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INTRODUCTION 

 

Recent developments in the pharmaceutics industry have encountered challenges regarding 

sustainable packaging of novel medicinal molecules (NMEs) and delicate active pharmaceutical ingredients, 

particularly those with intended use in oncology. Due to their sensitivity towards their environment, such 

molecules are accompanied by excipient solutions that protect them from degradation induced from changes 

in pH, oxidation and other processes [1]. However, even though pharmaceutical glass vials, the primary 

packaging of choice, appear chemically inert vis-à-vis an aqueous phase, reactive excipient solutions can 

still lead to an aggressive interaction with the drug container. Such interactions can alter the glass surface 

and even produce glass flakes through delamination, reducing the integrity of the vial. In fact, this 

degradation of the functionality of the primary packaging is a longstanding problem and can result in 

product failure. Such failures force numerous recalls, especially in drug products with low-filling volumes 

[2, 3]. Between 2008 and 2012, 22 % of drug product recalls and withdrawals from the market were due to 

particles identified in the contained liquids [3], with one of their origins being the occurrence of advanced 

delamination on the internal glass surface of the pharmaceutic container.  

Delamination and release of glass fragments in the stored drugs are causes for great sanitary 

concerns, especially in the case of substances administered intravenously. For that reason, procedures that 

assess the propensity for delamination have been established and preconized by the European (EP) and the 

United States (USP) Pharmacopeias. In that context, the U.S. Food and Drug Administration (FDA) 

emphasizes the significance of testing the compatibility between container and stored drug, as well as the 

selection of proper glass composition and quality control of the glass vials [2]. The recommendations 

described in the USP <660> and <1660> chapters suggest procedures for this evaluation by utilizing wet 

corrosion tests under extreme thermal and chemical conditions that aim to replicate the prolonged exposure 

of the glass surface to aggressive pharmaceutical substances [4, 5]. For safe product circulation in the 

market, the primary packaging medium, in the present case the vial, must demonstrate an excellent response 

to the recommended USP <660> and <1660> tests. Passing criteria are the low extraction of glass 

constituent elements and low hydrolysis of the silicate network. Both phenomena are initiated through ion 

exchange between the modifier cations of the glass and the water molecules of the aqueous solution and 
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alter the pH of the solution when left unaddressed. Prolonged exposure of the internal vial surface to an 

aqueous solution results in detachment of whole fragments, i.e. delamination.  

Unfortunately, despite the various compositions of primary glass packaging that have been 

developed over the years, the challenge of protecting the container from the active molecule and excipient 

solution that is to be stored still remains. To combat this, the presence of a barrier coating on the internal 

surface of pharmaceutical vials has been explored as a potential solution that can help limit the interaction 

between the stored drug and the glass container, extending product shelf life and sustainability. Such 

coatings can aid in fulfilling targeted requirements, namely reduction of ion leaching from the glass or 

protein adsorption, but their deposition process must at the same time be integrated in industrially 

established glass vial production-lines.  

Pharmaceutical vials based on the above concept are already circulating in the market. As a form 

of an example, the product SCHOTT Type I Plus® marketed by SCHOTT AG utilizes the application of a 

pure, 100-200 nm thick SiO2 coating, deposited on the internal surface of Type I glass using plasma impulse 

chemical vapor deposition (PICVD). SCHOTT AG advertises a greatly reduced drug-to-container 

interaction, providing effective barrier performance and improved resistance against the recommended test 

described in the USP <660> chapter [6]. However, it fails to respond satisfactorily to the specifications of 

the more aggressive USP <1660> tests, under which the coating eventually dissolves in the solution [7]. 

This unsatisfactory response can be attributed to a nanoporous microstructure of the coating, often traced 

back to the deposition process, or even to the inherent limitation of silica as a barrier material. Alternative 

methods for SiO2 production exist, such as sol gel or colloidal techniques, dip coating, atomic layer 

deposition (ALD), or plasma enhanced (PE) and thermal CVD. However, strict requirements tied to the 

glass manufacturing line must be respected if a barrier coating is to be implemented. The operation at 

atmospheric pressure combined with high throughput is desireable. Process temperatures lower than 570°C 

should also be favored, so that compatibility with the glass-transition temperature is ensured, are some of 

the limitations defined within this frame. In 2019, Ponton studied in his thesis the deposition of SiO2 barrier 

coatings from tetraethylorthosilicate (TEOS) and O2, using a thermal, atmospheric pressure CVD process 

[7]. This specific CVD technique is less complex than PICVD and can be directly implemented at the back 

end of the vial production lines of vial manufacturing. However, although the selected chemistry and 

process led to the deposition of high quality SiO2 barrier coatings that passed the USP <660> assessment, 

the coating material did not manage to overcome the challenges of some of the more aggressive USP 

<1660> tests. Once again, the covalent bonds of the silica coating were eventually hydrolyzed. Ponton 

illustrated how a significant link exists between the densification of the silicate network and the chemical 

durability of the coating [8]. For that reason, denser network structures, either of pure silica or of alternative 
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silica-based coatings, need to be studied, if they are to stand the severe corrosion tests performed in acidic 

and basic solutions according to the general recommendations of the pharmacopeias. 

In this context, the HEALTHYGLASS project funded by ANR was conceptualized, involving a 

consortium of four laboratories (LGC, CIRIMAT INPT, CIRIMAT UPS, CEMHTI) and an industrial 

partner [9]. The present thesis, carried out in the frame of this project, explores alternative barrier coating 

solutions by thermal CVD, based on the concept of improved densification of the amorphous ceramic 

network through an increase in its crosslinking as a result of different material compositions. In the case of 

amorphous SiO2, this claim is put forth based on the different coordination levels between oxygen, nitrogen 

and carbon. It is proposed that a partial replacement of divalent O2- anions in the silicate network by trivalent 

N3- or tetravalent, carbidic C4- anions can result in a denser lattice. As such, amorphous silicon oxynitride 

(SiOxNy) and silicon oxycarbide (SiOxCy) films are expected to perform better than amorphous SiO2. The 

resulting SiOxNy and SiOxCy films can present improved diffusion-limiting properties, greater chemical and 

thermal durability and constitute more efficient corrosion barriers. However, very little information is 

available in the literature concerning the CVD of SiOxNy and SiOxCy thin films in accordance with the 

constraints dictated by the pharmaceutical application in question; these pertain namely to the production 

of chemically inert films in confined surfaces, deposited at atmospheric pressure and at moderate 

temperatures (<570°C), with high growth rates. 

In light of all of the above, reactive and novel chemistries are tested with the aim to achieve material 

deposition within the frame of the desired specifications using a thermal CVD process. The deposition of 

amorphous SiO2 is initially carried out via reactive O3-based chemistries, serving as a starting point for the 

investigation of silica-based film deposition at low to moderate temperatures. Insertion of N and C in the 

silicate network, with some Si atoms of the Si(O)4 tetrahedra being bonded to one or more N or C atoms 

substituting O, is explored while still maintaining the amorphous state. Via carefully selected reactive 

chemical pathways, the thermal CVD production of SiOxNy and SiOxCy films is attempted at temperatures 

lower than the conventional ones, aiming to render this deposition process compatible with the glass 

transition temperature of the pharmaceutical vials. Innovative deposition routes are explored, based on 

single or dual-precursor combinations of silicon-containing compounds such as the classical 

tetraethylorthosilicate (TEOS) and hexamethyldisilazane (HMDS) molecules, and the rarely reported 

tris(dimethylsilyl)amine (TDMSA) precursor. Deposition from a novel, proprietary trisilylamine derivative 

compound developed and provided by Air Liquide is also studied. A multidisciplinary approach is 

embraced, combining materials science and process engineering in a way that involves the simultaneous 

development of resistant barrier films through experiments, alongside simulation and numerical 

computation for process optimization. 
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Starting with Chapter I, the challenges faced currently by the pharmaceutics industry are recounted, 

explaining in more detail the delamination and glass alteration mechanisms in aqueous media. Following 

that, the chapter lists potential solutions for overcoming these challenges and emphasizes the effective 

network densification by the partial replacement of O anions by N and C ones. An extensive bibliographic 

analysis on the various chemistries used for the deposition of silica-based films is presented, illustrating the 

constraints of certain deposition routes and illuminating promising prospects of thermal CVD. Based on 

the collected information, a strategy on the selection of potential precursor molecules that can effectively 

lead to deposition of SiOxNy barrier coatings by thermal CVD is formulated. The principles governing the 

CVD process itself are further touched upon, presenting the usefulness of combining the experimental 

investigation with computational simulation studies for process optimization.  

Progressive incorporation of nitrogen and carbon in the films, as well as the resulting evolution of 

the silica network and the influence of its composition on its performance, is at the core of the thesis. As 

such, Chapter II initially details the design and setup of the utilized CVD reactors, following which great 

focus is placed on the techniques implemented for the definition of the composition and structural 

characteristics of the produced materials. Elaborate physicochemical, structural and mechanical 

characterization protocols are established, involving microscopy, ellipsometry, nuclear and vibrational 

spectroscopies and nanomechanical tests. Upon definition of the characterization methods, both those used 

for the analysis of solid phase as well as for the gas phase, information regarding the simulation software 

and structure of the computational environment is provided.  

After explanation of all utilized characterization and simulation tools, results on the deposition of 

silica-based films are presented in the chapters succeeding it. In more detail, Chapter III deals with the 

deposition of silica and carbonated-silica films from O3 activated chemistries. SiO2 films from TEOS-O2/O3 

on flat Si substrates serve as a reference point for subsequent comparisons in this thesis. These comparisons 

are drawn in terms of material structure, composition, chemical bonding state and resistance to wet etching 

corrosion. The barrier properties of the SiO2 films produced from TEOS-O2/O3 are then assessed based on 

the recommendations of the USP <660> chapter. Following deposition and material characterization, the 

experimental results are utilized in order to enrich previous literature models describing the deposition 

process via simulation. By combining experimental study and theoretical kinetic model development, a 

better understanding of the involved gas phase and surface phenomena is sought, in order to optimize the 

deposition process and efficiently adapt it to coat complex 3D substrates. In the same chapter, a dual-

precursor chemistry based on HMDS is explored for the deposition of SiOxCy films at low temperature. 

Extensive focus is placed on the influence of carbon incorporation on the various properties of the films. A 

distinction between organic carbon and desired carbidic -Si-C-Si- incorporation is underlined. The 
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transition of the produced material from SiO2 to SiOxCy is studied, with its effect on functionality and 

performance being a focal point.  

Following the above, Chapters IV and V concern the deposition of SiOxNy films from novel 

precursor chemistries. Starting with Chapter IV, the thermal CVD of SiOxNy layers on flat Si substrates 

from TDMSA is described, studying in depth the effect of deposition temperature and inlet gas supply on 

the resulting material composition, structure and properties. In parallel to the deposition process, an 

innovative methodology coupling GC-MS, NMR and ESR is implemented, aiding in the study of the 

effluent gases during the deposition process. Through this methodology, radical species and stable by-

products are identified, allowing for the proposal of a series of reactions that describe the scarcely reported 

deposition mechanism of SiOxNy films. The obtained information is subsequently used for the definition of 

an apparent chemical model proposed through an original approach that combines the aforementioned gas 

phase and solid phase results, alongside simulation.  

Finally, Chapter V studies once again the deposition of SiOxNy films, produced however from a 

more reactive chemistry. This chemistry utilizes a novel, proprietary precursor developed by Air Liquide, 

selected specifically to overcome the previously faced challenges in regards to thermal limitations of the 

coating process and compatibility problems between the deposition temperature and the pharmaceutical 

container. Comparison between all developed films is done with the aim to illustrate the effects of the 

composition, material structure, silicate network environment and level of network densification on the 

barrier properties and protection efficiency. Through this, the improved corrosion resistance induced as a 

result of the partial replacement of the divalent O anions is illustrated tangibly by wet etching corrosion 

tests. Although assessment based on the USP <1660> recommendations is under progress, the 

compositional variety of the developed films can be adapted to the desired characteristics and could 

eventually allow for new, advanced pharmaceutic molecules to be commercialized. Lastly, given that 

functional silica-based materials are encountered numerous Key Enabling Technologies [10], the multitude 

of the studied chemical systems can additionally offer alternative CVD pathways for their implementation 

in microelectronics, spintronics, systems for energy harvesting, food packaging and gas sensor applications.  
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Chapter I. Silica-based CVD coatings for barrier applications: 

Motivations, processes and chemistries  

 

 

 

In the present chapter, various subjects dealt with in this thesis are discussed based on a review of 

the literature. Initially, the multiple application domains in which silica-based materials can be encountered, 

are presented. Certain focus is placed on applications regarding pharmaceutical packaging and the 

challenges faced by the primary packaging of drug molecules. These challenges pertain to the phenomena 

glass hydrolysis and delamination. Protection of pharmaceutical glass containers from alteration 

mechanisms through the application of protective barrier coatings constitutes the motivation of this thesis. 

The alteration phenomena are explained in detail in order to understand the particular aspects that influence 

them, but also as a means to gain insight into which parameters can be touched upon to help improve the 

chemical durability of the primary glass packaging. Potential solutions for overcoming the challenges 

induced by alteration are listed and current technologies for the application of barrier coatings on heat-

sensitive substrates are discussed. The constraints of certain deposition routes and their particularities are 

considered in view of the limitations dictated by the manufacturing process of pharmaceutical glass vials. 

Based on this information, the chosen thermal CVD process is defined. Emphasis is placed on the 

composition and effective network densification of silica-based coatings, and how this can be achieved by 

the partial replacement of O anions by N ones. A bibliographic analysis on the various chemistries used for 

the deposition of silica-based films is presented. Based on this information, a strategy for identifying and 

selecting the most promising precursor molecules for deposition of SiOxNy protective barrier coatings by 

thermal CVD is formulated. Lastly, the coupling of gas-phase analyses and computational fluid dynamics 

(CFD) calculations is discussed, two approaches that are used in this thesis alongside deposition 

experiments, as a means to elucidate the deposition process and to provide further insight into the selected 

chemistries. 
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I.1. The glass and the silicate network 
 

I.1.1. Applications of silica-based materials 

Materials from the silicon oxide, nitride and carbide family exhibit numerous functional properties. 

It is thus no surprise that thin films of such compounds are encountered in all Key Enabling Technologies 

including microelectronics, materials for energy harvesting, spintronics and biomedical applications [10]. 

Silicon oxynitride (SiOxNy) films specifically have attracted a lot of attention over the past decades due to 

their tunable properties [11], exhibiting characteristics in-between those of silica (SiO2) and silicon nitride 

(Si3N4) films. Starting from silica layers, applications in the field of optics, optoelectronics and food or 

pharmaceutical packaging benefit from their optical properties, transparency and effective gas diffusion 

barrier [12]. Additionally, SiO2 coatings are deposited on nanoparticles, membranes and structures for 

energy harvesting, hydrocarbon gas separation, wastewater treatment and oil-water separation among 

others [13, 14]. Combination of alternating silica and nitride multilayer films have also been studied for the 

protection of OLEDs from humidity and oxidation [15]. 

Going one step further, the partial replacement of O2- anions by trivalent N3- ones with higher 

coordination results in SiOxNy films exhibiting denser network structure compared to SiO2, improved 

oxidation resistance [16] and higher thermal and chemical stability [17]. At the same time, a SiOxNy 

material presents reduced intrinsic mechanical stress, which commonly describes the more rigid Si3N4 

material, avoiding thus the emergence of cracks that can be detrimental to product performance [18]. SiOxNy 

films are often encountered in semiconductor applications and flexible solar cells [19]. Moreover, their use 

in food packaging and gas barrier applications has attracted considerable interest in recent years thanks to 

their improved oxidation and corrosion resistance [16]. 

It is worth noting that all of the above applications deal either with heat-sensitive or complex-in-

shape structures, if not both. In the case of pharmaceutical applications, both characteristics apply: when 

the coating of glass vials is desired, one must consider the 3D complexity and confined space of the glass 

container, while keeping in mind that the coating treatment needs to be compatible with the particularities 

of the glass itself (i.e. glass transition temperature) and the glass manufacturing process. In order to respond 

to the continuous advances of the drug industry and provide viable and sustainable drug containers, these 

aspects are used to define the margins of operating conditions under which a protective coating can be 

applied. This will be touched upon in more detail in the following sections. 
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I.1.2. The glass network 

As a general description, silica-glass is comprised of an arrangement of Si and O atoms, in which 

each silicon atom is surrounded by four oxygen atoms [20]. Out of these four oxygen atoms, at least three 

of them are connected to a neighboring silicon atom. This results in network crosslinking via –Si–O–Si– 

bridges, while the difference in the angles and rotation of these bridges leads to a random network 

arrangement (i.e. amorphous silica). Oxygen atoms that are not connected to two silicon atoms are called 

non-bridging oxygens and an increase in their number decreases the degree of polymerization and 

stoichiometry of the material. Both of these characteristics greatly influence the physico-chemical 

properties of the glass. On this basis, modulation of the glass composition can help address specific 

properties for target applications.  

Commonly, glasses are the product of various oxide mixtures, with each oxide serving a different 

function. They are usually categorized into five different groups: network formers (SiO2, B2O3, etc.), 

network modifiers (primarily alkali and alkaline earth oxides such as Na2O, MgO, CaO, etc.), intermediates 

(Al2O3, PbO, etc.), colorants (FeO/Fe2O3, CuO/Cu2O, etc.) and filling agents [1]. The utilization of network 

modifying and intermediate elements is widely applied to induce a change in the properties of the vitreous 

material through alteration of its polymerization. This is achieved as follows: starting with the network 

modifying cations, their addition results in the formation of an ionic bond with oxygen. This causes the 

local rupture of the –O–Si–O–Si–O– sequence (polymerization chain) into two ionic –O–Si–O- groups and 

the appearance of non-bridging oxygens, as illustrated in Fig. I.1, using addition of Na2O as an example 

[21]. Through this, a reduction in viscosity and melting temperature of the glass can be brought about, as is 

the case for addition of sodium carbonate (Na2CO3). A second utility of network modifiers involves the 

compensation of the electric charges of intermediate elements. As for the intermediate oxides, their function 

depends on the composition of the overall vitreous network. They can either play the role of network former 

or network modifier, depending on the concentration in alkali or alkaline-earth ions and the resulting charge 

compensation. 

 

 

Fig. I.1. Forming of non-bridging oxygen in silicate glasses [21]. 
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I.1.3. Pharmaceutical glass  

Glass containers (vials, cartridges, ampoules, etc.) are widely encountered in medicine as they offer 

an advantageous packaging solution thanks to their chemical inertness and ease of sterilization with heat. 

Although transparency is oftentimes desired for easier content inspection, colored glass is also used in 

pharmaceutical storage, as it can protect the contents from ultraviolet light degradation. Glass as a 

packaging medium is impermeable to water and air, allowing for safe storage of medicinal substances. 

Glass containers intended for pharmaceutical use are categorized in different types, namely Type I to IV, 

distinguished by their composition and/or treatment. Table I.1 lists representative compositions of Type I 

and Type III vials. Type I vials are made from borosilicate glass, containing approximately 10 w.% boron 

oxide (B2O3) and ca. 70 w.% SiO2, along with network modifiers such as sodium oxide (Na2O) and 

potassium oxide (K2O). Beginning at around the 1910s, borosilicate glasses started seeing use in packaging 

of parenteral solutions [1]. According to the European Pharmacopoeia (EP), Type I glass has a high 

hydrolytic resistance due to its chemical composition and is described as suitable for most uses, be they 

parenteral or not.  

 

Table I.1. Composition ranges of Type I (in w.%) and Type III (in mol.%) glass vials intended for 

pharmaceutical use [22].  

Oxide Type I Type III 

SiO2 65 – 69 % 70 – 74 % 

B2O3 11 – 13 % - 

Na2O 6 – 9 % 13 – 17 % 

K2O 1 – 3 % 0 – 0.6 % 

CaO 0 – 1.5 % 8 – 11 % 

Al2O3 2 – 7 % 0.05 – 2 % 

ZnO 0 – 2 % - 

MgO - 0 – 6 % 

SO3 - 0 – 0.4 % 

Fe2O3 - 0 – 0.6 % 

BaO 1.5 – 3 % - 

 

Type II and Type III pharmaceutical vials on the other hand do not contain B2O3 and are comprised 

of approximately 10 w.% CaO, 15 w.% Na2O and 75 w.% SiO2, thus characterized as soda-lime glasses. 
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They can also contain small amounts of potassium oxide (K2O) and magnesium oxide (MgO) among others, 

with the latter reducing the required molding temperature compared to Type I glass. Type II glass is 

distinguished from Type III in that it involves the treatment of its surface with sulfur, which gifts it high 

hydrolytic resistance. According to the EP, Type II is suitable for most acidic and neutral aqueous 

preparations, whether or not for parenteral use. Type III glass on the other hand is recommended for non-

parenteral preparations, or for some non-aqueous preparations or powders for parenteral use, excluding 

lyophilized products. Lastly, Type IV containers are made of soda-lime glass with low hydrolytic resistance, 

suited for storage of oral dosage forms, but not recommended for parenteral use. 

Despite the varying types of pharmaceutical glass and compositions developed over the years, their 

resistance to alteration in aqueous media is being pushed to its limits. The necessity to extend glass container 

shelf life for storage of sensitive medicinal molecules has given rise to extensive research for potential 

solutions. In all cases however, to combat the problem of chemical alteration of the glass, one must first 

grasp the mechanisms that lead to its hydrolysis, and eventually, its delamination. 

 

I.1.4. Mechanisms of hydrolysis and ion exchange 

When storing aqueous solutions, the glass container is in constant and direct contact with the liquid 

content. Aggressive solutions and prolonged contact (in the order of several months) can lead to alteration 

of the glass surface exposed to the liquid environment. The overall glass alteration process in aqueous media 

involves multiple stages and has been the subject of numerous studies [23-25], even debates [26]. The 

general scientific consensus is that it is initiated once water enters and diffuses into the vitreous network. 

The rate at which this diffusion, and all following alteration steps, take place, is dependent on the glass 

composition and the atomic arrangement of the elements in the glass matrix. 

Upon diffusing in the lattice, the water molecules are involved in two sorts of interactions: a 

reaction with the covalent bonds of the silicate network, which causes the hydrolysis of the latter, and a 

reaction with the ionic bonds, which causes an ion exchange between the hydrogenated species (H2O, OH-, 

H3O+) and the modifying elements (Na+, etc.) of the glass. In turn, these two interactions cause irreversible 

modifications not only to the glass container, but also to the stored aqueous solution, as is described shortly.  

In more detail, the ion exchange mechanism, also referred to as leaching [26, 27], can be described 

through Reaction I.1 [22]: 

 (−O−Si−O−I)glass + H2O → (−O−Si−O−H)glass + I+ + OH- Reaction I.1 
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where I symbolizes the network modifying ion (mainly alkali or alkaline earth) in the silicate lattice. 

Reaction I.1 results in the release of the network modifying element and hydroxide anions (OH-) in the 

solution. Departure of the modifier from the glass network towards the aqueous medium creates a SiO2-rich 

alteration layer, the thickness of which increases over longer exposure times as a result of continuous 

network alteration (Fig. I.2). However, the rate of alteration is not linear. Cailleteau et al. [28] reported that 

the altered region can undergo structural reorganization, forming new –Si–O–Si– bridges through the 

condensation of silanol moieties and leading to pore closure. This decelerates the further diffusion of 

hydrated species and partially limits the rate of alteration. 

 

 

Fig. I.2. Schematic representation of the progression of glass alteration (a) [24]. Back-scattered electron 

image of the sharp interface between pristine borosilicate glass and silica-rich alteration zone (b) [29]. 

 

The OH- and network modifying ions produced through ion exchange (Reaction I.1) cause an 

increase in the pH value of the stored solution. For pH sensitive-drugs, this can reduce or nullify the 

efficiency of the active drug molecule. Moreover, if pH values shift above 8-9, the glass network is 

hydrolyzed at higher rates by the now basic solution, according to Reaction I.2 and 3 [24, 30]:  

 (≡Si−O−Si(OH)3)glass + OH- → (≡Si−O-)glass + H4SiO4 solution Reaction I.2 
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 (≡Si−O-)glass + H2O → (≡Si−OH) glass + OH- Reaction I.3 

 

 H4SiO4 + OH-  H3SiO4
- + H2O Reaction I.4 

 

The rupture of the covalent bonds between the network forming Si atoms and oxygen results in the 

depolymerization of the lattice and formation of silanol (Si-OH) groups. The rupture of four –Si–O–Si– 

bridges extending from one silicon atom is required to release it from the glass network. This leads to the 

release of silicic acid (H4SiO4, Reaction I.2). For solutions that are not too basic, H4SiO4 can aid in balancing 

out the augmentation of the pH and slow down the dissolution rate [31]. For pH > 8 however, H4SiO4 is 

ionized and its solubility is increased (Reaction I.4), driving the silica dissolution reaction forward [32]. 

 

I.1.5. Delamination and degradation of the glass container  

Hydrolysis of the glass can be observed directly at the extreme surface that is in direct contact with 

the aqueous solution. As additional water molecules diffuse and are incorporated in the network during 

prolonged exposure, the alteration progresses further inside the previously pristine glass and the thickness 

of the hydrated layer increases (Fig. I.2). Once thick enough, the corroded layer is detached from the 

extreme surface of the glass and released in the solution as flakes, called lamellae [33]. This phenomenon, 

referred to as delamination, produces insoluble, inorganic glass particulates that measure sizes from 

anything below 1 μm to >50 μm [34]. Bigger lamellae are visible to the naked eye, signaling sanitary risks 

(Fig. I.3). They are especially cause for great concern when the stored solution is destined for subcutaneous 

and parenteral administration, causing thrombotic, embolic or other vascular complications [2]. 

Additionally, the presence of lamellae can lead to the destabilization of the active ingredient contained in 

the pharmaceutical product, e.g. through aggregation of proteins on the surface of the glass flakes [35].  

Delamination occurs more frequently when compositional inhomogeneities are present at the glass 

surface. These inhomogeneities are traced back to the glass manufacturing process. They are generally the 

result of evaporation and deposition of glass constituents with low melting temperature, or post-

manufacturing thermal or chemical treatments. The repeated heating and cooling steps present in the glass 

tubing technology can accentuate their occurrence. Compositional inhomogeneities occurring from glass 

tubing are usually located at the heel region (i.e. the base of the vial) [34, 36, 37]. For borosilicate glass, a 

phase separation into a silica-enriched and a borate-enriched phase can take place, resulting in lower 

chemical durability and resistance to corrosion [37]. Borosilicate containers produced through the glass 

molding process on the other hand are somewhat less prone to this problem, because of the fewer heating 
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and cooling steps [34]. Details on the two glass manufacturing processes are given in upcoming sub-

sections. 

 

 

Fig. I.3. Pharmaceutical vial exhibiting progressed stage of alteration (a) and close up of the vial (b), 

showing the lamellae suspended in the stored solution as a result of delamination [38]. 

 

Multiple mechanisms for the formation of lamellae have been identified. Other than the above 

described delamination mechanism and lamellae detachment caused by progressed hydrolysis (Fig. I.4a), 

precipitation can also occur, observed when the leached components of the container react with the active 

drug molecule or the excipient solution towards the creation of a solid compound. If the solubility limit of 

the produced solid is exceeded, precipitation, often in the form of flakes or sheets, takes place [1, 39].  

Another mechanism of corrosion has also been noted, described as alteration that occurs localy in 

the form of pits [32] and is the result of the previously explained inhomogeneity of the glass. This 

compositional inhomogeneity, such as areas rich in boron or sodium, can promote preferential interactions 

between the aqueous solution and these elements [40]. Pitting-style corrosion of glass can be especially 

accelerated when a surface treatment step is involved in the manufacturing process, such as exposure of the 

glass container to sulfuric acid [41]. Over time, the pits increase in size and can connect to other pits, 

facilitating as such the fracturing and detachment of glass fragments from the surface (Fig. I.4b). 

Although alteration continues to be a persistent problem in the pharmaceutics industry, it also 

extends and affects multiple other sectors, from glass intended for food storage to glass used in the 

containment of nuclear waste. Assessing the propensity for delamination and the potential damage that 

could occur in the glass after prolonged exposure to an aqueous solution is therefore crucial. In the health 

sector, methods of assessment are recommended by the health authorities (EP, USP, FDA). One such 

recommendation used in the present thesis is the USP <660> chapter [4], which will be detailed in 
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Chapter II. However, merely assessing the probability and level of irreversible alteration is not sufficient. 

Manufacturers and the research sector are incentivized by the health authorities to explore solutions that 

retard the alteration process, increase resistance to corrosion, prolong product shelf life and ensure patient 

safety. 

 

 

Fig. I.4. Scanning electron micrograph of delaminated region on the internal surface of a glass vial, after 

exposure to a drug solution (pH 8) and three sterilization cycles (a) [34]. Micrograph of an isolated 

lamella, showing intact pits (b) [32]. 

 

I.1.6. Current solutions to counter glass alteration 

I.1.6.1. Glass composition and manufacturing process 

Through the presentation of the alteration mechanisms, it becomes apparent that the intrinsic 

composition of the glass itself plays a key role in its resistance against hydrolysis. In section I.1.3, it was 

mentioned how borosilicate (Type I) glass demonstrates a higher hydrolytic resistance according to the 

European Pharmacopeia. This improved performance is in fact attributed to the difference in composition 

between it and soda-lime (Type III) glass. Borosilicate glass utilizes three network formers (SiO2, Al2O3 

and B2O3), exhibiting a vitreous network made up of SiO4 and AlO4 tetrahedra, and BO3 triangles. Soda-

lime glass on the other hand utilizes only two network forming elements (SiO2 and Al2O3). Moreover, the 

total mass fraction of the network forming components in borosilicate glass is higher (~85 m.%) compared 

to their total mass fraction in soda-lime glass (~75 m.%). The higher contents in network modifying ions in 

the case of soda-lime glass results in more non-bridging oxygen atoms, which leads to an atomic 

arrangement that is more prone to ion exchange in an aqueous solution. Borosilicate glasses that contain an 

excess of either alkali cations or boron can exhibit similar behavior, i.e. become more susceptible to 
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hydrolysis, as was illustrated in Bunker et al.’s work [42]. Additionally, the authors showed that borosilicate 

glasses with a B:Na ratio over 2 tend to phase separate into silica-rich and boron-rich phases, with the borate 

phase being more vulnerable to water diffusion and hydrolysis. It is recalled however that B2O3 is added as 

a network former with the aim to rupture the –Si–O–Si– covalent bonds and facilitate the shaping and 

workability of the glass through reduction of its melting temperature. It becomes clear that simply 

improving the glass resistance to hydrolysis by changing its composition can lead to prohibitively high 

working temperatures. A trade-off exists therefore between durability and workability of the glass container. 

In a recent review on glasses used for parenteral packaging, glass composition has been 

characterized as the “largest single influence on the chemical durability response” [1]. Evidently, other 

secondary factors also act upon the durability response, such as the manufacturing method, special 

treatments, annealing process, etc. However, they themselves affect the composition in their majority. In 

terms of composition, various proposals have been reported in the literature and industry to improved glass 

durability [43-46]. Corning Inc. has patented a boron-free glass composition [47], belonging formally to 

the family of aluminosilicate glasses. Instead of B2O3, increased amounts of alumina are used and 

workability of the glass is compensated by an increase of alkali, sodium and potassium oxides. Proprietary 

tests carried out on these vials showed low propensity for delamination [43]. Another example of increase 

in chemical durability through a change in composition was proposed for soda-lime-silica (SLS) glass, 

through exchange of Na2O for K2O, given that Na is prone to being preferentially leached [22]. The authors 

noted that an increase in Al2O3 content also significantly improves durability. 

Certain improvements in terms of resistance to alteration can also be achieved through modification 

of the glass manufacturing process. In that context, SCHOTT AG is marketing the EVERIC™ glass vials, 

fabricated through a manufacturing process that aims to reduce delamination in delamination-critical areas, 

such as the vial shoulder and heel regions. The delamination-control is enabled through an improvement of 

the surface and compositional homogeneity of the internal glass vial surface (Fig. I.5).  

 

 

Fig. I.5. Scanning electron micrographs at the heel region of standard and SCHOTT EVERICTM vials, 

after 4 h autoclaving. No scale information is provided by the company [48]. 
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Although little information is shared, the company claims a chemical stability higher than in 

standard borosilicate glasses and advertises that their product complies with the USP <660> chapter, 

exhibiting high resistance to dissolution, low concentration of leached glass elements and prevention of a 

shift in the pH-value of the solution [38]. Similar technologies that aim to improve the resistance to 

delamination, either through modification of the glass composition, or through specialized manufacturing 

processes, are also encountered in a number of patents filed in recent years [49, 50]. 

 

I.1.6.2. Surface treatment  

An alternative solution to reduce propensity for delamination is the surface treatment of glass 

containers. The previously described Type II pharmaceutical glass falls exactly in this category. Being made 

of soda-lime glass just like Type III glass, a surface treatment is applied on the internal surface of Type II 

vials, involving exposure to sulfate or fluoride containing compounds in the form of gas or powder [1]. In 

the case of gases, SO2 and/or SO3 gases are used to extract and deplete the internal glass surface of alkali 

and alkaline earth compounds. In the second case, ammonium sulfate (NH4)2SO4 powder is added, serving 

the same purpose. Through this treatment, the extreme glass surface in contact with the aqueous solution is 

altered to contain lower concentrations of network modifiers, reducing the possibility of ion exchange 

reactions. For that reason, the resistance of Type II glass against aqueous alteration is generally assessed 

between that of soda-lime (Type III, lowest) and borosilicate glasses (Type I, highest). 

 

I.1.6.3. Barrier coatings 

As a matter of fact, the use of barrier coatings is attractive as it leaves room for using glass 

compositions that allow low melting temperatures and easier workability. In such cases, the burden of 

ensuring sustainable product performance falls on the barrier coating. Given that glass compositions with 

low concentrations in alkali and alkaline earth elements lead to lattices with improved hydrolytic resistance, 

various coatings based on oxides are being explored over the past years as alternatives for glass protection 

against delamination [51, 52]. Branching off to other sectors for a moment, AlOx and SiOx coatings have 

gathered attention as popular protective materials in the stainless steel, electronic devices and polymer 

industries, thanks to their low oxygen permeability and sodium diffusion [53, 54]. Their transparency also 

makes them attractive for pharmaceutical applications, since they enable the easy inspection of the contents. 

However, it must be underlined that, when intended for the packaging of pharmaceuticals, the barrier 

coating must fulfill certain functions. As a first rule, barrier coatings must exhibit a structure dense enough 

to withstand hydrolysis. Additionally, they must also demonstrate sufficient barrier properties, meaning 
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that the coating should reduce, or ideally block, the diffusion of elements from the glass towards the 

contained solution. Two recent theses have dealt with investigating this particular alternative by applying 

CVD coatings into glass vials. In 2015, Etchepare in his thesis studied the chemical durability of soda-lime 

glass vials after application of amorphous Al2O3 barrier coatings [55]. Following his work, Ponton 

investigated the chemical durability of soda-lime and borosilicate glass vials after application of amorphous 

SiO2 barrier coatings [7]. The following sections will discuss these works briefly, before arriving at the 

barrier coatings proposed for the present thesis.  

 

I.1.6.3.1. Amorphous alumina coatings 

The work of Etchepare investigated the coating of the inner surface of soda-lime vials with 

amorphous Al2O3 (Fig. I.6), using direct liquid injection metal-organic chemical vapor deposition (DLI-

MOCVD) [56]. The thermal and pressure ranges studied were 420-560°C and 5-730 Torr, respectively. The 

resistance to alteration of the produced Al2O3 barrier coatings was assessed in accordance with the USP 

<660> chapter [4]. The results showed a good barrier performance of the alumina layer, with only low 

concentrations of silicon, alkali and alkaline earth ions being released in the solution. However, a high 

amount of aluminum ions was probed. This indicated that, although the Al2O3 barrier coating was effective 

in reducing diffusion of network forming and modifying elements, it itself did not exhibit satisfactory 

hydrolytic resistance and eventually dissolved after contact with the aqueous solution. Therefore, merely 

presenting barrier properties is not sufficient. To ensure satisfactory performance, the barrier coating itself 

must also include covalent bonds strong enough to withstand aqueous hydrolysis. This translates to a 

requirement for denser structures. 

 

 

Fig. I.6. Cross-section SEM-FEG micrographs in backscattered electron mode of thin amorphous Al2O3 

films, deposited at 520°C by MOCVD (a) and at 480°C by DLI-CVD (b) [55]. 
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I.1.6.3.2. Amorphous silica coatings 

Densification of the network in a barrier coating can be instigated through multiple methods. As a 

first example, Etchepare demonstrated how the deposition process can serve in that cause. In his thesis, 

alumina layers produced by classical MOCVD using a bubbler exhibited a denser and smoother 

microstructure compared to the more porous layers produced by DLI-MOCVD (Fig. I.6) [55]. Differences 

in composition were also noted, with the DLI-MOCVD coatings containing hydroxyl groups that impacted 

the hydrolytic resistance negatively. This brings us to the second point; namely the coating composition. 

Substitution of alumina by other oxides, such as amorphous silica, has been proposed as an alternative 

solution towards denser materials with lower alkali leaching. 

In that context, Guanghui et al. [57] studied the diffusion of sodium through barrier layers of various 

oxides. The barrier coatings (SiO2 and combinations of it with TiO2, B2O3, ZrO2 and/or P2O5) were produced 

via sol-gel method, utilizing a 1 h annealing post-treatment at 500°C. The lowest sodium diffusion was 

observed for the pure SiO2 layer. In a similar study, Nagayama et al. [58] compared the barrier properties 

of pure, sol-gel deposited SiO2 layers, with and without annealing at 500°C. After exposure of the coated 

SLS glass samples to an aqueous solution at 100°C for 24 h, the release of sodium ions from the underlying 

SLS glass was studied. It was found that the SiO2 coated sample released approximately 4 times less sodium 

atoms compared to the uncoated glass sample. Moreover, when the SiO2 coating was subjected to annealing, 

sodium release was reduced even further, measuring almost half that of the unannealed coating. The authors 

attributed this improvement in barrier property to a denser silica structure induced through the annealing 

step. The effect of the temperature was also reported by Yersak et al.[59], who studied the dissolution of 

atomic layer deposited (ALD) SiO2 films intended as aqueous corrosion barriers. The authors measured an 

approximately 49 % reduction in dissolution rate by increasing the deposition temperatures from 150 to 

300°C, attributing it to structural changes related to dehydrogenation and densification of the network.  

The above-described densification was further confirmed through Ponton’s work [7]. Using 

tetraethylorthosilicate (TEOS) and O2 gas mixtures in a thermal CVD process, SiO2 deposition at 350-

570°C and 730 Torr was investigated, with and without annealing. The SiO2 barrier coatings deposited at 

550°C demonstrated an improvement factor of 72 % compared to uncoated vials after subjection to aging 

tests according to the USP <660> chapter, meaning that 72 % less extractables were probed in the corrosion 

solution for the coated vials. The respective improvement factor, in regards to uncoated vials, for coatings 

deposited at 400°C on the other hand measured only around 10 %. The improvement of the barrier 

performance at higher deposition temperatures, or after an annealing post-treatment, is attributed to the 

denser network of the coating as a result of the operating conditions. In their study, Klause et al. [60] 

underlined this link further. Through investigation of the hydrolytic resistance of SiO2 barrier coatings 
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deposited by PICVD, the authors pointed out the strong correlation between operating conditions and film 

microstructure. SiO2 films with more homogeneous, untextured microstructures and fewer nanoporosities 

exhibit stronger cross-linking, which maintains the functionality of the coating for longer durations.  

It is noted that the thermal CVD SiO2 coatings produced by Ponton et al., as well as the 

aforementioned PICVD SiO2 coatings used in the Type I Plus® vial product marketed by SCHOTT AG, 

were subjected to the more aggressive tests recommended in the USP <1660> chapter [5, 7]. Unfortunately, 

both failed to respond satisfactorily to the citric acid test of USP <1660>. Although diffusion of elements 

such as sodium and boron was successfully reduced, amounts of silicon, proportional to the deposited mass 

of the SiO2 coatings, were measured in the solution, signifying that the silica network itself cannot withstand 

this particular corrosion test. Again, a SiO2 network densification induced through optimization of any of 

the operating conditions is, in this case, not sufficient. 

 

I.1.6.4. Densification through compositional and structural changes 

Inspired by the works of Etchepare and Ponton, the current project was conceptualized, exploring 

how a further densification of a SiO2 barrier film can be induced through a change in composition. Nocun 

et al. [54] reported that the addition of 0.08 mol.% Al in a SiO2-Al2O3 barrier coating effectively reduces 

sodium diffusion. More examples can be found in literature on microelectronic devices, where sodium 

diffusion is undesired since it can cause device degradation [61]. Barrier coatings from silicon nitride (Si3N4, 

oftentimes noted as SiNx when sub-stoichiometric) and oxynitride (SiOxNy) are frequently used to combat 

this problem, deposited as alkali-barrier layers on top of soda-lime glass or other surfaces [62-66]. Palm et 

al. [62] illustrated that Si3N4 and SiOxNy barriers effectively prevent sodium diffusion from a glass substrate 

towards molybdenum (Mo) films. According to their study, both materials performed better than Al2O3, 

with the Si3N4 barrier exhibiting more effective diffusion reduction of Na than SiOxNy, as was revealed 

through inductively coupled plasma mass spectrometry (ICP-MS) measurements (Fig. I.7a). Aubry et al. 

[67] also noted the effective diffusion barrier properties of silicon nitride, measuring only traces of diffused 

alkali elements in a TiO2/SiNx/glass-substrate system. The authors also compared the results to a 

TiO2/SiO2/glass-substrate system, noting that the SiO2 barrier layer in their study was relatively permeable 

to sodium diffusion and underperformed by a factor of 3 in comparison to the SiNx barrier layer. Satisfactory 

oxidation resistance [68], etching resistance [69] and boron diffusion [70], Cu diffusion [71] or gas [72] 

barrier performance of SiNx and SiOxNy films have also been documented. In regards to etching resistance, 

Gumpher et al. [73] noted that incorporation of around 10 at.% carbon in SiNx films markedly improves 

etching response through an improved material metwork structure that they illustrasted as shown in Fig. 
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I.7b and c, while Lee and Choa [74] claimed that their PECVD silicon carbonitride (SiCxNy) films exhibited 

excellent water diffusion barrier. 

 

 

Fig. I.7. ICP-MS measurements of Na in Mo films deposited on different diffusion barriers in Mo-

film/barrier/glass-substrate systems. ICP-MS was carried out after chemical dissolution of the deposited 

Mo film in nitric acid. Zero level refers to probing of Na as a result of handling and processing 

contamination. P1 refers to a patterning process of the Mo film using pulsed laser (a) [62]. Proposed 

densification of silicon nitride matrix (b) through nitrogen substitution by carbon (c) [73]. 

 

Based on the above, a partial replacement of the divalent O2- anions in SiO2 coatings by trivalent 

N3-, or even tetravalent carbidic C4- ones, is proposed. The resulting single-phase silicon oxynitride 

(SiOxNy) or silicon oxycarbide (SiOxCy) networks are characterized by the usual –Si–O–Si– bridges 

encountered in silica, this time however with some Si atoms of the tetrahedra being bonded to at least one 

nitrogen or carbon atoms, respectively. Through this, the short range disorder [75], cross-linking and 

density [76] of the network are increased compared to pure SiO2, which can effectively lead to an improved 

diffusion barrier thanks to the enhanced coordination. Similarly, the carbon atoms in SiOxCy films are in 

turn tetrahedrally bonded to other silicon atoms [77, 78], exhibiting thus greater chemical durability in both 

alkaline and hydrofluoric solutions [79], as well as improved mechanical properties and thermal stability 

[80, 81]. However, if protective coatings inside pharmaceutical vials are to be produced under the context 

of eventual industrial implementation, certain constrictions need to be respected regarding the selection of 

the deposition method and process parameters. To identify these specifications, the fabrication process of 

vials intended for pharmaceutical use is explained briefly below. 

The pharmaceutical industry utilizes mainly two routes for production of vials. The first one is 

based on converting a container from glass tubing. More specifically, a glass tube is repeatedly heated using 
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flames, as shown in Fig. I.8, while mechanical tools reshape it into the dimensions of the final product 

(vials, cartridges and ampoules, to name a few, Fig. I.8b). This particular technology established a 

significant advance in the manufacturing of pharmaceutical glass back at the start of the 19th century and is 

referred to as glass converting technology or glass tubing. The second and more traditional route, which is 

the primary focus for this thesis, involves the molding of vials from a drop of molten glass. As a matter of 

fact, molded containers are more popular for certain applications compared to glass tubing, because their 

thicker walls provide improved resistance against mechanical damage [1]. The absence of repeated heating 

and cooling steps also renders them less prone to delamination [1].  

 

 

Fig. I.8. Heating of ampoules by flames (a) and shaping pharmaceutical vials (b) during glass tubing [82]. 

 

For the molding of glass containers, the molten glass drops are distributed to the forming machines 

at temperatures close to 1000°C. For pharmaceutical vials, the drop is shaped in two steps, the first one 

involving pressing or blowing with compressed air. At the second step, the shape of the container is 

finalized by blowing compressed air only. Both steps present a strong temperature gradient from 1000°C 

down to approximately 700°C, which leads to buildup of stress in the material. For this reason, after exiting 

the mold, the vial is transported on a conveyor belt towards an annealing arch, where it undergoes an 

annealing step aiming to release the accumulated stresses. Surface treatments, such as the application of 

barrier properties, can take place before and/or after this annealing step. 

Based on the above, it becomes apparent that the application of a barrier coating must, ideally, 

respect two specific constraints dictated by this particular production line process. The first one is the 

deposition at atmospheric pressure, which is required in order to comply with the production line (i.e. open 

air conveyor belt). Due to this requirement, plasma enhanced CVD (PECVD) processes are excluded, as 
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they additionally lead to higher operational costs. Moreover, films deposited by plasma processes can 

exhibit increased hydrogen incorporation and potential film damage occurring from ion bombardment [83], 

which can be detrimental to the barrier performance. Silica-based films are also deposited using atomic 

layer deposition (ALD) [84-86]. However, ALD is non-compatible with an on-line coating process due to 

low deposition rates and the requirement for multiple deposition cycles. Vial manufacturing lines have high 

throughput, sometimes even in the order of a dozen vials per second. This makes high film deposition rates 

mandatory to ensure sufficient film thickness during a rapid vial-by-vial treatment. For the above reasons, 

the deposition of barrier coatings via an atmospheric pressure thermal CVD process is selected. Deposition 

rates observed by thermal CVD are more favorable in comparison to ALD. At the same time, thermal CVD 

is preferable over PECVD processes as more cost-effective and more easily implementable on a conveyor-

based production line. Thermal CVD processes offer additional advantages in regards to more conformal 

films, with low hydrogen incorporation and denser structure. 

The second constraint relates to the temperature window within which the barrier coating can be 

applied. Surface treatments need to be compatible with the operating margins of the annealing step, so as 

to avoid further accumulated stresses. More importantly though, the deposition temperature of a barrier 

coating shall not exceed the glass transition temperature, Tg, of the vial container, in order to not jeopardize 

its structural integrity. For Type I vials specifically, Tg is ca. 570°C. Addressing this second constraint, 

namely the specified temperature window, proves to be challenging. The majority of SiOxNy and SiOxCy 

films studied in the literature that fit these temperature margins are produced through plasma enhanced 

CVD (PECVD) processes under vacuum [87-89]. On the contrary, when no plasma activation is used, 

temperatures higher than 700°C, at low-to-atmospheric pressures, are reported [77, 90-92].  

