atti for a previous
case Cp and a target case Ct. If qpi and qti are in the
form of crisp numbers, the local similarity is computed
using equation 2. If qpi and qti are in the form of crisp
symbols, the local similarity is computed using a similarity
matrix as shown in Figure 5. If qpi and qti are objects (i.e.
subsystems), the local similarity is recursively computed
using equation 1.

Sim(Ct, Cp) =
k∑

i=1

wi ∗ Sim(attti, att
p
i )

0 < wi ≤ 1 and

k∑

i=1

wi = 1

∀i ∈ Ω(Ct) ∩ Ω(Cp), 0 ≤ Sim(attti, att
p
i ) ≤ 1

∀i ∈ Ω(Ct)\Ω(Cp), Sim(attti, {}) = 0

∀i ∈ Ω(Cp)\Ω(Ct), Sim(attpi , {}) = 0

(1)

sim(attti, att
p
i ) = 1−

|qpi − qti|

maxp∈φ {|qpi − qti|}

φ is the set of the retrieved previous cases.

(2)

One can notice that the weights of the attributes take a
great place in this method. The efficiency of the similarity
assessment strongly relies on what weights reflects the
relative importance of the attributes with regards to the
performance indicator being evaluated Doan et al. (2006).
Several methods have been proposed to determine the



weights of attributes in CBR systems, namely Analytic Hi-
erarchy Process (AHP), Artificial Neural Network (ANN)
and optimization techniques. In this article, we use AHP
method Saaty (1980). AHP is a systematic method which
uses knowledge of domain experts to determine the weight
(relative importance) of each attribute with respect to the
performance indicator being evaluated. First, a pairwise
comparison of the attributes is performed in order to have
the input data. Second, the obtained pairwise comparison
matrix is used to compute the weight of the attribute.
Finally, a consistency ratio is computed to examine the
consistency of the weights determination process. As AHP
is a well-established method that has been described in
many researches, we do not describe it in detail. More
details can be found in numerous articles, especially Saaty
(1980).

3.Useful cases selection. After computing the similar-
ity of the target case with each previous case, based on a
“similarity threshold” and a “maximum number of useful
cases”, the most useful cases are selected for the evaluation
of the target case. The similarity threshold allows to define
a minimum similarity value under which a previous case is
not considered similar enough to the target case in order
to be considered for the evaluation. The maximum number
of useful cases is used to limit the number of cases in the
evaluation process. It allows to reduce the computational
time, especially in situations where numerous previous
cases are retrieved. In the following, we describe how to
evaluate a new system using knowledge and information
related to past similar systems.

5. EVALUATION OF THE TARGET SYSTEM

In this phase, the performance perf of the target case Ct

is evaluated using the evaluations of the m most similar
previous cases retrieved and selected from the case base
(Cp

j , j = 1 to m). We assume that one may want to revise
the evaluations of the selected previous cases in order to
make them conform to the evaluation context of the target
case. This is particularly appropriate in situations where
the time difference between the evaluations of previous
and target cases is long. For example, when evaluating
the cost a new system, the inflation factor due to the
time difference must be considered. Let l be a factor that
characterizes the evaluation context of the target case
and Kl its revision coefficient. The revised evaluation of
the performance of a selected previous case Cp

j , noted

Eperf
r (Cp

j ), is computed using Equation 3. In this equation,

Eperf (Cp
j ) is the original evaluation of the previous case

Cp
j . Then, the evaluation of the target case is performed as

the weighted sum of the revised evaluations of the previous
cases (see Equation 4). The weight Wj of each case being
the normalized value of its similarity to the target case. It
is computed using Equation 5.

Eperf
r (Cp

j ) = Kl ∗ E
perf (Cp

j ) (3)

Eperf (Ct) =
m∑

j=1

Wj ∗ E
perf
r (Cp

j ) (4)

Wj =
Sim(Ct, C

p
j )∑m

j=1
Sim(Ct, C

p
j )

(5)

In the next section, an illustrative application is presented
to show how the proposed approach can be used.

6. ILLUSTRATIVE APPLICATION

The aim of this section is to show how to use the proposed
CBR system to evaluate a new system during an engineer-
ing design process. The example concerns the evaluation of
the cost of a new crane. Following the proposed case rep-
resentation model presented in Section 3, the new crane,
called Ct, is defined as follows.

Ct = {lifting capacity = 15200 kg, cabin = Ca15 = {floor
area = 2.5 m2, ergonomics = A+}, jib = Ji21 =

{stiffness = strong, length = 96 m}, tower = To21 =
{height = 108, section = 3.77 m2}, engine = En21 =

{power = 1890, energy = solar}}.