The deposition of SiOxNy and SiOxCy films at temperatures below <600°C by thermal CVD is 

rarely reported in the literature. Specifically, deposition of silicon carbide (SiC), and by extension SiOxCy 

films, by thermal CVD at low or atmospheric pressures is usually carried out at temperatures between 

750°C and over 1000°C [93-95], well exceeding the upper temperature limit prescribed by the glass 

substrate and its manufacturing process. As a matter of fact, incorporation of carbon is possible at 

temperatures below 600°C, however it is mostly encountered in organic (–CH3) form, compared to the 

desired –Si–C–Si– carbidic arrangement. Incorporation of hydrocarbon terminal bonds (Si-CH3) interferes 

with the formation of dense structures such as Si-C-Si and Si-N-Si, leading to increased porosity [74]. For 

these reasons, and given that the temperatures required for SiOxCy are prohibitive, the present thesis focuses 

mainly on the production of SiO2 and SiOxNy films by thermal CVD. The lack of plasma activation leaves 

room for addressing the thermal limitation only through the reacting chemistry. In the sections that follow, 

a comprehensive literature review on the various precursors and gas mixtures utilized for the deposition of 
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SiO2 and SiOxNy will be discussed, with occasional references to carbon-containing systems (SiOxCy, SiCx, 

SiCxNy). Since the literature for their deposition at low temperatures by thermal CVD is scarce, chemistries 

used in other deposition processes are also examined. From the collected information, a strategy for the 

selection of the most suitable precursor molecules and gas chemistries is formulated. 

 

 

I.2. Gas mixtures and precursors for silica-based materials by CVD processes 
 

I.2.1. Conventional chemistries for SiOx and SiOxNy films by CVD processes 

The deposition of SiO2 and SiOxNy logically requires the involvement of reactants that provide the 

elements of interest, namely Si, O and N. Starting from SiO2 films, the conventional chemistry for its 

deposition back in the 1970s-1990s was based on gas mixtures utilizing silanes (SiH4, Si2H6) or 

chlorosilanes (SiH2Cl2, Si2Cl6) as the silicon-providing precursor [96-98]. Beyond the 1990s however, 

tetraethylorthosilicate (C8H20O4Si, TEOS) has substituted most other chemistries. The popularity of this 

precursor lies in its physico-chemical properties, ease of handling, cost-effectiveness and fewer safety 

concerns. In recent years, emergence of other precursors such as hexamethyldisiloxane (C6H18OSi2, 

HMDSo) [99], hexamethyldisilazane (C6H19NSi2, HMDSz) [100], 3-aminopropylmethyl diethoxysilane 

(C8H21NO2Si, APMDES) [13], bis(tertiary-butylamino)silane (C8H22N2Si, BTBAS) [101], and bis-

dimethylaminosilane (C4H14N2Si, BDMAS) or trisdimethylaminosilane (C6H19N3Si, TDMAS) [102] has 

been reported. Despite the vast choice, TEOS still remains a popular silicon-provider for SiO2 barrier or 

passivation films to this day [103, 104]. This preference shown for the TEOS precursor over silanes or 

methyl-containing silanes can be traced back to the presence of ethoxy ligands in the TEOS molecule, the 

oxidation of which is facile and results in films with lower hydrogen and carbon impurities. Many of the 

above listed precursors are also utilized as silicon-providers for the deposition of SiNx, SiCx SiOxNy, and 

SiCxNy films, alongside hexamethyldisilane (C6H18Si2, HMDS) [94], (dimethylamino)dimethylsilane 

(C4H13NSi, DMADMS) [105], trisilylamine (H9NSi3, TSA) [106] and various derivatives. 

Unlike the pyrolysis of such silicon precursors, executed for instance between 700 and 900°C for 

TEOS [107], the reduction in deposition temperature for thermal CVD processes and the incorporation of 

oxygen is carried out by adding an oxidant in the gas phase. The most commonly used oxidizing source 

gases are O2 [108], ozone (O3) [109], nitrous oxide (N2O) [103, 110] and CO2 [66, 96]. Among them, O3 

has been extensively used for the deposition of SiO2 films in the microelectronics field [111-113]. It enables 

deposition at temperatures as low as 30°C [114], offering a significant decrease in thermal budget, elevated 



I.2 Gas mixtures and precursors for silica-based materials by CVD processes 

25 

 

deposition rates and conformal, smooth films [115]. It should be noted however, that a strong generation of 

particles through gas-phase nucleation can take place at temperatures below 300°C, as a result of the 

formation of short-lived radical species and predominant gas phase reactions [114]. This can be detrimental 

to the morphological homogeneity and quality of the films. At higher temperatures on the other hand (above 

400°C), a strong inhibition of the deposition rate can occur, attributed to gas phase reactions between by-

products from TEOS reaction with O3 [116]. Operation with O3 as the oxidant requires thus optimization 

of the process parameters, but its ability to significantly reduce the deposition temperature remains 

attractive. Due to this, O3 was also considered as a candidate to aid in reducing the deposition temperature 

of SiOxNy and SiOxCy films below 600°C at the beginning of the ANR HEALTHYGLASS project and this 

thesis. However, by progressing in the understanding of the decomposition chemistry aspects of potential 

precursors, it became clear that O3 would not be a solution. Its use as an oxidant in SiOxNy and SiOxCy 

deposition processes risks favoring the deposition of SiO2, since Si-C and Si-N bonds are readily oxidized 

under sufficient monoatomic oxygen concentrations [113]. Monoatomic oxygen is naturally produced 

through the thermal decomposition of O3 [117], ultimately meaning that this oxidant can have a negative, 

if not prohibitive, effect on nitrogen incorporation and distribution in the films [118]. For the above reasons, 

other oxidants should be preferred when deposition of SiOxNy is desired. 

Incorporation of nitrogen and carbon is conventionally carried out by addition of ammonia (NH3), 

and methane (CH4) or ethylene (C2H4) gases, respectively [66, 119, 120]. However, the initiation of SiOxNy 

or SiOxCy deposition by thermal CVD depends strongly on the dissociation and decomposition potential of 

the silicon precursor. Therefore, the Si-providing molecule should be carefully selected if thermal 

limitations are to be respected. As a general rule, the reactivity (i.e. dissociation) of the precursor should be 

as high as possible. Based on information gathered from the literature (not limited to thermal CVD only), 

the next section will cover the strategy of selecting the appropriate precursor for SiOxNy (and potentially 

SiOxCy) deposition, able to comply with the thermal restrictions required in this thesis. 

 

I.2.2. Reactive SiOₓNᵧ chemistries 

Incorporation of N and C in silica-based films requires high energies to overcome the activation 

steps for deposition of the materials in question. Conventionally, plasma activation is used for that purpose. 

For example, Guruvenket et al. [121] performed SiCxNy deposition by atmospheric pressure PECVD (AP-

PECVD) at 25-450°C. They used hexamethyldisilazane ((CH3)3Si)2N, HMDSz) and tetramethyldisilazane 

((CH3)2SiH)2NH, TMDS) precursors as the silicon providers and N2 plasma as the nitrogen source. The 

authors reported that film formation occurred if, and only if, nitrogen plasma was present in the deposition 

zone, arguing that, at this specific thermal range, their AP-PECVD process is dependent on radical-initiated 



Chapter I. Silica-based CVD coatings for barrier applications: Motivations, processes and chemistries 

26 

 

reactions. In absence of plasma, the two precursors failed to lead to deposition, even if the temperature was 

raised to 450°C. Similarly, Aoki et al. [122] performed deposition of SiNx films from 

trisdimethylaminosilane ((Me2N)3SiH, TDMAS) using remote plasma CVD (RP-CVD) at 30-600°C. The 

authors noted that no film formation by thermal activation occurred up to 500°C. It was concluded that, for 

temperatures below 500°C, hydrogen radicals produced by H2 plasma activation were mandatory in order 

to initiate the decomposition of the monomer and lead to SiNx production. Their results further illustrate 

the requirement for radical activation if deposition is to be performed at low temperatures.  

However, for a thermal CVD process, which obviously does not deploy plasma, the activation of 

the deposition mechanism through radical reactions becomes a challenge. Dissociation and decomposition 

of the precursor in this case can be facilitated by increasing the supplied energy by increase of the 

temperature. However, the constraints of the project discourage elevated temperatures, since they will 

prohibit deposition on heat sensitive substrates. It becomes therefore mandatory to place great attention on 

the utilized Si-provider and O, N (and C) source gases. Table I.2 presents an overview of various precursors 

used for the deposition of nitrogen (and/or carbon) containing Si-based materials. The entries listed in Table 

I.2 are used as the basis for developing a checklist that will aid the above goal. It is recalled once again that 

the limited information found in the literature of thermal CVD made it mandatory to seek additional 

information on potential chemistries in literature dealing with plasma-activated processes. 

Firstly, among the thermal CVD pathways (APCVD, LPCVD) listed in Table I.2, deposition 

temperatures spanning between 500 and over 900°C are noted. This variety is affected by various factors, 

but primarily by the choice of reagents. One of the most important elements is the chemical structure of the 

precursors, also noted in Table I.2. In their study, Wrobel et al. [123] used various silane-derivative 

precursors in RP-CVD and characterized the C–H, C–C, Si–C, Si–N, C–N and N–H bonds in the starting 

molecule as non-reactive. The authors claimed that only Si–H or Si–Si bonds play a vital role in the 

reactivity of the precursor. In their particular deposition system, initiation of film growth was dependent on 

elementary reactions between atomic hydrogen and the hydrosilyl (Si–H) or disilane (Si–Si) units in the 

precursors, according to Reaction I.5 and 6 [123]:  

 
 

Reaction I.5 

 

 
 Reaction I.6 
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Table I.2. Overview of various precursors and source gases used for the deposition of nitrogen- (and/or 

carbon-) containing silica-based films from CVD processes. 

Silane precursors Film  Reagents Process 
Thermal 

range 

Application 

domain 
Ref. 

HMDS    

HMDSz  

SiCx, 

SiCxNy 
- LPCVD 

700-

1000°C 
N/Sa) [124] 

HMDSz SiOxNy NH3, O2 APCVD 760-820°C 
Photonic wave-

guide devices 
[119] 

HMDSz SiNx NH3 APCVD 775-850°C Photonics [125] 

 
BTBAS 

SiNx NH3 LPCVD 600-675 °C 
Spacer and etch 

stop applications 
[70] 

Si2H6 SiNx NH3 LPCVD 555-750°C Electronics [69] 

DMADMS 

SiCxNy H2 plasma RP-CVD 
30-400°C, 

30°C 

Coatings for 

tribological 

applications, N/S 

  

[105], 

[123] 

 

 
TSA 

SiNx H2 plasma RP-ALD 150-350°C 

Charge trap flash 

(CTF) memory 

applications 

[126] 

 
TMDSz 

SiCxNy 

H2 plasma, 

He and N2 

plasma 

RP-CVD, 

AP-PECVD 

30°C, 

25-400°C 

N/S,  

antireflective 

coatings 

 

[123],

[121] 

 
TDMAS 

SiNx, 

SiCxNy 

H2 and N2 

plasma, H2 

plasma 

RP-CVD 
25-600°C, 

30°C 
N/S 

 

[122],

[123] 

a)N/S: “Not specified” 
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The dissociation of the Si–H and Si–Si bonds towards the production of Si-centered radicals plays 

an important role in rendering the precursor molecule more reactive according to the authors. Wrobel et al. 

also noted that the reactivity of the precursor increases markedly with an increasing number of Si–H units 

in the molecule and demonstrated that SiCxNy film growth rate from 1,1,3,3-tetramethyldisilazane 

((Me2HSi)2NH, TMDSz) was double compared to films grown from (dimethylamino)dimethylsilane 

((Me2N)SiHMe2, DMADMS) due to that exact reason. Similar to the above, Guruvenket et al. [121] showed 

that deposition from TMDSz leads to higher deposition rates compared to hexamethyldisilazane (HMDSz), 

attributed to the presence of Si–H bonds in the molecular structure of the former and absence in the latter. 

This increased reactivity can be the result of dissociation of the two Si–H bonds in TDMSz, which can 

convert it into a biradical product through Reaction I.7. This biradical intermediate can readily fragment to 

1,1-dimethylsilanimine and dimethylsililene (Reaction I.8), facilitating nitride-related film formation [123]. 

  Reaction I.7 

 

 
 Reaction I.8 

 

The claim on the importance of Si–H bonds was also previously confirmed by Blaszczyk-Lezak et 

al. [105], by performing RP-CVD deposition using (dimethylamino)dimethylsilane (Me2N)SiHMe2, 

DMADMS) and (dimethylamino)trimethylsilane ((Me2N)SiMe3, DMATMS). The authors reported that 

DMATMS was unreactive and no film was formed at 30°C, in contrast to DMADMS, which features a 

hydrosilyl unit and could lead to deposition.  

In light of the above, by inspecting Table I.2 once more, it is not surprising that HMDSz, a precursor 

lacking hydrosilyl units, is shown to form nitrogen-containing films (SiNx, SiOxNy or SiCxNy) only at higher 

temperatures. In thermal CVD, the lowest temperatures reported for deposition of such films from this 

precursor have been around 750-770°C and oftentimes exceed 800°C [119, 124, 125, 127]. Compared to 

HMDSz, precursors featuring multiple Si-H units (e.g. disilane Si2H6, bis(t-butylamino)silane 

[NH(C4H9)]2SiH2, BTBAS) are reported to produce films at lower temperatures by thermal CVD processes 

[69, 70]. Interestingly, although silane (SiH4) was reported to lead to deposition of silicon-rich SiNx at 

around 570°C by thermal CVD [128], only temperatures above 700°C have been documented the literature 

for SiOxNy [129, 130]. Additionally, silane is a toxic explosive precursor and poses compatibility issues in 

regards to an implementation on the on-line vial production line. For that reason, the choice of different, 

and if possible less toxic or explosive, silicon-providing molecules is encouraged. 
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In the case of methylaminosilane precursors, other factors impacting the reactivity is the number 

of (di)methylamino substituents at the silicon atom. For instance, reactivity and growth rate is decreased 

for tris(dimethylamino)silane ((Me2N)3SiH, TDMAS) in comparison to DMADMS ((Me2N)SiHMe2). This 

has been explained as a result of the screening of the Si–H bond by the additional dimethylamino 

substituents [123]. In contrast, when the hydrosilyl unit is more easily accessible, conversion to radical 

intermediates can take place more easily, and thus precursor reactivity is increased. Regarding the size of 

alkyl substituents at the silicon atom, their increase from methyl to ethyl affects the reactivity of the 

precursors only negligibly. Preference could be given to ethyl substituents, as they have been reported to 

be more susceptible to thermal decomposition and facilitate the elimination of organic moieties from the 

films [131]. 

Another interesting aspect to consider is the presence of a second amine, either integrated in the 

molecule as an alkylamine substituent (though further away from the Si–H bond), or used in the source gas 

as an additional reactant. Multiple patents mention the use of methylamine, dimethylamine, trimethylamine, 

diethylamine and combinations thereof as a potential nitrogen sources [68, 132]. In some cases, addition of 

an amine gas was shown to promote film formation, increasing the deposition rate of SiNx by thermal CVD 

up to 10 times [68]. According to Mittov et al. [118], amines are characterized as “carrier killers”: upon 

decomposition, they recombine with organic radical species in the gas phase, thereby suppressing carbon 

contamination in the film. It is believed that their addition reduces the rate of decomposition of the source 

precursor and results in improved conformality [132]. However, the reason as to why film formation is 

promoted still remains unclear. 

 

I.2.3. Selection of appropriate chemistries for SiOxNy deposition 

I.2.3.1. Precursor selection 

So far, it has been clearly demonstrated that the presence of multiple Si–H units is favorable for 

higher precursor reactivity, facilitating the deposition of nitride materials at lower temperatures compared 

to precursors lacking Si–H units. Another important point to keep in mind regarding the selection of a 

suitable precursor for SiOxNy by thermal CVD is the presence of Si–O bonds. Such bonds can impede the 

incorporation of nitrogen, as reported by Park et al. [13] who studied the deposition of SiO2 from 3-

aminopropylmethyldiethoxysilane (CH3Si(OC2H5)2(CH2)3NH2, APMDES) at 650°C by thermal CVD. The 

authors noted that no nitrogen was detected in the films despite the high temperature, which is potentially 

attributed to the presence of Si–O bonds in the starting molecule. In the same sense, Vamvakas et al. [133] 

performed thermodynamic calculations for the thermal CVD of SiOxNy from TEOS mixtures, concluding 
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that incorporation of nitrogen is not possible at temperatures below 830°C or 930°C, in presence of NH3 or 

N2O gas, respectively, the biggest hindrance being the four oxygen atoms in the precursor molecule. It is 

therefore suggested that the inclusion of Si–O bonds should be avoided when the production of a nitrogen-

containing silica-based film is desired at moderately low temperatures. By contrast, the innate presence of 

a Si–N bond in the starting precursor could prove more favorable. 

 

I.2.3.2. Selection of reagents 

The vast majority of thermal CVD processes utilizes NH3 as the nitrogen source. Despite that, it is 

noteworthy to point out that many of the precursors used for the deposition of SiNx, SiOxNy or SiCxNy 

materials contain Si-N bonds (Table I.2). This raises a question regarding the origin of the N atom in nitride-

type films. Aoki et al. [122] performed deposition of SiNx by RP-CVD at 25-600°C. Although the utilized 

tris(dimethylamino)silane ((Me2N)3SiH), TDMAS) precursor included nitrogen atoms, the authors argued 

that N incorporation originated from the N2 plasma instead. Ray at al. [134] on the other hand noted the 

incorporation of nitrogen in SiCxNy films from pure HMDSz by microwave plasma enhanced CVD, with 

and without the use of NH3. At high enough temperatures (750-900°C), Kleps et al. [124] also reported the 

deposition of SiCxNy films by LPCVD without addition of NH3. Due to the distinct gas phase reactions 

taking place in thermal and plasma process, it is difficult to arrive at concrete conclusions. 

To elucidate the origin of the nitrogen in the films, Prybyla et al. [135] carried out isotopic labelling 

experiments. More specifically, the authors studied the deposition of titanium nitride (TiNx) from 

tetrakis(dimethylamino)titanium (Ti(NMe2)4) in a CVD system using 15NH3 and Rutherford backscattering 

spectrometry (RBS) to assay the incorporation of 14N and 15N in the produced solid film. The isotopic 

substitution experiments revealed that the nitrogen in the TiNx films originated from ammonia and not from 

the Ti(NMe2)4 precursor. The authors described a transamination reaction that takes place between the 

precursor and ammonia, which produces a Ti(NMe2)3
15NH2 intermediate and dimethylamine (NHMe2) 

(Reaction I. 9). Under high NH3 flows, multiple transamination reactions can occur, eventually cleaving all 

dimethylamino-ligands of the precursor, removing its innate nitrogen atoms and replacing them with those 

supplied by ammonia. For low ammonia flows the authors noted that 14N, i.e. nitrogen originating from the 

precursor molecule, was still detected in the film. It was however accompanied by high levels of organic 

carbon, leading the authors to conclude that any nitrogen that originates from the dimethylamino-type 

precursor carries some carbon along with it. Isotopic labelling of the hydrogen atoms (deuterated ammonia, 

ND3) on the other hand revealed that the nitrogen-bound hydrogen in the gaseous dimethylamine by-product 



I.2 Gas mixtures and precursors for silica-based materials by CVD processes 

31 

 

is derived exclusively from ammonia [136], further confirming the transamination reaction (Reaction I. 9). 

A similar reaction pathway is expected when titanium is replaced by silicon in the precursor molecule. 

 Ti(NMe2)4 + 15NH3 (or ND3)→ Ti(NMe2)15NH2 + NHMe2 (or NDMe2) Reaction I. 9 

 

Based on the above information, one can conclude that the incorporated nitrogen can originate from 

precursor and NH3 alike. Distribution across one origin over the other depends on the deposition process, 

the applied process parameters (temperature, NH3:precursor ratio), as well as the structure of the precursor 

(centered around a Si atom with –N–Si–N– sequence, or centered around a N atom with –Si–N–Si– 

sequence). All things considered, the presence of nitrogen in the starting molecule could potentially favor 

the deposition of nitrogen-rich films, however at the expense of organic carbon contamination in cases 

where the nitrogen is included as a dimethylamino substituent in the precursor molecule.  

 

I.2.3.3. Summarized strategy: checklist for selection of precursor and reacting chemistry 

In summary, the information gathered from the literature suggests consideration of the following 

points when selecting precursors and chemistries for deposition of nitrogen containing films at moderate 

temperatures by thermal CVD: 

 Presence of (ideally multiple) Si–H bonds in the precursor molecule enhances the reactivity of the 

precursor, decreasing the minimum temperature required for film formation as well as increasing 

the deposition rate; 

 Presence of Si–O bond(s) in the precursor might impede the incorporation of nitrogen into the film; 

 Presence of Si–C bond(s) should be avoided if carbon-free films are desired, since this bond is 

strong and cannot be effectively broken by hydrogen radicals. It can be however cleaved by NH3; 

 Presence of Si–N bond(s) in the precursor molecule can be favorable for nitride deposition, but 

might result in carbon contamination if organic ligands are linked to the nitrogen atom; 

 When NH3 is a co-reactant, carbon impurities can be reduced; 

 Oxidants (O3, N2O) that result in the formation of monoatomic oxygen radicals should be avoided 

as they can impede nitrogen incorporation; 

 Additional amine compounds, integrated in the precursor molecule or supplied as additional source 

gases could potentially augment nitrogen incorporation and/or deposition rate. 

 



Chapter I. Silica-based CVD coatings for barrier applications: Motivations, processes and chemistries 

32 

 

Given all that has been presented so far, deposition of SiO2 is carried out in this work based on 

TEOS-O2/O3 chemical pathways. TEOS is selected as the Si-provider based on previously listed advantages 

such as ease of handling and low concerns regarding safety. Moreover, this precursor leads to deposition 

of high-quality films and the multiple Si–O bonds in its structure are favorable for SiO2 deposition with 

low carbon impurities. The choice of an O2/O3 gas mixture as the oxidant is based on taking advantage of 

the high deposition rate and low temperatures that can be achieved thanks to the reactivity of O3. Moreover, 

its dilution in O2 could help minimize the occurrence of powdering phenomena. Experiments utilizing 

HMDSz, a precursor that contains one nitrogen atom and six Si–C bonds, is performed to investigate the 

potential for incorporation of C and/or N at moderate temperatures in presence of O3. Lastly, the production 

of SiOxNy films is undertaken based on two different molecules; tris(dimethylsilyl)amine (N(SiHMe2)3, 

TDMSA) and a trisilylamine derivative (N(SiHx)x+alkylamine, TSAR). The latter of the two is a proprietary 

molecule developed and provided by Air Liquide. Both compounds have been chosen based on the presence 

of Si–N and multiple Si–H bonds, with the aim to carry out deposition at the lowest temperatures possible. 

Ozone-free O2 gas at minimal flow rates is used as the oxidant for these experiments to facilitate 

incorporation of nitrogen. Lastly, NH3 gas is also tested in selected cases as nitrogen source. The chemical 

structures and physico-chemical properties of the utilized precursors are detailed in Chapter II. 

 

 

I.3. The CVD process: principles and simulation 
 

Multiple processes for production of barrier coatings have been mentioned so far, with chemical 

vapor deposition (CVD) being at the forefront. Given the fact that the present work deals with this exact 

deposition method, proper understanding of the principles governing the CVD process is mandatory.  

 

I.3.1. Basic principles of chemical vapor deposition 

One can summarize the process of chemical vapor deposition as the conversion of reactive gases 

into a solid layer on the surface of a heated substrate. In more detail, the substrate can be heated directly 

(cold-wall CVD) or through thermal transfer from the heated walls of the reactor (hot-wall CVD). Fig. I.9 

shows a schematic diagram illustrating the various stages and reactions taking place during CVD [137]. 

First, vapors of the precursor molecule, containing the constituent element(s) of the deposited material and 

found initially either in solid, liquid, or gaseous state, are transported in the reaction chamber by an inert 

carrier gas through convection and diffusion phenomena (1). Film formation is preceded by chemical 
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reactions that take place either via thermal activation (thermal CVD), plasma assistance (PECVD, PICVD, 

RP-CVD), radiation (Photo-CVD) or catalysts (Cat-CVD), to name a few. When being provided the 

required energy, the precursor can participate in homogeneous reactions in the gas phase towards the 

production of new species (2) or diffuse towards the surface of the substrate (3) and adsorb on available 

surface sites (4). The species produced previously in the gas phase from the precursor molecule can also 

partake in such steps. Moreover, when these species include the constituent element, they are named 

intermediate species or simply “intermediates”. After adsorption on the solid surface, precursor and 

intermediates can diffuse on the surface before reacting towards film formation (5) in so-called 

heterogeneous reactions, based on nucleation and growth phenomena. During heterogeneous reactions, the 

formed gaseous by-products desorb from the surface (6) and diffuse towards the gas phase (7) [138]. 

 

 

Fig. I.9. Schematic diagram of the various steps that can occur during a CVD process. 

 

A competition exists between the homogeneous and heterogeneous reactions. This competition 

depends on multiple factors, such as the precursor molecule, the reactants used in the inlet gas composition, 

the operating conditions, the local temperature, the particular reaction kinetics, as well as the characteristics 

(i.e. geometry) of the solid surface on which deposition is taking place and the overall design of the reaction 

chamber. Competitive phenomena can lead to the consumption of the film-forming species in reactions 

other than the surface reactions that lead to film formation, influencing therefore the rate at which the film 

is produced. In the case of O3 chemistries for the deposition of SiO2, such reactions have occasionally been 

referred to as parasitic type reactions, since they favor the production of powder particulates in the gas 

phase instead of solid SiO2 film [114, 139]. 



Chapter I. Silica-based CVD coatings for barrier applications: Motivations, processes and chemistries 

34 

 

I.3.2. The kinetic regimes 

In a CVD process, the deposition rate is generally controlled by the so-called rate-liming step, 

which can differ according to the kinetic regime, as is explained below. Fig. I.10 illustrates the logarithm 

of an arbitrary deposition rate as a function of the reciprocal of an arbitrary deposition temperature range. 

Three distinct operating regimes are identified. At low temperatures (Regime I), the rate-limiting step is 

tied to surface reactions. In this regime, noted surface-limited regime, the supply of material through 

diffusion towards the surface is greater than its consumption on the same. An increase in the local 

concentration of the film-forming species has therefore no impact on the rate of deposition of the thin film 

in this regime and the deposition rate is controlled only by the temperature of the surface. This is the only 

regime allowing uniform films over large surfaces, provided that the temperature profile remains constant. 

The overall deposition rate of the material can be expressed through an Arrhenius type formulation, i.e. the 

natural logarithm of the deposition rate as a function of the reciprocal temperature in degrees Kelvin. If 

only a singular surface reaction is taking place in the temperature range of this regime, its respective 

activation energy Ea can be calculated from the slope, equal to −𝐸𝑎/𝑅, where R is the gas constant.  

 

 

Fig. I.10. Schematic representation of the different regimes encountered in a CVD deposition process. 

 

As the temperature increases, material deposition can reach rates high enough for the consumption 

of the film-forming species to be faster than their diffusion towards the surface. In this case, the supply, i.e. 

the transport of the material by diffusion through the boundary layer, becomes the rate-limiting step 

(Regime II). For that reason, this regime is also called transport-limited regime. An increase in temperature 
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has a secondary impact on the deposition rate for this regime, mainly facilitating the diffusion of gaseous 

species towards solid surfaces. An increase in precursor concentration on the other hand has a more 

pronounced influence and can increase the deposition rate more effectively. 

At higher temperatures, a decrease in deposition rate is oftentimes observed despite the continuous 

increase in provided energy (Regime III). This behavior can originate from competitive phenomena that 

decelerate or inhibit the deposition rate, or through the depletion of a reactant that is essential for film 

formation by means of gas phase or surface reactions. Oftentimes, homogeneous reactions in the gas phase 

are the cause, consuming the precursor and leading to the production of species that do not participate in 

deposition, or that diffuse and adsorb on surface sites without reacting, occupying them and impeding the 

adsorption of film forming species. Reactions that cause the irreversible degradation of the precursor can 

also be at fault. Given the desired uniform coverage at low temperatures in the frame of this thesis, processes 

corresponding to Regime I would be ideal, as they tend to avoid side-reactions observed in the other regimes 

and additionally favor the deposition of uniform and conformal films, since they are not subject to local 

variations of gaseous reactant concentrations. 

In general, CVD processes allow for non-directional, uniform coverage and are some of the most 

suitable for coating complex-in-shape substrates. Attention must be paid however when deposition is 

carried out within a confined volume such as a vial. A bottle is namely a hollow body, for which a single 

orifice is used for the entry and exit of the reactive gases and the produced by-products. This particular gas 

flow profile can lead to recirculation problems or preference for homogeneous reactions [56]. Depending 

on their nature and the specific deposition mechanisms, accentuation of homogeneous reactions can be 

beneficial or detrimental to the film growth rate. Thus, the areas of activity of particular reactions in the gas 

phase must be controlled through modulation of the temperature, pressure, flow rates or reactor geometry, 

in order to manipulate and shift operation in regimes where these reactions are favored or avoided, 

depending on the case. For this reason, the use of simulation and computational fluid dynamics (CFD) 

calculations is a powerful tool that can provide deeper understanding of the involved dominant gaseous and 

surface mechanisms. Process simulation can aid in the investigation of such modulations, enabling the fast 

screening of multiple operating conditions, geometry configurations and thermal profile distributions 

without the need for multiple, time-consuming, trial-and-error experiments [56].  

 

I.3.3. Simulation of the CVD process 

An in-depth understanding and control of the transport and reaction phenomena is an absolute 

prerequisite for establishing optimal operating parameters, reactor configurations and designs that lead to 
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the production of films with desired properties and performance, at the lowest possible consumption of 

resources. The simulation of the deposition process can be a great consultation tool during scaling-up 

towards an industrial implementation. However, utilization of simulation tools require the knowledge of 

the chemical and kinetic model describing the deposition mechanism. Generally, different scales exist when 

reproducing the interplay of phenomena that occur in a CVD setting. They are categorized in reactor-scale 

macroscopic simulations, simulations at the micrometer or nanometer scale, and multiscale models. The 

present work is focused on the reactor-scale, aiming to reproduce the transfer phenomena that occur in the 

gas phase. For that cause, CFD models are utilized, providing mathematical solutions of the conservation 

of mass, energy and momentum equations. Through these models, the velocity profile, pressure and 

temperature distribution in the CVD reactor are calculated, alongside information on the local concentration 

profiles and predicted deposition rates on the solid surfaces of the reaction chamber [140, 141].  

To arrive at these predictions however, it is mandatory to define appropriate chemical reactions 

that lead to the formation of by-products and solid film, as well as their corresponding kinetic laws. The 

reactions and the associated kinetic constants describing the deposition mechanism can be determined by 

analyzing the chemical composition of the gas phase, either in-situ or at the reactor exhaust, and by 

measuring the local deposition and composition of the films. In reality, a CVD process involves multiple 

steps as was presented previously (diffusion, adsorption, etc.) and film formation is oftentimes carried out 

by species that have been produced through a cascade of reactions. For that reason, the consideration of an 

apparent mechanism, that is, a mechanism that “condenses” and presents a group of multiple, sometimes 

unknown, elementary reactions through a single representative fictitious reaction, is advised. The advantage 

of such a simplified approach is the relative rapidity of development, allowing for the simulation of complex 

chemical systems while still retaining a satisfactory level of accuracy regarding estimations of the film 

growth rate. The main drawback on the other hand is that the apparent mechanism is only valid for the 

operating range, in particular that of the deposition temperature, for which it has been developed. 

 

I.3.4. Characterization of the gas phase 

Multiple gas phase analysis methods have been implemented in CVD processes over the years. For 

example, in-situ UV spectroscopy or FTIR exhaust gas studies have been used to establish chemical 

reaction paths in the CVD of gallium nitride (GaN) films [142, 143]. Gas chromatography coupled with 

mass-spectrometry (GC-MS) has been by far one of the most popular methods, applied for the investigation 

of precursor decomposition and by-products generation in CVD of titanium nitride (TiN) [144] among 

many others. Regarding analogous studies involving silicon-containing precursors, the majority of the 

reported literature concerns the analysis of the gas phase in binary systems like SiC, SiO2 or Si3N4 from 
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chlorosilanes, silanes or TEOS [145]. Among them, Arno et al. [146] used online FTIR analysis, detecting 

primarily carboxylic acids and water, among other compounds, during the SiO2 deposition from TEOS and 

O3. Multiple other studies have analyzed the gas phase in chemical routes involving TEOS, the results of 

which are summarized in Table I.3. As for Si3N4 films, the gas phase characterization and deposition 

mechanisms from SiH4 and NH3 by photo-assisted CVD, or from SiH2Cl2 and NH3 by low-pressure CVD, 

have been investigated by transient mass spectroscopy [147, 148]. To the best of our knowledge, the gas 

phase characterization of a ternary SiOxNy system still remains unexplored. 

 

Table I.3. Examples of gas phase characterizations and identified species in the gas phase of TEOS and 

TEOS-O2/O3 chemical pathways by thermal CVD. 

Chemistry Method Identified species Ref. 

TEOS-O2/O3 Online FT-IR CO, CO2, H2O, HCOOH, CH3COOH, TEOS [146] 

TEOS decomposition GC-MS 
Ethylene, acetaldehyde, EtOH, TEOS, 

(EtO)3SiOCH=CH2 
[149] 

TEOS-O2/O3 In-situ FT-IR CO2, H2O, CH3CHO, HCHO [150] 

TEOS, TEOS-O2/O3 

Molecular 

beam sampling 

(MBS) 

H2, H2O, C2H5, Si(OH)3
•, 

Si(OC2H5)OH2
•, among others 

[151] 

 

Moreover, the generation of short-lived radical species and unstable intermediates is a common 

occurrence in CVD processes. Their identification is an important step towards the accurate characterization 

of the gas phase. For that reason, the combination of multiple classical physico-chemical methods is advised 

for the analysis of stable and radical species alike. In-situ FT-IR, molecular beam sampling (MBS) and 

electron spin resonance (ESR) have been utilized in the literature for the identification of radical species 

[151, 152]. In this context, combination of various analytical techniques can help identify stable by-products 

and radical intermediates and used to formulate an apparent chemical mechanism for the simulation of the 

deposition process using macroscopic CFD models. More details on how various gas phase characterization 

methods are implemented in the present work for this purpose are given in Chapter II.  

 

I.3.5. Literature models for silica deposition from TEOS-O2/O3 

The most relevant studies regarding the simulation of SiO2 deposition from TEOS-O2/O3 have been 

conducted in cold-wall, low or atmospheric pressure CVD reactors using showerhead injectors [153, 154]. 
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Such reactors, like the industrial Watkins Johnson reactor, were the main configurations of interest for the 

microelectronics industry back in the nineties. Kim and Gill [139] were among the first authors to propose 

mechanisms for the deposition of SiO2 from TEOS-O3. Working in a cold-wall reactor operating at 4-12 kPa 

and 280-405°C, the authors developed two global apparent mechanisms, in one of which TEOS decomposes 

in the gas phase in the fictitious intermediate molecule, denoted INT, and in acetaldehyde, through an 

excited O3
*-centered mechanism. This INT molecule represents the various unknown chemical species 

produced by the homogeneous decomposition of TEOS in the gas phase and is formed through the 

substitution of the ethoxy ligands in TEOS by hydroxyl groups (Si(OH)n-1(OC2H5)5-n, where n=1-4). INT 

can also encompass oligomers, such as siloxanes, formed through a condensation reaction between two 

intermediates [149]. A cascade of reactions resulting in the stepwise cleaving of the ethoxy ligands has also 

been described in the literature [155]. Once formed, the INT species can either contribute to SiO2 deposition 

or decompose into parasitic gaseous by-products. As was mentioned previously, the term “parasitic” has 

been proposed to describe any silicon-containing intermediates in the gas phase that do not contribute to 

film formation, and as a result decrease the deposition yield of the process [139].  

Dobkin et al. [156] modified this model by assuming that deposition occurs due to the presence of 

oxygen radicals and described that both TEOS and the INT species contribute to film formation. However, 

their model was proposed for small ranges of pressure and temperature (103-105 Pa, 400-425°C). Following 

their work, Zhou et al. [157] developed a new model for a Watkins Johnson reactor operating at atmospheric 

pressure and 500-550°C. The main differences from their predecessors concern the assumption that TEOS 

must react with O3 to form the INT species on one hand and the SiO2 film on the other. Nieto et al. [158] 

adapted some kinetic constants of this particular model, illustrated schematically in Fig. I.11, to their 

specific chamber configuration and operating conditions.  

 

 

Fig. I.11. Schematic simplified representation of TEOS-O2/O3 models described in the literature. 
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It is worth pointing out that none of the above studies consider a thermal activation for 

heterogeneous reactions from TEOS, while some studies fail to achieve a good agreement between 

experimental and simulated data for temperatures above 400°C at low TEOS flow rates [155]. For the 

present thesis, an effort is made to simulate the deposition process over a larger temperature range 

(150-520°C) and propose temperature-dependent kinetics for all reactions. Given that the residence times 

and reactor configuration of Watkins Johnson type reactors are different in comparison to what is used in 

the present work, already developed kinetic laws are recalibrated and new ones are added. Based on the 

above literature data, a new kinetic model for the deposition of SiO2 is developed.  

In the case of SiOxNy however, the literature is still lacking severely. No computational analysis on 

the deposition of silicon oxynitrides has been proposed to this date. Certain information can be collected 

from gas phase and modeling studies on Si3N4 deposition from SiH4 and NH3 [159, 160]. In spite of that, 

the use of precursors with higher complexity (Si–H, Si–N, Si–C bonds), in addition to the involvement of 

O2, obviously cannot conform to a model describing the binary Si3N4 system from SiH4. Since the SiOxNy 

chemistries investigated in this thesis have not been previously documented in the literature, utilization of 

gas phase characterization results are mandatory for the definition of a chemical model. Through a novel 

approach combining multiple gas phase and solid phase analyses, an apparent mechanism for the deposition 

of SiOxNy is proposed. The experimental and computational details are touched upon in Chapter II. 

 

 

I.4. Conclusions  
 

With this Chapter, the vast utility of silicon- and silica-based films has been presented, 

encompasing applications spanning from microelectronics to packaging of pharmaceuticals. As the main 

motivation for this thesis, the case of pharmaceutical glass containers (vials) is studied. When used as 

primary packaging media for drugs, glass vials can suffer from an alteration and delamination of their 

internal surface when in prolonged contact with the stored pharmaceutical solution, exposing patients to 

great sanity risks. To ensure patient safety, avoid product recalls, improve sustainability and extend product 

shelf life, the treatment of glass vials by SiO2 coatings has been explored as a means to reduce container-

to-drug interaction. Such coatings have in fact already found their way in commercial products. However, 

there is still room for improvement. This is especially evident in light of the eventual hydrolysis of the 

protective SiO2 barrier coating itself.  
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For satisfactory barrier performance, a conformal and dense network, able to withstand hydrolysis 

and reduce diffusion of the glass constituent elements, is an absolute prerequisite. Based on numerous 

studies, it has been shown that the partial substitution of O anions in the silicate network by N or C ones 

can lead to higher network densification and improved barrier properties, effectively reducing B, Na or H2O 

diffusion. However, the deposition of nitride or carbide silica-based coatings within the constraints defined 

by the glass manufacturing process (thermal deposition at atmospheric pressure and at moderate 

temperatures <600°C) is rarely reported in the literature, if not at all. Thermal atmospheric pressure 

processes for the production of SiOxNy for example require temperatures exceeding 750°C. Plasma 

activated processes on the other hand do indeed allow their deposition at acceptable temperatures, however 

they oftentimes lead to porous films with high hydrogen or carbon impurities, which can affect performance. 

In contrast, a thermal CVD process is promising in that regard, as it can enable the deposition of high quality, 

homogeneous and conformal films, while also being easily implementable in the on-line vial production. 

At the same time however, it faces a drawback – the lack of plasma activation demands activation by 

thermal means. This can create compatibility problems with heat sensitive substrates like glass. 

To overcome this challenge, solutions for the deposition of such materials are sought in reactive 

chemistries. An extensive survey of the literature provided key information on the selection of appropriate 

chemistries and precursors for the deposition of SiO2 and SiOxNy films at moderate temperatures. In that 

context, the most beneficial precursor structures are defined and novel molecules are selected. The strategy 

formulated for the selection of SiOxNy-forming precursors and chemistries can also be extended to SiOxCy 

materials. In that which follows, deposition of SiO2 from reactive O3-based chemistries is carried out, 

placing great attention on parameters that induce higher network densification. SiOxNy deposition follows 

right after, investigating the potential for further densification through insertion of nitrogen in the silica-

based films. Alongside an extensive experimental investigation, computational fluid dynamics (CFD) 

calculations are applied, offering additional study of the deposition process through simulations. The 

obtained information is used to gain in-depth understanding of the mechanisms and reactive phenomena 

that define each particular deposition process. The eventual goal for the developed SiO2 and SiOxNy models 

is to be transposed in reactor configurations treating vials or other complex 3D substrates and use 

optimization studies to identify optimal parameters for the production of homogeneous and uniform 

coatings. 
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Chapter II. Materials and Methods: Experimental setup and CFD 

calculations 

 

 

 

Chapter II presents in detail the two CVD reactors used for the processing of silica-based films on 

the surface of planar substrates, as well as on the inner surface of pharmaceutical vials. Detailed descriptions 

of the reactors are given, along with a presentation of the substrates used and their placement in the 

respective reactors. Specifications of each experimental setup are addressed and the purpose of each reactor 

is explained in the frame of the project. 

The second part of Chapter II deals with the various characterization techniques that are utilized in 

order to gain compositional, structural and functional insight on the produced materials. This information 

is used to ascertain the link between the utilized chemistries, the process conditions and the eventual 

structure-composition-performance correlation. Additionally, gas-phase characterizations that are executed 

in parallel to the deposition experiments are detailed. Their utility as key-information giving sources for the 

development of a silicon oxynitride chemical model and the subsequent CFD simulations is underlined. 

In the last part of Chapter II, the simulation of the CVD process of SiO2 and SiOxNy is addressed. 

The simulation environment is described step-by-step, starting from the creation of the reactor geometry, 

the meshing, then moving towards the implementation of a chemical model through kinetic constants and 

chemical reactions. The overall methodology, used for the development of deposition mechanisms that will 

be applied to simulate the experimental solid-phase results, is presented. 
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II.1. The CVD process 

 

II.1.1. CVD Reactors and setup 

The coatings studied in this thesis concern depositions of films with a thickness in the range of a 

few dozen to a few hundred nanometers. The present section deals with the presentation of the two reactors 

used for this purpose. The first reactor is a tubular horizontal CVD reactor designed and built at the start of 

the thesis, as a larger version of the tubular reactor used in Ponton’s work [7]. This reactor is used for the 

initial testing of the various chemistries, as well as for establishing the optimal experimental conditions that 

lead to the desired film properties in terms of composition, structure, and barrier performance. Its second 

function is the treatment of multiple samples on the row, placed deliberately in regions with distinct local 

temperatures, as a means to extract kinetic information for the eventual development of the SiO2 and SiOxNy 

deposition mechanisms.  

The second reactor is a vertical CVD reactor utilized for the treatment of pharmaceutical vials. This 

reactor has been previously used in the theses of Ponton, following that of Etchepare [55]. The deposition 

of barrier coatings on the inner surface of Type I vials is carried out in this specific set-up. For this purpose, 

only the best-performing chemistries that have been tested in the tubular CVD reactor are utilized. 

Training on the operation of both reactors was provided by Diane Samelor and Daniel Sadowski. 

 

II.1.1.1. Tubular reactor for treatment of planar substrates  

The horizontal atmospheric pressure CVD reactor used for the treatment of planar substrates, as 

well as for the investigation of potential chemistries and the development of the kinetic models, is shown 

in Fig. II.1. The reaction chamber is composed of a horizontal quartz tube with an internal and external 

diameter of 46 and 50 mm, respectively, and a length of 700 mm. It is heated by a semitransparent furnace 

(Trans Temp, Thermcraft Inc.), with two thermocouples installed on the outer walls to regulate the 

temperature. The exact evolution of temperature profile at the wall is measured manually by using an 

external type-K thermocouple. Measurements are taken every 20 mm along the tube under a N2 gas flow of 

4036 standard cubic centimeters per minute (sccm). Deposition experiments are performed at a total of 

seven different set point temperatures (SPT), namely 360, 400, 450, 500, 550, 625, and 650°C, defined as 

the temperature measured at 360 mm from the inlet. After it, i.e. moving towards the exhaust of the reactor, 

a 140 mm long isothermal region exists. 
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Fig. II.1. Schematical representation of the tubular CVD reactor used for the treatment of flat substrates. 

 

The CVD reactor inlet is connected to three gas lines, the flow of which is controlled using mass 

flow controllers (MFCs) (Brooks 5850TR). The ranges are 0-100, 0-5000 and 0-10000 sccm for the MFCs 

of the NH3 (99.999 %, Linde), O2 (99.9995 %, Messer) and N2 dilution (99.9999 %, Messer) lines, 

respectively. For the deposition of SiOxNy specifically, the O2 line is controlled by a MFC with smaller 

range (0-10 sccm). The two MFCs regulating the N2 lines passing through the bubbler systems have a range 

of 0-500 sccm. The N2 dilution line with variable flow allows fixing the total gas flow at 4036 sccm for all 

TEOS runs, at 4040.7 sccm for all HMDS and HMDS-TEOS runs, at 4030 sccm for all TMDSA runs, and 

at 4028 sccm for all TSAR runs. This N2 line is heated at approximately 100°C. Additional lines bubble N2 

gas through the bubbler systems containing the precursors tested for each chemistry. TEOS (99.999 %, 

Sigma-Aldrich) and TDMSA (95 %, abcr) are inserted in separate bubblers, each mounted on bubbler 

system #1. Similarly, HMDS (99.9 %, Sigma-Aldrich) and TSAR (proprietary, Air Liquide) are mounted 

on bubbler system #2. The N2 carrier gas lines (99.9999 %, Messer) bubble 89, 223 or 444 sccm of N2 gas 

through TEOS and 49 or 148 sccm through TDMSA in bubbler system #1. For bubbler system #2, the 

carrier gas line flows 20 sccm of N2 through it when the HMDS bubbler is mounted, and 39 sccm when the 

TSAR-containing bubbler is installed, eventually transporting the vapors of the precursors towards the 

reactor. The bubblers are heated at 65.3±0.1°C for TEOS, 50 or 62±0.1°C for HMDS, 80±0.1°C for 

TDMSA and 60±0.1°C for TSAR. The N2 carrier gas lines are always kept at approximately 15 to 20°C 

above the respective bubbler temperatures to avoid recondensation of the precursor vapors.  
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The O2 line passes 1960 sccm through an ozonizer (Lab2b Laboratory Ozone Generator, Triogen 

LTD) when deposition from the TEOS and HMDS chemistries is carried out. The ozonizer is operating at 

its maximum ozone production, providing an O3 concentration of 60 mg.l-1 at standard temperature and 

pressure, and thus supplying the reactor with an O2/O3 mixture. For the TDMSA and TSAR chemistries, 

the same line provides 0.3, 0.6, 1.2 or 2 sccm of O2, by-passing the ozonizer. The oxygen line is not heated 

in any of the experimental runs.  

For the SiOxNy experiments utilizing ammonia, the NH3 gas line introduces 20, 40 and 80 sccm of 

ammonia in the reactor, after merging it with the N2 dilution line. The ammonia line is not heated either.  

The three gas-lines, namely O2 line, N2 carrier gas line, and N2 dilution line with ammonia, are kept 

separated and their contents mix only after reaching the inlet of the reactor. For the TEOS and HMDS 

chemistries used for the deposition of SiO2, the system is always in excess of O2. The base and operating 

pressures are monitored with a Pirani (MKS MicroPirani Transducer Series 925C, 10-5-760 Torr) and a 

Baratron (MKS Baratron Type 627, 1-1000 Torr) gauge respectively, positioned downstream of the 

deposition zone, before the liquid nitrogen trap #1 and the dry pump (Edwards, soXu 20iC). The operating 

pressure is fixed at 97.3 kPa (730 Torr) for all runs. 

 

II.1.1.2. Vertical reactor for treatment of pharmaceutical vials 

The reactor used for the treatment of pharmaceutical vials, shortly referred to as vial reactor 

hereinafter, is presented in Fig. II.2. The main compartments of the vial reactor are the gas lines regulated 

by the MFCs, the bubbler systems, the reaction chamber, followed by the two pressure gauges (Baratron, 

MKS, 1 to 760 Torr; Pirani, Edwards, 5·10-3 to 1 Torr), the liquid nitrogen trap and the dry vacuum pump 

(Edwards XDS 10). In this particular reactor configuration, the reaction chamber is oriented vertically. A 

stainless steel metal piece is used as the support (i.e. substrate holder) for the pharmaceutical vial, which is 

also placed upright. The substrate holder is hollow and features a small opening in its center, in order to 

allow a K-type thermocouple to pass through. The thermocouple measures the temperature at the base of 

the vial by contact. An injection nozzle (also referred to as injector) is located at the top of the reaction 

chamber. Its tip serves as the inlet for all supplied gases and is centered on the same axis as the bottle and 

the substrate holder. The distance between nozzle tip and vial, as well as its diameter and opening, have all 

been optimized by numerical simulations executed as part of Etchepare's work [55]. The tip of the nozzle 

is hovering at a distance of 17 mm above the crown of the vial and has an opening of 1 mm in diameter. A 

cylindrical quartz tube with an internal diameter of 51 mm and a length of 335 mm separates the entire 
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reaction chamber from the environment. It is connected to the metal structure by rubber joints sealing the 

assembly. 

 

 

Fig. II.2. Schematical representation of the vertical CVD reactor used for the treatment of vials. 

 

The reaction chamber is heated using an electromagnetic induction heating system. It consists of a 

coil powered by a high-frequency (HF) generator and a coaxial stainless steel tube located between the 

quartz tube and the coil. The HF generator is cooled by a cooling-water network. The system is thermo-

regulated by a PID regulator connected to an external thermocouple in direct contact with the stainless steel 

tube. The studied deposition temperatures are 400 and 550°C for SiO2 deposition, and 650°C for SiOxNy 

deposition, defined as the SPT applied at the base of the vial. The corresponding temperature profiles are 

measured every 10 mm along the vertical axis by utilizing the thermocouple of the substrate holder and a 

vial with a drilled hole at the bottom, which allows the thermocouple to pass through it. When a SPT is 

applied  at the bottom of the vial, an approximately 50 mm long isothermal region exists above the base, 

spanning across the majority of the vial body. A working pressure of 97.3 kPa (730 Torr) is applied for all 

experiments. 
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Some modifications were made to the vial reactor compared to its previous iterations described in 

Etchepare’s and Ponton’s theses [7, 55]. First, an ozonizer connected to the O2 line was installed. Ozonizer 

type and ozone output are the same as those described in the tubular reactor configuration. Additionally, a 

second bubbler system (#2) was added, to allow deposition from dual-precursor based chemistries. Lastly, 

a set of nickel foams were installed inside the reaction chamber, located 21 mm above the tip of the nozzle. 

Their purpose is to prevent gas from flowing towards the top region of the reactor, which tends to feature 

lower temperatures. Through this, gas recirculation upon exit of the gas from the vial is minimized, reducing 

gas residence time and avoiding potential formation of particulates caused by cooling of the gas.  

The range of the two MFCs controlling the O2 line and the N2 dilution line in the vial reactor is 0-

2000 sccm. For the deposition of SiOxNy, the O2 line is regulated by a different MFC, featuring a smaller 

range (0-10 sccm). The two MFCs used to regulate the N2 carrier gas passing through the bubbler systems 

have a range of 0-500 and 0-50 sccm for bubbler system #1 and bubbler system #2, respectively. System 

#1 houses the bubbler filled with TEOS, while the bubbler with TDMSA is mounted on bubbler system #2. 

All gases and chemicals have the same purity and provider company as those listed in the previous section.  

For deposition of SiO2 coatings in vials, the O2 line transports 1079 sccm of O2 through the ozonizer. 

For SiOxNy coatings, 0.3 sccm O2 are used instead and the ozonizer is by-passed. The N2 carrier gas lines 

pass 49 and 24 sccm through TEOS (bubbler system #1) and TDMSA (bubbler system #2), respectively. 

The N2 dilution line passes 1094 or 1737 sccm N2, depending on whether deposition of SiO2 or SiOxNy is 

carried out. For SiOxNy deposition, the N2 carrier gas line passing through bubbler system #1 also serves as 

a secondary dilution line, supplying 458 sccm N2, with the by-pass valves closed. The total gas flow rate 

for all experiments is kept at ca. 2222 sccm for both SiO2 and SiOxNy deposition. The N2 lines are heated 

using heating cords, with the dilution line set at 100°C and the carrier gas lines set 15-20°C higher than the 

respective bubbler systems. The O2 line is not heated. No NH3 line is installed or used for this particular 

reactor. 

 

II.1.2.  Treated substrates 

For the initial investigation of the various chemistries, 280 μm thick monocrystalline silicon (100) 

type N-wafers (Neyco) are utilized, cut in rectangles of 32×24 mm2 with a diamond tip (Atelier 

Interuniversitaire de Micro-nano Electronique (AIME) at INSA Toulouse). The wafers are polished on both 

sides, with a surface roughness less than 1 nm. Before deposition the substrates are degreased in a 

succession of three ultrasound bath steps for 5 min each. The procedure included (1) an ultrasound bath 

using distilled water, then rinsed with acetone (>99%, VWR Chemicals), (2) an ultrasound bath using 
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acetone, then rinsed with ethanol (99.3%, VWR Chemicals), and lastly (3) an ultrasound bath using ethanol. 

The substrates are finally dried under Ar flow (99.9999%, Messer).  

The above substrates are supported vertically by homemade, tubular, stainless steel substrate 

holders, with a 7 mm deep insertion slot, positioned on the row as illustrated in Fig. II.3. The total length 

of the substrate holders is 450 mm, supporting a maximum of 18 coupons for each run, arranged parallel to 

the gas flow. The first coupon is placed at a distance of 57 mm from the reactor inlet and is given the code 

“pA”. Substrates placed after it are named according to the Roman alphabet up to the 12th sample, after 

which enumeration follows Arabic numbers. This change in naming is done to clearly distinguish between 

samples that are positioned outside (pA, pB, […], pL) and inside (p1, p2, […], p6) the isothermal region. 

 

 

Fig. II.3. Standard samples placement and enumeration within the two stainless steel holders. 

 

The aim of such a configuration is to process films deliberately in a 360 mm long non-isothermal 

zone existing before the ca. 140 mm long isothermal zone of the reactor, in order to obtain complementary 

compositional, mechanistic and kinetic information. Furthermore, the vertical configuration of the samples 

is chosen as a means to cover both sides of their surface, specifically adapted to facilitate potential leaching 

tests.  

For experiments performed in the vial reactor, deposition of SiO2 and SiOxNy coatings is carried 

out on Type I borosilicate glass vials, obtained from a European manufacturer of molded glass. One vial is 

treated per run. A photograph and a schema of the Type I vials used in the present thesis is shown in Fig. 

II.4. The structural features of the vial are the orifice at the top, also referred to as the rim or crown, followed 

by a rounded shoulder. The straight vertical part of the vial is characterized as the body, with the part 

beneath it being referred to as the base or heel region of the vial. The Type I pharmaceutical vials used as 

substrates for the present thesis have an internal and external surface of 87.05 cm2 and 94.00 cm2, 

respectively, without considering the external base surface. Its volume capacity at 100 %, i.e. to the rim, 
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measures 60 ml. Dimension-wise, the vial spans 7.3 cm in height and has an outer diameter of 4.25 cm, 

while the rim ring has an internal diameter of 1.25 cm. It must be noted however that 0.1 to 0.15 cm 

thickness variations can exist on the vials as a result of the glass molding manufacturing process. 

 

 

Fig. II.4. Two-dimensional representation (left) and photograph (right) of a Type I vial. 

 

II.1.3. Chemistries for deposition of SiO2 and SiOxNy films 

Specific chemistries were identified at the end of Chapter I after the extensive literature review on 

the deposition of silica-based materials. All of the chosen precursor molecules are found in liquid form at 

room temperature and ambient pressure and have comparable physical properties. They are presented in 

Table II.1 alongside information on their physico-chemical properties, such as their boiling point, vapor 

pressure and hazard classification as specified in their respective safety data sheets (SDS).  

All recommended health and safety instructions are carefully followed during handling of each 

precursor. For TEOS and HMDS, the bubbler-filling step is carried out under an extractor hood. For 

TDMSA and TSAR, this step is executed in a glovebox, under Ar atmosphere. The precursors are 

transferred into their respective bubblers, which are then mounted securely onto their corresponding by-

pass structures. In the case of TDMSA and TSAR, all by-pass valves are sealed before exit of the 

bubbler+by-pass system out of the inert atmosphere of the glovebox. Protective personal equipment 

(laboratory coat, gloves and goggles) are also used. 
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Table II.1. List of silicon-containing precursors studied. 

Precursor 

acronym 

Compound 

name 
Chemical formula 

CAS 

number 

Boiling 

point (°C) 

Vapor 

pressure 

(mm Hg) 

Hazard 

classification 

 

TEOS 
Tetraethyl 

orthosilicate 

 

78-10-4 169°C 

200 @ 

108°C 

(1.5 @ 

20°C) 
 

HMDS 
Hexamethyl 

disilazane  
 

999-97-3 126°C 50 @ 50˚C 
 

TDMSA 

Tris 

(dimethylsilyl) 

amine  
 

21331-86-2 153°C 
< 10 @ 

20˚C  

TSAR 
Alkylamino- 

trisilylamine  
indicative structure 

 

Proprietary 189°C - 

 

 

Through the utilization of three by-pass valves (Fig. II.1 and 2), the carrier gas flow can be diverted 

towards the bubbler. For all tested chemistries, the N2 carrier gas bubbles through the respective precursor 

liquid found in the bubbler and transports part of it in the form of vapors. The liquid phase of the precursor 

is assumed to be in thermodynamic equilibrium with its gas phase at a pressure called the saturated vapor 

pressure, Psat (in Torr). In order to calculate the highest possible transported volumetric flow rate of the 

vaporized precursor, 𝑄𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 (in sccm), at the respective conditions where thermodynamic equilibrium 

is achieved in the bubbler, the equation by Hersee and Ballingal [161] is used:  

 𝑄𝑝𝑟𝑒𝑐𝑢𝑟𝑠𝑜𝑟 =  𝑄𝑁2 𝑐𝑎𝑟𝑟𝑖𝑒𝑟  ×  
𝑃𝑠𝑎𝑡 @ 𝑇°𝐶𝑏𝑢𝑏𝑏𝑙𝑒𝑟

𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟 −  𝑃𝑠𝑎𝑡 @ 𝑇°𝐶𝑏𝑢𝑏𝑏𝑙𝑒𝑟

 Eq. (II-1) 

 

Where 𝑄𝑁2 𝑐𝑎𝑟𝑟𝑖𝑒𝑟  (in sccm) is the volumetric flow rate of the carrier gas and 𝑃𝑟𝑒𝑎𝑐𝑡𝑜𝑟  is the 

operating pressure of the reactor expressed in Torr. 

The evolution of the saturated vapor pressure 𝑃𝑠𝑎𝑡 as a function of the temperature of the heating 

system can be expressed using an Antoine’s law type equation. For the TEOS molecule, multiple such 

calculations are available in the literature [162-164]. For HMDS, data have been collected from multiple 
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safety data sheet sources (Sigma-Aldrich, ChemCon, VestaChem) and a 𝑃𝑠𝑎𝑡 = 𝑓(𝑇) function is extracted 

(Fig. II.5a). For TDMSA, a 𝑃𝑠𝑎𝑡 = 𝑓(𝑇) graph found in a patent [165] is utilized (Fig. II.5b). Lastly, for 

TSAR, the 𝑃𝑠𝑎𝑡 = 𝑓(𝑇) graph is supplied by the provider (Air Liquide, confidential). 

 

 

Fig. II.5. 𝑃𝑠𝑎𝑡 = 𝑓(𝑇) graphs for HMDS (a) and TDMSA (b) [165]. 

 

The precursor flow rate, as calculated by Eq. (II-1) has been cross-checked by measuring the weight 

of the bubbler before and after deposition, for a fixed deposition time. It is observed that the measured flow 

rate values for TEOS and HMDS are approximately 40 to 60 % lower than those calculated by Eq. (II-1). 

This discrepancy is attributed to an incomplete liquid exchange between the carrier-gas and the precursor 

liquid in the bubbler, as well as due to the conductance of the gas lines that connect the bubbler to the 

reactor volume, which cannot be considered infinite to maximize the liquid exchange. In contrast, in the 

case of TDMSA and TSAR, the measured flow rate values are 300 % higher than those calculated by Eq. 

(II-1). It is noted that both precursors are very volatile and rarely utilized in the literature. Very few sources 

exist on their vapor pressure and it is suspected that their respective 𝑃𝑠𝑎𝑡 = 𝑓(𝑇) graphs might not be 

accurate enough. Because of these differences, for the execution of the respective CFD simulations, it is 

deemed more suitable to consider the values that are deduced experimentally. 

 

 

II.2. Solid and gas phase characterization techniques 
 

A cross-linking of information from multiple characterizations is utilized in order to establish and 

understand the link between process parameters, material structure, composition and anti-corrosion 



II.2 Solid and gas phase characterization techniques 

51 

 

performance. A complete set of analyses of the gas phase composition at the exit of the tubular CVD reactor 

is also implemented in order to better understand the mechanisms involved in the deposition process. The 

extracted information is used to define deposition mechanisms and develop kinetic models, essential for 

the simulation and eventual optimization of the CVD process.  

 

II.2.1. Gas phase characterization 

A coupling of three different gas phase characterization methods has been implemented for the 

study of the stable by-products and radical species from the TDMSA chemistries. The three analyses in 

question are electron spin resonance (ESR) spectroscopy for the radical intermediates, and nuclear magnetic 

resonance (NMR) and gas chromatography coupled with mass spectrometry (GC-MS) for the stable by-

products. This methodology was developed and implemented as part of Laura Decosterd’s work, who 

worked as an engineer in the frame of the ANR HEALTHYGLASS project and was supervised by Prof. 

Marie-Joëlle Menu. To the best of our knowledge, the parallel use of all three methods is implemented for 

the first time in a CVD process. The simultaneous analysis of the stable by-products and radical gas species 

aims to elucidate the reaction mechanism with parallel consideration of the corresponding solid-phase 

results, allowing for the development of an original chemical model for the simulation of SiOxNy deposition.  

 

II.2.1.1. Electron spin resonance (ESR) 

Electron spin resonance or electron paramagnetic resonance spectroscopy is an analytical method 

that studies materials with unpaired electrons, allowing among others for the identification of radical 

intermediates. Any species with uncoupled electrons can be “trapped” by a so-called spin-trap (or spin 

label) molecule that possesses an unpaired electron, usually on a nitrogen atom. The spin-trap molecules 

can bind other molecules with unpaired electrons (such as radical species), creating an adduct that also 

features paramagnetic resonance (thus referred to as spin-adduct) and is detectable by ESR spectroscopy. 

As a result, the radical species is stabilized and its observation is possible, which enables obtaining 

information on its chemical structure.  

In the present thesis, the spin-trap molecule used is α(4-Pyridyl N-oxide)-N-tert-butylnitrone 

(POBN), shown in Fig. II.6. The trapping reaction between the POBN molecule and the radical intermediate 

species R° occurs in beta position of the nitrone function, creating the spin-adduct. It is noted that the 

decomposition temperature of POBN is 185°C. This makes it obligatory to identify a region in the reactor 

that has a local temperature lower than the POBN decomposition temperature, but which is also allowing 
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for the trapping of radical species immediately after their production. Moreover, the POBN spin-trap 

molecule is acquired in powder form (Sigma-Aldrich). Therefore, it must be introduced in a way that does 

not contaminate the reaction chamber and the samples during the vacuum and purging stages. Considering 

the above limitations, POBN is compacted with KBr (dried at 80°C for 24 h) in pellet form. More 

specifically, 50 mg of POBN and 300 mg of KBr are mixed homogeneously and crushed together to form 

a pellet with 1 cm in diameter. The pellet is then placed inside the reactor at 78 cm from the inlet, technically 

at the outlet of the reaction chamber, which features a local temperature of 170°C. Additionally, the pellet 

is positioned in a vertical configuration, to maximize the available surface area for reaction (Fig. II.1).  

 

 

Fig. II.6. POBN spin trap molecule chemical structure before and after reaction with a radical species. 

 

After each deposition experiment, the pellet is crushed into powder and transferred in two ESR 

tubes. One tube is sealed as-is and is referred to as “solid phase”. For the second tube, 0.2 ml of toluene are 

added before sealing, referring to it as “liquid phase”. The two ESR tubes are stored in a deep freezer until 

analysis. Analysis is performed at Laboratoire de Chimie de Coordination (LCC, Toulouse, France, 

operator: Lionel Rechignat) by conventional X-band ESR spectroscopy, using a Bruker Elexsys 

spectrometer equipped with a high-resolution cavity. 

 

II.2.1.2. Gas chromatography – Mass spectrometry (GC-MS) 

This analytical method was one of the two methods applied to identify stable gas phase by-products. 

It combines gas chromatography for separation and quantification of the constituents of a gas mixture, and 

mass spectrometry for their identification. The sampling of the gas mixture is done using an airtight, 1 L 

Tedlar plastic bag (Supelco), with a push-lock valve. The Tedlar bag is connected to the reactor through an 

adaptor placed at 93 cm from the inlet, located right after a valve (Fig. II.1). The sampling bags are purged 

three times with N2 before use and are stored in a shaded place with no direct exposure to sunlight. Sampling 

is executed during the deposition process, first at variable timestamps to ascertain the steady state of the 
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CVD process. After establishing the time independence, the gas mixture is sampled at the midpoint of the 

total deposition duration. 

The sampling bag is then transported to Institut de Chimie de Toulouse for GC-MS analysis (ICT, 

Toulouse, France, operator: Eric Leroy), performed using a Trace 1310 gas chromatograph coupled with a 

TSQ 900 mass spectrometer (Agilent Technologies), equipped with a TG-5SILMS separation column 

(Thermo Scientific, 30 m long, 0.25 mm id, 0.25μm film thickness). Helium is used as carrier gas. The 

carrier gas flow is programmed at 1 ml.min-1 for 12 min, then increased to 1.5-3 ml.min-1 and held for 8 

min. The column temperature is programmed to stay at 25°C for 10 min, then is increased to 140°C with a 

step of 23°C.min-1, and is lastly held at 140°C for 5 min. The molecules of the gas mixture exit the column 

at different times depending on their chemical affinity with the stationary phase of the column. Generally, 

the higher the chemical affinity, the higher the retention time. After exiting the column, the molecules are 

ionized and detected by the mass spectrometer according to the mass-to-electric charge ratio of each ion 

fragment. The mass spectrometer ion source is set to 250°C and the apparatus is used in scan mode with a 

range from 10 to 600 atomic mass units (amu). The identification of a molecule is simplified through the 

access to a database that regroups the mass spectra and suggests potential molecule structures and match 

percentage. However, the complexity of some molecules made their identification difficult. In those cases, 

matching information was collected from the literature. 

Other than the deposition experiments themselves, additional gas phase samples were taken, 

serving specific purposes, such as:  

 Creation of a calibration curve for the quantitative analysis of TDMSA, 

 Measurement of TDMSA conversion rate and temperature of decomposition, aiding in 

extracting an activation energy of the respective decomposition reaction, 

 Identification of gas phase by-products at 700°C,  

 Duplicate experiments to compare results and reduce uncertainties.  

During the above sampling procedures, “dummy” Si-coupons were inserted into the reactor in order 

to reproduce the deposition environment. The films produced from the above list of experiments were not 

characterized, since the focus was the gas phase analysis and not the solid phase results. 

 

II.2.1.3. Nuclear magnetic resonance (NMR) 

NMR is a quantitative analysis that can aid in identifying the main stable constituents of the gas 

phase and is used in the present thesis as a supplementary method to confirm the chemical structure of by-
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products identified by GC-MS. This is done by making use of the chemical shift of each peak in NMR, 

which enables the characterization of functional groups and sheds more light on the overall chemical 

structure of the detected molecules.  

In order to carry out NMR analysis, the outflow gases of the reactor are passed through a schlenk 

that is located between the outlet of the reaction chamber and the pump. The schlenk is filled with 0.8 ml 

of deuterated dimethyl sulfoxide (DMSO-d6) that serves as the solvent. The effluents bubble through 

DMSO-d6 for the whole duration of a deposition experiment, interrupted only for 40 s at the middle of the 

deposition process when GC-MS sampling is performed. The compounds transferred in the DMSO-d6 

solution after bubbling are not very stable and usually start decaying after 24 h. For that reason, 0.6 ml of 

the DMSO D6 solution are extracted from the schlenk immediately after each experiment and transferred 

into an NMR tube, then stored in a deep freezer until analysis. It was confirmed that storage time did not 

affect NMR results, as long as the content of the NMR tube remained well frozen. Analysis is performed 

on a Bruker Avance III instrument operating at 500 MHz and equipped with a Prodigy cryoprobe. The 

analysis consisted of 1H, 13C Jmod, 29Si echoing, HSQC 1H-13C, HSQC 1H-29Si, HMBC and COSY. 

 

II.2.2. Solid phase characterization 

A multitude of solid phase characterizations has been used to analyze the produced thin films. 

Analysis of the material structure by FT-IR and composition by ellipsometry for the identification of 

potential N and/or C incorporation are executed systematically after each experiment. After confirming that 

a material with desired composition has been produced, more accurate compositional data are acquired 

using Ion Beam Analyses (IBA). The environment of silicon, carbon, oxygen and nitrogen are investigated 

using XPS. Surface morphology studied by TEM and AFM. Lastly, the mechanical properties and the 

performance of the produced films is assessed through nanoindentation and resistance to aggressive, 

corrosive media. More specifically, two different wet etching solutions are utilized to screen the films, 

while the hydrolytic resistance and barrier performance is assessed in accordance to USP protocols. Unless 

otherwise precised, the majority of the characterizations are conducted on planar Si substrates. 

 

II.2.2.1. Deposition rates 

The average growth rate (kg.m-2.min-1) of SiO2 films is calculated from the deposited mass by 

measuring the weight gain of each sample before and after deposition, using a Sartorius Genius Series 

ME215P analytical balance with 0.015 mg precision. It is assumed that deposition on each substrate surface 
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is uniform. To convert the deposited mass to thickness (or deposition rate), a density of 2200 kg.m−3 [158] 

is assumed for SiO2 films. Since deposition of SiOxNy films results in minimal mass gain that is difficult to 

measure accurately by weighing, spectroscopic ellipsometry (SE) is utilized as explained below. 

Local thickness profiles and deposition rates (nm.min-1) are measured by SE using a Semilab SE-

2000 ellipsometer operating in the 250−1000 nm wavelength range. All SE measurements are carried out 

in CIRIMAT (ENSIACET, Toulouse, France). Training on the operation of the SE apparatus and SE 

simulation software was provided by Olivier Debieu. The SE data are fitted in the 250−1000 nm wavelength 

range using the Semilab SEA software, through be application of different models. The incidence angle is 

kept constant at 70°. Each sample is probed on five locations along the vertical center, each 5 mm apart, 

starting 2 mm below the top edge of each sample as illustrated in Fig. II.7. The average thickness and 

average deposition rate per sample (referred to as “deposition rate (DR)” in Chapters III to V) is calculated 

from the average of these five points.  

 

 

Fig. II.7. Spectroscopic ellipsometry (SE) instrument. Array of six samples placed on the stage for 

analysis (a). Position of locations (1) to (5) probed during SE analysis (b). 

 

II.2.2.2. Film composition  

Apart from local thickness information, SE also allows for the extraction of indirect information 

such as film density and composition, as well as optical properties of the films, for example the refractive 

index (RI) n and dielectric constant k. In order to extract such information from the raw values obtained by 

ellipsometry, the application of a model is required. This is executed by fitting the spectrum calculated by 
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a model to the measured spectrum acquired experimentally. When a good fit is achieved, the parameters 

chosen to define the model can give information on the macroscopic properties of the film. 

A variety of models has been used throughout the present thesis, each specifically adapted for the 

various deposited materials. Failure of the simulated spectra to conform to the measured ones indicates that 

the model is not representing the material correctly and either requires to be adjusted (i.e. by modification 

of the various parameters of the model), enriched (i.e. by adding new parameters), or completely substituted 

by another model. It is noted that multiple models can be used to calculate the optical properties and 

thickness of a film. The calculated results are generally deemed acceptable for a R2 goodness fit above 0.99. 

Lower goodness fits indicate a difference in material structure and/or composition and signify the 

requirement for modification or substitution of the applied model. A collection of the utilized models, as 

well as the respective chemistries they have been used in, is presented in Fig. II.8.  

 

 

Fig. II.8. The different ellipsometric models used to fit the measured spectra. Models used for SiO2 films 

from TEOS and HMDS chemistries (a), (b), and ellipsometric models used for SiOxNy films from 

TDMSA and TSAR chemistries (c), (d). 

 

Throughout the thesis, local thickness and optical properties are calculated by application of a 

Bruggeman Effective Medium Approximation (BEMA) model, with different combinations of components, 

as illustrated in Fig. II.8. For SiO2 films, the Sellmeier and Cauchy models [166] are also used to confirm 

the thicknesses calculated by the BEMA model (Fig. II.8b). Even though Sellmeier and Cauchy models are 

extensively used in the literature, they give information only on the thickness and refractive index, 

disconnected from the material composition. In contrast, the BEMA model makes use of components 

available in the SE database and assumes that the material is a globally homogeneous mixture of all the 

components used to describe it. As such, depending on the components applied and their volumetric fraction, 

additional information such as density or composition can be acquired. 
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More specifically, for analysis of SiO2 films, the applied BEMA components were SiO2 and void. 

Through this, an approximation of the film density is derived. For analysis of SiOxNy films, the applied 

BEMA components were SiO2 and Si3N4 (Fig. II.8c), with an amorphous carbon component being added 

(Fig. II.8d) for films where the respective two-component BEMA model failed to conform to the measured 

spectra due to carbon incorporation. It is noted that the SE database does not include a component for 

organic carbon moieties and that the amorphous carbon component was used instead, as it gave the closest 

fit between simulated and measured spectra. In the case of SiOxNy films, the volumetric fraction of each 

component is used to extract information regarding the film composition. For a two-component model, this 

is done using the following equation:  

  𝑓1 =
𝑣1

(𝑣1+𝑣2)
  𝑓1 =

𝑥1
𝑀𝑟1
𝜌1

(𝑥1
𝑀𝑟1
𝜌1

 + 𝑥2
𝑀𝑟2
𝜌2

 )
 Eq. (II-2) 

 

Where f1 is the volumetric fraction (vol. %) of component 1 as given by ellipsometry, v1 its volume, 

x1 its molar fraction (mol. %), Mr1 its molecular weight (g.mol-1) and ρ1 its density (g.cm-3). The same apply 

for component 2. For a three-component model (n=3), Eq. (II-2) is further elaborated into Eq. (II-3) to 

calculate the molar fraction xi of a component i (where i=1 to n) as follows:  

 𝑥𝑖 =
𝑓𝑖

𝜌𝑖
𝑀𝑟𝑖

∑  (𝑓𝑖
𝜌𝑖

𝑀𝑟𝑖
)𝑖=𝑛

𝑖=1

 Eq. (II-3) 

After using Eq. (II-3) to calculate the molar fraction of each component, the atomic percentage of 

each element is then calculated. However, in order to first arrive at the molar fractions through equation Eq. 

(II-3), the Mr and ρ of each component must be known. For SiO2 and Si3N4, the density and molecular 

weight values are set equal to 2.65 g.cm−3 and 60.08 g.mol-1, and 3.17 g.cm−3 and 140.28 g.mol-1, 

respectively. For amorphous carbon, an atomic weight of 12 g.mol-1 is assigned. However, assignment of a 

density value is difficult. For this reason, accurate composition results by Ion Beam Analyses (IBA) are 

used as a calibration method in order to define a density value of the amorphous-C component, for which 

the composition given by SE is close to that measured by IBA. This value was calculated at 0.69 g.cm−3. It 

is noted though that the composition calculated by SE is only approximate. 

A more accurate chemical composition is provided by the use of IBA techniques, performed at the 

Pelletron facility of CEMHTI in Orléans, France (operator: HEALTHYGLASS post-doctoral researcher 

Babacar Diallo). The Ion Beam Analysis methods are a group of nuclear methods that allow for the 
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quantitative analysis and depth profiling (in the order of several nanometers) of the surface layer of films 

[167]. In the scope of this work, three different IBA methods are utilized, namely Rutherford Backscattering 

Spectroscopy (RBS), Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA). 

The contents in silicon are determined by RBS, which provides good sensitivity for the quantification of 

heavy elements, down to an order of parts per million. However, it cannot provide accurate information for 

lighter elements. For this reason, oxygen, carbon and nitrogen are measured by NRA, while hydrogen is 

analyzed by ERDA. Generally, films with a thickness range of 100-200 nm are used for this family of 

techniques. An overview of the basic principle of each technique is presented in Fig. II.9. 

 

 

Fig. II.9. Visualization of the three IBA techniques. 

 

RBS and NRA are performed at a 166° detection angle with 2 MeV α particles for the former. 

Oxygen, carbon and nitrogen concentrations are measured through the 16O(d,α0)14N, 12C(d, p0)13C and 

14N(d,p5)15N nuclear reactions, respectively, using incident deuterons of 0.9 MeV. ERDA measurements 

are performed using a 2.8 MeV alpha beam. For the measurement of hydrogen, the sample is positioned at 

a 15° grazing incidence angle and the recoiled hydrogen atoms are collected at a scattering angle of 30°. 

Ten spectra of 1µC charge are successively collected to get enough repeatability and intensity, and achieve 

a satisfactory signal-to-noise ratio. Detector energy calibration is addressed through the use of a 

polycrystalline silicon wafer with a top layer of 213 nm SiO2, an a-Si(H+) hydrogen standard at 2.19·1017 

H.cm-², a carbon and a SiC polycrystalline film. The overall composition of the films is obtained by 

simulating the RBS, NRA and ERDA acquired spectra in the SIMNRA software [168]. 
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II.2.2.3. Chemical bonding state characterization 

The chemical bonding in the films is studied using Fourier transform infrared (FT-IR) spectroscopy 

in transmission mode. A Perkin Elmer Frontier FT-IR MIR/NIR spectrometer located in CIRIMAT 

(ENSIACET, Toulouse, France) is used, equipped with a custom-made substrate holder that enables the 

analysis of flat samples at different angles. Training on the operation of the FT-IR equipment was provided 

by Olivier Marsan. The spectra are taken at the center of each sample, by applying a 0° and 60° angle 

between the sample and the incident beam (Brewster angle), to clearly observe the transverse and 

longitudinal optical (TO – LO) splitting, according to the Berreman effect [169, 170]. This effect is easily 

observable in oxygen rich silica-based films and is an indicator of a predominant silica character [8]. 

For all samples, the spectral range between 400-4000 cm-1 is probed with a resolution of 4 cm-1 and 

8 cm-1 for SiO2 and SiOxNy films, respectively. Up to sixty-four spectrum accumulations are taken after 

removal of the background signal. After acquisition, the obtained spectral data are further processed by 

removing the Si substrate signature and correcting the baseline within the Perkin Elmer Spectrograph 

Quantum software. For the removal of the substrate signal, the Si-Si absorption found at around 610 cm-1 

is used as a guide and subtraction is executed until its intensity reaches zero. 

Further data processing is then executed using Origin 2019 software. In a first step, the absorbance 

values are normalized by the thickness of each film, since the intensity of the main Si–O–Si absorptions are 

affected by the film thickness in FT-IR transmission mode, as noted by the Beer-Lambert law [171]. It is 

noted that probing location (3) indicated in Fig. II.7b has been systematically used for FT-IR analysis. As 

such, the thickness measured by SE at this specific probing location is the one utilized for absorbance 

normalization. 

In a second step, spectra deconvolution is applied in certain key-areas of interest, such as large 

bands or shoulders, where multiple absorptions can overlap or even obscure each other. Deconvolution can 

help distinguish multiple overlapping peaks from each other and help ascertain their individual positions 

and intensities. The spectra are deconvoluted using the NLFit function in Origin 2019, based on Gaussian 

curves and with application of the Levenberg Marquardt iteration algorithm. It must be noted that 

Lorentzian [172] and Gaussian [110, 173] curves are both frequently applied in the literature for this 

purpose; however the authors do not specify the particular reasons for these choices. During the extent of 

this thesis, deconvolution conformed better to Gaussian curves and is thus systematically performed as such. 

A deconvolution is considered successful for a R2 goodness fit higher than 0.98. 

Another characterization technique applied for the study of chemical bonding state is X-ray 

photoelectron spectroscopy (XPS), performed in a Thermofisher K-alpha system. XPS analysis of films 
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from TDMSA was carried out in the IRPEM CNRS UMR 5254 laboratory (Université de Pau et des Pays 

de l'Adour, Pau, France, operators: Yann Tison, Hervé Martinez). Analysis of films from TSAR was 

performed at Tokyo Innovation Campus (Air Liquide, Tokyo, Japan, operator: Takashi Teramoto). XPS is 

carried out using an Al K-alpha source (1486.7 eV) with a 20 eV pass energy. Surface measurements are 

taken as is, after which a stripping step of 30 s is performed using Ar+ (1000 eV). A low-energy flood gun 

delivering electrons and Ar+ ions (<5 eV) to the sample surface is used in order to neutralize the surface 

charge during data acquisition. The environment of the elements is analyzed through deconvolution and 

curve fitting of the acquired XPS spectra using CasaXPS© (operator: Jerome Esvan). The deconvolution 

focuses primarily on the N1s, C1s and S2p spectra. Silicon carbide (SiC) and silicon nitride (Si3N4) 

references have been utilized to confirm the bond energies and valence of the Si–C and Si–N bonds. 

 

II.2.2.4. Films surface morphology and depth profiling 

The surface roughness of the films is measured using an Agilent Technologies 5500 atomic force 

microscope (AFM) housed in CIRIMAT (ENSIACET, Toulouse, France, operator: Claire Tendero). 

Analysis is executed in tapping mode. The utilized tip is an APPNANO ACT model, made of n-type silicon, 

with a <10 nm radius. A scan size of 1 µm² is used for all measurements. 

High-resolution micrographs of the films and corresponding energy dispersive spectroscopy (EDS) 

elemental information are acquired using a JEOL ARM200CF (JEOL Ltd.) transmission electron 

microscope (TEM) instrument located in CEMHTI (Orleans, France, operator: Cécile Genevois). The TEM 

is operating at 80 kV. It is equipped with double spherical aberration correctors and fitted with a JEOL 

SDD CENTURIO EDS system. A 0.13 nm probe size is used for EDS analysis. Before analysis, the cross-

section of the films is prepared by focused ion beam (FIB) technique using Ga+ ions in a FEI HELIOS 600i 

instrument, located in Centre de Microcaractérisation Raimond Castaing (Toulouse, France, operator: 

Claudie Josse). After analysis, the samples are immediately sealed and put in a vacuum chamber for at least 

24 hours. They are then packaged securely and sent out for TEM analysis. Analysis is performed as soon 

as possible after FIB preparation to minimize contamination. 

 

II.2.2.5. Mechanical properties and wettability analysis 

The hardness and elastic modulus of the films is assessed by nanoindentation tests carried out at 

CIRIMAT-UPS, Toulouse, as part of the work of Maxime Puyo, post doctoral researcher of the ANR 

project HEALTHYGLASS, who was supervised by Dr. Viviane Turq. An UltraNanoIndenter apparatus 
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from CSM Instrument (Anton Paar) equipped with a Berkovich diamond indenter is utilized for these 

measurements. The applied load is gradually increased until a maximum value of 0.5 mN is reached, at 

which point the load is maintained for 30 s. The loading and unloading rate is set to 60 mN.min-1. Each 

sample was probed at 5 different locations. Average elastic modulus and hardness values are calculated 

from the load vs. depth curves according to the method proposed by Oliver & Pharr [174]. 

The adhesion of the coatings on Si-substrates is assessed through nanoscratch tests conducted using 

a Nanoscratch Tester from CSM Instrument (Anton Paar) housed at CIRIMAT-UPS, Toulouse, as part of 

the internship of Charlotte Lebesgue, master student of the ANR project HEALTHYGLASS, supervised 

by Dr Viviane Turq. The nanoscratch apparatus is equipped with a spherical diamond indenter (2 μm radius). 

Scratches were made under a linearly increasing load from 0.3 mN to 100 mN at a loading rate of 20 

mN.min-1 and with a displacement speed of 1 mm.min-1. Three measurements were taken at different 

locations on each sample to assess repeatability. Optical microscope (Nanoscratch CSM) and SEM (Vega 

3 TESCAN) instruments were used to analyze the results and determine the critical normal loads 

corresponding to coating adhesivity failures. 

The wettability of the films is investigated by measuring pure water contact angle with a GBX 

apparatus at CEMHTI, Orleans (operator: Babacar Diallo), using Young’s equation [175], according to 

which the value of the contact angle depends only on the chemical composition of the material. Water 

droplets of 0.35±0.01 µl are placed carefully onto the sample surface at ambient. The equilibrium static 

contact angle is measured at five different locations. The water contact angle (WCA) value is then assessed 

by a CCD camera. To obtain the contact angle value affected by the surface roughness, the model described 

by Wenzel [176] is applied. 

 

II.2.2.6. Assessment of anti-corrosion and barrier properties 

The corrosion resistance of the films is evaluated with various methods. In a first step, films are 

screened by two different fluoride solutions, namely the P-etch solution test developed by Pliskin [177, 

178] and the more aggressive Buffered Oxide Etchant (BOE) test. The P-etch solution is well established 

and widely used in the field of microelectronics for assessing the etching behavior of silica-based films, 

while the BOE solution is used for the etching of SiO2, SiOxNy and Si3N4 films [179, 180]. Multiple other 

wet etching corrosion solutions can be found in the literature [181]. Such chemical abrasion solutions are 

used to indirectly assess the quality of a silica-based layer based on their etching rate, which according to 

Pliskin, is related to the density of the film. As a result, it can be said that the etching rate of a film is 
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implicitly linked to its porosity, composition and the structure of its network. A chemical abrasion test can 

thus help derive potential conclusions regarding these properties. 

The etching tests are performed by immersion of coated samples at 25°C for 15 to 60 s as illustrated 

in Fig. II.10a, under continuous stirring of the respective solutions. More specifically, the P-etch solution 

consists of 3 parts hydrofluoric acid (HF, 49 % m.), 2 parts of nitric acid (HNO3, 70 % m.) and 60 parts of 

distilled water. The BOE solution (Sigma Aldrich) consists of 6 parts NH4F (40 % m.) and 1 part of HF 

(49 % m.). The etching rate for each sample is determined by measuring the thickness of the film before 

and after immersion using SE. Ten different locations are probed (Fig. II.10b) and the average thickness 

loss for a given etching time is then expressed as the etching rate in Å.s-1. All etching tests were carried out 

in CIRIMAT INPT. Training on the handling of hydrofluoric solutions was provided by Alexandre Freulon. 

 

 

Fig. II.10. Schematic representation of wet etching corrosion test configuration (a) and locations probed 

by SE for calculation of the etching rate (b). 

 

In a second step, the best performing films from the first screening tests are identified and the 

operating conditions that produced them are transposed to the vial reactor. The hydrolytic resistance and 

barrier performance of the produced Type I vials is then assessed according to the protocol suggested in the 

USP <660> [4] chapter, as recommended by the American and European Pharmacopoeias. The exposure 

of a coated vial to such solutions leads to the extraction and diffusion of elements from the glass structure, 

as was discussed in Chapter I. Induced Plasma Optical Emission Spectrometry (ICP-OES) is used to 

measure the different extractables. The ability of the protective barrier film to prohibit the various elements 

of the glass to pass to the aqueous solution is evaluated based on comparison of the amount of extractables 
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noted between it and an uncoated vial. This difference is expressed in a percentage and is referred to as 

improvement factor. 

In more detail, the USP <660> test is carried out by first rinsing each vial 3 times using water for 

pharmaceutical use (WPU). Each vial is filled with WPU up to 90 % of its maximum volume and is then 

introduced into an autoclave. An isothermal sterilization cycle at 121°C is carried out for 60 min. During 

the test, the ions from the glass are released into the WPU, especially from regions where the surface of the 

vial is partially exposed due to non-uniform coating coverage, or if the quality of the coating is insufficient 

as barrier layer. At the end of the autoclave cycle, 2 vol.% of nitric acid (HNO3, 65 % m.) (SUPRAPUR 

Merck) is added to the WPU solution, to limit the precipitation of certain elements. After the above 

preparation, 10 ml are injected in an Optima 7300 DV ICP-OES spectrometer (Perkin Elmer) located in the 

R&D laboratory of SGD Pharma (ANR HEALTHYGLASS project partner), by coupling a high frequency 

induced Ar plasma and a spectrometer. The liquid is injected as an aerosol into the Ar plasma (7000K). 

When ionized atoms of the solution return to their ground state, they emit a photon, whose energy is 

characteristic of the corresponding element. Calibration of each extractable allows to quantitatively measure 

their respective intensities, which is directly proportional to their concentration. 

 

 

II.3. CFD calculation environment and simulations 
 

The tubular and vial CVD reactors have been replicated in a 3D simulation environment using 

Computational Fluid Dynamics (CFD) calculations that consider gas phase and solid phase chemical 

reactions to realistically represent the reactive transport phenomena taking place during the CVD process 

[182]. The numerical simulations are run using the CFD code ANSYS® FLUENT®, version 18.2, with a 

cell-centered finite volume scheme and second-order spatial accuracy. 

The first step to simulating a process is the replication of the reactor geometry and representation 

of the reaction chamber in a 3D spatial domain. After description and creation of the geometry, the spatial 

domain, namely the 3D fluid volume, is discretized in elementary cells within which the solver of the CFD 

software will execute the numerical calculations and solve the partial differential equations related to the 

mass, momentum and energy balance equations. In order to do that, the chemical model must be defined 

within the FLUENT® user interface by implementation of assumptions, reacting species, operating 

conditions and kinetic laws of the homogeneous and heterogeneous reactions that occur. 
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After calculation and convergence, post-processing actions are available, aiding the visualization 

of reaction rate profiles, thermal profiles and local distribution of species mass fractions or concentrations 

in the spatial domain. Plotting of the results can be performed on lines, surfaces or volumes specified by 

the user, with the software enabling additional calculations such as surface averages and volume integrals 

[183]. As such, the post-processing of any desired parameter defined during the implementation step, or 

after the calculations, is possible. Each of the above steps will be addressed in the following subsections. 

 

II.3.1. Representation of the reactor geometry 

In order to simulate a CVD process, the volume of the experimental setup, where the reaction 

process is taking place, must be reproduced in a 2D or 3D domain, depending on the reactor symmetry. 

This involves the reaction chamber, where the main reactions of interest, such as gas phase reactions and 

surface reactions leading to film formation, are taking place. As such, parts of the reactor upstream and 

downstream of the chamber (like supply and exhaust lines) are not simulated. Regarding the reaction 

chamber itself, all or parts of its volume can be taken into account, depending on the lack or presence of 

symmetry. In this thesis, the geometry is created using the DesignModeler module of FLUENT®. The sketch 

of the reaction chamber is created in true-to-size scale with the aid of Computer Aided Design (CAD).  

A three-dimensional geometry is considered for the tubular reactor presented in Fig. II.11. The 

substrate holder utilized in this reactor is simplified in its 3D representation in order to eliminate the sharp 

edges existing between the separate cylindrical parts composing the holder (Fig. II.11a). Additionally, the 

substrate holder is extruded until the exhaust of the reaction chamber and any flow underneath the holder 

is ignored, assuming a solid material instead. These modifications are done in order to reduce the total 

volume and computational load as much as possible and keep the complexity of the 3D geometry at a 

minimum, while still maintaining accuracy around the deposition surfaces of interest, i.e. the samples. 

Even though the tubular CVD reactor does not present an axisymmetry due to the placement of the 

sample holder and the configuration of the samples, it does in fact have a mirroring symmetry along the YZ 

plane. Because of this, only half of the reactor volume is considered for simulation. Additionally, the fluid 

domain is divided into three segments as shown in Fig. II.11b:  

 An inlet segment, starting from the inlet and reaching until 55 mm into the reactor, namely 

2 mm before the edge of the first sample, 

 An exhaust segment, starting at 58 mm from the inlet and reaching until the outlet, 

 A transitional segment connecting the two previous segments, spanning between 55 and 

58 mm. 
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The segmentation of the geometry is performed in order to give the user more control over the 

meshing parameters, as will be explained in the next subsection. 

 

 

Fig. II.11. 3D geometry of the tubular CVD reactor. Inset figure (a) shows reactor cross-section along the 

XY plane and photograph of sample placed in the substrate holder, to illustrate the adopted 

simplifications. Inset figure (b) shows a zoom of the inlet region and the three segments of the geometry. 

Only half of the reactor is considered due to mirroring symmetry along the YZ plane. 

 

In the case of the vial reactor, a two-dimensional geometry is considered, thanks to the axisymmetry 

allowing for revolution around it. As such, a 2D transverse cross-section of half of the reactor volume is 

sufficient to represent the various elements of this particular reaction chamber (quartz tube, injector nozzle, 

vial and sample holder), as shown in Fig. II.12. A simplification is applied at the region where the nickel 

foam is placed, with the volume existing above the nickel foam not being simulated. Lastly, the geometry 

of the vial reactor is segmented into two parts to separate the spatial domain within the nozzle and vial from 

the spatial domain outside the vial. Similar to the tubular CVD reactor, this segmentation is applied to allow 

better control of the meshing parameters.  
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Fig. II.12. 2D geometry of the vertical CVD vial reactor. Only half of the reactor is considered due to 

axisymmetry. 

 

II.3.2. Meshing of the geometry and volume discretization 

After recreation of the reaction chamber in a 3D geometry, the spatial fluid domain needs to be 

discretized in elementary cells. The total sum of these discretized cells constitutes the mesh. Each cell 

represents a finite volume within which the partial differential equations are solved. Since FLUENT® uses 

a cell-centered finite element method, the partial differential equations are solved at the centers of each 

elementary cell and then extrapolated on the 8 nodes (for 3D domains with hexahedral cells). These node 

values are compared to the values calculated during the previous iteration and the difference between them 

is expressed as the residual value. The residual values are used as an indication regarding the progress of 

the simulation and the degree of convergence.  
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Hexahedral and quadrilateral cells are used for the tubular CVD reactor, while the vial reactor is 

meshed using 2D quadrilateral cells only. The maximum face sizes of the cells can be defined by the user 

and, alongside other parameters, allows controlling the size of the mesh and influences the total number of 

cells. Smaller maximum face sizes increase the total number of cells of the mesh, making it finer. However, 

this comes to the detriment of the computational time: the larger the total number of cells in a mesh, the 

longer it will take to solve the partial differential equations. As a result, a compromise must be made 

between the fineness of the mesh (i.e. total number of cells) and the average computational time. Obviously, 

the density of the mesh must be high enough in order to achieve good precision and obtain realistic values 

of local concentrations, reaction rates and so on. However, an overly fine mesh provides no additional value 

to the simulations precision and merely prolongs the calculation time. As a general rule of thumb, it is 

advised to refine regions of interest, while giving a lower mesh density to areas that are not critical to the 

studied system. To execute this, the mesh is oftentimes subdivided in sections, called segments hereinafter, 

each one adapted based on the particular needs that must be addressed. Such segments can involve regions 

near the walls and solid surfaces, where the presence of strong concentration gradients requires higher mesh 

density in order to represent the transfer phenomena and subsequent surface reactions with sufficient 

precision. Other concerned regions are areas with high velocities and velocity gradients, such as injector 

nozzles, tight spaces and impacting jets, or areas where the fluid follows a complicated flow profile. 