The attributes of the crane Ct allow to identify the cor-
responding class in the case base class hierarchy. It is the
class CC Crane, and Ct has one “sisters’ class” which is RC
Crane (see Figure 2). Therefore, as explained in Section 4,
only cases which are instances of the classes CC Crane and
RC Crane are retrieved for further similarity computation.
The other cases are not retrieved as they are not cranes.
This enables to directly retrieve the relevant cases to the
target case. Thus, it allows to reduce the computational
time related to the retrieval and similarity computation
process. In total, fifty previous cases is retrieved. A sample
is shown in Table 1. After that, the similarity computation
method presented in Section 4 is used to compute the sim-
ilarity of each previous case with the target case. For the
seek of clarity, all details about the similarity computation
are not shown. Instead, we choose to present a sample of
the final result in Table 2. In this table, weight 1 is the
weights of the attributes when the target and previous
cases are instances of the same class, whereas weight 2
is the weights when they are not instances of the same
class. It is important to notice that the proposed method
supports not only the similarity computation between two
systems of the same structure (e.g. Ct and case 1 in
Table 2), but also the similarity computation between two
systems of different structures (e.g. Ct and case 4 in Table
2). For the evaluation of the cost of the new system, in
order to select cases that have a great similarity to the
target case, the similarity threshold was fixed to 0.90. Only
three cases (case 12, case 14 and case 20) correspond to
this requirement (see Table 2). As the maximum number
of useful cases is set to 5, the costs of the three cases are
used to compute the cost of the new system using the
method presented in Section 5. The revision coefficient is
supposed 1, which means that a revision is not necessary
in this context. The final result of the evaluation of the
cost of the target case is 192016.45.

7. CONCLUSION

In this article, a CBR approach has been proposed for the
evaluation of the performance of engineer-to-order systems
during engineering design process. It is based on an object-
oriented case representation which allows to store previous
cases for effective and time efficient similar cases retrieval.
The proposed approach is applicable in domains where the
system to evaluate can have different structure with the



Table 1. A sample of retrieved previous cases

lifting c. stiffness length height section power energy floor area ergo. precision ergo. cost

case 1 24624 strong 83 105 3.91 1894 solar 2.5 A+ - - 285721

case 2 23542 strong 88 98 3.68 1811 gasoline 2 A - - 273378

case 4 21966 strong 100 110 3.59 1690 solar - - 5 B+ 259479

... ... ... ... ... ... ... ... ... ... ... ... ...

case 12 16075 strong 104 114 3.94 1237 electric 2.2 C - - 196304

case 14 15792 strong 98 108 3.72 1195 gasoline - - 3 A 192022

case 20 15254 strong 106 118 3.77 1173 electric 2.5 A+ - - 187947

case 25 7380 medium 50 60 2.84 568 gasoline - - 4 B+ 91574

case 43 897 low 32 42 2 69 gasoline 2 B - - 17700

Table 2. A sample of local and global similarities

lifting c. stiffness length height section power energy floor area ergo. precision ergo. global sim.

weight 1 0.179 0.141 0.163 0.165 0.142 0.179 0.002 0.020 0.010 - - -

weight 2 0.171 0.134 0.155 0.157 0.136 0.171 0.001 0.019 0.009 0.016 0.029 -

case 1 0.35 1.0 0.83 0.96 0.94 0.34 0.5 1.0 1.0 - - 0.72

case 2 0.42 1.0 0.89 0.87 0.96 0.42 0.3 0.0 0.75 - - 0.73

case 4 0.53 1.0 0.95 0.97 0.92 0.53 0.5 0.0 0.0 0.0 0.0 0.73

... ... ... ... ... ... ... ... ... ... ... ... ...

case 12 0.94 1.0 0.89 0.92 0.92 0.94 1.0 0.4 0.0 - - 0.91

case 14 0.96 1.0 0.97 1.0 0.98 0.97 0.3 0.0 0.0 0.0 0.0 0.9

case 20 1.0 1.0 0.87 0.89 1.0 0.99 1.0 1.0 1.0 - - 0.96

case 25 0.46 0.5 0.39 0.37 0.58 0.46 0.3 0.0 0.0 0.0 0.0 0.43

case 43 0.01 0.25 0.16 0.13 0.2 0.01 0.3 0.0 0.25 - - 0.12

previous evaluated systems. An illustrative application is
presented to show how to use the proposed approach. As
a future research, we intend to apply the proposed CBR
system to use cases from industries in order to show its
applicability and effectiveness.
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