The mesh of the tubular CVD reactor was developed in the frame of the Diploma thesis of George 

Chliavoras in LGC in 2019 [184] and is presented in Fig. II.13. Larger mesh densities are used in the 

proximity of all solid walls (quartz tube, sample holder and samples), by activating the “boundary layer 

gradient” option within the Meshing module of FLUENT®. Additionally, after the segmentation is applied 

to the geometry, the fluid domain is meshed as follows:  

 The inlet and outlet (Fig. II.13a, b) segments are meshed with a hexahedral mapped cell type; 

 The transitional segment is meshed with a tetrahedral cell type and a boundary layer gradient 

wrapped around the sample and substrate holder is applied. The boundary layer of the 

transitional segment is seamlessly continued throughout the outlet segment. 

It is noted that the transitional segment is utilized to accurately resolve the complex flow produced 

when the fluid flow coming from the inlet segment impacts on the substrate holder and the first substrate. 

Additionally, by adjusting the maximum cell size, three meshes of different refinements are created: 

 A small mesh of 241,780 cells, with a maximum cell face area of 2.25 mm2; 

 A medium mesh of 980,786 cells, with a maximum cell face area of 1.1 mm2; 

 A big, very fine mesh of 1,927,954 cells, with a maximum cell face area of 0.85 mm2. 
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Intermediate meshes are created as well. As such, meshes with different levels of fineness are 

produced and used to calculate the minimum mesh density for which simulation results become independent 

from the fineness of the mesh.  

 

 

Fig. II.13. Mesh of the tubular reactor. Inlet mesh (a) and outlet mesh (b) are shown separately. Inset 

magnification illustrates the mesh transition between the three segments. 

 

On the basis of the work of Pierre-Luc Etchepare and Simon Ponton, the discretization of the vial 

reactor fluid domain is executed as follows. First, a fine mesh is used for the volume contained within the 

nozzle. This fine discretization also is applied to the volume contained within the vial. A finer mesh is used 

along the axisymmetry, namely the main trajectory of the impinging jet. Lastly, a coarser mesh is applied 

to the regions outside the vial. This segmentation of the fluid domain allows the calculation and more 

accurate representation of the high velocity gradients created by the injector nozzle configuration, without 

creating additional computational load in regions of low interest. 
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Fig. II.14. Mesh of the vial reactor. Inset figures show magnified regions of the mesh. Injector nozzle (a), 

vial shoulder (b) and vial base (c). 

 

II.3.3. Considered assumptions 

After the creation of the discretized spatial domain (mesh) and before the implementation of a 

chemical model (i.e. definition of species and reactions), it is imperative to define the hypotheses that will 

be considered to simplify the numerical complexity. The assumptions are the following: 

 Steady state regime, 

 Laminar gas flow, verified for Reynolds number Re lower than 2100; 

 Incompressible gas flow, due to the low value of the Mach number (<0.04) in the reactive zone; 

 Neglected heat of reactions, due to high N2 dilution of the precursor; 

 Consideration of the gas mixture as an ideal gas. 

More specifically, for the tubular CVD reactor a Reynolds number in the 300-400 range is 

calculated, depending on the operating conditions. The maximum velocity is taken at 40 cm from the inlet, 
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where the flow is fully developed. The diameter of the quartz tube (4.6 cm) is used as the characteristic 

dimension. Although the gas flow is clearly laminar in the tubular reactor, the situation becomes more 

complex for the vial reactor due to the presence of the nozzle. In the latter case, the maximum velocity of 

the gas phase is calculated at the tip of the injector and the opening diameter of the nozzle (0.1 cm) is taken 

as the characteristic dimension. A Reynolds number in the 1700-1900 range is calculated for the vial reactor, 

depending on the operating conditions. 

The physico-chemical properties of the gas species, such as viscosity, specific heat and thermal 

conductivity, are calculated from the kinetic theory of gases in conjunction with the FLUENT® database. 

Through this, interactions between molecules, assumed to be of spherical shape with negligible diameter, 

are described. Intermolecular collisions, as well as molecule-solid surface collisions, are considered elastic. 

Since the kinetic theory is governed by statistical collision calculations, it involves the Lennard-Jones (L-J) 

parameter σ, which signifies the intramolecular length for which the forces of attraction and repulsion 

between two similar molecules are equal, and the energy parameter ε/k. These two L-J parameters are 

defined for each reacting species and are detailed in the respective sections of Chapters III and IV. 

 

II.3.4. Application of boundary conditions 

The final step of the pre-processing involves the definition of the boundary conditions, which are 

set as follows: 

 Inlet: Mass flow inlet boundary condition (kg.s-1); 

 Outlet: Outflow boundary condition; zero diffusion flux for all flow variables; 

 Walls (and injector in the case of the vial reactor), samples, and substrate holder: No-slip 

boundary condition for gas velocity; mass flux density of each species is equated to the 

corresponding surface reaction rates; 

 Symmetry plane: Symmetry boundary condition at the YZ symmetry plane for the tubular; 

axisymmetry for the vial reactor; zero flux across the symmetry plane, which is required by the 

definition of symmetry. 

The values of mass flow rate and mass fractions for the two utilized chemistries at the inlet are set 

in accordance with the respective experimental conditions and are detailed in the respective subsections of 

Chapters III and IV. 

The temperature of all solid surfaces is fixed according to the thermal profiles measured 

experimentally on the wall of the reaction chamber before deposition. Definition of the temperature of the 
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solid surfaces allows for the calculation of local temperatures in the gas phase through solving of the energy 

balance equation. It is noted that due to the steep decrease of the temperature at the exhaust of the reactor, 

the thermal profile imposed in FLUENT® is modified in order to avoid backflow and delays in convergence. 

More specifically, a constant temperature is applied for the last 100 mm of the reactor, i.e. between 600 and 

700 mm. This temperature is set equal to the one measured experimentally at z=600 mm. The modification 

of the temperature profile in this specific region does not affect the results, because the samples of interest 

are located only between 57 and 500 mm from the reactor inlet. Lastly, the temperature of the gas mixture 

at the inlet is set equal to the value of the thermal profile applied on the walls for z=0 mm. 

 

II.3.5. Post-processing 

After calculation, the visualization of the results is done within the FLUENT® user interface, by making 

use of the various post-processing possibilities that the software allows. As indicated in Fig. II.15, the gas 

temperature, gas flow velocity, homogeneous reactions and species concentration contours are plotted along 

the XZ plane that traverses the horizontal middle of the simulated half reactor. The heterogeneous reaction 

contours are visualized along the YZ plane, as shown in Fig. II.15.  

 

 

Fig. II.15. Plotting planes and user-defined planes for post-processing in the tubular reactor  

(not true-to-size representation). 
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Additionally, during the model development stages, local surface reaction rates and species 

concentrations are extracted from planes that have been specifically created to represent each one of the 18 

samples mounted on the substrate holder (Fig. II.15). The results are taken as area weighted averages. The 

average calculated values of the surface reaction rates are then compared to the average values measured 

experimentally by weight (for SiO2 films), or by ellipsometry (for SiOxNy films). As such, a sample-by-

sample comparison of the average deposition rates is possible. Lastly, local distributions of temperature or 

concentration profiles are also plotted along user-defined lines in various regions of interest.  

 

 

II.4. Conclusion 

Chapter II demonstrates the various experimental and theoretical tools that have been implemented 

in order to produce and characterize SiO2 and SiOxNy films on flat Si coupons, as well as assess their 

performance as barrier coatings on the internal surface of pharmaceutical Type I vials. The two CVD 

reactors that are used throughout the present work are showcased and described. The tubular reactor (in 

horizontal configuration) is used for the initial development of SiO2 and SiOxNy films and constitutes the 

main reactor with which flat samples are produced to study the properties, composition and morphology of 

the deposited materials, and for some of them, to develop apparent kinetic models. The vial reactor (in 

vertical configuration) is dedicated to the development of coatings inside pharmaceutical vials. The selected 

precursors for SiO2 and SiOxNy deposition are also presented and the operating windows of the various 

process parameters (gas flows, set point temperatures and pressure) are defined. 

The deposition process is coupled with a number of characterization techniques, implemented 

either on line with the deposition experiments, or post-deposition. These pertain to both gas-phase as well 

as solid-phase analysis methods. The simultaneous implementation of GC-MS, ESR and NMR techniques 

is explained, showcasing the means for characterization of the gaseous by-products and radical intermediate 

species that can emerge during a deposition process. To the best of our knowledge, it is the first time these 

three analytical methods are coupled with a thermal CVD process. Post-deposition, the produced SiO2 and 

SiOxNy films undergo a series of multiple solid-phase characterizations. Information on their composition, 

chemical bonding state and surface morphology is collected using SE, FT-IR, IBA and XPS, among others. 

Complementary characterizations allow for measuring the films surface wettability and mechanical 

properties. Assessment of the corrosion resistance of the films in relation to their final application as barrier 

layers is carried out through their subjection to wet etching corrosion tests involving hydrofluoric solutions. 

The barrier performance is then evaluated in accordance with the recommendations of the USP <660> 
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chapter. This extensive analysis of the deposition process and the produced films is made possible thanks 

to the involvement of all partners participating in HEALTHYGLASS project, funded by the ANR. 

Additionally, internship, engineering and post-doctoral contracts initiated in the frame of this project also 

provided indispensable results. Multiple external partners were involved as well, providing valuable 

information, alongside fruitful discussions and collaborations. 

In the final part of Chapter II, the required steps for the simulation of the deposition process are 

explained. Simulations are carried out using the ANSYS® FLUENT® version 18.2 software. Initially, the 

geometry of each reactor is replicated in a 3D spatial domain. Steps undertaken to discretize this domain in 

finite cells are presented. The imposed assumptions and boundary conditions are detailed, as required for 

the definition of the simulation environment within the CFD code. After definition of the computational 

system using the above, calculation of the gas pressure, temperature, flow velocity and mass fraction 

profiles is made possible, the simulation of which will be used in an iterative process for the development 

of kinetic models in the chapters that follow.
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Chapter III. Deposition of SiO₂ and SiOₓ barrier coatings from 

O₃ based chemistries 

 

 

The present chapter details the deposition experiments of silica films from O3-based chemistries on 

flat substrates and pharmaceutical vials, as well as the development of a kinetic model for the simulation 

of the silica deposition process. Deposition of SiO2 and SiOx from TEOS-O2/O3 and HMDS-TEOS-O2/O3 

chemical pathways is explored in a first step, serving as a basis for developing the methodology that will 

be applied throughout the present thesis as a means to establish the correlation between process, structure, 

properties and performance. Although reports on the APCVD of SiO2 from TEOS-O2/O3 exist in the 

literature, they concern in their majority cold-wall reactors, with configurations, operating conditions and 

gas residence times different from those of interest for the present study. Thus, deposition of SiO2 and SiOx 

is initially carried out on planar substrates to facilitate characterization. The link between composition, 

properties and network densification is studied as a function of the deposition temperature and annealing 

post-treatment. The corrosion and hydrolytic resistance of the produced films are assessed by subjection to 

wet etching corrosion and USP <660> tests. Performance is evaluated and correlated back to structure-

properties links. 

In the frame of a multidisciplinary approach, the deposition rates (DR) of the films are used for the 

development of an apparent kinetic model for the deposition of silica using a thermal CVD process. The 

developed model is first validated in shape using visual comparison of the predicted and as-produced 

deposition profile patterns. Secondly, it is validated in value, through comparison of the calculated thickness 

profiles to the local thickness values probed at these areas by ellipsometry. After validation, the developed 

kinetic model is then transposed in the geometry of the vial reactor, as a means to investigate its suitability 

to be used in reactors operating on one hand within the probed process window, but featuring vastly 

different geometries and residence times on the other. Potential routes for optimization of the deposition 

process are also suggested. 

All results extracted from the deposition of SiO2 and SiOx films by APCVD, carried out within the 

desired operating margins, are used as a reference point for the deposition of SiOxNy from original 

precursors. 
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III.1. Deposition of SiO₂ from TEOS-O₂/O₃ 

 

Deposition of silica films on planar substrates was performed in the tubular CVD reactor described 

in Chapter II. Four set-point temperatures (SPT) were tested for the TEOS-O2/O3 chemistry, namely 400°C, 

450°C, 500°C and 550°C, under a constant pressure of 730 Torr. Applying a SPT creates a thermal profile 

in the tubular reactor, which consists of four zones as shown in Fig. III.1. First, a small isothermal zone (A) 

is present very close to the inlet of the reaction chamber. After it, a non-isothermal region (B) is encountered, 

within which the temperature increases steeply to reach the SPT. Once the SPT is reached, a third zone, 

namely the isothermal region (C), is defined, spanning from 36 to 50 cm. After the isothermal region, a 

fourth and final region (D) is encountered at the outlet of the reaction chamber, with the thermal profile 

decreasing abruptly back to temperatures close to those of zone A. These four zones characterize the thermal 

profile regardless of the SPT applied.  

 

 

Fig. III.1. Thermal profiles for the four SPT 400, 450, 500, and 550°C. Regions (A), (B), (C) and (D) 

indicate the inlet region, the steep gradient-increase region, the isothermal region, and the outlet gradient 

region, respectively. 

 

The presence of such thermal gradients was used deliberately: it allows for the simultaneous 

deposition of films with varying combinations of local gas phase composition and local temperature, 

increasing as such the information that can be obtained with one single experiment. For example, O3-based 
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chemistries are highly active at low temperatures, thus samples located in regions A and B are essential for 

the investigation of reactions in which O3 has a direct contribution. Similarly, DRs observed in the 

isothermal region C are utilized to develop reactions that govern secondary stages of silica deposition. Such 

information facilitates the study of the potential chemical mechanisms that can take place in the reactor. 

For material characterization however, the evolution of the gas phase composition along the reactor length 

can complicate interpretation. For that reason, material characterization is carried out on samples that have 

been produced in the isothermal region C, unless stated otherwise. Additionally, in order to minimize 

locality effects, the same sample position is systematically probed across specific characterization methods.  

As a closing remark, no samples are placed in the outlet gradient region D. 

 

III.1.1. Deposition on planar Si-substrates 

III.1.1.1. Deposition rates  

The main experimental parameters for SiO2 depositions from the TEOS-O2/O3 chemistry are 

summarized in Table III.1.  

 

Table III.1. Experimental conditions of the TEOS-O2/O3 chemistry tested in the tubular CVD reactor. 

Run 
SPT 

(°C) 

N2 flow rate through TEOS 

bubbler (sccm) 

TEOS flow 

rate (sccm) 

N2 dilution flow 

rate (sccm) 

Deposition 

time 

(min) 

E1 400 444 10 1632 30 

E2 400 223 5 1853 30 

E3 400 89 2 1987 50 

E4 450 89 2 1987 90 

E5 500 89 2 1987 30 

E6 550 89 2 1987 30 

 

 

Through runs E1 to E3, the influence of the TEOS flow rate is evaluated for a SPT of 400°C. The 

total flow rate is fixed at 4036 sccm. Photographs of the sample holder loaded with five to six silicon 

samples produced under variable TEOS flow rates (runs E1 to E3) is presented in Fig. III.2. The films 

exhibit an evolving iridescence, as is expected from the interaction between the gradient thickness of the 
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films and the light. Generally, a quick alteration in iridescent colors is an indication of a non-homogeneous 

thickness that presents gradients larger than 100 nm within the observed zone [185]. As such, the “richer” 

the color palette, the higher the thickness variations.  

 

 

Fig. III.2. Photographs of samples after deposition experiments E1 to E3, using different TEOS flow rates 

(a). DR values measured through mass gain on sample p1 for runs E1 to E3 (b). 

 

Globally, deposition is observed for all three tested TEOS flow rates (Fig. III.2a). It is noted that 

for 10 sccm of TEOS, the films have a very high thickness. Visually, this is confirmed by the following 

observation: once the thickness exceeds a certain threshold, the films lose their transparency and iridescence, 

appearing as greyish/white instead. This is a result of an elevated DR, which leads to an increase in surface 

roughness that consequently scatters the light. Additionally, it reveals the appearance of powdering 

phenomena due to particle generation, which is common for the reactive O3 chemistry [114]. Measurement 

of the thickness by ellipsometry is not possible on such samples. In contrast, run E3 presents a milder 

iridescence, indicating more homogeneous deposition and lower variations in thickness, devoid of powder 

formation. The DR of sample p1 across the three experiments is presented in Fig. III.2b, indicating the 

influence of the precursor flow rate. It appears that for the tested range of flow rates, the DR of silica evolves 

almost linearly with the latter. From the results of runs E1 to E3 it was deduced that a TEOS flow rate of 2 

sccm (run E3) can lead to satisfactory DRs, while avoiding the formation of powders noted in E1. Moreover, 

film thickness appears more uniform than in E2. For these reasons, a TEOS flow rate of 2 sccm has been 

used systematically for the rest of this thesis. 
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In a next step, after fixing the TEOS flow rate at 2 sccm, the DR of silica was investigated as 

function of the SPT. Fig. III.3 presents the DR of TEOS-O2/O3 films along the length of the tubular reactor 

(i.e. distance from the reactor inlet), processed under the four different SPTs (runs E3 to E6). For a SPT of 

400°C (Fig. III.3a), the DR first increases in the inlet region A, measuring 9 nm.min-1 once the temperature 

reaches approximately 250°C. After this point, it decreases even though the thermal gradient shows an 

increase. The DR then settles down to an almost stable value within the isothermal region C.  

A qualitatively similar behavior is observed for the other SPTs. For runs performed under a SPT of 

450°C, 500°C and 550°C (Fig. III.3b-d), the DR reaches maximum values between 11 and 13 nm.min-1 at 

temperatures between 150 and 200°C. Another observation is that the maximum DR is shifting closer to 

the inlet when SPT is increased, e.g. the maximum DR is observed at 12 cm for SPT 400°C, but at 6 cm for 

SPT 550°C. Once the respective maximum DR values have been reached, the DR decreases and remains 

almost constant within the isothermal region.  

 

Fig. III.3. DR profiles (black squares) for TEOS-O2/O3 deposition at a SPT 400°C (a), 450°C (b),  

500°C (c) and 550°C (d), along with the respective thermal profiles (grey diamonds).  

Blue area signifies the isothermal region. 
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The above-described trends are explained as follows. First, the increased DRs in region A are 

attributed to the relatively high concentrations of O3, resulting in deposition even at low temperatures. The 

latter is the result of the facile generation of monoatomic oxygen radicals through O3 thermal 

decomposition [117]. In region B however, the DR decreases despite the increase of the temperature, 

reaching a constant value between 1.5 and 2 nm.min-1, depending on the SPT. This behavior is due to the 

rapid consumption of O3 in regions A and B, both due to reactions that lead to film formation and to the 

production of intermediate gas-phase by-products. As such, the quantity of O3 that is available in region B 

is constantly diminishing. For the remainder of region B and then region C, the DR remains low and almost 

constant, with film formation possibly being dictated by the involvement of silicon-containing intermediate 

species, which have been produced uphill in the reactor. These species stem from the decomposition of the 

TEOS precursor after its reaction with O3 and can lead to film formation once they overcome their 

respective activation steps. Multiple such intermediates can be produced through gas phase reactions that 

involve TEOS, O2 and O3 [151]. 

The above raises however the following question: if TEOS is transformed into a variety of silicon-

containing intermediates, why is the DR not increasing between regions B and C, given that the increase in 

temperature from one region to the other should promote film formation? It has been proposed that at higher 

temperatures (>450°C), intermediates from TEOS participate in parasitic reactions, such as gas-phase 

polymerization, which lead to the production of large siloxane-chain molecules that do not participate in 

film formation [158, 186]. As a result, silica deposition is decelerated. 

 

III.1.1.2. Network structure and evolution 

The evolution of the silica network with increasing temperature is shown in Fig. III.4a, as measured 

by FT-IR on sample p1. Various vibrational modes of the –Si–O–Si– bridge are active and can be easily 

observed in the 400-4000 cm-1 spectral range. More importantly, they are also directly linked to the structure, 

arrangement and level of densification of the silica network, as will be discussed in detail below. 

The overall FT-IR survey spectrum is divided in two main sections: the fingerprint region between 

400-1400 cm-1, containing absorptions characteristic to the silica network [187], and the 2800-3800 cm-1 

region, containing absorptions related to molecular water and Si-OH groups. The second region is referred 

to as the hydrated network band or hydrated region hereinafter. 

First, the three main vibrational modes of the –Si–O–Si– bridge are identified in the fingerprint 

region of Fig. III.4a. More specifically, the transverse optical, out-of-plane rocking (TO1) and bending 

(TO2) modes of the –Si–O–Si– bridge are found at ca. 450 cm-1 and around 800-810 cm-1, respectively 
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[187]. The strong absorption at 1074 cm-1 is attributed to the Si–O–Si transverse optical asymmetric 

stretching mode (TO3) [99, 187]. These three absorptions are characteristic of the silica network and relate 

to the displacement of atoms after a change in their dipole moment. The TO1 mode is usually minimally 

impacted by structural changes in the silica network. In contrast, the TO2 and TO3 modes are more sensitive 

to network modifications, as is discussed below. A fourth transverse optical absorption (TO4) can be 

observed at lower incidence angles (0°), appearing as a shoulder between 1100 cm−1 and 1250 cm−1, and 

has been linked to various phenomena, among which strains in the network [188] or out of phase vibrations 

of the TO3 mode [189, 190]. However, when inspecting the spectrum at a 60° angle, the interaction of the 

electromagnetic field with the film changes and the TO4 peak is obscured under the resulting separation of 

the main Si–O–Si asymmetric stretching absorption into the transverse (TO3) and longitudinal (LO3) 

optical components at approximately 1074 cm-1 and 1234 cm-1 [169]. This split is also known as the 

Berreman effect [170, 191]. The non-Gaussian shape of the LO3 peak is noted, indicating that additional 

vibrations contribute at these frequencies. Such contributions found between the TO3 and LO3 peaks have 

been speculated to originate from the presence of the TO4 mode and its LO4 pair [169]. 

 

 

Fig. III.4. FT-IR survey spectrum of a SiO2 film deposited from TEOS-O2/O3 at 400°C, analyzed for an 

incidence angle of 60° (a). Inset diagram shows the evolution of hydrogen related bonds in the 2600-3800 

cm-1 range (b). Supplementary diagrams track the change in intensity of the free silanol at ~3660 cm-1 (c), 

the water-bonded silanol (d) and free silanol at 948 cm-1 (e) as a function of the SPT. 
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As shown in Fig. III.4a, additional vibrational modes are also detected in the 400-4000 cm-1 spectral 

range. Starting from low wavenumbers, two weak absorptions are noted at 578 and 668 cm-1, relating to 

impurities [192]. Another absorption is noticeable at 948 cm-1, assigned to silanol (Si–OH) groups [188]. 

Moving towards higher wavenumbers, a weak absorption at around 1620 cm-1 is encountered, attributed to 

molecularly adsorbed water that can be removed by heating [193, 194]. Next, weak absorptions are 

observed at around 2400 cm-1, pertaining to atmospheric CO2 probed due to insufficiently removed 

background signal [195, 196]. It is worth noting that no Si–H absorption, normally appearing in the 1900-

2200 cm-1 spectral range, was observed in any of the spectra [197, 198]. Lastly, the hydrated network band 

is observed at 2800-3800 cm-1. It is known that Si–OH terminated silica films readily absorb water after 

exposure to air [156]. Thus, FT-IR absorptions at these frequencies for the produced SiO2 films are not 

surprising. The large distribution of this band is explained by the presence of hydrogen bonds across water 

molecules and/or silanol groups [199]. Two types of silanol groups are distinguished: Si–OH bonded with 

water through hydrogen bonds is probed at ca. 3400 cm-1 [186, 200, 201], while the stretching OH vibration 

of hydrogen-bond free silanol groups are probed at ~3650 cm-1 [186, 202, 203]. The silica network can thus 

be described as cross-linked tetrahedral units interrupted by the additional presence of various hydrated 

species (i.e. Si–OH and water). 

The evolution of the hydrated network band is presented in in Fig. III.4b. The broad absorption at 

around 3400 cm-1 (molecular water bonded to Si-OH) dominates the signal for low temperatures, but its 

intensity decreases markedly with increasing temperature. At the highest SPT tested (550°C), its intensity 

is significantly low, with the absorptions between 3550-3650 cm-1 becoming more apparent instead. The 

intensity of the various hydrated species is presented as a function of the SPT in Fig. III.4c-e. At higher 

temperatures, their concentrations decrease, with previous Si-OH bonds in the bulk of the film being 

transformed into new Si–O–Si bridges. Such cross-linking can be confirmed by tracking the evolution of 

the TO2, TO3 and TO4 absorptions. In order to include the TO4 mode in this particular discussion, the FT-

IR spectra of the films were analyzed at a zero incidence (0°). A zoom on a part of the fingerprint region 

focusing on the TO2, TO3 and TO4 modes is presented in Fig. III.5. 

Four different types of vibration modes are encountered in the spectral range 750-1300 cm-1 (Fig. 

III.5). The most intense absorption peak at 0° is the TO3 mode of the amorphous SiO2 network, centered at 

~1070 cm-1. The neighboring TO2 vibrational mode at 800-810 cm-1 evidences the chemical bonding 

between the SiO4 tetrahedra [204]. The intensity of this specific vibrational mode increases with the 

temperature, indicating the formation of additional SiO4 tetrahedra. Simultaneously, the evolution of the 

Si-OH groups probed at 948 cm-1 is opposite to that of the TO2 absorption and decreases with increasing 

temperature. It can be concluded that for higher temperatures, the concentration of Si–OH groups in the 
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films decreases, with parallel increase of the chemical bonding between the SiO4 tetrahedra, confirming our 

previous conclusion, which stated that the Si–OH groups are dissociated in favor of new Si–O–Si cross-

linking. Consequently, the network becomes less hydrated and denser. 

 

 

Fig. III.5. Evolution of the FT-IR spectrum of TEOS-O2/O3 films deposited at various SPTs, analyzed for 

an incidence angle of 0°. Inset diagram (a) shows the evolution of the TO3 and LO3 components, as 

observed for an incidence angle of 60°. Right hand-side inset diagrams show 0° angle evolution of the 

TO3 full width half maximum (b), the TO4 position (c), and the TO4 full width half maximum (d)  

as a function of the SPT, after deconvolution. 

 

Further confirmation for the densification of the network can be established through inspection of 

the TO3, LO3 and TO4 vibrational modes. We will start with discussing the TO4 mode, which is only 

visible at 0°, noted as a shoulder between 1100 and 1250 cm-1 [189, 190, 205]. It is suggested that the TO4 

vibration is linked to the presence of nanoporosity [189, 206-208], or to impurities found in the atomic 

environment of the Si–O–Si bonds, related to residual TEOS precursor, water or silanol [172]. Their 

presence leads the affected Si–O–Si bonds to vibrate at the TO4 frequency instead of the typical TO3 one, 
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and globally signifies the deviation from a perfectly pure, stoichiometric and dense silica. It is noted that 

multiple factors contribute to the TO4 absorption, making it difficult to link it to one single, specific origin. 

However, it can be used as a way to define the general structural disorder of the network [209]. As is 

observed in Fig. III.5, the intensity of the TO4 mode decreases with increase of the temperature, suggesting 

that the organization of the silica network improves, leading to a redistribution of the Si–O–Si bonds in 

favor of the TO3 vibration. Consequently, this redistribution affects the position and broadening of the TO3 

mode, as will be discussed below. 

The evolution of the TO3 position is illustrated in Fig. III.5a, presenting a shift towards lower 

wavenumbers for increasing temperatures. Normally this would translate to lower levels of densification of 

the silica network, explained based on the higher bond-length. However, for films processed or annealed 

below 600°C, this trend is commonly reported in the literature and has been linked to a densification of the 

network despite the above [8, 172, 177, 189, 210-212]. It is generally proposed that below 600°C, this 

unorthodox behavior of the TO3 absorption is strongly impacted by film defects (impurities, sub-

stoichiometry, etc.) and is biased by the TO4 shoulder. For temperatures above 600°C, the influence of all 

these factors is lower, to an extent that they do not interfere with the position and intensity of the TO3 peak. 

It stands to reason that an ambiguity could be argued regarding the meaning of this reverse 

evolution of the TO3 position. As such, the position of its LO3 pair is also tracked in Fig. III.5a, given the 

fact that it is less impacted by film defects and the various other factors that influence the TO3 mode [8]. 

The LO3 absorption presents a monotonous shift towards higher frequencies as the temperature increases, 

clearly indicating the densification of the network. 

As a final argumentation in favor of the proposed network densification at higher temperatures, the 

full width at half maximum (FWHM) of the TO3 and TO4 modes is also plotted in Fig. III.5b and d, 

respectively. It is revealed that a broadening of the TO3 peak is accompanied by a simultaneous shrinking 

of the TO4. The decrease in TO4 FWHM is readily associated with the further organization of the network 

[213], which is in good agreement with the results discussed so far. 

As a closing remark to the FT-IR analysis, it is underlined that vibrations linked to carbon functions 

such as –CH2 [89, 214], –CH3 [215, 216] or Si–C [206, 214] found at around 2900, 1260 and 800 cm-1 

respectively, were never identified in any of the samples produced by the TEOS-O2/O3 chemistry. 

 

III.1.1.3. Film composition 

Nuclear analyses were carried out to determine the atomic composition of the films. The evolution 

of their hydrogen content as a function of the SPT is shown in Fig. III.6, along with the respective O/Si 
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atomic ratio. The hydrogen content decreases with increasing temperature from 7.8 at.% at 400°C, to 

4.5 at.% at 550°C. The O/Si total atomic ratio remains at approximately 1.9 between 400°C and 450°C, 

above which it slightly increases to reach around 2.2 at 550°C. Values above 2 could originate from the 

presence of non-bridging oxygen or excess oxygen concentration originating from impurities vibrating at 

the TO4 frequency or surface pollution (C=O groups). The observed increase in stoichiometry can be 

explained in light of the previously discussed FT-IR spectra. First off, the incorporation of the hydrogen-

involving species Si–OH and H2O were observed to decrease with the temperature (Fig. III.4c-e). It is 

therefore logical to encounter a decreasing at.% H content in parallel to the increase in stoichiometry.  

 

 

Fig. III.6. Silica film stoichiometry and hydrogen concentration (empty squares) as a function of the SPT. 

The O/Si ratio is presented as measured (blue squares) and after correction of the O concentration by 

considering its involvement in water (red squares) or silanol groups (green squares). 

 

In a purely exploratory manner, the evolution of the O/Si atomic ratio is corrected by subtracting 

from the total oxygen content the atomic percentage of hydrogen that is found in the identified hydrogen 

involving groups. Two extreme cases are considered. In the first case, all hydrogen is assumed to be 

involved as molecular H2O, in which case an atomic concentration of ½ at.% H is subtracted from the 

concentration of oxygen to recalculate the O/Si atomic ratio (named OH2O/Si hereinafter). In the second 

extreme case, all hydrogen is considered as being found only in silanol groups, Si–OH. As such, the atomic 

concentration of H is assumed to occupy an equal atomic concentration of O. Thus, the total at.% H is 
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subtracted from the total oxygen concentration to recalculate the O/Si atomic ratio (named OSi-OH/Si 

hereinafter). 

The corrected atomic ratios of these two cases are also presented in Fig. III.6. An increasing trend 

continues to exist, however the calculated OH2O/Si and OSi-OH/Si values are lower than the original O/Si ratio, 

as expected. It is noted that for the case where all hydrogen is considered as Si–OH, the OSi-OH/Si ratio is as 

low as 1.65 at 400°C. This value increases to almost 1.80 for OH2O/Si, which seems more realistic when 

taking into consideration that the FT-IR data reveal a considerable amount of water in the films for this 

temperature (Fig. III.4b). As such, it is possible that at low temperatures, the network hydration is mostly 

due to incorporation of water, which is known to be a common by-product of SiO2 production from TEOS 

and O2 or O3 [155]. At higher temperatures, a ratio of 2.16 and 2.08 is noted for OH2O/Si and OSi-OH/Si, 

respectively. Recalling the FT-IR spectra of Fig. III.4b, we see that the water absorption decreases 

drastically with the increase of the temperature. Additionally, the Si–OH stretching vibration at 948 cm-1 

(Si–OH bonds in the bulk of the film) becomes null at 550°C, while surface free Si–OH are only weakly 

probed in the large 2800-3800 cm-1 band. Considering the above points, it is assumed that hydrogen is 

encountered mostly as surface Si–OH at higher temperatures, and as such the 2.08 value of the OSi-OH/Si is 

considered more reliable. A similar conclusion was drawn by Hirashita et al. [217], who studied the gas 

desorption during heating of silica films produced by PECVD. According to the authors, at low 

temperatures (100-300°C in their case), gas desorption was attributed to water adsorbed in the macropores 

after an exposure to air, while at higher temperatures (350-650°C), gas desorption originated mainly from 

the presence of silanol groups in macro- and micropores. 

The above assumption is also supported by the evolution of the refractive index (RI) as calculated 

by two different ellipsometry models (Cauchy and BEMA models) shown in Fig. III.7. The RI at 400°C 

measures ca. 1.453, decreasing to 1.447 at 500°C, after which it increases again to 1.450 for 550°C. This 

behavior is explained by considering the previously raised points. First, it is recalled that the produced silica 

films can present nanoporosity, as evidenced by the TO4 mode. In the literature, such nanoporosities have 

been defined to be as large as 4 to 6 Si–O–Si units [188, 189, 208]. These nanopores can be readily filled 

with water. Second, higher temperatures favor the desorption of H2O and reduce the overall Si–OH 

concentration in the films, leading to new –Si–O–Si– bridges and increasing network cross-linking, as was 

presented by FT-IR. 

Based on the above, the following explanation is suggested: As a basis, any sub-stoichiometric 

SiO2 film, meaning a film in which part of the oxygen concentration is involved in hydrated species such 

as H2O and Si–OH, has a RI below 1.458 (i.e. the RI of stoichiometric silica). Values below 1.458 are 

observed for all the produced films, which correlates well with the identification of hydrated species. The 
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decrease of the RI between 400°C and 500°C is then attributed to the desorption of water (either surface 

adsorbed or trapped in the nanoporosities) [218]. In the case of nanoporosities, such a desorption leads to 

the replacement of water by vacuum in the nanopores. Taking into account that the RI of vacuum is 1 and 

of water 1.332, desorption of water from the nanopores would result in lower RI values. Since a decreasing 

RI is indeed observed between 400 and 500°C, this hypothesis stands correct. Further confirmation is given 

by the decreasing trend of the H2O and the increasing trend of the void components applied in the BEMA 

model, which further underline a desorption of water and subsequent increase of vacuum in the pores. At 

the highest temperature, the void component decreases again with continuous parallel desorption of H2O. 

The RI on the other hand increases. This behavior can be explained by a change in the film structure induced 

through reorganization of the SiO4 tetrahedra. The simultaneous decrease of the void and H2O components 

indicate that the material becomes denser and more stoichiometric, resulting in the increase of the RI [219]. 

 

 

Fig. III.7. Refractive index of silica films as a function of the SPT, as calculated after simulations using 

the Cauchy model (black squares) and the BEMA model (red squares), along with the evolution of the 

volumetric fraction of the H2O (blue triangles) and void (grey triangles) components used in the BEMA 

model. 

 

To summarize, two regimes are observed when considering the FT-IR, IBA and ellipsometry results. 

Firstly a regime between 400 and 500°C is noted, where the desorption of water increases the O/Si ratio 

and decreases the RI, because nanopores previously filled with H2O are emptied out. A second regime is 

then observed between 500 and 550°C, in which a reorganization of the network is induced through 

decrease of the nanopores and Si–OH species concentration, and increase in cross-linking. As a result, the 

films become denser and shift towards stoichiometry. Considering all the above, it is clear that, in order to 
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arrive at a more accurate correction of the O/Si atomic ratio, more precise information on the distribution 

of hydrogen between H2O and Si–OH groups would be necessary to properly correct the oxygen 

concentration. Despite that, the current results suggest that a stoichiometric silica is produced at 500°C and 

above. 

 

III.1.1.4. Mechanical properties 

The effect of the temperature on the mechanical behavior of the films in terms of resistance to 

penetration (Hardness, H) and deformation (Elastic modulus, E) is also studied as presented in Fig. III.8. 

The hardness appears constant, with an average value of 7.4±0.3 GPa. A slight decrease is noted for H at 

450°C. A notable difference for the film produced at 450°C is its lower DR, which resulted in its thickness 

not exceeding the required 500 nm for this characterization method. Consequently, nanoindentation 

analysis for this sample possibly integrated some interference from the substrate. However, it must also be 

noted that temperatures around 450°C have been described as transitional temperatures for the deposition 

mechanism from TEOS-O2/O3. More specifically, multiple authors [115, 139, 186, 220] explain the 

participation of distinct reactive species in SiO2 deposition depending on the temperature. Mechanical 

properties of silica films have been reported to strongly depend on the starting chemistry of the precursor 

molecule. As a result, it is not surprising that a difference in the film-forming species, i.e. TEOS precursor 

versus its intermediates, can result in a silica film with different mechanical properties.  

 

 

Fig. III.8. Evolution of the elastic modulus E (diamonds), hardness H (black squares) and critical load 3 

(grey squares) of SiO2 films from TEOS-O2/O3 as a function of the SPT. 
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The above argument is strongly reflected in the nanoscratch results included in Fig. III.8. More 

specifically, a low force value of 10.8±0.1 mN is noted at 400°C for the Critical Load 3 (CL3), which 

describes the applied force after which a film undergoing the nanoscratch test starts to delaminate from the 

substrate. At 550°C, the CL3 load increases to 75.1±2.2 mN, meaning that higher force is required to peel 

off the film from the substrate surface, signifying that it presents better adhesion when produced at higher 

temperatures. Even though a general increasing trend of the CL3 is observed with the temperature, two 

distinct regions are identified; a region of low CL3 load for temperatures equal to and below 450°C, and a 

region of high CL3 load for temperatures higher than 450°C. This behavior further supports the previous 

suggestion that the mechanical properties are tightly linked to the nature of the film-forming species. 

The influence of the temperature on the elastic modulus seems non-monotonous, showing an 

average value of 64.2±1.7 GPa. The elastic modulus is an intrinsic material property that is intimately linked 

to the types of bonds existing in the material. As such, it is safe to discuss this property as a function of the 

film composition, the microstructure and the stiffness of the network [79, 81, 221]. In view of all previous 

results however, no clear connection can be made to any of them. The simultaneous contribution of all these 

factors renders it difficult to propose concrete explanations for the observed non-monotonous behavior of 

the elastic modulus. As such, we discuss only the average value. The commonly accepted value of elastic 

modulus for stoichiometric SiO2 glass in the literature is in the range of 69-73 GPa [174, 222, 223]. The 

measured average value of 64.2 GPa would in that case translate into a slightly sub-stoichiometric film, 

which is in good correlation with IBA, FT-IR and ellipsometry results. Globally, the mechanical properties 

of the SiO2 films evolve mostly independently from each other and seem depend on combinations of distinct 

factors.  

 

III.1.1.5. Surface wettability 

The water wettability of the silica films is presented in Fig. III.9, illustrating its evolution with the 

SPT. The water contact angle (WCA) measures 51.5° at 400°C, increasing up to 62.6° at 500°C, before 

decreasing to 56.8° at 550°C. The order of magnitude is coherent with water contact angles (58°) reported 

for SiO2 films synthesized from TEOS by dip coating [224]. In general, the films are hydrophilic, a character 

which decreases for higher temperatures. This decrease originates from the reduction of the hydrated 

species identified by FT-IR. According to Hair and Hertl [225], hydrogen bonded hydroxyl groups increase 

the hydrophilicity of a film, since water can readily physisorb on them, as opposed to free OH groups at the 

surface that reduce the affinity to water. This is in coherence with the high 81°±8 contact angle measured 
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for fused silica (SQ-1 SCHOTT) with high infrared absorption at ~3650 cm-1, assigned to free OH groups) 

[226, 227]. 

In light of the above, the RI results of Fig. III.7 are recalled, which hinted that a strong water 

desorption is taking place between 400 and 500°C. This is coherent with the decrease in wettability at these 

temperatures. Additionally, between 500°C and 550°C, an increase in RI was noted, indicating a higher 

level of network cross-linking, i.e. decrease of Si–OH groups. The WCA decreases between these two 

temperatures. Considering all of the above information, it is proposed that the concentration of free OH 

groups is lower at 550°C, thanks to an increase in the formation of Si–O–Si bridges. This results in a 

renewed increase of the water affinity and a lower water contact angle. 

 

 

Fig. III.9. Water contact angle values for silica films produced at different SPTs. 

  

III.1.1.6. Corrosion resistance of planar substrates: wet etching corrosion 

The P-etch rate of SiO2 films produced from the TEOS-O2/O3 chemistry are shown in Fig. III.10a. 

A photograph of a sample right after immersion in the P-etch solution for 30 s is also included (Fig. III.10b). 

The change in iridescence is noted, indicating the change in thickness between the etched and non-etched 

regions. The results reveal a moderate corrosion resistance of 19 Å.s−1 for films deposited at 400°C, a value 

close to that of SiO2 films produced by PECVD [228-230], but also similar to the etching rates observed 

from TEOS-O2 produced at the same temperature in Ponton’s thesis [7]. Such films are prone to contain 

nanoporosities and potential impurities, while also being sub-stoichiometric. These factors render them less 
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resistant to a corrosive attack. Their corrosion resistance is strongly improved with increasing temperature, 

reaching 9 Å.s−1 for films deposited at 550°C, a value that is within the range reported for SiO2 films 

produced by thermal CVD [109, 231, 232]. The lower P-etch rate at higher temperatures supports the 

previous results well, underlining how an increase in SPT leads to a densification of the silica network. For 

reference, a P-etch rate equal to 2 Å.s-1 has been reported for stoichiometric silica produced by pyrolysis of 

TEOS at temperatures around 1000°C, with very low porosity (ρ=2.3 g.cm-3, RI=1.453) [177]. Even though 

the measured etching rate values of the SiO2 films produced in this thesis do not reach the “record” of 2 

Å.s−1, their decrease from 19 to 9 Å.s−1 still indicates that the SiO2 films have become more stoichiometric 

and compact, with improved corrosion resistance. 

 

 

Fig. III.10. P-etch rate of silica films as a function of the SPT, before (black diamonds) and after 

annealing at 550°C (red squares) (a). Photograph of a sample after etching, showing the area of the 

sample (etched region) that was immersed in the P-etch solution (b). 

 

Additionally, it is of interest to assess the films after taking into consideration the specific details 

of the acidic attack. More specifically, the P-etch test involves the interaction between the silica network 

and the polymeric HF aqueous species HnFn+1, which originate from the solvation of F- from molecular HF 

in the aqueous solution [233]. Moreover, the dissolution of silica requires, in a first step, the breaking of all 

four siloxane bonds of each SiO4 tetrahedral unit in order to release the silicon atom from the network, and, 

in a second step, the creation of a Si-F bond. The rate of this substitution reaction is pH dependent. 

Additionally, the literature indicates that the etching rate of SiO2 is not dependent only on the HF 

concentration (noted aHF) [181, 234-236], but may also depend on the adsorption mechanism of HF and/or 
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HF2- on surface silanol groups and silicon atoms, with a catalytic effect by the H2O or H+ concentrations 

(noted aH+) [237, 238]. Mitra and Rimstidt [233] proposed an empirical dissolution rate law equation for 

amorphous silica (Eq. (III-1)) deduced from a compilation of literature data. They concluded that the rate-

limiting step for silica dissolution in fluoride solutions involves a coordinated attack of a Lewis acid on the 

bridging O atom, and a Lewis base on the Si atom, potentially H+ and HF2-, with the main step for the 

breaking of the Si–O bonds being the adsorption of the reacting species onto the silica surface. 

 

 𝑟(𝑚𝑜𝑙 𝑚2⁄ 𝑠) = 100.48𝑒
−34243

𝑅𝑇 𝑎𝐻𝐹
1.50𝑎𝐻+

−0.46 Eq. (III-1) 

where 10-2.37 < aHF < 101.61, -0.32 < pH < 4.76 and 23°C < T < 70°C. 

 

As such, according to Eq. (III-1), the expected etching rate corresponding to our etching conditions 

is calculated to be around 4 Å.s-1, instead of the 2 Å.s-1 reported previously. As is observed in Fig. III.10, 

all measured P-etch rates are higher than the calculated value of 4 Å.s-1, something that, as discussed 

previously, is attributed to the sub-stoichiometry of the films, as a result of hydrated species, nanoporosity 

and impurities. Higher values than the calculated one are therefore expected, and in that regard, the value 

of 9 Å.s-1 measured for 550°C is rather consistent. 

Interestingly though, when subjecting the films to an ex-situ annealing post-treatment performed at 

550°C under N2 flow for 2 h, the etching rate decreases further. More specifically, two films that were 

produced at different SPTs, namely 400°C and 550°C, and then annealed in the above conditions, had their 

P-etch value decrease to 4.2 and 4.0 Å.s-1, respectively. Unanimously in the literature it is observed that a 

post-processing annealing treatment promotes the formation of films with high corrosion resistance and a 

low P-etch rate, translating into a denser silica material. These results reveal that, for the adopted P-etch 

conditions (pH, HF concentration and etching test temperature), the calculated value of 4.0 Å.s-1 should be 

considered as the reference point. Combining these two points, it can be derived that the annealing post-

treatment successfully led to denser films and achieved the lowest limit of projected corrosion resistance. 

In conclusion, the resistance of the films to chemical etching is directly related to their network 

structure, namely the nanoporosity, composition and stoichiometry, with film densification being playing 

a major role. It is recalled that the barrier films, envisioned for application as barrier coatings in the 

pharmaceutics industry, must present dense enough networks to withstand hydrolysis. Given that the results 

so far on the deposition of SiO2 from TEOS-O2/O3 are slightly improved in relation to those obtained from 
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Ponton’s work (~10 Å.s-1 at 550°C) [7], deposition experiments were carried out in Type I vials to test their 

hydrolytic resistance according to the standard USP <660> test. 

 

III.1.2. Deposition in Type I vials 

III.1.2.1. Deposition rates  

The main experimental parameters for the deposition of SiO2 barrier coatings in Type I vials have 

been previously detailed in section II.1.1.2 of Chapter II. To recall them, the total flow rate is fixed at 2222 

sccm, with O2, N2-dilution and N2-bubbler supplies being 1079, 1094 and 49 sccm, respectively. Deposition at 

two SPTs is carried out, namely 400°C and 550°C. A third run at SPT 550°C is performed, after which an 

in-situ annealing step of 2 h at 550°C is executed under N2 atmosphere. The transparency of the vials is 

retained after 30 min of deposition and no macroscopic powder formation is observed. An average DR of 

4.4 and 5.9 nm.min-1 is measured for SPT 400°C and 550°C, respectively. 

 

III.1.2.2. Barrier properties and hydrolytic resistance in vials: USP <660> test 

After deposition of SiO2 barrier coatings on the inner surface of Type I vials, their hydrolytic 

resistance against an aqueous medium is studied according to the USP <660> protocol [4]. The 

concentration of all the elements released from the glass into the aqueous solution are probed by ICP-OES 

analysis. For each experimental condition, a set of three vials is subjected to the USP <660> test in an 

attempt to reduce the experimental error. Additionally, a set of three uncoated vials underwent the same 

test to compare the concentration of constituent element diffusion between coated and uncoated vials. 

Up to 11 different elements are probed in the aqueous solution after subjection to the USP <660> 

test. The total concentration of extractables is thus the sum of the individual concentrations of all elements 

probed (Si, Na, K, Ca, Mg, etc.). For uncoated vials, the extracted elements with the highest concentrations 

are Si and Na. Slightly lower, although still significant, concentrations of B and K are also noted. Probing 

of these elements in the extraction solution are expected for borosilicate glasses like the Type I vials used 

in the present thesis. Ideally, such elements should not diffuse in the solution, for reasons addressed in 

Chapter I. Application of barrier coatings is expected to reduce diffusion of these elements; this reduction 

in total extractables is expressed as the improvement factor hereinafter, which is used as the main indicator 

of the efficiency of the barrier coating. 

Fig. III.11a presents the total improvement factor after coating of the internal surface of Type I 

vials at various SPTs and an annealing post-treatment. It is observed that the global improvement factor 
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measures up to 92 % (Fig. III.11a), meaning that the applied SiO2 coatings demonstrate an excellent barrier 

property and manage to effectively reduce the presence of extractable elements in the aqueous solution. 

When deposited at 400°C, the presence of the SiO2 barrier coating leads to a reduction of the total 

extractables by 89 %. Increase of the deposition temperature to 550°C gives similar results. A slight 

improvement is noticed for SiO2 coatings deposited at 550°C with an annealing post-treatment step. It must 

be noted however that all values are within the error bars, making it difficult to comment on clear trends. 

Regardless, the SiO2 films deposited from TEOS-O2/O3 performed better than those produced from TEOS-

O2 in Ponton’s thesis [7]. The corresponding improvement factors when SiO2 barrier coatings were 

deposited using the TEOS-O2 chemistry were approximately 22 % at 400°C and increased to 72 % at 550°C. 

The better performance of coatings from the TEOS-O2/O3 chemistry studied in the present thesis is 

attributed their lower network hydration and improved cross-linking, as is revealed by comparative FT-IR 

analysis of SiO2 films from the two chemistries (Appendix 1).  

 

 

Fig. III.11. Total improvement factor for extractables measured for coated vials after application of a SiO2 

barrier coating at various conditions (a). Analysis of the individual improvement factors for Si, Na, K, and 

Ca extractables (b). 
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Fig. III.11b examines the individual improvement factors for specific extractable elements. As 

previously mentioned, up to 11 elements are probed in the solutions from uncoated vials after subjection to 

USP <660>. When a SiO2 barrier coating is applied on the internal surface of the vial however, only four 

elements are probed, namely Si, Na, K and Ca. Their concentrations are drastically decreased in comparison 

to uncoated vials. More specifically, measured concentrations of Na are decreased by 97 up to 100 %. The 

concentrations of K and Ca also benefited from great reduction after application of the barrier coating, with 

92 % and 78 % less K and Ca extractables being probed at 400°C, respectively. Reduction in their 

concentration reaches 100 % for SiO2 coatings deposited at 550°C. When an additional annealing step is 

applied, barrier efficiency for K remains at 100 %, but drops slightly to 98 % and 91 % for Na and Ca, 

respectively, although both values remain within the error bars. Globally, the above results indicate that the 

SiO2 barrier coatings are successful in retaining and obstructing the diffusion of the constituent elements of 

the glass. 

On the other hand, Si is also probed in the solution. In contrast to the other elements, the Si 

extractables are most likely to be originating from hydrolysis of the silica coating itself, as was revealed in 

Ponton’s work [7]. As such, even though the SiO2 coatings successfully reduce the hydrolysis of the 

underlying glass, they themselves are affected and hydrolyzed.  

Another important point to keep in mind is the potential presence of uncoated zones. In cases where 

the SiO2 coating is not uniformly distributed on the internal surface of the vial, the uncoated regions of the 

glass are directly exposed to the solution and hydrolysis can proceed uninhibited. For this reason, it is of 

great interest to assure a uniform coverage of the vial. However, thin SiO2 films are visually transparent 

and an assessment of the film distribution would require extensive analysis of multiple vial cross-sections. 

For that reason, the utilization of computational fluid dynamics (CFD) calculations is proposed. The 

simulation of the deposition process in a representative 3D domain and the use CFD calculations can be 

implemented to better understand and master the physical and chemical phenomena involved during the 

deposition process. This in turn offers potentials for visualization of the local film thickness and 

optimization of the process parameters for more uniform film coverage. However, in order to do that, 

knowledge of the various reactions taking place during the deposition process is required.  

The following section details the development of a kinetic model that describes the deposition 

process of SiO2 from TEOS-O2/O3. In a first step, the model is developed based on results obtained from 

the tubular reactor, by considering apparent gas phase and surface reactions, which describe in a simplified 

manner the multiple reactions that can take place during the CVD process. In a second step, validation of 

this proposed model is executed, to allow its transfer into reactors with different geometries and offer 

exploration for optimization of the deposition process. 
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III.2. Development of a kinetic model for the simulation of the SiO₂ deposition 

process from TEOS-O₂/O₃ 
 

Process optimization is dependent on understanding the interplay between the applied process 

conditions and the governing transport phenomena, i.e. the local gas velocity, temperature and reactive 

species concentrations, as well as the homogeneous and heterogeneous chemical reactions leading to the 

formation of the film. As this interplay is difficult to establish experimentally, a valuable and timesaving 

approach is to associate the experimental investigation with reactor modelling. In particular, CFD codes 

can be used for the implementation of chemical reactions and kinetic laws, with the aim to replicate the 

experimental process in a 2D or 3D environment. Since a wealth of homogeneous and heterogeneous 

reactions can occur simultaneously in a CVD process, their identification and calculation of their respective 

kinetics is the bottleneck of the simulation process. In a classical way, overcoming this difficulty is done 

by considering only apparent chemical reactions, meaning that each reaction represents, in a simplified way, 

many real chemical reactions that are otherwise difficult to determine one by one in detail. 

Existing models in the literature that describe the SiO2 deposition mechanism from the TEOS-

O2/O3 chemistry have been previously discussed in Chapter I. Among them, the model of Nieto et al. [158] 

is used as the basis for formulating and adapting the chemical reactions and kinetic laws of the process, to 

best represent the deposition results obtained from the particular reactor configuration and deposition 

conditions used in the present thesis. The following simulation study of the TEOS-O2/O3 process was 

carried out in collaboration with George A. Chliavoras from the National Technical University of Athens 

(NTUA), supervised by Hugues Vergnes and Brigitte Caussat, in the frame of his Diploma thesis [184]. 

 

III.2.1. Implementation of chemical species and reactions 

The definition of reactor geometry, mesh, working assumptions and boundary conditions has 

previously been described in Chapter II. Beyond that, simulation of the chemical model requires definition 

and implementation of the reacting and produced species, the reactions that are taking place and the kinetic 

laws that describe them.  

Based on the literature data collected in section I.3.5 of Chapter I, a total of 10 species and up to 7 

chemical reactions are considered to describe the SiO2 deposition process from TEOS-O2/O3. The physical 

properties of O2, O3, H2O, CO, CH3CHO and N2 are taken from the FLUENT® database. The L-J parameters 

of the oxygen radical O• (σ = 2.75 Å and ε/k = 80 K), and of TEOS (σ = 7.03 Å and ε/k = 522.7 K) are taken 

from the CHEMKIN database [239]. Due to lack of concrete values in the literature, the L-J parameters of 
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the intermediate (noted INT hereinafter) are set equal to those of TEOS, since the INT molecule is 

considered to be similar to the latter, allowing for the use of comparable L-J parameters. The molecular 

weight of INT was fixed at 180.27 g.mol-1 by matching it to triethoxysilanol, (Si(OH)(OC2H5)3), one of the 

most probable intermediate species from the reactor of TEOS and O2, as reported by many authors [150, 

155, 240]. All physical properties of the by-product (R) produced by the INT were set equal to the latter. 

The chemical reaction rates are implemented into FLUENT® in the form of an Arrhenius type 

expression: 

  𝑅𝑟 = 𝐴0,𝑟 𝑒𝑥𝑝(−
𝐸𝑎

𝑟

𝑅𝑇
) ∏ 𝑝𝑖

𝑖=𝑛

𝑖=1

 Eq. (III-2) 

 

For surface reaction rates, Rr (kmol.m-2.s-1) stands for the rate of the heterogeneous reaction r and 

A0 (kmol.m-2.s-1.Pa-n) is the pre-exponential factor of the reaction r. The activation energy of the reaction r 

is symbolized with Ea
r (kJ.mol-1), T (K) stands for the temperature of the surface where reaction r occurs, n 

is the total number of involved species, and pi (Pa) is the partial pressure of the species i. For homogeneous 

chemical reactions, Rr is expressed in kmol.m-3.s-1 and A0,r in kmol.m-3.s-1.Pa-n, whereas T (K) is the 

temperature of the gas phase. By implementing the kinetic laws and conservation equations of each species, 

the molar fraction of each gaseous reactant and product, as well as the deposition rate of the solid film 

material, can be determined. Gas phase reactions are implemented in the FLUENT® code via user-defined 

functions (UDFs), while surface reactions are inserted through the FLUENT® user interface (UI). The list 

of the reactions adopted from Nieto et al.’s model is included in Appendix 2. 

 

III.2.2. Comparison to current literature model 

The experimental runs E3 to E6 of Table III.1 are used for the formulation of the kinetic model. 

The total mass flow rate (9.19653·10-5 kg.s-1) and the mass fractions of all species at the inlet (TEOS: 

0.00181, O2: 0. 50534, O3: 0. 02414, N2: 0. 46871) are fixed to the experimental values. Initially, Nieto et 

al.’s model and kinetic laws [158] (Appendix 2) are implemented into FLUENT®. Given that this specific 

model was developed in a different reactor configuration (cold-wall Watkins Johnson type reactor), with 

substantially different total flow rates (exceeding 20000 sccm) and very short residence times (< 0.5 s), it 

is important to assess its validity in relation to the utilized tubular reactor and the applied operating 

conditions. Runs E3-E6 were used for this purpose, however none were successfully represented by Nieto 
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et al.’s model. Fig. III.12 shows a comparison between the simulated and experimental DR of run E3, 

serving as an illustrative example. It is recalled that the simulated average DR values were calculated from 

planes that represent each Si coupon, as previously explained in section II.3.5 of Chapter II.  

 

 

Fig. III.12. DR of run E3 (SPT 400°C) simulated using Nieto et al.’s model (black dashed line) and 

compared to the respective values per coupon obtained experimentally (blue squares). 

 

A high simulated DR of around 33 nm.min-1 is observed in the first 0.15 m of the reactor, due to 

the intense surface reaction R6 (TEOS + 6O3 → SiO2 + O2 + by-products). No such DR values were 

measured experimentally. This considerable discrepancy can be explained by the fact that Nieto et al. did 

not account for deposition on the reactor walls, due to their cold-wall CVD configuration, and only focused 

on simulating deposition on the Si wafer. Additionally, the average gas temperature of the single wafer 

treated in Nieto et al.’s reactor was always at around 400°C, a temperature at which the concentration of O3 

has decreased due to its thermal decomposition through reactions R1 (O3 + M → O2 + O• + M),  

R2 (O3 + O• → 2O2) and R3 (2O• + M → O2 + M). In contrast, the local temperature of the first substrate 

at in run E3 is much lower and does not exceed 150°C. As has been pointed out in Chapter I, the kinetic 

constant k6 of reaction R6 does not consider any temperature influence in Nieto et al.’s model. Therefore, 

for low temperatures such as 150°C, where O3 concentration is still high and readily available to lead to 

SiO2 deposition, the simulated DR values are overestimated. Moreover, the substantial consumption of O3 

through R6 influences as well all other reactions, in which this species participates. 

As such, it is no surprise that Nieto et al.’s chemical model and the associated kinetic laws, in their 

current state, are unable to represent our experimental results. In the sections that will follow, an adapted 
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kinetic scheme will be developed, with an extended range of validity in terms of substrate temperature, 

rendering it more suitable for CVD reactor geometries that treat large and/or complex-in-shape substrates. 

 

III.2.3. Exploitation of experimental data 

Based on the preliminary observations of Fig. III.12, Nieto et al.’s model and kinetic laws were 

modified based on the following assumptions: (i) deposition in the vicinity of the inlet region is attributed 

to the reaction between TEOS and O3 (R6), exclusively; (ii) deposition closer to the exhaust, where O3 has 

been consumed, is attributed to INT (R7). 

In a first step, the experimental results of runs E1 to E3 (Table III.1) were considered in order to 

calculate a new partial order exponent a for TEOS for reaction R6. This partial order exponent expresses, 

in essence, the impact of a change in TEOS concentration on the rate of reaction R6. From each run, a 

sample located 9 cm after the inlet was selected and its DR was calculated from the mass gain. Runs E1 to 

E3 are then coupled in pairs of two (three pairs in total). By using the kinetic law of reaction R6 (Appendix 

2), the ratio of their reaction rates is expressed as: 

 

 
𝑅6𝐸𝑖

𝑅6𝐸𝑗

=  
𝑘6[𝑇𝐸𝑂𝑆]𝑖

𝑎[𝑂3]𝑖
0.25

𝑘6[𝑇𝐸𝑂𝑆]𝑗
𝑎[𝑂3]𝑗

0.25 Eq. (III-3) 

  

where R6 is the reaction rate of reaction R6, Ei and Ej are the experimental runs E1, E2, E3, with i 

= 1 or 2, j = 2 or 3, and i ≠ j. Then, k6 is the kinetic constant of reaction R6, [TEOS]i and [TEOS]j are the 

concentrations of TEOS at the inlet for runs Ei and Ej respectively, [O3]i and [O3]j are the concentrations of 

O3 at the inlet for runs Ei and Ej respectively, and a is the partial order exponent of TEOS. With the kinetic 

constant k6 remaining unchanged since all three runs were performed at the same temperature, and assuming 

that the concentration of O3 at the inlet is approximately equal across all runs, Eq. (III-3) is simplified as: 

 
𝑅6𝐸𝑖

𝑅6𝐸𝑗

=  (
[𝑇𝐸𝑂𝑆]𝑖

[𝑇𝐸𝑂𝑆]𝑗
)

𝑎

 Eq. (III-4) 

Eq. (III-4) is then solved for a. The logarithm of  
𝑅6𝐸𝑖

𝑅6𝐸𝑗

 is plotted versus the logarithm of 
[𝑇𝐸𝑂𝑆]𝑖

[𝑇𝐸𝑂𝑆]𝑗
 as 

shown in Fig. III.13a. 
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Fig. III.13. (a) Determination of partial order exponent a for TEOS in reaction R6. (b) Linear 

interpolation of k6 logarithm versus the reciprocal temperature, plotted for selected samples of E3 to E6. 

 

From the slope, a value of a equal to 1.9 is deduced, with the reaction law of R6 now becoming: 

  

 𝑅6 =  𝑘6[𝑇𝐸𝑂𝑆]1.9[𝑂3]0.25 Eq. (III-5) 

 

This calculated value for a is higher than the one used by Zhou et al. (a = 1) or Nieto et al. (a = 0.4). 

The difference may be due to the steep thermal gradient observed in their reactor configurations, which 

activates the conversion of TEOS to INT through reaction R4 more rapidly, downplaying the role of 

reaction R6 and subsequently the influence of the TEOS concentration on SiO2 deposition. 

As a second step, the first and second samples closest to the inlet were selected from runs E3 to E6, 

and their respective DR was divided by [𝑇𝐸𝑂𝑆]𝑠
1.9[𝑂3]𝑠

0.25 and plotted versus the reciprocal of their local 

temperature as shown in Fig. III.13b. It is worth noting that the two points relative to the lowest SPT (E3) 

are not aligned with those of the other runs. It is possible that the mechanisms involved at temperatures 

lower than 150°C are different from those prevailing between 150°C and 230°C. Thus, these two points 

were not considered when deducing the activation energy. This point is must be kept in mind, since it can 

affect the accuracy of the model for deposition temperatures lower than 150°C. From the remaining points, 

an activation energy of 21.8 kJ.mol-1 is deduced, and R6 can be thus expressed with a temperature 

dependence. It is the first time that an activation energy has been calculated for this reaction, since all 

previous literature models considered this reaction to depend only on the TEOS and O3 concentrations. 
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Fig. III.14. Linear interpolation of k7 in an Arrhenius plot, calculated for selected samples within and 

close to the isothermal region of runs E3 to E6. 

 

The kinetic constants of Nieto et al.’s reaction R7 (INT → SiO2 + by-products) were then adjusted 

based on the experimental results of runs E3 to E6. Since reaction R7 requires the production of the INT 

species through reaction R4, it was supposed that reaction R7 takes place further downhill the reaction 

chamber, in contrast to R6. For that reason, samples within and close to the isothermal region (0.36-0.50 

m) were chosen from all runs to extract DR values corresponding to this surface reaction. Before that 

however, reaction R7 was modified to include an oxidant species in the reactants. It is not out of the ordinary 

to make such an assumption, given that there is an excess in oxidant species (O•, O2, or O3) and that the 

ethoxy ligands of INT need to be cleaved in order to form the SiO2 film [155]. The two oxidant species that 

are present in this region (0.36-0.50 m) for our configuration and thermal profile are only O2 and O•, since 

O3 has been consumed uphill in the reactor. Then, the experimental DR values of the selected samples were 

divided by the calculated concentrations of INT and the prospective oxidant, and were then plotted against 

the reciprocal of their local average temperature in an Arrhenius plot expression. Calculations using O2 as 

the oxidant species yielded results with lower dispersion (Fig. III.14), out of which an activation energy of 

22.4 kJ.mol-1 was deduced. As such, reaction R7 was reformulated to INT + O2 → SiO2 + by-products. 

 

III.2.3.1. Modification of the chemical model 

Inspecting Fig. III.3, no significant decline in the experimental DR is observed in the isothermal 

region (0.36-0.5 m). Deposition in this region is dictated by reaction R7 and INT serves as the silicon-
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providing molecule. The models of Zhou et al. and Nieto et al. feature reaction R5, which serves to reduce 

the available concentration of INT in the gas phase and reduce deposition from reactions involving INT. 

Due to the lack of the aforementioned decline however, reaction R5 was removed in our model, like in Kim 

and Gill’s work [139]. The modified model (i.e. adjusted R6 and R7, and exclusion of R5) was implemented 

into FLUENT® and the computed DR values were compared to the experimental ones (Fig. III.15).  

 

 

Fig. III.15. Evolution of the average experimental DR per sample (blue squares) and average simulated 

DR (black dashed line), after simulating reactions R1 to R7. Red dashed line shows the difference of 

experimental minus simulated DR, for the samples on which the simulation underestimates the 

experimental values. (a) Run E3, (b) E4, (c) E5, and (d) E6. 

 

From Fig. III.15, it is observed that overestimation of the experimental DR is observed only close 

to the inlet of runs E3 and E4. Such deviations are expected given that the model loses its accuracy for 

temperatures below 150°C. In contrast, regions where the simulation underestimates the experimental 

results are noticeable across all runs, between approximately 0.07 and 0.25 m from the inlet. The respective 

difference between the experimental minus simulated results is also plotted for each run, for the points 

where the simulation underestimates the experimental DR. This difference appears across all runs and shifts 
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uphill the reactor with increasing SPT, which indicates that it is the result of a consistent behavior. It is 

assumed that it is related to the requirement for an additional heterogeneous reaction occurring at the 

intermediate temperatures of region B. After the testing of various scenarios involving TEOS and INT, it 

is proposed that this reaction involves the INT species as the silicon provider and an oxidant species as the 

oxygen provider. By observing the simulated local mass fractions in this specific region from previous 

simulations, O3 and O• were considered as the potential oxidants. The following methodology was followed: 

First, the calculated DR occurring from simulation of the as-defined R6 and R7 reactions is subtracted from 

the experimental DR, in order to find the DR values originating from this new reaction, noted R8. This 

difference was then expressed as either k8[INT][O3] or k8[INT][O•], assuming first order exponents for both 

reactants. It was determined that a reaction of INT with O3 better represents the experimental results (Fig. 

III.16) and an activation energy of 69.4 kJ.mol-1 was deduced for the new heterogeneous reaction R8. 

 

 

Fig. III.16. Linear interpolation of k8 in an Arrhenius plot, calculated for selected samples within region B 

from runs E3 to E6. 

 

It is noted that the addition of multiple surface reactions, in which INT participates as the silicon 

provider, seems plausible when taking into account the wide variety of molecules that INT represents. 

Romet et al. [155] mention that the inclusion of additional INT-centered surface reactions improves model 

accuracy and representation of experimental results, something that led them to remove deposition reactions 

involving TEOS altogether, and consider only INT as the film-forming species. 
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The final version of this adapted model and the respective kinetic constants are given in Table III.2. 

It is recalled that all chemical reactions considered in the model are apparent and stand for numerous 

elementary reactions and mechanisms. Phenomena such as reactive species adsorption, surface diffusion, 

chemical reaction and product desorption are accounted for in one single surface reaction. 

 

Table III.2. Proposed apparent chemical model, after adjustment of reactions and their respective kinetic 

laws and constants. 

 

 

III.2.4. Simulation results using the adapted kinetic model 

Fig. III.17 presents the calculated and experimental DR profiles along the reactor length for runs 

E3 to E6, after simulation using the adapted kinetic model of Table III.2. The respective contribution of 

TEOS and INT to SiO2 film formation is also presented. It appears that the new kinetic model provides very 

 𝐑𝐞𝐚𝐜𝐭𝐢𝐨𝐧 𝐬𝐭𝐨𝐢𝐜𝐡𝐢𝐨𝐦𝐞𝐭𝐫𝐲 𝐑𝐞𝐚𝐜𝐭𝐢𝐨𝐧 𝐫𝐚𝐭𝐞  

𝐚𝐧𝐝 𝐤𝐢𝐧𝐞𝐭𝐢𝐜 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐬 

Kinetic constants 

units 

                    Volumetric Reactions (𝑘𝑚𝑜𝑙 𝑚3𝑠⁄ ) 

(R1) 𝑂3 + 𝑀 → 𝑂2 + 𝑂∙ + 𝑀 

𝑘1[𝑂3][𝑀] 

𝑘1 =  2.5 × 1011 × 𝑒𝑥𝑝 (−
11430

𝑇(𝐾)
) 

𝑚3𝑘𝑚𝑜𝑙−1𝑠−1 

(R2) 𝑂3 + 𝑂∙ → 2𝑂2 

𝑘2[𝑂3][𝑂∙] 

𝑘2 = 1010 × 𝑒𝑥𝑝 (−
2090

𝑇(𝐾)
) 

𝑚3𝑘𝑚𝑜𝑙−1𝑠−1 

(R3) 2𝑂∙ + 𝑀 → 𝑂2 + 𝑀 

𝑘3[𝑂∙]2[𝑀] 

𝑘3 = 4 × 108 × 𝑒𝑥𝑝 (+
720

𝑇(𝐾)
) 

𝑚6𝑘𝑚𝑜𝑙−2𝑠−1 

(R4) 𝑂3 + 𝑇𝐸𝑂𝑆 + 𝑀 → 𝐼𝑁𝑇 + 𝑅 + 𝑀 

𝑘4[𝑂3][𝑇𝐸𝑂𝑆][𝑀] 

𝑘4 = 4 × 1017 × 𝑒𝑥𝑝 (−
14099

𝑇(𝐾)
) 

𝑚6𝑘𝑚𝑜𝑙−2𝑠−1 

Surface Reactions (𝑘𝑚𝑜𝑙 𝑚2𝑠⁄ ) 

(R6) 𝑇𝐸𝑂𝑆 + 6𝑂3 → 𝑆𝑖𝑂2 + 𝑂2 + 𝑏𝑦 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑘6[𝑇𝐸𝑂𝑆]𝑠
𝑎[𝑂3]𝑠

𝑏 

𝑘6 = 2.2 × 105 × exp (−
2621.1

𝑇𝑠(𝐾)
) 

𝑎 = 1.9, 𝑏 = 0.25 
  

𝑘𝑚𝑜𝑙𝑟𝑚4.45

𝑘𝑚𝑜𝑙𝑇𝐸𝑂𝑆
1.9 𝑘𝑚𝑜𝑙𝑂3

0.25𝑠
 

(R7) 𝐼𝑁𝑇 + 𝑂2 → 𝑆𝑖𝑂2 + 𝑏𝑦 −  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑘7[𝐼𝑁𝑇]𝑠[𝑂2]𝑠 

𝑘7 = 1.77 × 𝑒𝑥𝑝 (−
2695.2

𝑇𝑠(𝐾)
) 

𝑘𝑚𝑜𝑙𝑟𝑚4

𝑘𝑚𝑜𝑙𝐼𝑁𝑇𝑘𝑚𝑜𝑙𝑂2
𝑠
 

(R8) 𝐼𝑁𝑇 + 𝑂3 → 𝑆𝑖𝑂2 + 𝑏𝑦 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑘8[𝐼𝑁𝑇]𝑠[𝑂3]𝑠 

𝑘8 = 2.24 × 107 × 𝑒𝑥𝑝 (−
8345.1

𝑇𝑠(𝐾)
) 

𝑘𝑚𝑜𝑙𝑟𝑚4

𝑘𝑚𝑜𝑙𝐼𝑁𝑇𝑘𝑚𝑜𝑙𝑂3
𝑠
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good agreement with the experimental data. The poorest agreement is observed at the inlet zone of run E3 

(Fig. III.17a). This is not surprising, since experimental data for temperatures below 150°C were not 

considered and are as a result outside the range of validity of the model. The overestimation of the 

experimental results in this region further underlines that a different mechanism takes place for 

temperatures below 150°C. 

 

 

Fig. III.17. Comparison of average experimental DR (black squares) and simulated total DR (red dashed 

line) for runs E3 (a), E4 (b), E5 (c) and E6 (d). Calculated contributions of TEOS (through reaction R6) 

and INT (through reactions R7 and R8) to SiO2 deposition are presented by dashed-dotted blue and green 

lines respectively. The thermal profile (orange diamonds) is included for each run. 

 

For runs E4 to E6 (Fig. III.17b-d), the agreement at the inlet region is clearly improved with 

increasing SPT. It is also noted that for run E5 (Fig. III.17c), experimental errors appear close to and inside 

the isothermal region and are attributed to a slight vertical angular displacement of certain substrates within 

the substrate holder, which caused them to be out of vertical alignment. For run E6 (Fig. III.17d) a shoulder 

is observed on the experimental data between 0.15 and 0.27 m, corresponding to a zone where the 

temperature reaches and goes beyond 520°C. The model fails to conform to this specific deposition profile, 

underestimating the total DR in this region. This shoulder cannot be attributed to experimental error, like 

the previously mentioned vertical out-of-alignment displacement of the samples, as it is rather uniform in 



Chapter III. Deposition of SiO₂ and SiOₓ barrier coatings from O₃ based chemistries 

106 

 

shape and does not appear to be random. It is likely the result of another INT reaction contributing to 

deposition, activated at around 520°C. 

Observing the respective contributions of TEOS and INT to SiO2 deposition, the simulation results 

confirm that TEOS is responsible for film formation in the coldest zones close to the inlet of the reactor 

(the first 0.15 m from the inlet) through reaction R6. Deposition of SiO2 from INT through reactions R7 

and R8 occurs from around the first 0.10 cm and continues until the exhaust of the reaction chamber. 

 

III.2.5. Validation of the proposed kinetic model 

 Beyond the average DR, further validation of the kinetic model is required. For this purpose, the 

calculated deposition profiles are plotted across the YZ plane, as was defined in Chapter II (Fig. II.15).  

 

 

Fig. III.18. Photographs of the SiO2 films along the substrate holder for runs E3 to E6 and corresponding 

contours of the simulated DR profiles along the YZ plane. 

 

A visual comparison between the contours of the calculated DR profiles and photographs 

of the first 12 Si samples is shown in Fig. III.18. The DR of the samples beyond sample pL is similar 

to it. A remarkable agreement appears regarding the shape of the profiles, indicating that the main 

deposition mechanisms are well considered for this operating range. 
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Additional and quantitative validation is also carried out by considering local thickness 

profiles measured by ellipsometry and comparing them to local values calculated from the 

simulation. More specifically, the calculated thickness of run E4 was plotted across a horizontal 

line crossing the substrate surface (YZ plane), 2 mm below the top edge, corresponding to the 

ellipsometry probing point (5) (Fig. II.7b). Comparison between ellipsometry and values calculated 

by simulation is presented in Fig. III.19. 

 

 

Fig. III.19. Comparison of calculated local thickness (dashed black line) from simulations and 

experimental local thickness (blue squares) measured by spectroscopic ellipsometry, for run E4. 

Photograph of array of samples and scale denoting distance from the reactor inlet are included for visual 

aid. Red dashed-dotted line represents the line along which the simulation results were extracted. White 

squares represent the points at which the samples were probed by ellipsometry. 

 

A remarkable agreement is observed between the calculated and experimental results of Fig. III.19, 

confirming the ability of the model to predict local DR values. The local thickness is overestimated for the 

first two samples as expected, since deposition in this region is outside the validity range of the model. 

Despite that, Fig. III.19 illustrates that the model can give agreeable local thickness values, complementary 

to the average DR calculated by the mass gain in Fig. III.17. As such, the good agreement in both shape 
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and value validates the proposed chemical model and its adapted kinetic constants as an appropriate 

simplified representation of the involved chemical mechanisms, for the ranges of operating conditions 

tested. 

 

III.2.6. Discussion of simulation results 

The validated model provides valuable local hydrodynamic, thermal and mass transfer information 

for the studied TEOS-O2/O3 chemical system. Fig. III.20 shows the local velocity, thermal profiles and 

mass fraction profiles of various species in the gas phase, plotted across the XZ plane (Fig. II.15). The 

following discussion uses run E4 (450°C) as an example, given that the other runs exhibit similar behavior.  

 

 

Fig. III.20. Local velocity, temperature and mass fraction profiles of TEOS, INT, O3, O• and O2 plotted 

along the XZ plane for run E4 (450°C). Vertical black dash-dotted line signifies the start of the substrates. 

Inspecting Fig. III.20, it is noted that the velocity profile presents a parabolic shape for the first 

0.05 m, as classically observed for laminar gas flows. Beyond that, the gas impacts on the substrate holder 

and the supported Si substrates. This results in a shift of the flow profile, as will be discussed shortly. At 
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all solid surfaces, the velocity is zero. A maximum value of approximately 0.5 m.s-1 is observed at the 

hottest zones of the reactor, i.e. between 0.36 and 0.60 m, which logically give rise to the maximum velocity. 

The corresponding minimum residence time of the gas into the reactor is about 1.4 s. This is a high residence 

time for a hot-wall CVD reactor and could favor homogeneous chemical reactions as previously explained. 

Moreover, it validates the motivation for this work, providing a model adjusted for deposition processes 

utilizing higher residence times. 

 

 

Fig. III.21. Static front view of velocity (a) and temperature (b) pathlines for run E4 (450°C). Results are 

plotted from the inlet facing towards the inside of the reactor. Only half of the reactor geometry is shown 

due to symmetry. Static side-view of velocity (c) and temperature pathlines (b). Solid surfaces (wall, 

substrates and substrate holder) are illustrated in dark grey. Symmetry plane is illustrated in light grey. 

 

After impacting on the substrate holder and the substrates, the gas flow follows a double vortex-

like trajectory in the inlet region and across the first substrates, as shown in Fig. III.21. This behavior is 

explained through the aforementioned impact, which forces the gas to change direction, and is additionally 
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accentuated by the concomitant heating of the gas by the heated surfaces of the wall and the substrates. As 

a result, the fluid flow is split in two portions when arriving near the substrates. 

Going back to Fig. III.20, the thermal profile of the gas is also shown. The gas temperature remains 

below 150°C before the substrates. It then increases and presents a W-shape between 0.1 and 0.2 m, beyond 

which it follows a parabolic shape for the rest of the zone occupied by the substrates. The parabolic shape 

is expected, given that the solid surfaces are hotter than the bulk of the fluid and the thermal conductivity 

of the gas phase is low. The W-shape originates from the two-portion split of the gas as mentioned 

previously and is also encountered in the mass fraction profiles (Fig. III.20). At the inlet region, the O3 and 

TEOS mass fractions remain constant in the bulk of the gas phase, with consumption happening only at the 

walls through reaction R6. From approximately 0.14 m from the inlet and onwards, the TEOS mass fraction 

decreases due to the homogeneous reaction R4 and the already active R6. O3 is depleted slightly more 

rapidly in the same zone, until its mass fraction reaches zero. This depletion is attributed mainly to reaction 

R1 (Fig. III.22), whose rate is much higher than the other homogeneous reactions involving O3 (R2, R4, R6 

and R8).  

Reaction R4 gives rise to the INT species formation in a localized region between approximately 

0.12 and 0.24 m from the inlet, beyond which the reaction rate of R4 diminishes to very low values, given 

that O3, one of the reactants participating in this reaction, has been consumed. For the same reason, reaction 

R8 is also active only in this region. Similarly, reaction R6 is unable to take place beyond this area. 

In parallel, INT continues to be slowly depleted through reaction R7 (Fig. III.22), but still presents 

a remarkable 0.2 m long zone, between 0.25 and 0.45 m from the inlet, where its mass fraction stays 

relatively stable (Fig. III.20). Interestingly, despite the mass fractions of INT and O2 remaining fairly 

constant beyond ~0.5 m, the reaction rate of R7 decreases, underlining its dependency on the temperature, 

which starts to decrease at the exhaust region. 

Regarding the atomic oxygen, it is formed through reaction R1, between approximately 0.12 and 

0.22 m. It appears in low concentrations before it drops to zero through its involvement in reactions R2 and 

R3. For O2, it is present in excess and only participates as a reactant in reaction R7, which has the lowest 

reaction rate. Thus, its mass fraction is fairly stable inside the reactor, with a slight increase observed in the 

O3 depletion zone and beyond as a result of the production of O2 through reactions R1, R2 and R3. 
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Fig. III.22. Reaction rate profiles for all reactions plotted along the XZ plane for the gas phase reactions 

(R1 to R4) and along the YZ plane for the surface reactions (R6 to R8) of run E4 (450°C). Vertical black 

dash-dotted line signifies the start of the substrates. 

 

The overall consumption of TEOS to towards production of INT and SiO2 for run E4 is 

approximately 79%, increasing for higher SPT. Despite that, the global TEOS-to-SiO2 conversion rate on 

all solid surfaces remains low and does not exceed 5.2 % for all runs. This means that TEOS is 

predominantly involved in the production of INT through reaction R4, instead of the formation of SiO2 

through reaction R6. This is also evident when inspecting the maximum values of the respective reaction 

rates in Fig. III.22. Another key observation is that reaction R7 should be favored to uniformly coat 

complex-in-shape and/or large substrates, given that it has a large region within which its reaction rate 

remains stabilized and can lead to uniform deposition. 

The rapid consumption of O3, even at low temperatures, is also worth noting. As a result, quantities 

of TEOS and INT remain unreacted, with reactions R4, R6 and R8 ending prematurely. This leads 

subsequently to a low process yield. For these three reactions, O3 depletion becomes the rate-limiting step, 

indicating that a higher O3 flow all across the substrate zone would be preferable. However, increasing the 

O3 concentration at the inlet would lead to higher deposition rates across the whole reactor length in general, 
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and especially at the inlet region where reaction R6 rapidly takes place. As such, big discrepancies in DR 

between the colder inlet zone and the hotter isothermal region would still exist. Another solution for 

increasing the deposition yield, while still retaining relatively flat DR profiles, would be a sequential 

introduction of O3 at multiple parts along the length of the reactor. For better uniformity, it is proposed to 

insert O3 in already heated zones, to favor reaction R4 over R6. As a result, higher quantities of INT would 

be produced, able to lead to uniform SiO2 deposition through reaction R7, while also promoting reaction 

R8. The rapid depletion of O3 is a known problem and similar solutions have been proposed in other works 

[158, 241]. A setup using multiple injection ports for O3 cannot be easily implemented experimentally. 

Thus, the present model could be used to help finding the best combinations of geometry and operating 

conditions that can lead to the increase of precursor conversion and overall deposition yield. 

 

III.2.7. Transfer of TEOS-O2/O3 model into vial reactor 

The deposition experiments in Type I vials at SPT 400°C and 550°C were simulated using the 

above proposed and validated chemical model. The total mass flow rate and the mass fractions of all species 

at the inlet are fixed to the experimental values described in section II.1.1.2 of Chapter II. In Fig. III.23a 

the experimental and simulated DR values at both temperatures are compared. The experimental DR is 

deduced from weighing the vials before and after deposition. The simulated DR is the average value 

extracted from the DR values of the internal and external surfaces of the vial, excluding the external heel 

surface. A photograph of a vial after deposition is shown in Fig. III.23b. 

 

 

Fig. III.23. Experimental and simulated DR of SiO2 barrier coatings deposited in pharmaceutical Type I 

vials at 400°C and 550°C (a). Photograph of a coated vial after deposition (b). 
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The simulated DR appears close to the experimental one, with a deviation of 7.3 % and 8.5 % at 

400°C and 550°C, respectively. The increase in deposited SiO2 material at higher SPT is also reproduced 

through simulation. Having verified the experimental data, the simulations are used to obtain predictions 

regarding hydrodynamic, thermal, and mass transfer properties of the gas phase and the involved species.  

 

 

Fig. III.24. Gas velocity profile at full range (a) and clipped to a maximum value of 20 m.s-1 (b) for the 

two experiments. Temperature distribution profile (c). 

 

First, the local gas velocity and temperature distribution profiles are presented in Fig. III.24. The 

full range of the velocity profile is shown in Fig. III.24a. The maximum velocity is noted at the exit of the 

injector nozzle, reaching values around 145 m.s-1. Because this maximum value is high, it renders 

visualization of lower values more difficult. In order to aid in their presentation, the velocity range is clipped 

at a maximum of 20 m.s-1. The corresponding velocity profile is shown in Fig. III.24b. Through this aided 

visualization, the impacting jet and its subsequent trajectory can be better observed. The vortex at the heel 

region also becomes visible, occurring through the aforementioned impact of the gas flow on the vial base. 

The velocity profile is similar to the ones obtained by Etchepare et al. [56] and in Ponton’s thesis [7], who 

utilized simulations to represent Al2O3 and SiO2 depositions in vials, respectively, utilizing the same reactor 

setup. Aside from the high velocities observed because of the jet, the average velocity in the reaction 
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chamber does not exceed 5 m.s-1. This translates to a residence time of approximately 0.07 s, a value much 

lower than the 1.4 s noted in the tubular reactor and more comparable to that of Nieto et al.’s Watkins 

Johnson type reactor (<0.5 s).  

The simulated thermal profiles are also shown in Fig. III.24c. Since the temperature of the gas at 

the inlet is much lower than the imposed temperatures at the quartz tube, it gives rise to a cooler impacting 

jet that gets heated and reaches the desired temperature only after entering the vial. 

 

 

Fig. III.25. Local mass fraction profiles of O3 (a), TEOS (b), and INT (c) for the two temperatures studied 

for the coating of pharmaceutical Type I vials. 

 

Fig. III.25 shows the local mass fraction distributions of O3, TEOS, and INT. Fig. III.25a illustrates 

how O3 is immediately and completely consumed through reactions R1 to R3, which are activated once the 

gas mixture reaches the vial bottom and is heated. TEOS (Fig. III.25b) is also almost completely consumed, 

thanks to reactions R4 and R6. Fig. III.25c illustrates the production of INT, which takes place once the gas 

mixture is heated sufficiently. Its mass fraction appears to be distributed relatively homogeneously within 

the vial volume.  
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Table III.3. TEOS conversion and deposition yield for SiO2 simulations performed in the vial reactor. 

SPT 
Overall TEOS 

conversion 

Deposition yield 

(conversion into SiO2) 

550°C 91.7 % 12.04 % 

400°C 87.3 % 9.23 % 

 

The conversion of TEOS into INT and SiO2, as well as the deposition yield for SiO2 deposition on 

all solid walls are detailed in Table III.3. It is noted that both TEOS conversion and deposition yield are 

higher than the ones observed in the tubular reactor. These results show that the change in reactor 

configuration (use of injector nozzle) and substrate geometry (hollow body and deposition in a confined 

space) has led to a more efficient utilization of the supplied precursor quantity. This is especially reflected 

in the higher deposition yield, which is more than doubled in the case of the vial reactor, when deposition 

is performed at 550°C. The distribution of the deposited SiO2 material is shown in Fig. III.26.  

 

 

Fig. III.26. 3D representation of a pharmaceutical vial and simulated SiO2 DR at 550°C (a) and 400°C (b). 

 

The simulations indicate an uneven distribution of the DR. Higher values are observed at the region 

where the jet impacts on the vial bottom. Among the three deposition reactions, R6 is the major contributor 

to deposition in this region, while R7 and R8 are mostly active at the body and shoulder regions. 
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Considering the deposition duration (30 min), the maximum calculated DR values at the vial base translate 

to a local thickness of 6.2 μm and 2.4 μm at 550°C and 400°C, respectively. However, no such film 

thickness was observed macroscopically after the deposition experiments in vials. It is therefore concluded 

that the model can on one hand provide an average DR value for simulations in the vial reactor (Fig. III.23), 

but requires some refinements to represent the local phenomena occurring in this different reactor 

configuration, especially given the largely different gas residence times.  

 

 

III.3. Deposition of SiOₓ from HMDS-TEOS-O₂/O₃ 

 

The results of Sections III.1 and III.2 illustrated clearly how the addition of O3 in the starting 

TEOS-O2 chemistry can help lower the minimum temperature required for the deposition of SiO2. The 

lowest temperature for which SiO2 deposition was formed in the present thesis was around 110°C. However, 

temperatures as low as 25°C have also been reported in the literature [114]. Through this, the role of O3 and 

its potential to drastically activate film-forming reactions becomes clear. It is recalled that the aim of this 

thesis, and by extent of the ANR HEALTHYGLASS project, is to deposit SiOxNy films at low temperatures. 

Moreover, in the frame of the ANR project, deposition of SiOxCy is also a targeted goal. The objective to 

deposit at low temperatures naturally leads to the exploration of chemistries based on ozone. It must be kept 

in mind however that the generation of monoatomic oxygen radicals might impede the incorporation of 

nitrogen, as was previously presented in the literature review discussed in Chapter I. In a pure exploratory 

manner, the compound hexamethyldisilazane ((CH3)3SiNHSi(CH3)3, HMDS), a nitrogen and carbon 

containing organosilicon precursor molecule, was selected to investigate if incorporation of any of the two 

elements is possible at low temperatures facilitated by O3-based chemistries. 

The following sub-sections firstly deal with an initial investigation of the HMDS-O2/O3 chemistry, 

followed by an extensive analysis of the dual precursor HMDS-TEOS-O2/O3 chemistry. It is recalled that 

the latter atmospheric pressure chemical vapor deposition (APCVD) pathway is original in regards to the 

literature. The study is conducted on planar Si substrates and focuses primarily on the characterization of 

the material from a compositional and functional point-of-view. Deposition rate (DR), composition and 

film structure are studied for variable operating conditions. Similar investigation follows for the film 

mechanical and functional properties, concluding with its corrosion resistance. The overall study follows 

the methodologies previously adopted for the TEOS-O2/O3 chemistry.  
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III.3.1. Deposition rates 

III.3.1.1. Deposition from HMDS-O2/O3 chemistry 

Investigation using the HMDS precursor was first conducted through deposition experiments using 

the HMDS-O2/O3 chemistry (shortened to just HMDS chemistry hereinafter), to ascertain the ability of this 

molecule to lead to film formation under the desired operating conditions. Experiments were conducted for 

30 min at 730 Torr, targeting thicknesses between 100 and 200 nm. The applied gas flow rates have been 

previously described in section II.1.1.1 of Chapter II. For the HMDS chemistry, the HMDS bubbler 

temperature was maintained at a constant 50°C, resulting in a HMDS flow rate of 2.7 sccm towards the 

reaction chamber. Four experiments were conducted in these conditions at four different SPTs, namely 360, 

400, 500 and 550°C. The measured DR profiles are shown in Fig. III.27. 

 

 

Fig. III.27. DR profiles (black squares) for HMDS deposition at SPT 360°C (a), 400°C (b), 500°C (c) and 

550°C (d), along with the respective thermal profiles (grey triangles). 

Darker blue area signifies the isothermal region C. 

 

Globally, the deposition behavior is similar to that observed in section III.1.1.1 for TEOS-O2/O3. 

Region A is described by low local temperatures and initiation of film formation takes place at high DR 
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values on the first samples of this region, thanks to the presence of O3 in high concentrations. For a SPT of 

360°C (Fig. III.27a), the DR starts at around 4.5 nm.min-1 in the inlet region and increases to reach a 

maximum of approximately 7 nm.min-1 once the temperature reaches ca. 250°C. This increase is attributed 

to the increase of the temperature in region B, with O3 still being present in the gas phase at sufficient 

concentrations. Once O3 has been consumed, the DR presents a decrease after 0.2 m from the inlet despite 

the continuous increase of the temperature. Similar trends were noted for the TEOS-O2/O3 chemistry. An 

interesting and new observation however is that after O3 consumption, there is no deposition noted for SPT 

360°C and 400°C (Fig. III.27a and b). This means that HMDS itself, as well as any intermediates that were 

produced from its reaction with O3 [242], do not have the required energy to overcome their respective 

activation steps and lead to film formation below 400°C, without the aid of O3. That assumes of course that 

HMDS and its intermediates are still present in the gas phase and have not been depleted. This is confirmed 

by the resumption of film-formation for local temperatures around 450°C and beyond (Fig. III.27c and d). 

Once the gas phase is heated sufficiently, deposition starts anew and is especially promoted for temperatures 

above 500°C. The above deposition behavior is also visible when inspecting photographs of the samples 

presented in Fig. III.28.  

 

 

Fig. III.28. Photographs of array of Si samples within the substrate holders,  

after deposition using HMDS chemistry at 360°C (a), 400°C (b), 500°C (c) and 550°C (d). 

 

The lack of deposition on the last 10 to 12 samples of SPT 360°C and 400°C is visible by the silver 

color of the uncoated Si substrates (Fig. III.28a and b). On the contrary, visible deposition is observed for 
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SPT 500°C and 550°C (Fig. III.28c and d). Interestingly, deposition experiments utilizing the dual precursor 

HMDS-TEOS-O2/O3 chemistry resulted in a different behavior, as is presented below.  

 

III.3.1.2. Deposition from HMDS-TEOS-O2/O3 chemistry 

Deposition using HMDS appears to require O3-activation, if film formation at temperatures below 

450°C is desired (Fig. III.27a and b). On the contrary, the intermediates produced from TEOS are more 

reactive and can lead to deposition even after O3 is consumed in the gas phase (Fig. III.3). To take advantage 

of the high reactivity of TEOS intermediates and the high carbon content of the HMDS molecule, vapors 

of both precursors are supplied in the reactor. The HMDS-TEOS-O2/O3 chemistry (abbreviated to HMDS-

TEOS hereinafter) is investigated by varying two parameters. The first parameter is the deposition 

temperature. Five different SPTs are tested, namely 360, 400, 450, 500 and 550°C. The bubbler temperature 

is maintained at a constant 50°C across these five experiments, supplying 2.7 sccm of HMDS to the reaction 

chamber. The second parameter is the HMDS precursor flow rate, which is varied by increasing the HMDS-

bubbler temperature to 62°C, which translates to a HMDS flow rate of 9.5 sccm. A SPT of 400°C is applied 

for this experiment. Deposition time is kept constant at 30 min for all runs. N2 and O2 flow rates, as well as 

O3 output, have been previously described in section II.1.1.1 of Chapter II. 

The DR profiles using the HMDS-TEOS chemistry are presented in Fig. III.29. Film formation 

appears to take place across the whole length of the reactor for all SPTs, in contrast to what was previously 

noted for the HMDS chemistry. In fact, the DR profiles are more similar to the TEOS-O2/O3 chemistry 

(abbreviated to just TEOS hereinafter). 

Logically, the dual precursor HMDS-TEOS system has a deposition behavior that is dictated by 

the participation of both precursors to the formation of the film. Similarly to the previous O3-based 

chemistries, HMDS-TEOS also follows DR profiles that reach a maximum in regions A or B, depending 

on the SPT, and which decrease in region B as a result of O3 consumption. For comparison, at SPT 360°C 

(Fig. III.29a) the DR measures initially around 5 nm.min-1 and reaches a maximum ca. 12 nm.min-1 once 

the temperature reaches approximately 250°C. Both values are higher than those noted for HMDS (Fig. 

III.27a), which is expected, given that both HMDS and TEOS precursors contribute to deposition in the 

dual precursor chemistry. After this point, the DR decreases in region B due to lower O3 concentrations in 

the gas phase. In region C however, a new behavior of the DR is noted. Firstly, DR values are not reduced 

to zero for SPT 360°C and 400°C, as was observed for HMDS. Instead, deposition continues to take place, 

but at a constantly decreasing rate (Fig. III.29a to c). For SPT 500°C (Fig. III.29d), the DR profile settles 

down to an almost stable value, similarly to what was observed for TEOS. However, for SPT 550°C (Fig. 
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III.29e), the DR of HMDS-TEOS shows a renewed increase, similarly to the DR profile observed 

previously for HMDS (Fig. III.27d).  

 

 

Fig. III.29. DR profiles (black squares) for HMDS-TEOS deposition for SPT 360°C (a), 400°C (b),  

450°C (c), 500°C (d) and 550°C (e), along with the respective thermal profiles (grey triangles). 

Darker blue area signifies the isothermal region C. 

 

The above is illustrated more clearly when directly comparing deposition from TEOS and HMDS 

for the highest SPT, i.e. 550°C, as shown in Fig. III.30a. For a temperature of 500°C and above, deposition 

from TEOS remains at a constant rate of approximately 2 nm.min-1, while film formation from HMDS is 

continuously increasing up to values around 6 nm.min-1. The lack of a renewed increase in the TEOS 
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chemistry beyond 0.2 m can be attributed to the potential polymerization reactions occurring in the gas 

phase. As was explained earlier in section III.1.1.1, at elevated temperatures (>450°C), the intermediates 

that are produced from the decomposition of TEOS are prone to be consumed in parasitic reactions such as 

gas-phase polymerization [158, 186]. As a result, their available concentration in the gas phase decreases, 

which subsequently partially decelerates further increase of SiO2 deposition. In the case of HMDS 

chemistry however, this does not seem to be the case. A potential explanation could be that the intermediates 

originating from the decomposition of HMDS are less reactive than those from TEOS and do not participate 

in parasitic gas-phase reactions. As a result, they can actively contribute to film formation once they 

overcome their activation step for temperatures exceeding 450°C (Fig. III.30a). 

 

 

Fig. III.30. Individual deposition profiles from HMDS and TEOS at SPT 550°C (a). Corresponding 

thermal profile is shown by grey triangles. DR averaged across samples p1 to p6 of the isothermal region, 

taken from HMDS-TEOS runs performed at various SPTs (b). 

 

The DR of HMDS-TEOS is averaged across the six samples (p1 to p6) located in the isothermal 

region C and its evolution with the SPT is shown in Fig. III.30b. It presents a wavy behavior with average 

DR values ranging between 1 and 6 nm.min-1. More specifically, the DR increases from 360 to 400°C, then 

decreases at 450°C, after which it increases again from 450 to 550°C. This non-monotonous trend has also 

been observed for the thermal CVD of SiO2 from TEOS [115, 139, 243] and is explained through the 

participation of distinct reactive species in SiO2 film formation, depending on the temperature. For 

temperatures lower than 400°C, deposition depends primarily on the precursor molecule and the presence 

of O3 in the gas phase. At higher temperatures, the precursor molecules are decomposed into Si-containing 

gaseous intermediate species. As a result, the deposition mechanism switches to an intermediates-centered 

mechanism. It is therefore assumed that when utilizing the dual precursor HMDS-TEOS chemistry, any 
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increase of the DR above 500°C is primarily due to the addition of the HMDS precursor. The dip at 450°C 

in Fig. III.30b is related to the overall transition of the deposition mechanism from precursor-governed to 

intermediates-governed. Potentially, a high contribution of carbon-rich species could also be involved in 

this deposition behavior, as is discussed in the following sections. 

 

III.3.2. Film surface morphology 

AFM surface micrographs for HMDS-TEOS films deposited at all five SPTs are presented in Fig. 

III.31a to e. The micrographs of the three lowest SPTs reveal rough surfaces, in contrast to the two highest 

ones, 500 and 550°C, which present a generally smoother surface. This trend is also confirmed when 

plotting the root mean square (RMS) roughness as a function of the SPT as shown in Fig. III.31f.  

 

 

Fig. III.31. Surface topography and RMS roughness of HMDS-TEOS films at various SPTs. AFM 1 μm2 

surface topography at SPT 360°C (a), 400°C (b), 450°C (c), 500°C (d) and 550°C (e). RMS roughness of 

HMDS-TEOS films for different temperatures measured by AFM.  

SEM surface micrographs for films deposited at SPT 360°C (f) and 500°C (g). 

 

The RMS roughness of surfaces prepared at 360, 400 and 450°C is spanning between 3 and 4.5 nm, 

whereas it decreases to values around 0.5 nm for 500 and 550°C. SEM surface micrographs, representative 
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of the two observed surface morphologies, are also reported in Fig. III.31g and h, corresponding to samples 

processed at 360 and 500°C, respectively. In agreement with the AFM observations, the films morphology 

appears rough at the lowest temperature and becomes smoother at 500°C. Additionally, these results reveal 

a difference in the nucleation and growth mechanisms: an apparent 3D-dominated nucleation and growth 

behavior is observed at lower temperatures, attributed to the high DR, combined with the limited mobility 

of the adsorbed species. At elevated temperatures, the species participating in film formation have higher 

surface mobility due to the increased available energy. As such, they are able to diffuse more easily on the 

surface, following primarily a 2D growth behavior, and lead to the production of denser and smoother films. 

Overall, the surface roughness decreases with increasing temperature, with the exception of 450°C. 

According to Gil et al. [216], who performed PECVD of SiO2 films from HMDS and O2, the surface 

roughness is influenced by the organic carbon content, incorporated in the films as CH3 moieties. The 

authors reported that increasing oxygen flow aids in the decomposition and oxidation of HMDS, which 

leads to a decrease in the amount of Si–(CH3)x bonds in the films and subsequently to the decrease of surface 

roughness. In the results of Fig. III.31 however, the O2/O3 flow rate remains unchanged across all runs, with 

the temperature being the only variable. Based on the authors’ findings, the spike in roughness observed at 

450°C could be connected to higher CH3 incorporation. Connecting these results to those of Fig. III.30b, it 

is proposed that the transition of the deposition mechanism happening at this temperature introduces more 

CH3 moieties in the films, increasing in turn the RMS roughness. In order to confirm this assumption, the 

films chemical bonding state and composition are analyzed by FT-IR and IBA. 

 

III.3.3. Chemical bonding and network evolution 

The infrared spectrum of a HMDS-TEOS film produced at 360°C is presented in Fig. III.32, as 

representative of the samples processed at low SPT. Acquisition was done at a Brewster incidence angle of 

60°, with the aim to increase the signal-to-noise ratio and to reveal additional information related to the 

silica network [169]. The main peaks in the survey spectrum of Fig. III.32 are first identified and then the 

evolution of the various bonds is presented in respective inset graphs as a function of the temperature. 

Globally, the films are characterized as a silica-based material, evidenced by the strong absorption at 

1064 cm-1 attributed to the transverse optical TO3 mode [99, 187], characteristically present in SiO2 films 

prepared by TEOS-O2/O3 and HMDS-O2 by thermal CVD [90]. Its longitudinal optical LO3 pair is 

encountered at 1216 cm-1. The TO1 rocking and TO2 bending modes are also noted, found at 448 cm-1 and 

806 cm-1, respectively [187]. 
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The presence of carbon is also identified in the films, mostly in the form of hydrocarbons. Methyl-

related absorptions are observed at different wavenumbers, as indicated in Fig. III.32. Generally, weak 

absorptions within the 2800-3000 cm-1 range are related to stretching vibrations of saturated C–H bonds 

[89, 214], with an increase in their intensity corresponding to an organo-rich structure and vice versa [244].  

 

 

Fig. III.32. FTIR survey spectrum of a HMDS-TEOS film deposited at 360°C, analyzed for an incidence 

angle of 60°. Evolution of the CH3 asym. stretching (a), CH3 sym. bending in Si-(CH3)x (b) and  

CH3 rocking vibration in Si–(CH3)3 (c) as a function of the SPT. Inset histogram (d) shows these three 

absorptions for films produced at different HMDS flow rates at SPT 400°C. Evolution of water-bonded 

silanol (e), molecular physisorbed water (f), free Si–OH (g) and Si–H (h) absorptions with the SPT. 

 

In the present case, one such absorption is found at 2970 cm-1 and is assigned to the asymmetric 

stretching of CH3 functional groups [242]. Secondly, the absorption at 1278 cm−1 is related to the symmetric 

bending vibrations of CH3 in Si-(CH3)x groups [216, 245], while the small shoulder at ca. 845 cm-1 is 
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attributed to the rocking CH3 vibration in Si–(CH3)3 groups [242, 246]. The evolution of the intensity of 

these three absorptions is plotted versus the SPT in the inset figures Fig. III.32a to c. It is revealed that they 

all follow a similar behavior. Their intensities decrease at higher temperatures, with all three methyl 

absorptions reaching zero for temperatures equal to or higher than 500°C. This indicates that films deposited 

above 500°C do not contain carbon, as a result of the additional provided energy being high enough to 

break the Si–CH3 bonds of the starting molecule (HMDS). A spike is observed for films processed at 450°C, 

correlating well with the RMS roughness results and confirming the previous proposal that the transition in 

the deposition mechanism at this specific temperature leads to an increase of the carbon content.  

In the histogram of Fig. III.32d, the three CH3 absorptions are probed for films processed under 

two different HMDS flow rates, with the SPT fixed at 400°C. Higher concentrations for all three CH3 modes 

are found at the higher HMDS flow rate. This, combined with the fact that no methyl incorporation was 

observed in TEOS films, indicates that the methyl moieties originate from the HMDS molecule, as was 

observed by Gil et al. [216] and Lee et al. [247]. 

It is noted that for SiOxCy films, a characteristic vibration is observed at 790-820 cm-1, 

corresponding to the Si–C stretching bond [214]. It overlaps however with the TO2 bending mode of the 

Si–O–Si network, thus telling the two absorptions apart from each other is not as straightforward. Similarly, 

a rocking vibration of CH3 in Si(CH3)2 groups is reported at 800 cm-1 in the literature [246], but is not easily 

discernable for the same reason. The non-Gaussian shape of the absorption at 800 cm-1 however is an 

indication of contribution of multiple peaks. 

Additionally, a small absorption is found at 1410 cm-1 corresponding to the asymmetric CH3 

bending vibrations in Si–(CH3)x [245], while a weak absorption at 1478 cm-1 could originate from the 

bending vibration of methylene (CH2) groups [99]. Further absorptions related to CH2 vibrational modes 

can be observed at 1372 cm-1, related to scissoring and wagging CH2 vibrations in Si–CH2–Si [247, 248]. 

The signal for Si–CH2–Si, normally found at 1350 cm-1, is usually weak [99] and was not observed in any 

of the films. At the same time, a related absorption, namely the wagging vibrations of CH2 in Si–CH2–Si, 

can be typically found at around 1060 cm-1 [247], but is most likely overshadowed by the strong TO3 Si–

O–Si asymmetric stretching absorption at 1064 cm-1. Similarly, the main peaks related to Si–O–C and Si–

CH2–Si, normally reported at 1100 cm-1 and 1000 cm-1 respectively [249, 250], possibly overlap once again 

with the strong Si–O–Si network absorptions. As such, their presence cannot be confirmed with certainty. 

Further inspecting Fig. III.32, the large band between 3000 and 3700 cm-1 is noted, which contains 

absorptions related to water and Si–OH bonds, as was mentioned in section III.1.1.2. Similarly to films 

from TEOS, HMDS-TEOS films present Si–OH bonded with water at ca. 3400 cm-1 [186], and physisorbed 

molecular water at 1620 cm-1 [193, 194]. An additional silanol fingerprint is found at 942 cm-1 [90, 216]. 
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The intensity of these three absorptions is tracked as a function of the SPT in Fig. III.32e to g, revealing a 

decreasing absorption for films deposited at higher temperatures. This behavior suggests that the 

concentration of silanol bonds decreases when the temperature increases, with the Si–OH bonds forming 

new Si–O–Si bridges after dehydrogenation of the network. 

It is worth noting that no Si–H absorption, normally appearing in the 1900-2200 cm-1 range [197, 

198], is observed in any of the spectra. A weak absorption appears at 2353 cm-1, which could correspond 

to a Si–H stretching mode according to Tomar and Gautam [90]. However, atmospheric CO2 is probed at 

2353 cm-1 as well [195, 196], originating from incomplete removal of the background signal. As such, 

absorption at this wavenumber cannot be entirely assigned to Si–H. Other absorptions relating to the Si–H 

bond, namely its bending and wagging/rocking vibrational modes, are normally found at 630 cm-1 [251] or 

ca. 640 cm-1 [197], respectively. For the produced HMDS-TEOS films, a weak absorption is observed at 

636 cm-1. However, when its intensity is traced as a function of the SPT (Fig. III.32h), the minimal Si–H 

absorption falls to insignificantly low values for T ≥ 400°C. In light of the above, we assume that films 

processed from HMDS-TEOS are devoid of Si–H bonds. 

 

III.3.3.1. Evolution of the silicate network 

A similar investigation to the one conducted for the evolution of the network in TEOS films is also 

carried out for the produced HMDS-TEOS films. A zoom in the 750-1400 cm-1 region of the FT-IR spectra 

is presented in Fig. III.33. The evolution of three Si–O–Si vibrational modes (TO3, TO4 and TO2) and 

three carbon related ones (CH3 symmetric bending in Si–(CH3)x groups, rocking CH3 vibration in Si–(CH3)3 

and Si–C) with the SPT is presented in Fig. III.33, at a 0° acquisition angle. The in-depth argumentation 

and the meaning behind the various evolutions was presented previously for TEOS films in section III.1.1.2. 

In light of the new carbon-related absorptions however, the results from the HMDS-TEOS films are 

discussed, albeit in a summarized manner, as follows.  

First, the intensity of the CH3 moieties decreases with the SPT, which is coherent with the overall 

decrease in carbon at the higher temperatures. Then, the position of TO3 moves towards lower 

wavenumbers, an inspection which is facilitated under an incidence angle of 60° (Fig. III.33a). In parallel, 

its LO3 pair shifts towards higher wavenumbers, similarly to the trends observed for TEOS films. As was 

discussed, the LO3 component is less biased by other types of vibrations compared to the TO3 component 

[169] and its shift towards higher wavenumbers can be correlated safely with a densification of the SiO2 

network as the SPT is increased. The broadening of the TO3 peak is also noted (Fig. III.33b) in parallel to 

the decreasing intensity of the TO4 shoulder with the SPT, which translates to lower nanoporosities [188], 
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hydrogenated impurities [172] and structural disorder of the SiO4 tetrahedra [247]. The TO4 position shifts 

towards higher wavenumbers (Fig. III.33c), following a similar trend to the broadening of the TO3 

vibrational mode, indicating the parallel and linked evolution of these two absorptions. The shrinking of 

the TO4 shoulder is also noted (Fig. III.33d), readily associated with the further organization of the network 

[213], and in good correlation with the results discussed so far. Lastly, the intensity of the Si–OH groups 

decreases with the temperature, indicating the breaking of silicon-hydroxyl bonds in favor of new Si–O–Si 

cross-linking. 

 

Fig. III.33. Evolution of the FT-IR spectra of HMDS-TEOS films deposited at various SPTs, analyzed for 

an incidence angle of 0°. Inset diagram (a) shows the evolution of the TO3 and LO3 components, as 

observed for an incidence angle of 60°. Right-hand side inset diagrams show evolution of the TO3 full 

width half maximum (b), the TO4 position (c), and the TO4 full width half maximum (d) at 0° incidence. 

 

A key difference to the TEOS films is observed for the absorptions in the 750-850 cm-1 region. 

Multiple bonds are absorbing at these frequencies. First off, the rocking CH3 vibration in Si–(CH3)3 groups 

is noted at ca. 850 cm-1. Its intensity appears to be globally decreasing with the SPT, indicating the loss in 
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organic character. Neighboring this absorption, the overlapping bending Si–O–Si TO2 and stretching Si–C 

vibrational modes are found at ca. 800 cm-1. For carbon-free films, i.e. TEOS films, a clear increase in the 

intensity of the TO2 mode was observed (Fig. III.5), which evidences higher chemical bonding between 

the SiO4 tetrahedra and a densification of the network [204]. In contrast, this absorption in HMDS-TEOS 

films is not evolving as monotonously. This confirms that a Si–C absorption is overlapping with it. The 

intensity at ca. 800 cm-1 is first appearing to decrease between 360 and 500°C, then increases again between 

500 and 550°C. Since all other Si–O–Si absorptions follow the same evolution as those presented for the 

TEOS films, the densification of the Si–O–Si network in HMDS-TEOS with an increase in temperature is 

undisputed. As such, the decrease of the 800 cm-1 absorption between 360 and 500°C is attributed to the 

loss of carbon and the consequent loss in Si–C absorption. Once no more carbon is probed in the films, the 

absorption at 800 cm-1 can be solely attributed to the TO2 mode. As expected, once the films are free of 

carbon (for T≥500°C), the TO2 absorption is noted to increase in intensity from 500 to 550°C, as expected 

for films that densify with the temperature. 

 

III.3.4. Chemical composition by IBA techniques 

The atomic concentrations in Si, O, C and H were determined by IBA techniques as a function of 

the SPT (Fig. III.34a). The content in C reaches ca. 5 at.% and is found in films deposited at 360, 400 and 

450°C. No carbon is detected for films deposited at 500 and 550°C. Globally, the C content decreases with 

higher SPT, although a slight spike is observed at 450°C. It is recalled that a similar spike was noted in the 

intensity of the –CH3 absorptions (Fig. III.32a to c) at 450°C, while at 500 and 550°C their intensities 

dropped to zero. The coherence between DR, AFM, FT-IR, and IBA results confirms the proposal that the 

transitional deposition mechanism at 450°C is linked to slightly higher incorporation of carbon. 

No nitrogen was detected in any of the films, confirming the general conclusion of the literature 

review discussed in Chapter I stating that generation of monoatomic oxygen radicals may impede N 

incorporation. Despite that, carbon was successfully inserted in some of the films. Based on the 

compositional analysis and the infrared absorptions detailed in Fig. III.32, two different materials are 

identified hereinafter. The one material type is given a generic formula SiOxCy:CH3, with carbon 

encountered as Si–C, but most predominantly found in the form of methyl moieties. This type of material 

is assigned to films processed at temperatures equal to or lower than 450°C, depicted by the grey area in 

Fig. III.34. The other material type is defined as a carbon-free, sub-stoichiometric silicon oxide, SiOx (off-

white area in Fig. III.34) and is encountered for films deposited at 500 and 550°C. The stability domains of 

the two materials also coincide with the reported morphological evolution probed by AFM, namely rough 

and smooth surfaces for the SiOxCy:CH3 and SiOx surfaces, respectively. 
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Fig. III.34. Evolution of HMDS-TEOS films composition as a function of SPT (a), obtained from the first 

spectral acquisition by IBA techniques. Evolution of the RI and void volumetric fraction, obtained by 

ellipsometry (b). Grey and off-white areas signify SiOxCy:CH3 and SiOx material domains respectively. 

 

Regarding the hydrogen content, it is noted that its evolution does not follow, in shape, that of 

carbon. This behavior is expected, considering that hydrogen is also involved in H2O and Si–OH hydrated 

species, as revealed by the FT-IR spectra. The hydrogen content measured for SiOxCy:CH3 films is high, 

measuring between 8 and 17 at.% depending on the process conditions, and decreases to ca. 7 at.% for SiOx 

type films. The opposite evolution is observed for oxygen. The measured O content is higher for SiOx 

compared to SiOxCy:CH3 films. The determined silicon content remains almost constant, with a slight 

minimum atomic concentration observed at the lowest temperature (360 °C), for which the carbon content 

is the highest measured. 

In terms of refractive index (Fig. III.34b), independent of the SPT, the films present values below 

1.458, i.e. the RI of stoichiometric silica. As a result, they are considered to be overall sub-stoichiometric, 

correlating well with the identification of H and hydrated species. An evolution similar to that of the TEOS 

films is noted. First, a decrease of the RI between 360°C and 450°C is observed, with the lowest value 

measured for 450°C. As was previously discussed in section III.1.1.3, this behavior is linked to the 

desorption of water from the nanoporosities [218], freeing up the nanopores and replacing water by vacuum. 

Beyond this temperature, the RI increases again, progressing closer towards the stoichiometric value. 
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Indeed, the volumetric fraction of the void component, as calculated by the BEMA model, is increasing, 

which further underlines the desorption of water. The dip of the RI at 450°C is interesting when correlated 

to the spike in carbon content (Fig. III.34a), or to the lower DR (Fig. III.30b) observed at this temperature. 

Based on these results, it could be deduced that the transition of the deposition mechanism from precursor- 

to intermediates-governed not only decreases the DR and introduces more carbon in the films, but also 

leads to films with higher nanoporosities. As such, when dealing with radical chemistries and the production 

of intermediate species, it is potentially preferable to avoid deposition at temperatures where a transition in 

the deposition mechanism occurs, especially when dense films are targeted.  

Beyond 450°C, the RI increases significantly, with a simultaneous decrease of the void component. 

This trend is explained by a change in the film structure, induced through reorganization of the SiO4 

tetrahedra, as was revealed by the increase of the TO2 intensity between 500 and 550°C (Fig. III.33), 

signifying the densification of the network [219]. However, it must be noted that, globally, the HMDS-

TEOS films appear less dense than the TEOS film, having lower RI values and higher void vol.%. 

 

III.3.5. Surface wettability 

The water wettability of the HMDS-TEOS films was assessed and the measured contact angles are 

presented in Fig. III.35 as a function of the deposition temperature.  

 

 

Fig. III.35. Water contact angles for HMDS-TEOS films and their evolutions as a function of the SPT. 

Grey and off-white regions signify SiOxCy:CH3 and SiOx material domains respectively. 
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Overall, the films are hydrophilic. However, there are noticeable differences among them 

depending on the SPT. The hydrophilic character of films produced at the two highest temperatures is rather 

strong, with a WCA of 57.6° and 52.8° for 500 and 550°C, respectively. In contrast, a decrease of the 

deposition temperature results in a noticeable increase of the contact angle, which passes from 57.6° to a 

maximum of 81.0° at 400°C. The trend is inversed for the 360°C film, for which the contact angle decreases 

to 63.8°. This behavior reveals a distinction between the carbon-free SiOx and carbon-containing 

SiOxCy:CH3 films. The reduced hydrophilic character of the latter, despite the increase in roughness that 

should normally enhance the hydrophilicity according to Wenzel [252], is attributed to the presence of 

carbon in the form of methyl moieties, as was observed by FT-IR (Fig. III.32). According to Gil et al. [216], 

the methyl-termination of surfaces increases the contact angle and renders the films less hydrophilic. This 

is not surprising, considering that HMDS is widely used as a silylation agent in hydrophobic coatings, 

removing Si–OH surface termination and replacing the silanol species by Si–CH3 ones to increase film 

hydrophobicity [253, 254]. Indeed, the intensity of all methyl-containing bonds in Fig. III.32a to c is higher 

at lower deposition temperatures, explaining the less hydrophilic character of SiOxCy:CH3 films.  

Nonetheless, the above cannot explain the behavior of the 360°C sample, for which the contact 

angle is lower than that of 400°C. A possible explanation comes from the synergistic increase of the H and 

the decrease of the O contents from 400°C to 360°C, which could correspond to increased network 

hydration at the lowest deposition temperature. The results of Hair and Hertl [225] are recalled, stating how 

hydrogen bonded hydroxyl groups increase the hydrophilicity of a film, since water can readily physisorb 

on them. Indeed, as shown by the evolution of the hydrogen bonded Si–OH vibration at 3424 cm-1 (Fig. 

III.32), its intensity is higher for 360°C compared to 400°C, which can well explain the increased wettability 

at the lowest temperature. In contrast, free OH groups at the surface (evidenced through the absorption at 

ca. 3650 cm-1) reduce the affinity to water. 

At this point, the results of Wei et al. are also considered [255], who deposited films by HMDS via 

PECVD at low temperatures. Their films gave a contact angle of 87-90°, but this value decreased to <10° 

when O2 plasma was utilized. The authors proposed that this change of wettability stems from the 

significant surface chemistry variation caused by the change in reactants used, and specifically the addition 

of oxygen (which reduces –CH3 incorporation).  

In light of all of the above, it is evident that wettability does not depend only on film surface 

methylation, but is a parameter affected by the synergy between global surface chemistry (–CH3, –OH, 

water, etc.), roughness and surface energy. 
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III.3.6. Mechanical properties 

Nanoindentation and nanoscratch analysis is carried out on films with >500 nm and ca. 100 nm in 

thickness, respectively. It is noted that thick films at 450°C and 550°C were not produced. The influence 

of the temperature on the mechanical properties of the films in terms of hardness H, elastic modulus E, and 

critical load CL3 is presented in Fig. III.36. Similar to TEOS films, the hardness of HMDS-TEOS films 

appears constant at ca. 3 GPa and independent from the process temperature. Such a behavior was also 

reported by Merekov et al. [256], who performed laser-assisted CVD at 1210-1510°C using 

hexamethyldisilane, measuring a hardness value of 9±2 GPa that remained constant with the process 

temperature. It is possible that for small thermal ranges, H values do not vary much and are possibly more 

dependent on the process or the precursor chemistry used. This coincides well with the much higher H 

values obtained by the TEOS chemistry in section III.1.1.4 and the lower H values from HMDS chemistries 

in the literature. For example, double-discharge atmospheric pressure CVD of HMDS, plasma polymerized 

HMDS and PECVD of HMDS resulted in 1.47-3.15, 1.37 and 0.5-3.0 GPa, respectively [257-259]. In the 

present case, it can be assumed that the change in precursor chemistry, that is, the addition of HMDS to 

TEOS-O2/O3, globally degrades the mechanical properties of the film. 

  

 

Fig. III.36. Evolution of the elastic modulus E (black diamonds), hardness H (black squares) and critical 

load CL3 (grey squares) of HMDS-TEOS films as a function of the temperature. 

 

Decrease of the mechanical integrity of films from HMDS has also been correlated to the presence 

of –(CH3)x groups, potential C=C or Si–H bonds, and lower film density [257-259]. This does not seem to 
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be the case for the HMDS-TEOS films. It appears that the hardness of HMDS-TEOS films is not as sensitive 

to compositional changes and depends primarily on precursor chemistry.  

The CL3 force values of HMDS-TEOS films are comparable to TEOS films, measuring 13.4±1.4 

and 11.0±0.4 mN at 400°C and 450°C respectively. An increasing trend is observed with the temperature, 

translating to better adherence on the substrate for higher SPT. It is noted that the force value of 

27.9±4.6 mN measure at 500°C is much lower than the one of TEOS films at the same temperature. At 

550°C however, the required CL3 load increases to 80.6±1.6 mN, a value comparable with what was 

measured for TEOS. 

The influence of the temperature on the elastic modulus seems fairly monotonous and increases 

with the temperature. A maximum value of 32.6±1.0 GPa is noted, half of the one observed for the TEOS 

films. The elastic modulus is an intrinsic material property that is intimately linked to the types of bonds 

existing in the material. As such, the influence of nanoporosities in the HMDS-TEOS films, the higher 

hydrogen content, as well as the presence of organic carbon, is well reflected in the elastic modulus values. 

In contrast to H, E appears thus to be more influenced by the transition of the material type from SiOxCy:CH3 

to SiOx. 

 

III.3.7. Wet etching corrosion resistance 

The P-etch rate of HMDS-TEOS films is shown in Fig. III.37. The results reveal a relatively high 

etching rate of 51 and 60 Å.s-1 for films deposited at 360°C and 400°C, respectively. Such values are usually 

encountered for silica films with carbon and hydrogen impurities [229], which is indeed the case for HMDS-

TEOS films at SPT ≤450°C. Improved corrosion resistance is noted at higher SPT, with the etching rate 

decreasing to 14.8 Å.s-1 at 550°C. Decrease of the etching rate with increasing temperature is also noted in 

the literature, for films deposited using HMDS and O2 or N2O [260]. This evolution is linked to the 

composition and the intrinsic nature of the material. Thus, it is no surprise that SiOxCy:CH3 films exhibiting 

lower corrosion resistance compared to SiOx ones. 

When subjecting films from the two extreme temperatures to an ex-situ post-deposition annealing 

treatment performed for 2 h at 550°C under N2 flow, the etching rate decreases further. More specifically, 

two films produced at 360°C and 550°C had their P-etch value decrease to 7.9 and 5.5 Å.s-1, respectively. 

It can be derived that the annealing post-treatment successfully led to the densification of the films through 

H2O desorption and additional Si–O–Si cross-linking. Interestingly, FT-IR analysis of the annealed films 

shows significant decrease in H2O and Si–OH absorption, but minimal changes to the absorptions of carbon 

related bonds (–CH3, Si–(CH3)x) (Appendix 3). It is deduced that the presence of H2O and Si–OH have a 
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higher detrimental effect to the corrosion resistance compared to the carbon related bonds, even if the latter 

are found in the form of organic moieties. 

 

 

Fig. III.37. P-etch rate of HMDS-TEOS films produced at various SPTs, 

before (black diamonds) and after (red squares) ex-situ annealing at 550°C. 

 

Additionally, the P-etch rate appears to follow a trend similar to the hydrogen content (Fig. III.34a) 

and WCA of the films (Fig. III.35). This information could be used to reveal a potential link between  

P-etch rate, H and Si–OH concentration. This information is coherent with the etching mechanism of HF 

solutions, under which the silica network is dissolved primarily through a dissolution reaction initiated via 

the substitution of exposed –Si–OH by –Si–F groups, as the film is etched progressively [238].  

 However, the corrosion resistance of HMDS-TEOS films is globally much lower than that of TEOS 

films. It is recalled that the envisioned barrier films, aimed for application as barrier coatings in the 

pharmaceutics industry, must be dense enough to withstand hydrolysis. Although carbon incorporation did 

occur at low temperatures thanks to the utilization of O3, its insertion in the form of mostly organic moieties 

did not benefit film densification. Based on the P-etch results, the resistance of HMDS-TEOS films was 

not deemed satisfactory enough to justify the transfer of the HMDS-TEOS-O2/O3 chemistry in vials. 
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III.4. Conclusions 
 

The current chapter reported on results regarding the deposition of SiO2 and SiOx from O3-based 

chemistries. The high reactivity of O3 and its ability to enable deposition at low temperatures was illustrated. 

Deposition experiments from TEOS-O2/O3, HMDS-O2/O3 and HMDS-TEOS-O2/O3 chemistries were 

carried out. The results of the first chemistry were used in the development of an apparent kinetic model 

using process analysis by CFD simulation, allowing representation of the SiO2 deposition process and 

providing suggestions for process optimization to achieve uniform coverage of complex and/or large 

substrates. The model presented a large range of validity in terms of temperature (150-520°C) and 

considered for the first time a thermal dependency of the direct formation of SiO2 from TEOS and O3. 

Attention should be paid however when it is transposed to reactor configurations with shorter residence 

times, since the model might fail to reproduce the local thickness distribution accurately. 

Additionally, in-depth characterization of SiO2 and SiOxCy:CH3/SiOx films produced from the 

TEOS-O2/O3 and HMDS-TEOS-O2/O3 chemistries respectively was carried out. A strong correlation 

between process temperature and film structure, composition, network hydration, functional properties and 

performance was built through the implementation of multiple characterization methods. It was found that 

increase of the process temperature up to 500°C is linked to strong desorption of water and hydrated species 

in TEOS films, with parallel reduction of carbon incorporation in HMDS-TEOS films. Beyond 500°C, 

concentration of Si–OH in the films decreases further, to the benefit of Si–O–Si cross-linking and network 

densification. The behavior of the films in terms of resistance against chemical etching was also assessed 

using the P-etch test. Etching rates ranged from 19 to 9 Å.s-1 for TEOS films and from 60 to 15 Å.s-1 for 

HMDS-TEOS films, when the process temperature increased from 400°C to 550°C, respectively. 

Annealing post-treatment applied to both chemistries underlined how the temperature-induced 

reorganization of the network can further decrease the etching rate down to 4-5.5 Å.s-1.  

Although carbon was successfully incorporated in the films from HMDS-TEOS-O2/O3, it was 

encountered mostly in the form of –CH3 moieties, originating from the incomplete decomposition of the 

HMDS precursor. Although the tunability of the HMDS-TEOS films allows them to conform to various 

applications such as organo-silica membranes or sacrificial SiOx films, they are unsuitable for application 

as dense barrier coatings. Only barrier coatings from TEOS-O2/O3 were tested in pharmaceutical vials. 

Their hydrolytic resistance was assessed using the USP <660> recommendation. The SiO2 coatings 

demonstrated an excellent barrier performance, reducing the amount of extractables released in the solution 

by up to 92 %. Despite that, no particular breakthrough was noted in regards to their hydrolytic resistance, 

with Si being probed in the solution, indicating that the SiO2 coating was hydrolyzed.  
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The results made it all the more clear that the SiO2 material itself is already at its performing limit 

and that other chemistries and material types should be explored. Moreover, the HMDS-TEOS chemistry 

confirmed two key points. The first is that carbon integration in carbidic form, instead of organic, requires 

significantly higher temperatures than the ones probed in this work. Consequently, the oxycarbides research 

direction for inducing further network densification appears inefficient in regards to the defined 

specifications in this thesis. The second point is that the presence of O3, and by extension the presence of 

monoatomic oxygen, impeded the incorporation of nitrogen in the films.  

For the above reasons, the following chapters explore the deposition of SiOxNy films at moderate 

temperatures using novel, carefully selected precursor molecules and appropriate inlet gas compositions. 

The partial replacement of the divalent O anions by trivalent N ones is investigated, as a means to induce 

further network densification. The films produced by the chosen chemistries are analyzed thoroughly to 

establish their respective process-composition-structure-properties correlations and assess their consequent 

performance against corrosive attacks.  
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Chapter IV. Deposition of SiOₓNᵧ barrier coatings from 

tris(dimethylsilyl)amine, TDMSA 

 

 

The present chapter details our efforts to produce SiOxNy films from a novel organosilicon 

precursor, tris(dimethylsilyl)amine (N(SiHMe2)3), TDMSA. Initial experiments involve the exploration of 

this precursor using NH3 and O2. An extensive parametric analysis is executed in order to analyze the impact 

of NH3, O2, and precursor flow rates on the deposition rate and the film composition. In a first step, the 

SiOxNy films are deposited on planar Si substrates and are characterized following the previously developed 

methodologies. Links between the material properties and the level of nitrogen incorporation are established. 

The corrosion resistance of the films is analyzed by the previously presented P-etch test, as well as through 

an additional, more aggressive, hydrofluoric solution. Similarly to the TEOS-O2/O3 chemistry, initial 

screening of the SiOxNy films corrosion resistance through the HF solutions is executed in order to establish 

operating conditions that lead to the best performing films, with the aim of future transfer in pharmaceutical 

vials.  

In a second step, the gas phase of this novel chemistry is analyzed at the reactor exit by three 

different analytical techniques in an attempt to shed more light into the reactions that are taking place. GC-

MS, NMR and ESR are executed in parallel to the CVD process, allowing the sampling and identification 

of stable gaseous by-products and radical species. The coupled consideration of gas phase and solid phase 

results allows proposing a series of reactions and formulate a deposition mechanism for the CVD of SiOxNy. 

To this date, it is the first time such a combined analysis has been implemented for a CVD process. 

Lastly, the developed mechanism is used to propose a simplified, apparent chemical model for the 

simulation of SiOxNy deposition using CFD calculations. The development of the model is executed with 

the vision to simulate local growth rates, while also giving accurate predictions of the film composition, for 

a better understanding of the phenomena involved and a possible process scale-up. The assumed 

homogeneous and heterogeneous reactions are justified through simultaneous consideration of gas phase 

products and solid phase data, respectively. The developed model is validated in shape and value through 

comparison with experimental results. The utilization of CFD calculations for the prediction of local film 

thickness and composition in a ternary SiOxNy system has not been reported so far in the literature. Transfer 

of the developed model to the vial reactor is demonstrated in the final part of the chapter. 
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IV.1. SiOₓNᵧ deposition from TDMSA chemistries on planar substrates 

  

IV.1.1.  SiOxNy deposition from TDMSA-NH3-O2 

TDMSA is initially introduced in the reactor as the silicon provider for the production of SiOxNy 

films. O2 is used as the oxidant and NH3 as the external nitrogen source. The main experimental parameters 

for the SiOxNy depositions from the TDMSA-O2-NH3 chemistry are summarized in Table IV.1. 

 

Table IV.1. Experimental conditions of the TDMSA-O2-NH3 chemistry tested in the tubular CVD reactor.  

Run SPT 

(°C) 

N2 flow rate 

through TDMSA 

bubbler (sccm) 

TDMSA 

flow rate 

(sccm) 

O2 flow rate 

(sccm) 

NH3 flow rate 

(sccm) 

Deposition 

time (min) 

TD1 550 147 6 2 20 30 

TD2 580 147 6 2 20 30 

TD3 650 147 6 2 20 150 

TD4 650 48 2 2 20 150 

TD5 650 48 2 - 20 150 

TD6 650 48 2 0.6 20 150 

TD7 650 48 2 0.6 - 150 

TD8 650 48 2 0.6 40 150 

TD9 650 48 2 - - 150 

 

 

Through experiments TD1 to TD3, the lowest possible temperature for deposition of SiOxNy films 

from the TDMSA-O2-NH3 chemistry is investigated. It is noted that the first two experimental runs, namely 

TD1 at a set-point temperature (SPT) of 550°C and TD2 at SPT 580°C, did not result in any visible SiOxNy 

deposition. No iridescence is noted on the Si substrates, with their color retaining its typical silver hue 

indicating that no film had been formed. Given that silicon nitride and oxynitride materials by thermal CVD 

are known to have low deposition rates in this thermal range [71, 73, 96, 261, 262], sometimes below 1 

nm.min-1, the deposition duration for run TD3 is extended from 30 to 150 min. Additionally, SPT is 

increased to 650°C. It is recalled that a thermal gradient exists within the reactor for a given SPT. This 

feature is used to faster ascertain the minimum temperature required for film formation, without losing time 
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exploring the process temperature in a stepwise manner. A photograph of the array of Si substrates after 

deposition at SPT 650°C (TD3) is presented in Fig. IV.1, alongside the local temperature. 

 

 

Fig. IV.1. Photograph of substrates after deposition for run TD3 (20 sccm NH3 and 2 sccm O2),  

with local temperature indicated for selected samples. 

 

Inspecting Fig. IV.1, it is visible that successful deposition of a thin film is achieved for TD3 

conditions. The iridescence reveals a change in thickness, as was discussed previously in Chapter III. The 

most important information is the definition of the minimum temperature required for film formation. 

Visual inspection of Fig. IV.1 reveals that at least 610°C are required to form a film, with a possible, but 

minimal, deposition between 585-610°C. There is no visible deposition below 585°C, in coherence with 

the failed attempts of runs TD1 and TD2. The results illustrate the higher temperature required for the 

activation of the TDMSA-O2-NH3 chemistry in comparison to the more reactive TEOS-O2/O3 one. 

In order to verify if the deposited material contains nitrogen, the films are probed by ellipsometry. 

Application of models based on SiO2 (Fig. II.8a and b) fails to give a satisfactory fit between the measured 

and simulated spectra. Moreover, application of the material-independent Cauchy and Sellmeier models 

reveals a refractive index (RI) of 1.58 for sample p6, well above the value of stoichiometric silica (1.458) 

and close to that of SiOxNy material with 8-11 at.% of nitrogen [263]. These results reveal the incorporation 

of nitrogen, which is also confirmed by a successful fit of the ellipsometry spectra to a SiO2+Si3N4 BEMA 

model (Fig. II.8c). However, an even better fit of the simulated ellipsometry spectra to the measured ones 

is achieved by considering an additional carbon containing component (Fig. II.8d). This hints at the 

potential inclusion of carbon in the films. The presence of nitrogen and carbon is further confirmed through 

FT-IR analysis, the results of which are discussed later in section IV.1.4. The evolution of the deposition 

rate (DR) and film atomic content in N and C along the reactor (calculated on five different point on each 

sample by ellipsometry and averaged per sample) for run TD3 is presented in parallel to the temperature 

profile in Fig. IV.2. 



Chapter IV. Deposition of SiOₓNᵧ barrier coatings from tris(dimethylsilyl)amine, TDMSA 

140 

 

 

Fig. IV.2. DR, N and C contents per sample for run TD3, plotted versus the distance from the inlet. 

 

 From Fig. IV.2, it is noted that deposition is initiated at around 510°C, albeit with a significantly 

low DR of 0.12 nm.min-1, which translates to a deposition of only 10 nm after 80 min. Such thickness values 

are indiscernible through mere visual inspection, explaining why no deposition could be noticed below 

585°C in Fig. IV.1. A maximum DR of 0.92 nm.min-1 is reached at 641°C. A maximum carbon 

concentration of 7.5 at.% is noted at that point as well. Beyond 0.31 m from the inlet, both the carbon 

content and the DR decrease, with the DR stabilizing to around 0.42 nm.min-1. The decrease of the DR is 

typical for deposition mechanisms dependent on more than one film-forming species. A different trend is 

observed for the nitrogen content. Nitrogen is first encountered at 0.27 m from the inlet, for samples whose 

local temperature exceeds ca. 631-637°C. This indicates that even though a film can be formed below this 

temperature, it is mostly a SiOx material, with the production of SiOxNy taking place only after the 

temperature has reached (and exceeds) ca. 631°C.  

Interestingly, even though the rate of film formation decelerates beyond the point of the maximum 

DR at 0.31 m, the nitrogen content of the material increases, reaching 9.5 at.% on the final sample. Since 

the temperature remains constant in the isothermal region (0.36-0.50 m), the DR decrease with the parallel 

N content increase is correlated back to the claim of multiple species contributing to deposition. It is known 

from the literature that N and O are competing in their incorporation and that O2 promotes film formation 

[179, 180, 247, 264]. Combining all of the above information, it is concluded that the species responsible 

for the above-described behavior is most probably O2: once oxygen has been consumed in the gas phase, 

deposition from oxygen-involving reactions is decelerated, while deposition from reactions involving NH3 

or nitrogen-containing intermediate species continues. As a result, the global DR decreases, but the molar 
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DR of nitrogen continues to take place and results in an increase of the N content in relation to O. As such, 

nitrogen and oxygen are inserted in the film through different reactions that are competitive to each other. 

  

IV.1.1.1. Effect of the O2 flow rate 

Referring back to Table IV.1, a parametric analysis is executed through experiments TD4, TD5 and 

TD6, studying the influence of the O2 flow rate under constant SPT 650°C and 20 sccm NH3 flow rate. The 

resulting DR and film composition profiles measure by ellipsometry are presented in Fig. IV.3. 

 

 

Fig. IV.3. Effect of the O2 flow rate on the DR (a), nitrogen (b) and carbon content (c)  

for runs TD4 to TD6. Thermal profile for SPT 650°C is also included (grey triangles).  

 

Inspecting Fig. IV.3a, deposition appears to start at about the same distance from the inlet 

(ca. 0.19 m) for all three experiments, corresponding to a local temperature of around 585°C. This result 

further confirms the clear thermal dependence of the SiOxNy deposition process from the TDMSA-NH3-O2 

chemistry. Additionally, it is revealed that the presence of O2 in the gas phase has a promoting effect on the 

DR, in coherence with the literature. High DR values up to 0.96 nm.min-1 are noted for the highest O2 flow 

rate (2 sccm), while the lowest DR is observed when no O2 is added in the inlet gas composition. Moreover, 
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for higher O2 flow rates, the maximum DR value shifts towards the end of the reactor, observed at around 

0.36 m for 0.6 sccm O2 and at around 0.44 m for 2 sccm O2. In contrast, no maximum is observed for the 

experiment conducted without O2. The decrease of the DR beyond the maximum value can be linked to the 

consumption of O2. Since O2 plays a major role in promoting film formation, the DR drops once it is 

consumed. In the same sense, when more O2 is added in the inlet gas composition, it is indeed expected that 

the maximum DR value will be encountered downhill in the reactor. This happens because there is still 

sufficient concentration of O2 in the gas phase to continue promoting deposition over an extended region. 

Fig. IV.3b presents the effect of the O2 flow rate on the nitrogen content. First, it is observed that 

nitrogen incorporation in the films starts at approximately 0.26 m from the inlet for all three experiments, 

translating to a local temperature of ca. 631°C. Similar results were observed previously for run TD3 (Fig. 

IV.2). This illustrates that incorporation of nitrogen is mostly a temperature-dependent process. Moreover, 

although film formation occurs below 631°C, N is inserted in the films only above that temperature. Thus, 

it is concluded that reactions that involve the incorporation of nitrogen have a higher activation energy than 

those involving oxygen. Additionally, it is observed that lower O2 flow rates lead to higher N incorporation 

in the films, similar to what is reported in the literature [247]. Specifically, a maximum percentage of 0.7 

at.% N is noted for 2 sccm O2, with a tenfold increase to 7.2 at.% for a threefold decrease of O2 flow rate 

to 0.6 sccm. The highest nitrogen content, 16.5 at.%, is observed for 0 sccm O2, although the presence of 

O2 through a small leak is not excluded, given that the films still contained some oxygen. These results 

illustrate well the competitive incorporation between the two elements. Moreover, the maximum nitrogen 

content for each run is always observed on the last sample on the array of Si coupons. Such behavior could 

be the effect of a globally lower oxygen concentration in the gas phase towards the exit of the reactor and 

slower activation kinetics of the species that lead to nitrogen incorporation. 

Fig. IV.3c presents the effect of the O2 flow rate on the carbon content. A slightly different behavior 

is noted here. First, carbon incorporation ranges from 0 to around 4.5 at.% and is not initiated always at the 

same position in the reactor. Moreover, the profiles are less monotonous, with spikes observed occasionally. 

Inspecting the evolution of C under variable O2 flow, the highest carbon content (4.2 at.%) is observed for 

0.6 sccm O2. It then decreases to a maximum of ca. 2.2 at.% for 2 sccm O2. Similar behavior is observed in 

the literature of SiOxNy from organosilicon precursors, with an increase in O2 flow rate decreasing the 

carbon incorporation [134, 247]. Interestingly, the lowest carbon content (maximum 0.8 at.%) is noted for 

0 sccm O2. This behavior is attributed to the effect of a NH3 atmosphere. According to Weiller [265], the 

presence of NH3 leads to lower incorporation of carbon in the films, by removing HN(Me)2 groups from 

the precursor, presumably through the formation of an intermediate that, in absence of NH3, decomposes 
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on solid surfaces. Although no methylamino-ligands are present in TDMSA, it seems that the –CH3 cleaving 

effect of NH3 is more efficient in an oxygen-free atmosphere, for the operating conditions tested. 

 

IV.1.1.2. Effect of the NH3 flow rate 

Further parametric analysis is carried out using runs TD6, TD7 and TD8 (Table IV.1), examining 

the influence of the NH3 flow rate, varying from 0 to 20 and finally to 40 sccm, under a constant O2 flow 

of 0.6 sccm at SPT 650°C. The average DR and film composition in N and C are presented in Fig. IV.4. 

 

 

Fig. IV.4. Effect of the NH3 flow rate on the DR (a), nitrogen (b) and carbon content (c)  

for runs TD6, TD7 and TD8. Thermal profile for SPT 650°C is also included (grey triangles). 

 

Inspecting Fig. IV.4a, film formation appears to start at around 0.17 m for all runs, translating to a 

local temperature of 547°C. The NH3 flow rate seems to have a low, if not negligible, influence on the DR, 

with the global values decreasing slightly at higher NH3 flow rates. Similar behavior has been reported in 

the literature for SiNx films and is speculated to be the result of removal of the deposited material through 

etching by H• radicals generated during the deposition process through NH3 dissociation [266-268]. This 
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effect, however, does not appear to be that strong for the conditions tested, with a maximum DR of 

0.64 nm.min-1 at 0 sccm NH3 decreasing to 0.55 nm.min-1 at 40 sccm NH3. The maximum DR is observed 

at a similar position in the reactor for all three runs. Previously it was proposed that the position of the 

maximum DR is dependent on the O2 flow rate. Since O2 flow rate is constant across the three runs (Fig. 

IV.4a), the similar position of the maximum DR correlates well with this assumption.  

No significant effect on the N content of the films is noted when NH3 flow is varied, as shown in 

Fig. IV.4b. This result seems surprising, given that NH3 was utilized as a nitrogen provider, yet failed to 

modulate the nitrogen content of the films. Similar results were reported by Lee et al. [247], who noted that 

NH3 did not influence the N content in SiOxNy films deposited by PECVD. Even more surprising are the 

results of run TD7 (0 sccm NH3). Despite the presence of only TDMSA and O2 in the gas phase, nitrogen 

incorporation in the films still took place. Considering all of the above, it is apparent that the nitrogen 

originates, in fact, from the TDMSA precursor. This explains well the lack of influence of the NH3 

flow rate on the nitrogen incorporation. Lastly, similarly to previous results, the maximum nitrogen 

content for each experiment is observed at the sample closest to the reactor exhaust, at close values, namely 

7.5 at.% N for 0 and 40 sccm, and 7.2 at.% N for 20 sccm.  

Fig. IV.4c presents the effect of the NH3 flow rate on the carbon content. The cleaving effect of 

NH3 on the organic ligands of the TDMSA precursor is clearly illustrated here. With increasing NH3 flow 

rate, the carbon content in the films decreases. Similar trends were observed in the literature [134, 265]. In 

absence of NH3 (0 sccm), a maximum carbon content of 11.6 at.% is noted, dropping to around 4.2 at.% 

when 20 sccm NH3 are supplied at the inlet. Further addition of NH3 in the gas phase results in further 

decrease of the carbon content to values around 2.3 at.%. It is also noted that the evolution of the carbon 

content under high NH3 flows presents a bell shape. This could be potentially linked to more efficient –CH3 

cleaving by NH3 at higher temperatures and lower O2 concentrations along the reactor, or to a decrease of 

the concentration of carbon-containing intermediate species. It must be kept in mind that O2 also 

demonstrated a –CH3 cleaving effect (Fig. IV.3c), but also that its concentration most likely decreases as 

the gas processes further in the reactor, as a result of its consumption through gas phase and surface 

reactions. Due to that, it is proposed that the continuous upwards slope of the carbon content in absence of 

NH3 in Fig. IV.4c is related to the progressively decreasing concentration of O2 in the gas phase. 

 

IV.1.1.3. Effect of the TDMSA flow rate 

For further investigation, the effect of the TDMSA flow rate on the DR and the film composition 

is investigated across runs TD3 and TD4, for which NH3 and O2 flow rates are kept constant at 20 sccm 
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and 2 sccm, respectively, and the TDMSA flow is varying from 6 to 2 sccm. The results are presented in 

Fig. IV.5.  

 

 

Fig. IV.5. Effect of the TDMSA flow rate on the DR (a), nitrogen (b) and carbon content (c),  

for runs TD3 and TD4, at SPT 650°C. Thermal profile of SPT 650°C is also included (grey triangles). 

 

Inspecting Fig. IV.5a, it is observed that the maximum DR of both experiments is almost equal, 

reaching ca. 0.92-0.94 nm.min-1. However, these values are encountered at different positions inside the 

reactor, namely at around 0.32 m for 6 sccm and 0.42 m for 2 sccm TDMSA. This could be an indication 

that the increased concentration of TDMSA leads to a quicker consumption of O2 in the gas phase, resulting 

in the appearance of the maximum DR earlier in the reactor. After the respective maximum value is reached, 

the DR drops again for both runs, hinting at the consumption of O2.  

In terms of nitrogen content, Fig. IV.5b reveals that an increase in TDMSA concentration 

results in higher nitrogen incorporation in the films. A maximum content of 0.7 at.% N and 9.5 at.% N 

is probed for 2 and 6 sccm TDMSA, respectively. It is recalled that NH3 supply was constant between 

the two experiments. These results further confirm the previous proposal, which stated that the nitrogen 

originates from the TDMSA precursor and not from NH3. Carbon incorporation appears to follow a 

slightly different behavior. Higher C contents are noted for 6 sccm TDMSA, with values reaching up 
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to 7.5 at.%. Decrease of the precursor supply reduces carbon incorporation to values up to 2.2 at.%. 

This behavior of C incorporation, as well as its bell shape noted for 6 sccm TDMSA, is most likely 

influenced by the TDMSA/O2 and TDMSA/NH3 ratios, and a more efficient cleaving of organic 

moieties at higher temperatures.  

In light of the above results, the addition of NH3 in the chemistry was questioned: even though 

it helps to reduce the carbon content in the films, it neither promotes deposition, nor does it contribute 

to an enrichment in nitrogen. As a result, we removed it from the inlet gas composition, and, in the 

following sections, executed a parametric analysis based on the effect of the O2 flow rate in absence 

of NH3.  

 

IV.1.2. SiOxNy deposition from TDMSA-O2 

The experimental conditions for the parametric analysis investigating the effect of various 

parameters in absence of NH3 are summarized in Table IV.2. More specifically, experiments TD7, TD9, 

TD11 and TD12 examine the influence of the O2 flow rate under constant TDMSA supply, with the 

exception of TD11 for which an experimental error in the thermostat resulted in a slightly higher bubbler 

temperature. Between runs TD14 and TD7, the effect of the SPT is investigated, after fixing all flow rates. 

Lastly, TD10 follows the same experimental conditions of TD7, with the only adjusted variable being the 

deposition duration, with the aim to produce thick films with ideally more than 500 nm for mechanical 

investigation. 

 

Table IV.2. Experimental conditions of the TDMSA-O2 chemistry tested in the tubular CVD reactor. 

Run SPT (°C) 
TDMSA bubbler 

temperature (°C) 

TDMSA 

flow rate 

(sccm) 

O2 flow rate 

(sccm) 

Deposition time 

(min) 

TD7 650 80 2 0.6 150 

TD9 650 80 2 - 150 

TD10 650 80 2 0.6 900 

TD11 650 82 2.67 0.3 225 

TD12 650 80 2 1.2 150 

TD14 625 80 2 0.6 300 
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IV.1.2.1. Effect of the O2 flow rate 

The effect of the O2 flow rate on the DR and the film composition in absence of NH3 is investigated 

across experiments TD7, TD9, TD11 and TD12, as presented in Fig. IV.6.  

 

 

Fig. IV.6. Effect of the O2 flow rate on the DR (a), nitrogen (b) and carbon content (c) across runs TD7, 

TD9, TD11 and TD12, at SPT 650°C. Thermal profile for SPT 650°C is also included (grey triangles). 

 

Inspecting Fig. IV.6a, it is observed that a higher O2 flow rate enhances the overall DR of the 

process. This confirms well the deposition-promoting behavior of O2 noted in previous experiments. A 

maximum DR of 0.83 nm.min-1 is measured for 1.2 sccm O2, dropping to 0.24 nm.min-1 when no O2 is 

added in the gas phase. In the latter case, deposition is still observed. This could either be caused by the 

presence of residual O2 in the deposition chamber, or could indicate that the thermal decomposition of the 

precursor itself can also lead to deposition. Bell shapes are once again encountered for the three runs 

utilizing O2, indicating the eventual consumption of O2 or oxygen-containing species in the gas phase. No 

obvious bell shape is observed for 0 sccm O2.  

The effect of the O2 flow rate on the nitrogen content is shown in Fig. IV.6b. Nitrogen is observed 

for all experiments, confirming that it originates from the TDMSA precursor. The trends are similar to those 
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observed in presence of NH3 (Fig. IV.3b), confirming that contribution of NH3 to the deposition mechanism 

is low. The maximum N content is observed on the last sample on the array of Si coupons. Globally, the 

results illustrate well the competitive behavior of O and N incorporation, with high values up to 20.3 at.% 

N noted for 0 and 0.3 sccm O2, dropping progressively to a maximum of 7.5 at.% and 4.5 at.% for 0.6 and 

1.2 sccm O2, respectively. Similar trends are noted in terms of carbon content, as shown in Fig. IV.6c. A 

maximum C content of 52.9 at.% is observed for 0 sccm O2, decreasing to 12.0 at.% when 1.2 sccm O2 is 

supplied. Overall, the higher the applied O2 flow rate, the lower the carbon incorporation in the films. The 

results once more confirm the previously noted cleaving effect of organic moieties by O2. 

 

IV.1.2.2. Effect of deposition temperature 

The temperature window that allows for SiOxNy film formation from the TDMSA-O2 chemistry is 

not extensive (only ca. 610 to 650°C). For that reason, the effect of the SPT on the DR and film composition 

is studied using two SPT close to each other, namely 650°C and 625°C (runs TD7 and TD14), and is 

presented in Fig. IV.7. The inlet gas composition for both experiments remained the same (Table IV.2).  

 

 

Fig. IV.7. Effect of the SPT on the DR (a), nitrogen (b) and carbon content (c), for runs TD7 and 

TD14. Respective thermal profiles are included in dark (650°C) and light grey (625°C). 
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Fig. IV.7a shows a maximum DR of 0.39 nm.min-1 for SPT 625°C, which increases to a maximum 

of 0.64 nm.min-1 for SPT 650°C. The DR values per sample are globally higher at the higher SPT. The 

results illustrate well the thermal dependency of the deposition process, as is expected for endothermic 

reactions.  

The effect of deposition temperature on the N and C content of the films is presented in Fig. IV.7b 

and c, respectively. Globally, nitrogen incorporation follows a similar trend and shape for both SPTs, 

namely continuous increase from almost 0 below 600°C to a maximum at the last sample of the array. 

However, higher contents in N are noted all along the reactor for SPT 650°C, reaching up to 7.5 at.% in 

contrast to the maximum 5.6 at.% N probed for SPT 625°C. This, once again, illustrates that nitrogen 

enrichment is favored at higher temperatures. In terms of carbon content, it follows a similar, though more 

irregular, trend than that of the nitrogen content. However, there is no clear distinction between the two 

SPT. Carbon incorporation is influenced by multiple factors, such as local temperature, O2 consumption in 

the gas phase and intermediate species distribution and concentration. 

 

IV.1.3. SiOxNy films composition by IBA techniques 

The previously presented composition results were extracted using an ellipsometry model that can 

give approximate estimations for the N and C contents in the films. Indeed, this is a useful and timesaving 

method that allows for a fairly quick analysis of a large number of samples, enabling the extraction of DR 

and film composition profiles across the whole length of the reactor. Unfortunately, however, ellipsometry 

is unable to take the presence of hydrogen into account. As such, more accurate composition results are 

obtained by using Ion Beam Analysis (IBA) techniques, albeit for a limited number of films. The center of 

sample p2 (Fig. IV.1) is systematically analyzed by IBA to directly compare film composition across 

experiments, without locality effects. Due to the limitations of the IBA techniques however, only films with 

a thickness above 75 nm could be probed. 

 

IV.1.3.1. Composition of TDMSA-NH3-O2 films 

Runs TD6, TD7 and TD8 are re-examined by IBA. The effect of the variable NH3 flow rate on the 

film composition is presented in Fig. IV.8. The trends previously noted by ellipsometry, namely the lack of 

impact of NH3 on the nitrogen incorporation and the decrease in carbon incorporation for higher NH3 flow 

rates, are also encountered in the IBA results. Concentrations between 18.8 and 23.1 at.% H are probed. 

IBA reveals that there is no specific correlation between the NH3 flow rate and the hydrogen content in the 
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films. Interestingly however, the H concentration follows a reverse trend compared to that of O, and more 

similar to that of Si. 

 

 

Fig. IV.8. IBA composition results for films produced under various NH3 flow rates. 

 

IV.1.3.2.  Composition of TDMSA-O2 films 

The effect of the O2 flow rate (runs TD7, TD11, TD12) and the SPT (runs TD14 and TD7) on the 

composition of the samples are re-examined more closely by IBA in Fig. IV.9. Similarly to the trends 

previously noted by ellipsometry, IBA confirms once more the competitive incorporation between O and 

N, as shown in Fig. IV.9a. Carbon incorporation also decreases for higher O2 flow rates. Observing the 

similar trends in N and C contents, two potential explanations are proposed. The most likely scenario, 

proposed previously, is that the presence of O2 in the gas phase has a cleaving effect on the methyl moieties 

of the film-forming intermediates. A second scenario could be that the lower C content originates from the 

competitiveness between O and N incorporation. If we assume that N and C are inserted in the films through 

the same intermediate molecule, then it stands to reason that both elements would be in competition with 

oxygen. Each scenario is non-exclusive of the other, and in fact, both could occur at the same time. If only 

the second scenario were to take place, then a constant C/N ratio should have been encountered across all 

runs, which does not seem to be the case. 

The IBA results of Fig. IV.9a provide additional information on the hydrogen content of the films. 

The probed contents vary between 17.2 and 22.7 at.% H. A correlation between the O2 flow rate and H 

content is noticed only between the two highest O2 flow rates, with lower levels of H observed for 1.2 sccm 
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O2. Considering the trends of all elements, it is proposed that hydrogen is encountered in multiple forms in 

the films: N–H, –CHx, adsorbed H2O and potential Si–H. Confirmation of these bonding states relies on  

FT-IR analysis of the films that is presented later. 

 

 

Fig. IV.9. IBA composition results for films produced under various O2 flow rates in absence of NH3 (a), 

and for a varying SPT at a fixed flow of 0.6 sccm O2 (b). 

 

Changes in film composition from differences in SPT are shown in Fig. IV.9b. The trends of 

ellipsometry are encountered once more, with higher N incorporation being noted when the temperature is 

increased. Two speculations can be made at this point: the first one is that the increase of the temperature 

activates deposition reactions from nitrogen-containing intermediates that require higher activation energy. 

The second one involves the increase of the concentration of the various nitrogen-containing intermediates 

produced in the gas phase. Both scenarios can occur at the same time. Regarding carbon, its incorporation 

is increased at higher SPT. This observation could further indicate a co-deposition of C and N through a 

common intermediate species. Fig. IV.9b also gives additional insight on the hydrogen content of the films, 

which increases from 18.1 to 22.7 at.% H between 625 and 650°C. This behavior coincides well with the 

increase of N and C incorporation and leads to the proposal that the majority of hydrogen is introduced in 

the films through N–H and/or –CHx moieties.  

A closer inspection also reveals that the C/N ratio of the films seems to decrease slightly with the 

temperature. It can be proposed that the increase of the temperature enhances the level of decomposition of 

the precursor and leads to the formation of intermediate species that contain fewer –CH3 ligands. Therefore, 

globally, even though the carbon content increases with the temperature, the C/N ratio decreases, hinting at 
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a simultaneous activation of film formation from carbon and nitrogen containing intermediates, along with 

a parallel enhanced carbon-cleaving effect. 

As a closing remark, the N and C contents calculated by ellipsometry are close to those measured 

by IBA. However, this is expected, given that the ellipsometric model was calibrated using IBA results of 

run TD7, following the methodology explained in section II.2.2.2 of Chapter II. Without calibration, 

ellipsometry can on one hand provide relative compositional information in terms of qualitative trends, but 

fails to give accurate quantitative results. IBA is better suited for accurate compositional analysis, since it 

also considers hydrogen. Regardless, when both methods used in a complementary manner, a calibrated 

ellipsometric model is incredibly useful for quickly ascertaining compositional evolutions for a large 

number of samples and across multiple experiments. 

 

IV.1.4. Chemical bonding in SiOxNy films 

The study of the chemical bonding in SiOxNy films from the TDMSA-O2 chemistry analyzed by 

FT-IR was carried out in collaboration with Paris Papavasileiou from the National Technical University of 

Athens (NTUA), in the frame of his Diploma thesis [269]. Given that films produced from TDMSA are an 

oxynitride material that contains carbon, various bonds, identified previously in SiO2 and SiOxCy:CH3 films 

deposited from TEOS and HMDS-TEOS, are encountered once again, in addition to new nitrogen-related 

ones. A representative FT-IR survey spectrum, taken at the center of sample p1 of run TD7, is shown in 

Fig. IV.10. The characteristic TO1, TO2 and TO3 modes of a usual SiO2 material are noted, along with the 

TO3-LO3 pair [99, 187]. Additionally, absorptions relating to organic carbon incorporation are noted as 

expected, given the presence of –CH3 ligands in the starting TDMSA precursor molecule. Absorptions 

corresponding to the hydration of the network by Si–OH or H2O can also be observed. 

New absorptions are also noted. At ca. 936 cm-1, an absorption evidencing the Si–N bond is found 

[270, 271]. Further indication of the incorporation of nitrogen is given through the absorptions noted at 

approximately 470 and 830 cm-1, corresponding to the symmetric and asymmetric stretching modes of the 

Si–N bond, respectively [272]. According to the literature, an additional absorption appears at ~3400 cm-1, 

attributed to the N–H stretching vibration [270]. This band appears to be asymmetric and presents a “tail” 

that extends towards lower wavenumbers. This behavior has been speculated to be caused by hydrogen 

bonds between the hydrogen atoms of the N–H bond and the lone electrons of nearby nitrogen atoms [273]. 

The notation given for this specific type of vibration is N–H···N and can be found at around 3300 cm-1.  
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Fig. IV.10. FT-IR survey spectrum of a SiOxNy film from run TD7, analyzed for an incidence angle of 

60°. Inset diagram shows the evolution of hydrogen related bonds in the 2600-3700 cm-1 region, as a 

function of the O2 flow rate (runs TD7, TD9, TD11, TD12). 

  

Given that the present SiOxNy films are the most complex ones produced in the frame of this thesis, 

a summary of all encountered absorptions is listed in Appendix 4. Similarly to the produced SiO2 and 

SiOxCy:CH3 films, the full spectrum can be divided into two main areas of interest: the fingerprint region 

(400-1400 cm-1) and the hydrated network band (2700-3600 cm-1). An evolution of the latter as a function 

of the O2 flow rate is presented in the inset of Fig. IV.10. Because of the complexity of the produced SiOxNy 

material and the multiple bonds absorbing at these frequencies, the evolution of the hydration state in the 

films is not instantly obvious. From a first look, it can be noted that the Si–OH absorption at ca. 3650 cm-1 

increases with the addition of more O2 in the inlet supply. However, no clear observation can be made for 

the water-bonded Si–OH:H2O peak at around 3400 cm-1, because it overlaps with the N–H stretching bond 

absorbing at 3400 cm-1, which makes it difficult to discern between the two. Therefore, the hydrated region 

of the TDMSA films is mainly used in a qualitative manner to confirm the presence of Si–OH and N–H 

absorptions. Organic –CH3 asymmetric stretching absorptions are noted in the band as well, as evidenced 

by the weak absorptions (small shoulders) at ca. 2900 cm-1. 

 



Chapter IV. Deposition of SiOₓNᵧ barrier coatings from tris(dimethylsilyl)amine, TDMSA 

154 

 

IV.1.4.1. Evolution of the SiOxNy network 

The fingerprint region of the SiOxNy films was analyzed as a function of the O2 flow rate in Fig. 

IV.11a, by probing p1 samples of runs TD7, TD9, TD11 and TD12. Once more, the overlapping absorptions 

interfere with a straightforward analysis, but general trends can be observed regardless. The trends are 

symbolized with arrows indicating the shift of the peak position and its change in intensity.  

 

 

Fig. IV.11. Evolution of the FT-IR spectra of TDMSA-O2 films at SPT 650°C, produced under various O2 

flow rates (runs TD7, TD9, TD11, TD12), analyzed for an incidence angle of 60° (a). Supplementary 

diagrams show evolution of Si–(CH3)x and LO3 position (b), TO3 position and TO2 intensity (c) and the 

intensity of various Si–N absorptions (d) as a function of the O2 flow rate, after deconvolution. 

 

It is recalled that a reduction in O2 supply results in films with higher nitrogen and carbon 

incorporation, as revealed by IBA and ellipsometry. This is reflected in FT-IR with the decrease of the LO3 

and TO3 intensities and the parallel increase of the Si–N and Si–C absorptions. Visually, the LO3-TO3 pair 

is not observed anymore for 0.3 and 0 sccm O2, with the overall spectrum having seemingly “shifted” 

towards lower wavenumber. Deconvolution is applied to facilitate the identification of the individual 

absorptions and their position. First, the Si–CH3 peak is identified as the small shoulder around 1270 cm-1. 

Its position shifts towards higher wavenumbers with the increase of the O2 flow rate (Fig. IV.11b), which 
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indicates the addition of more O atoms to the Si–(CH3)x complex [274]. Similarly, the LO3 mode also shifts 

towards higher wavenumbers at higher O2 flow rates, hinting at the production of a more oxygen-rich film. 

However, it is noted that its position shifts substantially (from the expected position at ~1250 cm-1 to 1170 

cm-1) when O2 flow rate is 0.3 sccm or less. It is proposed therefore that the LO3 absorption is potentially 

not present anymore, and that a different vibration is absorbing around the 1170 cm-1 frequency. Referring 

to Appendix 4, this absorption could be related to the TO4-LO4 pair. 

TO3 behaves in a similar manner, absorbing at ca. 1050 cm-1 for 1.2 sccm O2 and shifting towards 

lower wavenumbers for lower O2 flow rates (Fig. IV.11c). The lowest wavenumber noted for TO3 is 1022 

cm-1. It is recalled that Si–CH2–Si absorbs at 1000-1020 and 1060 cm-1 [247, 250]. Therefore, it could well 

be that, at the lowest O2 flow rates, a carbon-related absorption is probed instead of the typical TO3 of the 

Si–O–Si network. This could very likely be the case, given the high C concentrations measured by both 

IBA and ellipsometry and the potential disappearance of the LO3 mode. Similar observations can be made 

for the absorption at 820 cm-1 (Fig. IV.11c). Both Si–C and Si–O (TO2) absorb at this frequency [214, 275]. 

A high intensity is noted at 0 sccm O2. Given that the LO3 band has potentially disappeared in absence of 

O2, and that the TO3 mode in that case is a Si–CH2–Si absorption instead, the peak at 820 cm-1 can be 

attributed to the Si–C bond. Once O2 is added to the inlet gas composition, the intensity at 820 cm-1 drops, 

slowly switching from a Si–C to a Si–O TO2 mode, which starts increasing again for higher O2 flow rates.  

The intensity of various Si–N related absorptions is also presented (Fig. IV.11d). Overall, such  

Si–N absorptions are shown to decrease with the addition of O2. This reflects well the IBA and ellipsometry 

results presented so far. Interestingly, the three vibrational modes do not follow the exact same trends. This 

indicates that the nitrogen incorporates differently across the films, a behavior that could potentially be 

caused by deposition from distinct nitrogen-providing intermediates depending on the O2 flow rate. 

The above FT-IR discussion is well supported by X-ray photoelectron spectroscopy (XPS). Table 

IV.3 presents a synthesis of the chemical environment, as probed by XPS, for SiOxNy samples produced at 

SPT 650°C, under varying O2 flow rate, after deconvolution of the spectra based on literature data [253, 

276, 277]. Globally, an increase in O2 flow rate is reflected well in the higher oxygen content of the analyzed 

films (13.54 at.% for 0 sccm O2, increasing to 49.69 at.% for 1.2 sccm O2). The evolutions of the other 

elements is coherent with the ellipsometry and IBA results as well. The chemical bonding state can be 

inspected more closely after the deconvolution analysis. More specifically, the environment of Si appears 

to be changing substantially based on the O2 flow rate. For the highest O2 flow rates, Si appears to be 

involved primarily in Si(O)4 and O–Si–N configurations. Decreasing the O2 supply at the inlet however 

results in the transition from Si(O)4 to SiNx, correlating well with the decreased LO3 and TO3 absorptions 

in FT-IR. XPS results also confirm the presence of the Si–C absorption that was overlapping with TO2. 
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However, only 4-5 % of the incorporated carbon is found in a Si–C–Si environment. The rest is involved 

in organic bonds or SiOxCx, which increase with a decrease in O2 flow rate. 

 

Table IV.3. XPS deconvolution analysis of SiOxNy by TMDSA-O2 at 650°C, for variable O2 flow rates. 

Bonding    O2 flow rate (sccm) 

  0 0.3 0.6 1.2 

  Binding 

energy (eV) 

Atomic 

% 

Binding 

energy (eV) 

Atomic 

% 

Binding 

energy (eV) 

Atomic 

% 

Binding 

energy (eV) 

Atomic 

% 

S
i2

p
 

Si-C 100.5 0.83 100.5 0.23 100.4 0.76 100.4 0.25 

SiOxCx 101.13 0.42 101.13 0.11 101.03 0.38 101.03 0.12 

SiNx 101.23 26.62 101.39 26.43 - - - - 

N-Si-O 101.86 13.31 102.02 13.21 102.51 25.19 102.6 25.87 

Si(O)4 - - - - 103.14 12.59 103.23 12.93 

C
1
s 

Si-C 282.6 1.31 282.6 0.55 282.6 0.67 282.6 0.38 

SiOxCx 283.8 25.62 283.8 25.33 283.94 7.4 283.97 4.63 

CC or 

CH 

285.01 5.83 285 4.16 285 2.86 285 1.53 

C-O 286.3 0.15 286.3 0.5 286.28 0.69 286.17 0.51 

C=O 286.81 0.4 286.7 0.46 286.9 0.45 286.9 0.38 

O=C-O - - 289 0.08 289 0.36 289 0.33 

N
1
s 

N-Six 397.74 10.87 397.76 10.36 398.07 4.95 398.02 2.73 

O-N-Si - - - - - - 398.9 0.65 

O-N-Si2 399.18 1.11 399.17 1.16 399.8 0.26 - - 

 O1s 532.05 13.54 532.05 17.44 532.26 43.42 532.26 49.69 

 

 

IV.1.5. Mechanical properties 

It is recalled that nanoindentation analysis requires films with thickness around 500 nm or higher. 

However, given the very low DR of the tested TDMSA chemistries at the investigated deposition conditions, 

the technical limitations become clear. Referring back to Table IV.2, only one run (TD10) is performed for 

the production of thick SiOxNy films from TDMSA-O2. Despite the execution of only one experiment, the 

particular evolution of the nitrogen content along the length of the reactor proved beneficial: it allows 
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correlating in a combinatorial manner the mechanical properties of the films to their composition with just 

one single experiment. In more detail, samples from the isothermal region are analyzed by nanoindentation 

to obtain information on their hardness H and elastic modulus E. Given that the temperature remained 

constant in this region, any change in these mechanical properties can be safely attributed to the change in 

local film composition and, consequently, the network structure. The evolution of H and E as a function of 

the nitrogen content, as calculated by ellipsometry, is presented in Fig. IV.12. 

 

 

Fig. IV.12. Influence of the local nitrogen content on the elastic modulus E and hardness H of 

TDMSA-O2 films produced at SPT 650°C (TD10). 

 

Both H and E appear to evolve in a similar manner, slightly increasing with higher incorporation 

of nitrogen, but seem to stabilize beyond 7.0 at.%. More specifically, sample p1, with a local nitrogen 

content of 4.3 at.%, exhibits a hardness and elastic modulus of 4.3 and 50.3 GPa, respectively. Further 

inside the reactor yet still in the isothermal region, sample p5, with a local nitrogen content of 8.0 at.% has 

its hardness and elastic modulus increase to 7.0 and 69.4 GPa, respectively. Both mechanical properties are 

comparable to values obtained from PECVD SiOxNy films with ca. 10 at.% N, for which the elastic modulus 

and hardness are reported at 78.9 and 7.8 GPa, respectively [278]. 

Interestingly, the mechanical properties of the SiOxNy films from TDMSA-O2 are in the same range 

as those of SiO2 from TEOS-O2/O3. Although SiOxNy materials are usually more resistant to penetration 

and deformation than SiO2, the presence of organic moieties in the produced films could potentially explain 

the similar values noted between the two chemistries. Regardless, the results illustrate well how the partial 
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and progressive replacement of O atoms by N ones induces a change in the material network and density, 

improving as a result the mechanical properties of the film, despite the temperature remaining constant. 

 

IV.1.6. Surface wettability 

Water wettability measurements on the various SiOxNy films, which were previously characterized 

by IBA, are presented in Fig. IV.13. Initial inspection of the results reveals that the global water contact 

angle (WCA) ranges from 76.9° to 89.4°, but seems to be overall independent from the nitrogen content 

(Fig. IV.13a). These values are close to the ones reported by Trevino et al. [279], who noted a WCA of 

73.6° for a thermally grown SiOxNy surface with 14.5 at.% N and 14.4 at.% C. Such results illustrate well 

the multifactorial dependency of the surface wettability. Plotting of the measured WCA values as a function 

of the carbon and hydrogen contents was also attempted, but no clear correlation was noted. Given the non-

linear behavior of the WCA versus the composition in nitrogen, carbon or hydrogen, the wettability 

behavior is additionally examined as a function of the various process parameters.  

More specifically, Fig. IV.13b presents the evolution of the WCA for increasing NH3 flow rate 

under constant O2 flow of 0.6 sccm (runs TD6, TD7, TD8), and for increasing O2 flow rate in absence of 

ammonia (runs TD7, TD11, TD12). In the first case, an increase in NH3 flow rate seems to decrease the 

WCA. This trend could be attributed to the decrease of the organic carbon content in the films through 

cleaving by NH3, as was revealed by IBA (Fig. IV.8). It is known that higher organic concentrations in 

silicon oxide and nitride films tend to increase the hydrophobic character of the films. In the case of nitrides, 

Arafat et al. [280] presented an increase of the WCA from ca. 60° to approximately 83° for the surface 

termination of Si3N4 with an organic monolayer. Similarly, Saengdee et al. [281] noted an increase of the 

WCA of Si3N4 from 73° to ca. 86° after replacement of surface –OH groups by organic carbon ones. 

Another potential connection could be made with the introduction of further surface NH2 groups or –N–H 

bonds in the films for higher NH3 flow rates. It is noted that Si–NH–Si bonds are hydrophilic due to their 

polarity and their quick reaction with water in the air [282]. However, no such correlation was possible 

when plotting the WCA as a function of the NH2 or NH absorbance at 3300 to 3400 cm-1 from the respective 

FT-IR spectra. 

An increase of the O2 flow rate in absence of ammonia (runs TD7, TD11, TD12) appears to increase 

the WCA slightly (Fig. IV.13b). A similar behavior is shown in Fig. IV.13c, where an increase in O2 flow 

rate under a constant NH3 flow of 20 sccm (runs TD6, TD4) also increases the WCA. This behavior is 

unexpected, since increase of the O2 flow rate decreases nitrogen incorporation and enhances the oxide 

character of the films. Hong et al. [283] specifically mention that lower nitrogen incorporation in silicon 
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oxynitride films can make the surface more negatively charged and hydrophilic, by facilitating dipole 

interaction and hydrogen bonding between silanols and water. The slight increase in WCA is therefore 

difficult to explain, but could be caused due to a replacement of the hydrophilic NH or NH2 groups by, 

slightly less hydrophilic, Si–OH ones. 

 

 

Fig. IV.13. Water wettability results for various SiOxNy films from runs TD6, TD8, TD7, TD11, TD12 

and TD14. Evolution of the contact angle as a function of the N content of the films (a), NH3 flow rate 

and O2 flow rate in absence of NH3 (b), O2 flow rate in presence of NH3 and temperature (c), 

and Si–H absorption at ca. 630 to 650 cm-1 (d). 
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Even though the analysis of only two points was possible, the effect of the SPT is also considered 

(Fig. IV.13c). It appears that an increase of 25°C leads to more hydrophilic films. It is recalled that N film 

concentration is higher at 650°C compared to 625°C making it possible that a relatively higher amount of 

NHx bonds is also present, increasing the wetting phenomenon. At the same time however, a closer 

inspection of the FT-IR data of these particular samples reveals that the methyl related absorptions increase 

at 650°C, which is in contrast to the lower WCA value noted at this temperature. 

Considering all the above, it is once again apparent that the surface wettability depends on a large 

number of factors, including film composition, surface termination, roughness and surface energy, as was 

discussed in Chapter III. In the case of silicon nitride materials, surface termination is affected by –OH,  

–NH2 and –CH3 groups. Tsukruk and Bliznyuk reported a contact angle of 42°, 53° and 75° for –OH, –NH2 

and –CH3 terminated silicon nitrides, respectively [284]. Other authors however also place importance on 

the Si–H content, mentioning that replacement of –OH by Si–H reduces wettability [285]. In a similar sense, 

it was also noted that replacement of NH or NH2 surface sites by the less polar Si–H surface bonds through 

HF etching also increases the contact angle of Si3N4 films [280]. In the case of oxynitride materials, Zhang 

et al. produced SiOxNy coatings with high Si–H contents and noted WCAs between 98 and 110° [282]. As 

such, a closer inspection was given to the evolution of the Si–H absorption across the films. Even though 

this specific bond absorbs very weakly between 630 and 650 cm-1 in the FT-IR spectra, tracing the measured 

WCA values as a function of its absorbance yielded an almost linear behavior (Fig. IV.13d). Of course, that 

is not to exclude the impact of the other factors mentioned previously. Regardless, the increase of WCA 

with the Si–H content reflects well the reports in the literature. 

 

IV.1.7. Wet etching corrosion resistance of SiOxNy films 

In a first step, the wet corrosion resistance of a TDMSA-NH3-O2 film produced at 650°C (run TD3) 

is assessed by P-etch. The results reveal a significant improvement in corrosion resistance with a 

remarkably low P-etching rate of 0.2 Å.s-1 noted for the SiOxNy film. This value measures at least one order 

of magnitude lower than the TEOS (9.1-19.1 Å.s-1) and HMDS-TEOS (14.8-60.4 Å.s-1) films produced so 

far, even when compared to films that underwent annealing post-treatment at 550°C (ca. 4.0 Å.s-1). This 

vastly improved corrosion resistance cannot be attributed merely to the increase of the temperature from 

550°C to 650°C. This is also supported by the record-low etching rate of 2 Å.s-1 for SiO2 films produced at 

800°C [177]. If it were merely an effect of the temperature, the etching rate at 650°C would be expected to 

fall between 2 and 4 Å.s-1. Therefore, it becomes clear that this significant improvement is to be attributed 

to the change in film composition, and more specifically to the partial replacement of O atoms by higher 
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coordinated N ones. Another interesting point is that the presence of organic carbon, as was identified by 

FT-IR, does not seem to be detrimental to the P-etch behavior of the SiOxNy films. 

It must be noted, however, that such low etching rate values render it difficult to discern between 

SiOxNy films with variable nitrogen contents, especially when wishing to establish a link between the 

composition and the corrosion resistance. For that reason, a chemical etching solution that is more suitable 

for the resistant silicon nitride materials must be utilized. A literature review on the various etchants used 

for the chemical etching of silicon nitride and silicon oxynitride films is presented in Table IV.4.  

 

Table IV.4. Buffered oxide etching solutions, process parameters and etching rates noted in the literature. 

 

 

The most commonly utilized solution for etching nitrogen-rich films is a Buffered oxide etchant 

(BOE) solution. A key difference from the P-etch solution is that the BOE solution contains NH4F, which 

helps maintain (buffer) the HF concentration and pH value of the solution, aiding in the continuous etching 

of the nitride films [289]. Oftentimes this solution is also referred to as Buffered hydrogen fluoride (BHF) 

Ref. Material Etchant Chemistry Method 
P 

(mTorr) 
T°C Notes 

BOE 

etching 

rate (Å.s-1) 

[286] SiNx 
BOE 

6:1 
SiH4/N2/Ar 

ECR-

PECVD 
<1 <120°C - 0.8-25 

[179] SiOxNy 
BOE 

6:1 
SiH4/N2/Ar 

ECR-

PECVD 
<0.9 <120°C 15 at.% C 1.6-17 

[287] SiNx 
BOE 

7:1 
SiH4/N2/Ar 

ICPE-

CVD 
1-20 150°C 

15-20  

at.% H 
6-20 

[287] SiNx 
BOE 

7:1 
SiH4/N2/Ar PECVD 1-20 150°C 

25-30  

at.% H 
83 

[288] SiNx 
BOE 

9:1 
SiH4/N2/Ar 

ECR-

PECVD 
1.5 90°C 

24-31  

at.% H 
3-28 

[289] Si3N4 
BOE 

10:1 

Commercial 

Si3N4 mask 
- - - - 0.1 

[290] SiNx 
BOE 

10:1 
SiH4/NH3/H2 PECVD 500 150°C 

2.1022  

cm-3 H 
61 

[180] 
SiNx, 

SiOxNy 

BOE 

10:1 
Si3N4 target 

RF 

Sputtering 
<1 - - 8-295 

[291] SiNx Misc. SiH4/NH3 
Photo-

CVD 

300-

1400 

100-

400°C 
- 10-150 
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solution. No standard composition has been proposed in the literature for the screening of silicon nitride 

films, with the scientific community using various ratios of NH4F:HF. Nonetheless, it is noted that the BOE 

10:1 solution is the most widely used one in the semiconductor industry and encountered in the majority of 

the patents concerning Si3N4 films for MEMS and semiconductor devices. Despite that, given that the BOE 

6:1 solution is more aggressive than BOE 10:1, the former (6:1) is used to better screen the produced SiOxNy 

films among each other. 

Fig. IV.14 presents the evolution of the BOE 6:1 etching rate of various SiOxNy films as a function 

of their nitrogen content, as calculated by ellipsometry. SiO2 and SiOx films from the TEOS and HMDS-

TEOS chemistries produced at 550°C are also etched with this solution for comparison. A nitrogen content 

of 0 at.% is assigned to them in this figure. 

 

 

Fig. IV.14. BOE etching rate of SiOxNy films from TDMSA chemistries, as well as SiO2 and SiOx films 

from TEOS and HMDS-TEOS, respectively. Power curve added for visual aid. 

 

Fig. IV.14 reveals a BOE etching rate of around 88 Å.s-1 and 66 Å.s-1 for HMDS-TEOS and TEOS 

films, respectively. It is recalled that at this temperature (550°C), these two films correspond to a sub-

stoichiometric and stoichiometric SiO2, respectively. Similar to the P-etch results, the film from TEOS 

presents a better resistance to the corrosive BOE solution in comparison to the HMDS-TEOS film. Beyond 

that, incorporation of nitrogen in the silica network results in BOE etching rate values ranging from 74 Å.s-1 

down to 0.1 Å.s-1 depending on the nitrogen content. The measured values are comparable to those noted 

in the literature (Table IV.4), with even lower etching rate values observed for most of the produced films.  
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Another interesting point is that the etched oxynitride films in the present thesis have a nitrogen 

concentration below 15 at.% N, yet perform as well, if not better, as some of the nitride films studied in the 

literature. Additionally, the power curve added for visual aid reveals that the SiOxNy films from TDMSA 

converge to values below 4 Å.s-1 beyond approximately 7 at.% N. This result is significant in establishing 

a link between the operating conditions, film composition and corrosion resistance. Based on the above 

information, it seems that films with around 7 at.% N are sufficient in achieving an excellent corrosion 

resistance. Further incorporation of nitrogen beyond this point does not appear to be necessary. This 

information is important when defining operating conditions with a targeted corrosion resistance behavior 

in mind. 

It is recalled that the etching rates of Fig. IV.14 are measured from films that have been processed 

under a variety of operating conditions. Since the link to the nitrogen content is well established, a closer 

look at how the specific operating conditions affect the etching rate is presented in Fig. IV.15. 

 

 

Fig. IV.15. BOE etching rate of SiOxNy films from TDMSA, plotted as a function of the nitrogen content 

along the length of the reactor (a), the NH3 flow rate under constant O2 flow of 0.6 sccm (b), the O2 flow 

rate for 0 and 20 sccm of NH3 (c) and the O2 flow rate in absence of NH3 (d). 
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Fig. IV.15a examines the evolution of the etching rate across 5 samples from run TD3 as a function 

of their nitrogen concentration. Since a thermal gradient exists along the length of the reactor, the local 

temperature of each sample is also noted. For a sample produced outside the isothermal region, with a local 

temperature of 609°C and a nitrogen concentration of 0.1 at.%, a BOE etching rate of 57.5 Å.s-1 is noted. 

When examining a sample of the isothermal region, produced at a local temperature of 650°C and having 

a nitrogen concentration of 9.5 at.%, the etching rate drops to 0.9 Å.s-1. A decreasing trend is observed 

overall for a simultaneous increase in temperature and nitrogen content. This behavior was also noted by 

Rathi et al. [291], the results of whom illustrated a decrease in etching rate when substrate temperature was 

increased from 100 to 400°C. The authors attributed this evolution to a loss in hydrogen of the films, 

followed by densification of the network as a result of the higher deposition temperatures. 

Additionally, the BOE evolution in Fig. IV.15a presents a break in its slope: a steep decrease is 

noted between 0 and 2.5 at.% N, explained as an effect of the temperature. As was presented in Chapter III, 

an increase in temperature greatly aids the densification of the network, through desorption of hydrated 

species and reorganization of the Si–O–Si bridges. After the break, a milder slope is observed between 2.5 

and 10 at.% N. The temperature remains constant in that case, but the nitrogen concentration increases. It 

can therefore be said that the etching rate depends strongly on the process temperature on one hand, which 

on the other hand is a process parameter that also influences the level of nitrogen incorporation. 

Fig. IV.15b examines the effect of the NH3 flow rate on the BOE etching rate, under a constant O2 

flow of 0.6 sccm (runs TD6, TD7, TD8). The nitrogen content of the films is also noted. No specific 

behavior is observed, with all values falling within the error bars, ranging between 7.4 to 14.3 Å.s-1. This 

could be explained by the fact that a change in NH3 does not affect the nitrogen content of the films enough 

in order to lead to a change of their corrosion resistance. Instead, NH3 has been mostly seen to influence 

the carbon content of the films (Fig. IV.8). However, as was noted previously, the presence of CH3 does 

not seem to greatly influence the etching rate in the case of SiOxNy films. Similar observations were 

mentioned by Trevino et al. [279], who studied the surface modification of SiOxNy containing ca. 14 at.% 

C and noted that their applied HF dip process do not impact carbon. It is therefore not surprising that 

changes in the NH3 flow rate do not reveal any specific trend in the BOE etching rate. 

Fig. IV.15c examines the effect of the O2 flow rate on the BOE etching rate, with (TD4, TD5, TD6) 

and without NH3 (TD9). When no O2 is added in the inlet gas composition, a BOE etching rate of 3.9 and 

0.1 Å.s-1 is noted for 0 and 20 sccm NH3, respectively. An increase of the O2 flow rate to 2 sccm worsens 

the corrosion resistance of the film, with its BOE etching rate increasing drastically to 74.6 Å.s-1. Similar 

results were presented by Volkov and Satunkina [180], who studied the etching rate of Si3N4 films and its 

evolution for increasing addition of O2 in the inlet gas composition. The authors noted that the BOE etching 
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rate of their silicon nitride films increased dramatically with gradual increase in oxygen incorporation. An 

approximately 83 times higher BOE etching rate was measured once the material had fully transitioned 

from Si3N4 to SiO2. A similar trend is also encountered when examining the effect of the O2 flow in absence 

of NH3 in Fig. IV.15d. When a 0.3 sccm O2 is used, a BOE etching rate of 0.7 Å.s-1 is noted. This value 

increases to 16.2 Å.s-1 for a higher O2 flow of 1.2 sccm. Once again, the decreased corrosion resistance is 

attributed to the loss in nitride character (i.e. gain in oxide character) of the films under higher O2 flow rates. 

Two additional points are discussed. First, in Fig. IV.15c, the etching rate of a film produced only 

from TDMSA, namely in absence of O2 and NH3 (run TD9), has a BOE etching rate of 3.9 Å.s-1. 

Considering the results, it is revealed that the addition of 20 sccm of NH3 in absence of O2 (Fig. IV.15c), 

or the addition of 0.3 sccm O2 in absence of NH3 (Fig. IV.15d), result in a lower etching rate than the one 

noted from TDMSA alone. Thus, the addition of at least one of the two gases (O2 or NH3) in the inlet 

composition, preferably O2, is beneficial to the corrosion behavior of the films. This could be potentially 

linked to the ability of NH3 and O2 to cleave methyl ligands or hydrogen atoms from TDMSA and/or its 

intermediates in the gas phase, leading as a result to the production of films with a denser network. Lastly, 

the additional point in Fig. IV.15d is included to compare two films that have been produced under the 

same inlet gas composition, but at different SPT (runs TD7 and TD14). When deposition is performed at 

625°C (run TD14), a BOE etching rate of 11.5 Å.s-1 is noted, decreasing to 7.4 Å.s-1 when the SPT is raised 

to 650°C (runs TD7). These results reflect well the behavior previously discussed in Fig. IV.15a, pointing 

once more at the combined effect of higher temperatures and at.% N in improving the corrosion resistance 

of the films. 

The above results illustrate well the excellent performance of the SiOxNy films and their improved 

wet etching corrosion resistance in comparison to SiO2. At the same time however, they also underline the 

grand effect of the operating conditions on the resulting material. Factors such as gas phase composition, 

local temperature, and their subsequent effect on the resulting film composition and structure, play a big 

role in the final material performance. Chapter III demonstrated well how a deposition process governed 

by the precursor molecule differs from that driven by its intermediate molecules. The nature of the film-

forming compound greatly affects the composition and the various properties of the resulting film. Given 

that the TDMSA precursor is rarely studied, very little information exists about it in the literature. Thus, 

the following section attempts to shed light on the details of its deposition mechanism. Gas phase analyses 

are used to identify film-forming species and elaborate on potential deposition pathways, with parallel 

consideration of the solid phase data presented so far. 
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IV.2. Gas-phase analysis of the SiOₓNᵧ deposition process 

 

Analysis of the gas phase is executed in order to identify the gaseous species that are present during 

the SiOxNy deposition process. The three analyses, namely ESR, GC-MS and NMR, are carried out by 

sampling the gas phase at the outlet of the reactor, as was described in section II.2.1 of Chapter II. All three 

methods are implemented at the same time and systematically used for all runs of Table IV.1 and 2. 

Additional experiments are also performed to replicate selected experimental runs and confirm 

reproducibility, for calibration, or in order to extract additional information. This methodology was 

developed and implemented by engineer Laura Decosterd in the frame of the ANR project 

HEALTHYGLASS, supervised by Prof. Marie-Joëlle Menu. 

The results of section IV.1 have illustrated how the presence of NH3 in the gas phase does not 

benefit the aim of the present thesis: no enrichment in nitrogen or increase in DR was observed. Additionally, 

the wet etching corrosion results showed that samples produced under a TDMSA-O2-NH3 chemistry have 

a lower corrosion resistance, compared to samples produced using TDMSA-O2. For this reason, the current 

section focuses principally on the gas phase results of the TDMSA-O2 chemistry, in order to propose 

potential chemical reactions that can be used as the basis for the development of a deposition mechanism. 

Gas-phase results of experimental runs that utilize NH3 are included in Appendix 5. 

 

IV.2.1. Analysis of radical species by ESR 

Electron Spin Resonance (ESR) study is performed in order to gain insight into the species that are 

the most difficult to probe; namely the very reactive, radical species that are described by very short 

lifetimes. In order to observe them, the spin-trap molecule POBN is encapsulated in a KBr pellet and placed 

within the reactor, as described in section II.2.1.1 of Chapter II. After ESR analysis, it is observed that the 

same radical species is systematically trapped across all runs, independently of the reaction conditions 

(presence of NH3, O2 flow rate, or SPT) as is discussed below. 

First, Fig. IV.16a shows typical ESR spectra obtained in liquid and solid states. It is recalled that 

“liquid state” refers to an analysis after dissolution of the pellet in toluene, while “solid state” corresponds 

to analysis of the POBN encapsulated in the solid KBr matrix as is. For both states, a g-factor equal to 

2.0059 is noted. The signal of the solid state is observed to be anisotropic, with 2 parallel g values: gx= 

2.021 and gz=1.984. In the liquid state, the free rotation of the molecules gives rise to a triplet with g=2.0059. 

The liquid state also gives access to the hyperfine constants aN=14.6 G and aH, the latter of which is 

confounded in the bandwidth and cannot be calculated.  
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Fig. IV.16b shows liquid state ESR spectra for all runs. Differences in the intensities of the spectra 

are attributed to external factors. Despite that, the similarity between them indicates the generation of a 

common radical molecule. Additionally, analysis of the gas phase under presence of only TDMSA (run 

TD9) resulted in the trapping of the same molecule as for all other runs. It can therefore be deduced that 

the trapped species originates from the precursor and is independent from the other reactants used in the 

inlet gas composition. 

 

 

Fig. IV.16. ESR spectra obtained in liquid and solid state (run TD6) (a).  

Liquid state ESR spectra across all runs (b). 

 

Given the complex structure of the TDMSA molecule, its decomposition can follow multiple 

pathways based on the homolytic dissociation of the different bonds. For example, the homolytic breaking 

of the Si–N bond (Reaction IV.1) would result in the formation of two intermediate radical species Me2HSi• 

and (Me2HSi)2N•, which are noted Si_INT and N_INT hereinafter, respectively. Reaction IV.2 on the other 

hand proposes the homolytic dissociation of the Si–H bond, which would form a H• and a Si-centered 

radical. Finally, if the pathway is initiated at a Si–C bond (Reaction IV.3), it would produce a CH3
• and 

another Si-centered radical, as detailed below. 
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Reaction IV.1 

 

 

Reaction IV.2 

 

 

Reaction IV.3 

 

Reaction IV.1 to 3 illustrate the multiple possible radical species that can be produced through the 

thermal decomposition of TDMSA. However, only one species is trapped by ESR. One could speculate 

that only one of the proposed reactions is taking place. However, each of the reactions produces two radical 

species and such a speculation can thus not explain why the second radical is not trapped. As a result, it is 

suggested that only the radical molecule with the highest remaining concentration and longer lifetime is 

trapped. The production of the other radicals is not excluded. However, they are not trapped either because 

they are formed in lower concentrations, or because they have already reacted in the gas phase.  

A close inspection of the hyperfine structure of the signal and comparison to literature data reveals 

that CH3
•, H• and (Me2HSi)2N• radicals are not the trapped species [292, 293]. Based on the proposed 

Reaction IV.1 to 3, it is deduced that the species observed by ESR is a silicon-centered radical. Chandra et 

al. reported values for multiple Si-centered radicals, such as Me2HSi• or Me3Si•, trapped by α-phenyl-N-

tert-butyl nitrone (PBN) spin-trap [294, 295]. The g-factor for these Si-centered radical species was always 

2.0059±0.0001, which coincides well with the values observed for all runs in the present thesis. 

Additionally, because of their large, hindered structure, the Si-centered radicals resulting from the Si–C and 

Si–H bond cleaving of Reaction IV.2 and 3 are unlikely to be trapped. Considering all of the above results 

and literature data, it is proposed that the trapped radical concerns the Me2HSi• molecule. As a result, is it 

also proposed that Reaction IV.1 is the primary decomposition reaction followed by the TDMSA precursor, 

leading to the formation of the Si_INT (Me2HSi•) and N_INT (Me2HSi)2
 N •) radical intermediate species. 

As such, it is expected that these two intermediates will be encountered as the building blocks of the various 
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non-radical by-products present in the gas phase. To confirm this, GC-MS and NMR analyses are carried 

out, in order to identify the stable compounds at the exhaust of the reactor.  

 

IV.2.2. Analysis of stable species 

IV.2.2.1. Gas-phase analysis by GC-MS 

GC-MS analysis of the gas phase is executed as was described in Chapter II. Three different 

campaigns are carried out. The first campaign focuses on calibrating the GC-MS apparatus in regards to 

the analyzed quantity of TMDSA. The second campaign is executed in order to obtain information on the 

thermal decomposition of TDMSA, in absence of O2 and NH3. The third and last campaign pertains to the 

analysis of the gas phase for the experimental runs detailed in Table IV.2. 

  

IV.2.2.1.1. TMDSA calibration curve 

In order to quantify the amount TDMSA exiting the reactor for a given condition, it is mandatory 

to establish a calibration curve. For this purpose, specific flow rates of TDMSA are introduced in the reactor 

at room temperature, under constant N2 dilution (4028 sccm). After GC-MS analysis of the sampling bags, 

the areas beneath the TMDSA and N2 peaks in the GC-MS spectra are calculated. The area of the TDMSA 

peak (ATDMSA) is divided by that of the N2 peak (AN2) and plotted versus the applied flow rate of the 

precursor. The resulting calibration curve is presented in Fig. IV.17. 

 

 

Fig. IV.17. GC-MS calibration curve for the TDMSA precursor. 
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The calibration curve of Fig. IV.17 was further verified by additional GC-MS analyses that probed 

the gas phase under TDMSA flow rates inside (interpolation) and outside (extrapolation) the range of the 

calibration curve. The results were coherent, with less than 10 % deviation from the values predicted by the 

calibration curve. Through this, the calibration curve is validated and used systematically in the following 

sections for measuring the amount of TMDSA at the exit of the reactor and calculating its conversion 

percentage. 

 

IV.2.2.1.2. Thermal decomposition of TDMSA 

The thermal decomposition of TDMSA is analyzed by fixing the TDMSA flow at 2 sccm for a 

constant dilution of 4028 sccm N2, in absence of O2 and NH3. Four different SPTs are applied in the reaction 

chamber, namely 580, 625, 650 and 700°C. Through utilization of the calibration curve established in Fig. 

IV.17, the conversion of TDMSA at the exhaust of the reactor is calculated and plotted versus the 

temperature in Fig. IV.18, as a means to study the decomposition of the precursor. 

 

 

Fig. IV.18. TDMSA conversion as a function of the SPT. 

 

As shown in Fig. IV.18, only 10 % of the available TDMSA is decomposed at 580°C. Increasing 

the temperature to 650°C increases the precursor decomposition to 81 %, illustrating the thermal 

dependency of this process. However, further increase of the temperature up to 700°C does not significantly 

influence the TDMSA conversion, increasing it only slightly from 81 to 83 %. A potential explanation 

could be the recombination of the produced radical species into TDMSA. Regardless, the results illustrate 
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the high temperatures at which the thermal decomposition of TDMSA can be activated and explain the very 

low DR noted for temperatures below 580°C that were discussed in section IV.1.  

The decomposition by-products identified by GC-MS for each SPT are listed in Table IV.5, along 

with their enumeration, semi-developed formula, abbreviation and GC retention time. A first observation 

is that all by-products result from the previously mentioned Si_INT and N_INT building blocks. 

Additionally, it is noted that some of them contain one additional H atom or –CH3 group, which are not 

encountered in the starting TDMSA molecule or in the two primary Si_INT and N_INT intermediates. For 

example, compound TMDSz (7) is the result of the addition of a H atom to N_INT. Similarly, the identified 

trimethylsilanol (4) is the result of a reaction between Si_INT, a –CH3 group and O2.  

Thus, it can be concluded that all three TDMSA decomposition reactions proposed previously are 

taking place in the reactor (Reaction IV.1 to 3), albeit with different reaction rates. This also means that the 

various radical species produced through these reactions are indeed present in the gas phase at some point, 

but are not trapped by POBN and observed by ESR due to their participation in subsequent reactions. 

Moreover, since compounds with additional H atoms and –CH3 groups are identified for all of the tested 

temperatures, it is difficult to discern which decomposition pathway takes place under which conditions, or 

which has the higher reaction rate. 

Another interesting point is that compounds containing oxygen are identified. It is recalled that no 

O2 was added in the inlet gas composition for these decomposition experiments. It is speculated that the O2 

originated either from a small leak, or from incompletely desorbed water on the solid surfaces. Another 

possibility could be the purity of the TDMSA precursor, which is fairly low (95 %). Upon closer inspection, 

it is observed that compounds dimethylsilanol (1), trimethylsilanol (4) and HMTSo (11) are systematically 

probed for all decomposition temperatures. This indicates that they can be produced even under very low 

amounts of O2 and that a temperature of 580°C is already sufficient for their formation.  

Compounds TMDSo (3) and tetramethyldisiloxan-1-ol (9) are identified only at 580°C. Compared 

to the previously mentioned by-products, tetramethyldisiloxan-1-ol (9) contains two atoms of oxygen. It is 

assumed that at higher temperatures, the small quantity of oxygen in the gas phase has already reacted to 

produce by-products containing one O atom, leaving insufficient quantity for the production of TMDSo (3) 

and tetramethyldisiloxan-1-ol (9). Following this logic, it could also be proposed that dimethylsilanol (1), 

trimethylsilanol (4) and HMTSo (11) require a lower energy of formation (Δf) compared to the TMDSo (3) 

and tetramethyldisiloxan-1-ol (9) compounds. 
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Table IV.5. By-products identified by GC-MS after TDMSA decomposition at various temperatures. 

GC-MS by-product information Decomposition temperature (°C) 

No# Formula Abbreviation 
Retention 

time (min) 
580 625 650 700 

0 H2O -  - - - - 

1 
 

- 2.03-2.16     

2 
 

MeOTMS  - - - - 

3 
 

TMDSo 2.50  - - - 

4 
 

- 2.46-2.50     

5 
 

-  - - - - 

6 
 

PMDSo  - - - - 

7 

 

TMDSz 4.80-4.81 -    

8 

 

PMDSz 6.58-6.61 - -   

9 

 

- 7.67  - - - 

10 

 

HMDSz 9.72-9.76 - -   

11 
 

HMTSo 10.36-10.44     

12 

 

HMCTSo  - - - - 

13 
 

-  - - - - 

14 

 

TDMSA 12.40     

15 

 

-  - - - - 
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Nitrogen containing by-products such as disilazanes and silanamines are also detected. More 

specifically, TMDSz (7), PMDSz (8) and HMDSz (10) are probed at 650°C and 700°C. At 625°C, only 

TMDSz (7) is present, while no nitrogen-containing by-products are found at 580°C. This correlates well 

with the absence of nitrogen in films produced at local temperatures below 600°C, as was presented in Fig. 

IV.3 to 7. The formation of compounds (8) and (10) only at higher temperatures is explained by their 

molecular structures. Both compounds contain –SiMe3 moieties, which require more energy and additional 

reaction steps to be formed from the precursor and its intermediates. Therefore, it is proposed that the 

sequence of formation based on the amount of required energy is TMDSz (7)< PMDSz (8) < HMDSz (10), 

with additional –CH3 groups translating into higher energy requirements. Lastly, inspecting the results also 

reveals that oxygen-containing compounds are formed much easier than the nitrogen-containing ones.  

The above gas-phase results are coherent with the solid-phase ones and explain well why deposition 

from TDMSA leads first to an oxygen rich material, which is progressively enriched in nitrogen with the 

increase of the local temperature (Fig. IV.3 to 7). 

 

IV.2.2.1.3. Compounds identified for the TDMSA-O2 chemistry 

Runs utilizing TDMSA and O2 in the inlet gas composition are analyzed by GC-MS in order to 

study the impact of the O2 flow rate and the temperature on the formation of the various by-products. The 

compounds identified for these experiments are listed in Table IV.6. First, three by-products containing 

oxygen, namely dimethylsilanol (1), trimethylsilanol (4) and HMTSo (11), are identified for 0 sccm O2. 

This could again be the result of a small leak or H2O desorption from solid surfaces. Other by-products 

identified for 0 sccm O2 are nitrogen-containing compounds TMDSz (7), PMDSz (8), and HMDSz (10), 

for which the N_INT intermediate serves as the building block. These results were discussed previously for 

Table IV.5. Naturally, low O2 concentration in the gas phase translates to lower oxidation of the Si–C or 

Si–N bonds of N_INT. As such, N_INT can participate in the formation of (7), (8) and (10). The presence 

of these compounds, which contain –N–SiMe2 and/or –N–SiMe3 moieties, in the gas phase explains well 

the higher nitrogen and carbon content of the films at 0 or 0.3 sccm O2. 

At 0.3 sccm O2, additional oxygen-containing compounds MeOTMS (2) and TMDSo (3) are 

produced. It is proposed that the energy required for their formation is higher than that of products (1) and 

(11). As a result, when O2 concentration is low, only (1) and (11) are formed, while (2) and (3) appear only 

after sufficient oxygen is present in the gas phase, to cover for the production of all oxygen-containing by-

products. Interestingly, upon addition of 0.3 sccm O2, trimethylsilanol (4) is not detected. It is possible that 

it is still present, but its concentration is too low to be probed, potentially due to its participation in other 

O2-activated homogeneous and/or heterogeneous reactions.  
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Higher concentrations of oxygen in the gas phase lead to the identification of additional compounds. 

More specifically, for 0.6 sccm, trimethylsilanol (4) is probed once more, in addition to dimethylsilanediol 

(5), PMDSo (6), tetramethyldisiloxan-1-ol (9) and HMCTSo (12). By-products (5), (9) and (12) contain 

more than one oxygen atom in their structure, which explains well why they are produced only beyond a 

specific concentration of O2 in the gas phase. Moreover, two new silanamine compounds, 

N-(dimethylsilyl)-1-(methoxy)-1,1-dimethylsilanamine (13) and N-(dimethylsilyl)-1-[(dimethylsilyl)oxy]-

1,1-dimethylsilanamine (15), are detected at 0.6 sccm O2, containing a N–Si–O sequence. 

Further increase of the oxygen in the gas phase composition has multiple effects. At 1.2 sccm O2, 

the disappearance of TMDSo (3), dimethylsilanediol (5), PMDSo (6) and tetramethyldisiloxan-1-ol (9) is 

observed. It is proposed that the higher concentration of O2 results in a cascade of reactions, which 

eventually lead to the production of molecules with longer siloxane chains, such as HMTSo (11) and 

HMCTSo (12). Regarding the nitrogen-containing by-products, the silazanes TMDSz (7) and PMDSz (8) 

are also not encountered in the gas phase. An explanation similar to the one given previously for HMDSz 

(10) is proposed: N_INT, the common building block of (7), (8) and (10), reacts readily with oxygen and 

leads to the production of the silanamine derivative (13), reducing its available concentration for the 

formation of (7) or (8). This confirms once more that the silanamine derivative (13) has a lower energy 

requirement for its formation compared to TMDSz (7), PMDSz (8), or HMDSz (10). On a related note, it 

is pointed out that the second silanamine derivative (15) is not probed anymore for 1.2 sccm O2, despite it 

being very similar to (13). It is noted that (15) seems to originate from a reaction path involving N_INT, 

O2 and Si_INT. Both compounds (13) and (15) are present for 0.6 sccm O2, therefore O2 cannot be the 

limiting reactant at 1.2 sccm. It is therefore speculated that at 1.2 sccm O2, N_INT and/or Si_INT have 

reacted in the gas phase towards the production of other molecules, and that their concentration is decreased 

to a point where they become rate-limiting species for the production of (15). It is difficult to conclude 

which one of the two intermediates, N_INT or Si_INT is the rate-limiting one. The presence of (13) at 1.2 

sccm O2 also indicates that it has lower energy requirements for formation compared to (15). This is 

confirmed by replication of the experiment utilizing 0.6 sccm O2 at 625°C instead of 650°C. Inspection of 

the last column of Table IV.6 reveals that the silanamine derivative (13) is detected at both 625°C and 

650°C, while (15) is only present at 650°C. In general, the low number of nitrogen-containing by-products 

for an inlet flow of 1.2 sccm O2 reflects well the production of nitrogen-poor films, with a more pronounced 

oxide character as was revealed by FT-IR (Fig. IV.11). 

Ultimately, consideration of all the results listed in Table IV.6 leads to a proposed sequence of 

compounds, starting from those requiring lower (left) and moving towards higher energies for formation: 

(1), (4) < (9) ≈ (2), (3) ≈ (12), (13) ≈ (11) < (5), (6) < (7), (8) < (10) ≈ (15) 
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Table IV.6. Identified GC-MS by-products of the TDMSA-O2 chemistry, for varying O2 flow rates. 

GC-MS by-product information O2 flow rate (sccm) T (°C) 

No# Formula Abbreviation 
Retention 

time (min) 
0 0.3 0.6 1.2 625°C 

1 
 

- 2.03-2.15      

2 
 

MeOTMS 2.27-2.35 -    - 

3 
 

TMDSo 2.44 -   - - 

4 
 

- 2.42-2.48  -    

5 
 

-  - -  - - 

6 
 

PMDSo 2.51 - -  - - 

7 

 

TMDSz 4.80-4.81    - - 

8 

 

PMDSz 4.28-6.58    - - 

9 

 

- 7.71-7.74 - -  -  

10 

 

HMDSz 9.72-9.76   - - - 

11 
 

HMTSo 10.27-10.63     - 

12 

 

HMCTSo 11.22-11.42 - -    

13 
 

- 8.39-11.80 - -    

14 

 

TDMSA 12.40      

15 

 

- 11.40 - -  - - 
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The presence of TDMSA is confirmed for all experiments (Table IV.6). Table IV.7 presents the 

conversion percent of TDMSA at the exit of the reaction chamber. The TDMSA conversion at 650°C 

averages 82.5 % and appears to be independent from gas-phase composition, for the tested range of O2 flow 

rate (0-1.2 sccm). This compares favorably to the proposed TDMSA decomposition reactions (Reaction 

IV.1 to 3), in which O2 does not participate as a reactant. It could be proposed that the temperature seems 

to be the only parameter to impact the TDMSA conversion rate. However, an interesting behavior is 

observed at lower SPT. It is recalled that at 625°C and in absence of O2, the thermal decomposition of 

TMDSA resulted in a conversion of 40 % (Fig. IV.18). However, upon addition of 0.6 sccm O2 in the inlet 

gas composition (TD14), the conversion increases to 59 %.  

 

Table IV.7. TDMSA conversion at the exhaust for each experiment from the TDMSA-O2 chemistry. 

 SPT= 650°C SPT= 625°C 

Run TD9 TD11 TD7 TD12 Fig. IV.18 TD14 

O2 flow rate (sccm) 0 0.3 0.6 1.2 0 0.6 

TDMSA conversion (%) 81 86 81 82 40 59 

 

 

On one hand, both conversion at SPT 625°C are lower than the ones noted at 650°C, which is 

coherent with the lower deposition rates observed at SPT 625°C (Fig. IV.7a). On the other hand, the above 

results indicate that at temperatures lower than 650°C, the utilization of an oxydizing atmosphere can lead 

to a higher conversion of TDMSA. Globally, fewer by-products are detected in the gas phase for SPT 625°C 

(Table IV.6), potentially since the majority of the compounds require higher energies to be formed. 

Therefore, it can be speculated that this leaves a proportionally higher quantity of O2 in the gas phase, 

available to react with TDMSA. On the contrary, at higher SPT, TDMSA has decomposed significantly 

into the various intermediates and the supplied energy is sufficient for them to react with O2. The suspected 

participation of oxygen in the precursor conversion at lower temperatures potentially hints at a different 

reaction pathway compared to the one followed at 650°C. This information is kept in mind for later. 

 

IV.2.2.2. NMR analysis 

Fig. IV.19a presents exemplary results of the 1H NMR analysis of the gas effluent of run TD6. At 

a first glance, the DMSO-d6 solvent is detected, along with water. The presence of water is not surprising, 
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given that the silanols detected by GC-MS in the gas phase can lead to the production of siloxanes and 

water through condensation reactions [296]. Beyond that however, further analysis is more complex and 

difficult due to the variety and multitude of gaseous products. Despite that, it is noted that the 1H NMR 

spectra systematically show two main zones: one encountered around 4.60-4.72 ppm, associated with the 

presence of Si–H fragments (Fig. IV.19b), and the other at approximately -0.01-0.22 ppm corresponding to 

Si–CH3 moieties (Fig. IV.19c). In the Si–CH3 zone, singlets are assigned to a trimethyl substituent. Doublets 

on the other hand indicate a H–Si(CH3)2 sequence due to the presence of the JHH
3  coupling constant between 

both types of H atoms. 

 

 

Fig. IV.19. Typical 1H NMR spectrum (a), with zoom in the 4.60-4.72 ppm (b) 

and -0.01-0.22 ppm (c) range, recorded at 500 MHz in DMSo-d6. 

 

Through utilization of the above, it is possible to confirm numerous compounds that have been 

observed previously by GC-MS. More specifically, compounds (3), (4), (6), (7) and (11) are confirmed. 

Given the multiple by-products identified by GC-MS, other by-compounds are also present in the NMR 

spectra, however their identification is difficult since their respective peaks are obscured underneath others. 
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IV.2.2.3. Proposal of a deposition mechanism 

In the present sub-section, an apparent deposition mechanism is proposed based on all previously 

discussed gas phase and solid phase results, alongside parallel consideration of the literature. For the gas 

phase, the proposed starting step concerns the homolytic dissociation of the Si–N bond through Reaction 

IV.1 towards the production of Si_INT and N_INT. Moreover, the presence of trimethyl-containing 

compounds (4), (6) and (10), among others, indicates a supplementary Si–CH3 bond dissociation through 

Reaction IV.3. Similarly, compounds (7) and (15) possess one additional H atom resulting potentially from 

a Si–H bond homolytic cleaving through Reaction IV.2. As a result, we propose that Reaction IV.1 is the 

primary pathway, with Reaction IV.2 and 3 also taking place in parallel, albeit at lower rates.  

With Si_INT, N_INT, H• and CH3
• resulting from the decomposition of TDMSA through Reactions 

IV.1 to 3, multiple other reactions can take place in the gas phase. Being under an oxidizing atmosphere, 

H• could form water after reaction with O2. H2O was indeed detected by NMR for all experiments. The 

produced water can then react with Si_INT to form compound (1) through Reaction IV.4: 

 

 

Reaction IV.4 

As was mentioned previously, the condensation of two silanol molecules, produced through 

Reaction IV.4, can then result in the formation of TMDSo (3) through Reaction IV.5. 

 

 

Reaction IV.5 

 

As suggested by Pola et al. [297], siloxane molecules can disproportionate into a silanone and a 

radical species when given enough energy. The produced species can then participate in the polymerization 

of other siloxane molecules. Following this proposition, the siloxane compound TMDSo (3) is assumed to 

disproportionate into a dimethylsilanone and the radical species Si_INT and H• through Reaction IV.6: 

 

 

Reaction IV.6 

 

H• and Si_INT can also react together to form a dimethylsilane. This compound is not observed in 

the gas phase, however, given its high reactivity, its formation is not excluded. Moreover, being in an 
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oxidizing atmosphere, dimethylsilane is potentially quickly oxidized into silanol compounds such as the 

identified dimethylsilanol (1) and dimethylsilanediol (5). The newly formed silanols can in turn participate 

once more in the formation of the siloxane compound TMDSo (3) through Reaction IV.5, resulting in a 

continuous cycle between Reaction IV.5 and 6. Moreover, the silanone formed through Reaction IV.6 can 

in turn be used to polymerize TMDSo (3) into HMTSo (11) through Reaction IV.7 

 

 

Reaction IV.7 

 

It is recalled that TDMSA decomposition through Reaction IV.1 also yields N_INT. This radical 

compound can undergo a 1,2 H-shift yielding a new Si-centered radical [152] as illustrated in Reaction IV.8, 

or react with H• leading to the formation of TMDSz (7) (Reaction IV.9). 

 

 

Reaction IV.8 

 

 

 

Reaction IV.9 

 

The formation of the new Si-centered radical after the 1,2 H-shift in the N_INT radical could in 

fact explain why only Si-centered species were identified by ESR. Moreover, it explains well the probing 

of N–H bonds by FT-IR. Additionally, following the same reasoning as for TMDSo (3), we propose that 

TMDSz (7) can also disproportionate and lead to the production of a silanimine, a Si_INT and a H• radical, 

as shown in Reaction IV.10. The produced silanimine can in turn be used to polymerize siloxanes and drive 

the formation of bi-functional compounds with a N–Si–O sequence, such as the silanamine derivative (15), 

through Reaction IV.11. 

 

 

Reaction IV.10 

 

 

 

Reaction IV.11 
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The produced stable by-products and radical intermediate species in the gas phase naturally 

influence the film formation on the solid phase, through their participation in heterogeneous reactions. 

Firstly, it is noted that the Si_INT intermediate is present in large concentrations in the gas phase, formed 

from Reaction IV.1, 6 and 10. It is proposed that Si_INT is able to form a silica film through Reaction 

IV.12 and 13 as follows: first, Si_INT reacts with the silanol-terminated surface sites of the Si-substrate to 

form a siloxane sequence (Reaction IV.12). Following that, the formed siloxane sequence can then be 

oxidized by the O2 of the gas phase, before reacting with the geminal silanol on the Si-substrate (Reaction 

IV.13). It is noted that both Reaction IV.12 and 13 involve the production of H2O. 

 

 

Reaction IV.12 

 

 

Reaction IV.13 

 

 

The various identified siloxane compounds ((3), (6), (9) and (11)) can all participate in film 

formation through Reaction IV.12 and 13. In contrast, only few nitrogen-containing compounds are 

identified ((13) and (15)), translating into lower N incorporation in comparison to O, which is well reflected 

by the solid-phase results of section IV.1. Reaction IV.14 proposes a general mechanism for the formation 

of SiOx or SiOxNy film from compounds with an O-Si-X sequence. In cases where X=O, the reacting 

compound is trisiloxane (11) leading to SiOx deposition. If X=NH the reacting compound is the silanamine 

derivative (15), leading to SiOxNy production. The adsorption and oxidation mechanism of these molecules 

onto the Si-substrate is similar to Reaction IV.12 and 13. In the case of SiOxNy formation, the silanamine 

(15) reacts with an OH terminated surface site after desorption (Reaction IV.14). The formed O–Si bond 

acts as the driving force of the deposition mechanism. 

 

 

Reaction IV.14 

 

Given the numerous formed gaseous by-products, the number of reactions that would be required 

to describe their formation, as well as all potential solid phase reactions they could be participating in, 
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would be very large. Moreover, if the process were to be studied through simulation, the implementation 

of a large number of homogeneous and heterogeneous reactions would require high computation times. As 

such, the following section uses Reaction IV.1 to 14 as the basis for the development of a simplified 

chemical model. Its implementation in the simulation environment of FLUENT® is executed with the aim 

to replicate the deposition process by utilization of a small, though representative, number of apparent 

chemical reactions. 

 

 

IV.3. Development of an apparent chemical model for the deposition of SiOₓNᵧ 

films from TDMSA-O₂  
 

The development of the apparent mechanism is based on the parallel consideration of both gas 

phase and solid phase results. More specifically, average-per-sample ellipsometry and local IBA results are 

used for the definition of solid phase reactions and their respective kinetics, while GC-MS, NMR and ESR 

results are used for the definition of the homogeneous reactions, the produced species and intermediates in 

the gas phase.  

As noted in Chapter I, no apparent chemical models and CFD calculations for the SiOxNy deposition 

have been reported in the literature so far, even more so from a silanamine precursor or in absence of NH3. 

Therefore, the apparent model has to be built from scratch. The strategy behind the development of this 

novel chemical model follows the idea of starting form a basic system and slowly enriching it. As a result, 

the initial kinetic constants calculated for the various reactions progressively undergo further refinements 

whenever the chemical model is enriched with the addition of new reactions, until a satisfactory agreement 

with the experimental results is reached. A compromise has to be found between the complexity of the 

kinetic model, the computational load of the numerical simulations and the model accuracy. 

With the above in mind, the chemical model is initially described by one volumetric reaction, 

referred to as V1, corresponding to the decomposition reaction of TDMSA. Alongside it, heterogeneous 

reactions are introduced, accounting for film deposition. It is recalled that the produced material is a SiOxNy 

film containing a non-negligible amount of carbon. An ambitious attempt during the development process 

of the deposition mechanism is to not only simulate local DR values, but also the local composition in N 

and C. Fig. IV.6 and 7 illustrated that the C and N incorporation evolves along the length of the reactor, 

impacted by the local temperature and gas phase composition. Thus, it would be incorrect to define film 

formation through one single surface reaction, because this would translate into a constant film composition. 
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In that case, the only variable would be the film thickness. Therefore, at least two surface reactions are 

required: one leading to the formation of silicon oxide, and one to the formation of silicon nitride. Obviously, 

the deposited material is a homogeneous, amorphous SiOxNy as revealed by HRTEM analysis (Appendix 

6), not the conglomeration of SiO2 and Si3N4. Despite that, the definition of separate, apparent, surface 

reactions for each material allows for the independent tweaking of their respective deposition rates, which 

in turn influences the resulting film composition. Ellipsometry results are used extensively for the definition 

of these solid-phase reactions and their respective kinetic constants. It is recalled that the applied 

ellipsometry model considers the material as a homogeneous mixture of three components, namely SiO2, 

Si3N4 and amorphous carbon. Moreover, it provides local information on the volumetric fraction of each 

component, along with the total film thickness. Therefore, multiplying the respective volumetric fractions 

with the total film thickness and dividing by the deposition duration can give information on the individual 

SiO2 and Si3N4 DR. It is noted that hydrogen is also incorporated in the films, but given the limited number 

of IBA samples and the inability of ellipsometry to provide at.% H values, its presence is not considered. 

For each step, the calculated results are compared to the experimental ones. Deviations from the 

experimental data are discussed with the aim of proposing additional reactions that help better reproduce 

the experimental DR and composition profiles. New reactions are then formulated after consideration of 

the GC-MS results, justifying their introduction in the chemical model. It is recalled that up to 15 species 

were identified by GC-MS. Considering all of them would be time consuming. For simplicity, the identified 

species are first categorized into families (silanols, siloxanes, silanamines, etc.) and their implementation 

is done in a stepwise manner and only if it appears that the chemical model reaches a point that requires 

further elaboration. Quantitative results for gaseous compounds apart from TDMSA are not available. 

Therefore, the identified by-products can provide only qualitative information. The initial kinetic constants 

for each new reaction that is added, as well as subsequent refinements, are calculated through a combination 

of mass balance equations and manual fitting, by utilizing DR results from ellipsometry and species 

concentrations provided by FLUENT®. Part of the following work was carried out in collaboration with 

Tryfon Tsiros from the National Technical University of Athens (NTUA), supervised by Hugues Vergnes 

and Brigitte Caussat, in the frame of his Diploma thesis [298]. 

In its final version, the model involves a total of 12 species and 8 chemical reactions. The physical 

properties and Lennard Jones (L-J) parameters of the species are listed in Appendix 7. Those of O2, N2, 

CH4 and H2O are taken from the FLUENT® database. The CHEMKIN database is consulted for those of 

CH3OH [239]. Due to lack of concrete values in the literature, the L-J parameters of the remaining species 

are assumed equal to those of molecules with similar chemical structure. The L-J parameters of silanone 

and the N_INT2 intermediate are set equal to silanol (σ = 5.25 Å and ε/k = 522.7 K) [239]. The L-J 
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parameters of TDMSA and its intermediates are set equal to TEOS (σ = 7.03 Å and ε/k = 78.6 K). Lastly, 

those of the siloxane and silanamine by-products are set equal to octamethylcyclotetrasiloxane (σ = 3.54 Å 

and ε/k = 1182.43 K) taken from the literature [299].  

 

IV.3.1. Definition of initial reactions: TDMSA decomposition and SiO2 film formation 

The decomposition reaction of TDMSA is considered as the driving reaction of the model. The 

Si_INT intermediate, i.e. Me2HSi•, was identified by ESR in section IV.2.1. Out of the previously proposed 

TDMSA decomposition pathways, only Reaction IV.1 leads to the production of Si_INT and is therefore 

the one considered. For the simulations, it will be referred to as the volumetric reaction V1, leading to the 

production of the two Si_INT and N_INT intermediates as follows: 

 𝑇𝐷𝑀𝑆𝐴 → 𝑆𝑖_𝐼𝑁𝑇 + 𝑁_𝐼𝑁𝑇 (V1) 

 

Since the addition of O2 does not influence TDMSA conversion at 650°C, V1 is defined with 

TDMSA as the sole reactant, and is considered to be independent from the presence of O2. Following that, 

the conversion of TDMSA in Fig. IV.18 is considered for the calculation of the kinetic constant kV1 of V1. 

Since recombination of the intermediates towards the production of TDMSA is possible at 700°C, this point 

was excluded from the calculations. From the resulting Arrhenius plot, shown in Fig. IV.20a, an activation 

energy of Ea,V1= 2.49·102 kJ.mol-1 and a pre-exponential factor of Ao,V1= 1.68·1014 s-1 are deduced. 

Following the decomposition of TDMSA through reaction V1, the produced radical intermediates Si_INT 

and N_INT are considered as the main reactants that participate in subsequent reactions. For the purpose of 

simulating the system in a simplified manner, initially the direct contribution of Si_INT and N_INT to the 

solid film is considered. 

In a first version of the chemical model, two apparent surface reactions are considered, referred to 

as S1 and S2. They produce a SiO2 and a Si3N4 material from Si_INT and N_INT, respectively, as follows:  

 

 𝑆𝑖_𝐼𝑁𝑇 + 𝑂2 → 𝑆𝑖𝑂2 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S1) 

   

 4 𝑁_𝐼𝑁𝑇 →  𝑆𝑖3𝑁4 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S2) 
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Fig. IV.20. Arrhenius plot for decomposition of TDMSA through V1, calculated from quantitative GC-

MS analysis of TDMSA at the exhaust of the reactor (a). Arrhenius plot for SiO2 production through S1, 

calculated for selected samples from runs using varying O2 flow rates at SPT 650°C (b).  

 

However, formulated like this, the two reactions do not account for the incorporation of C. Previous 

discussion on the ellipsometry and IBA results gave rise to the speculation that C and N are incorporated 

through the same intermediate species. Therefore, the volumetric fraction of the amorphous carbon 

calculated by ellipsometry is added to that of the Si3N4 component, in order to represent a carbonated Si3N4 

“phase”. The deposition of a nitride material that includes carbon is discussed in more detail later. 

Regarding the oxide material, the DR of the SiO2 component for runs TD7, TD11 and TD12 are plotted in 

an Arrhenius expression as presented in Fig. IV.20b, based on the rate law of S1 (𝑆1 = 𝑘1[𝑆𝑖_𝐼𝑁𝑇]𝑎[𝑂2]𝑏). 

First order kinetics are considered initially. Concentrations are extracted from simulation of reaction V1 

using FLUENT®. Only samples between 0.2 m and 0.4 m were considered (square symbols), since 

significant O2 consumption is taking place beyond 0.4 m, as reflected in the decreasing DR values at higher 

temperatures (triangle symbols). From the slope, an initial activation energy of Ea,s1= 3.57·107 J.kmol-1 and 

a pre-exponential factor Ao,S1= 1.79·10-3 s-1 are deduced. 

After the definition of V1 and S1, representing the decomposition of TDMSA and the SiO2 film 

formation respectively, both reactions are implemented into FLUENT®. The total mass flow rate and the 

mass fractions of all species at the inlet are fixed to the experimental values (Appendix 8). The resulting 

simulations are presented in Fig. IV.21 and are compared to the experimental results by ellipsometry. 

Inspecting Fig. IV.21, the simulation manages to somewhat fit the experimental results from 0.2 to 

0.37 m for the two highest O2 flow rates. However, beyond 0.37 m the simulated DR profile overestimates 

the experimental values for all three O2 flow rates. Given that the thermal profile remains constant in that 
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region (isothermal region: 0.36-0.5 m), the lower DRs measured experimentally are the result of decreasing 

concentrations of the film-forming reactants. For O2 flow rates below 0.6 sccm, it is assumed that O2 is the 

rate-limiting species. In a more oxygen-rich gas phase (1.2 sccm, Fig. IV.21), the rate-limiting species at 

the end of the reactor could be the Si_INT intermediate instead, but this does not exclude the effect of a 

potential O2 deficit. As such, the introduction of at least one O2 and Si_INT consuming reaction is proposed.  

  

 

Fig. IV.21. Comparison of SiO2 DR between simulations using S1 and V1 and experimental ellipsometry 

results, for varying O2 flow rates at SPT 650°C (runs TD7, TD11, TD12). 

 

The above proposal is justified when taking into account the multiple oxygen-containing by-

products identified by GC-MS (Table IV.6), for which the Si_INT intermediate clearly acts as the building 

block. For simplicity however, the production of only one family of by-products is considered, accounting 

for multiple volumetric reactions in one single apparent reaction. This reaction is referred to as V2. Since 

the aim is to reduce the concentrations of O2 and Si_INT in order to limit SiO2 production, these two 

molecules are considered as the reactants in V2. Through this, Reaction IV.2, the production of water 

through H• and O2, and Reactions IV.4, 5, 6 and 7 are accounted for in one single reaction V2, defined as: 

 

 4 𝑆𝑖_𝐼𝑁𝑇 + 2𝑂2 → 𝑠𝑖𝑙𝑜𝑥𝑎𝑛𝑒 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (V2) 

 

The siloxane compound HMTSo (11) is considered as the representative product of V2, with H2O 

and silanone as the by-products. Since no quantitative results for HMTSo (11) are available, the kinetic 

constant kV2 of the volumetric reaction V2 is calculated through a reverse mass balance, by utilizing the 

overestimated difference between the simulated S1 and the experimental SiO2 deposition in the 0.37-0.50 m 

region. An initial activation energy of Ea,V2= 7.05·101 kJ.mol-1 is deduced for V2. The introduction of V2 
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also required slight re-adjustment of S1 kinetics. After these actions, the enriched chemical model is 

simulated once more, resulting in the profiles of Fig. IV.22. 

Inspecting Fig. IV.22, it is observed that the general bell shape noted at 0.3 sccm O2 is successfully 

reproduced through simulation, although it overestimates the experimental results. In comparison, the 

simulations do not fully replicate the DR profile for 0.6 sccm and completely underestimate the 

experimental results for 1.2 sccm O2. 

Plotting of the O2 and Si_INT concentration profiles revealed that the Si_INT species has become 

the rate-limiting reactant for SiO2 deposition at 1.2 sccm O2, with its concentration decreasing to very low 

values beyond 0.3 m. This means that if an attempt were made to fit the DR profile for 0.3 sccm by 

increasing the rate of V2 or decreasing that of S1, it would result in an even more pronounced 

underestimation of the DR profiles at 0.6 and 1.2 sccm O2. Various combinations of O2 and Si_INT partial 

order exponents for V2 and S1 were attempted, but yielded unsatisfactory results. As such, it becomes clear 

that the present model is unable to reproduce the experimental data and requires the addition of further 

reactions, which will bring the simulated gas phase composition closer to the real one.  

 

 

Fig. IV.22. Comparison of SiO2 DR between simulations using S1, V1, and V2, and experimental 

ellipsometry results, for varying O2 flow rates at SPT 650°C (runs TD7, TD11, TD12). 

 

The low concentration of Si_INT in the gas phase needs to be addressed. An option would be to 

increase the rate of its production through V1, but this idea was abandoned since an increase of V1 would 

result in a higher TDMSA conversion, compared to the one measured experimentally through GC-MS in 

Table IV.7. Reduction of the rate of V2 is also not recommended, as it would translate into further 

overestimation of the DR for 0.3 sccm O2. Therefore, it is proposed that, at the highest O2 concentrations, 

the rate-limiting Si_INT species is produced through an additional reaction other than V1.  
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Looking back at the list of reactions proposed in section IV.2, Reactions IV.6 and IV.10 are 

highlighted, both leading to the production of a Si_INT molecule. They justify therefore the addition of a 

supplementary volumetric reaction that produces Si_INT. This reaction is referred to as V3 hereinafter. 

However, a choice must be made regarding which one of the two Si_INT-producing reactions, Reactions 

IV.6 or IV.10, shall be implemented. Before deciding however, the homogeneous and heterogeneous 

reactions eventually leading to the deposition of the carbonated Si3N4 phase are formulated first. 

 

IV.3.2. Introduction of nitrogen-involving gas phase and solid phase reactions 

In order to formulate representative, apparent, reactions for the deposition of a carbonated Si3N4 

“phase”, the C/N atomic ratio calculated by ellipsometry is considered initially, to assess if carbon and 

nitrogen are introduced through the same species.  

Fig. IV.23 presents the evolution of the C/N ratio along the reaction chamber for runs TD7, TD11 

and TD12. At 1.2 sccm O2, the C/N ratio appears constant at around 2.9 from 0.35 to 0.5 m, indicating that 

potentially, a nitrogen-containing intermediate with three –CH3 ligands is responsible for film formation. 

Between 0 and 0.35 m, the C/N atomic ratio is lower than 2.9 and presents an increasing trend. This could 

be potentially related to the higher local O2 concentrations in that region, resulting in more efficient 

oxidation of the organic ligands of the intermediate. In the same zone, the C/N atomic ratio evolves similarly 

for 0.3 and 0.6 sccm O2. 

 

 

Fig. IV.23. Atomic C/N ratio for varying O2 flow rates (runs TD7, TD11 and TD12) at SPT 650°C. 
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Interestingly, the average C/N values in the 0.35-0.5 m region are 2.1 and 1.9 for 0.3 and 0.6 sccm, 

respectively. Both are lower than the value noted at 1.2 sccm, something which is contrary to the proposal 

that higher O2 flow leads to more efficient –CH3 cleaving. This point will be addressed shortly. The general 

evolution of the C/N ratio could indicate two things: in a first scenario, the CH3-cleaving step is taking 

place in the gas phase prior to deposition, meaning that the nitrogen-containing intermediate, N_INT, “loses” 

some of its methyl moieties before participating in film-forming reactions. In a second scenario, two 

nitrogen-containing intermediates, each containing a different number of carbon atoms, participate in film 

formation and result in varying incorporations of carbon. The problem with the first scenario is that it relies 

on O2 to cleave the carbon of the N_INT. However, the higher C/N ratio at the highest O2 flow rate 

(1.2 sccm) does not support this proposal. Therefore, the second scenario is considered, and two apparent 

surface reactions are assumed, S2 and S3, defined as follows: 

 4 𝑁_𝐼𝑁𝑇 + 𝑂2  → 𝑆𝑖3𝑁4 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S2) 

 

 4 𝑁_𝐼𝑁𝑇 → 𝑐𝑎𝑟𝑏_𝑆𝑖3𝑁4 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S3) 

 

S2 results in the deposition of a nitride material with no carbon, while S3 leads to the deposition of 

a carbonated Si3N4 material. From Fig. IV.23, the C/N ratio for 1.2 sccm O2 remains constant at 2.9. 

Therefore, a stoichiometry of Si3N4C12 is assigned to the carbonated nitride material produced through S3. 

Reaction S3 is then considered as the primary reaction taking place under 1.2 sccm O2. An initial activation 

energy of Ea,S3= 1.97·102 kJ.mol-1 is deduced from the ellipsometry data of the total Si3N4 “phase” (i.e. 

Si3N4 + amorphous-C volumetric fractions) at 1.2 sccm O2. Then, the difference in Si3N4 deposition noted 

between 1.2 and 0.3 sccm O2 is used to extract an initial activation energy of Ea,S2= 3.51·101 kJ.mol-1 for 

S2. The simulation of V1, V2, S1, S2 and S3 resulted in the DR profiles presented in Fig. IV.24a.  

Comparing them to the total Si3N4 (i.e. Si3N4 + amorphous-C) experimental DR profiles by 

ellipsometry (Fig. IV.24) reveals that the simulations greatly miscalculate the global behavior. Ellipsometry 

indicates namely that the DR of the total nitride material decreases with increasing O2 flow rates in the inlet 

supply. In contrast, the simulations show higher DRs under higher O2 flow rates. This is logical, because 

S2 is formulated with O2 participating as a reactant in the production of Si3N4. The simulation results make 

it therefore clear that O2 should not participate in the surface reaction S2, and that the cleaving of –CH3 

groups of the N_INT species should instead preferably happen through a volumetric reaction involving 

N_INT and O2. 
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Fig. IV.24. Simulation of the total Si3N4 DR from S2 and S3 (runs TD7, TD11, TD12) (a). DRs for 0.6 

and 1.2 sccm O2 coincide. Experimental DR of the total Si3N4 phase provided by ellipsometry (b). 

 

IV.3.3. Introduction of a –CH3 cleaving and Si_INT producing reaction 

So far, two main issues have been encountered. The first one involves the underestimation of SiO2 

deposition at higher O2 flow rates, being the result of a deficit in Si_INT concentration in the gas phase. 

The second issue is that the cleaving of the methyl moieties of the N_INT intermediate should happen in 

the gas phase, instead of the solid phase. Previously, no decision was made on whether the first issue should 

be addressed through Reactions IV.6 or IV.10. Both lead to the production of a Si_INT molecule. However, 

only Reaction IV.10 involves N_INT, and by extent, the production of a nitrogen-containing intermediate 

with fewer carbon atoms. In light of these arguments, Reaction IV.10 is chosen, as it helps address both 

points at the same time. Thus, reaction V3 is defined as: 

 

 𝑁_𝐼𝑁𝑇 + 𝑂2 → 𝑁_𝐼𝑁𝑇2 + 𝑆𝑖_𝐼𝑁𝑇 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (V3) 

 

V3 leads to the production of a second nitrogen-containing intermediate N_INT2, containing less 

carbon atoms than the original N_INT species. The produced N_INT2 is defined as an intermediate from a 

family of molecules related, but not exclusive to, silanimines. Consequently, reactions S2 and S3 are 

reformulated, with the silanimine N_INT2 molecule being the one leading to carbonated film formation:  

 4 𝑁_𝐼𝑁𝑇 → 𝑆𝑖3𝑁4 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S2) 

 

 4 𝑁_𝐼𝑁𝑇2 → 𝑐𝑎𝑟𝑏_𝑆𝑖3𝑁4 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (S3) 
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However, in that case, we would arrive at the same problem: higher concentrations of O2 would 

translate into higher production of N_INT2 through V3, and therefore higher DRs of the nitride material 

through S3. For this reason, the introduction of an additional volumetric reaction is proposed, with the aim 

to consume quantities of the N_INT species and reduce its available concentration in the gas phase for 

higher O2 flow rates. Following this logic, O2 should be participating as a reactant in this new volumetric 

reaction, named V4, in order to compensate for the lower Si3N4 DRs at higher O2 flow rates.  

In order to define V4, the GC-MS results are revisited, with a focus on identifying by-products that 

contain a N–Si–O sequence. Two such compounds are detected from Table IV.6, namely the silanamine 

derivatives (13) and (15), justifying the presence of a reaction between N_INT and O2. This reaction is 

apparent and combines the involvement of the previously proposed Reactions IV.4, 5 8, 9, 10, 11, as well 

as the initial production of water through a reaction between H• and O2, after Reaction IV.2. As such, 

reaction V4 is formulated in a summarized manner as:  

 

 𝑁_𝐼𝑁𝑇 + 𝑂2 → 𝑠𝑖𝑙𝑎𝑛𝑎𝑚𝑖𝑛𝑒 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (V4) 

 

The silanamine derivative (13) is chosen to define the produced silanamine. It is assumed that (13) 

does not participate in the formation of Si3N4, since this would defeat the purpose of reaction V4. A 

schematic representation of all reactions proposed so far is presented in Fig. IV.25. 

 

 

Fig. IV.25. Schematic representation of proposed volumetric and surface reactions for the deposition of a 

carbon-containing SiOxNy material from the TDMSA-O2 chemistry. 
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To summarize, reaction V1 represents the decomposition of TDMSA, in order to produce the two 

main building blocks, Si_INT and N_INT, which are encountered in all gaseous by-products. Reaction V2 

serves for the consumption of O2 and Si_INT to produce the family of siloxane by-products, and reduce the 

SiO2 DR at the later parts of the reactor. Reaction V3 compensates for the Si_INT deficit by producing it 

under high O2 concentrations, and simultaneously serves the production of a less-carbonated nitrogen-

containing intermediate, N_INT2. V4 represents the consumption of N_INT through reaction with O2 to 

produce the silanamine family of by-products, with the main aim to decrease the global available N_INT 

quantity in the gas phase at higher O2 flow rates and replicate the reduced Si3N4 DRs for 0.6 and 1.2 sccm. 

It is noted that the underestimation of SiO2 deposition at higher O2 flows could be alternatively addressed 

through introduction of a surface reaction involving the siloxane species produced through V2, as was 

suggested in Reaction IV. 14. However, since V3 addresses two points at the same time, it was chosen 

instead. Reaction V5 shown in Fig. IV.25 is addressed later.  

The present enrichment of the model and the involvement of O2 in multiple reactions requires 

further refinement for the majority of the kinetic constants. After numerous iterations and use of mass 

balance calculations, an adjusted (but not final) version of the model is implemented in FLUENT®, the 

results of which are shown in Fig. IV.26. 

 

 

Fig. IV.26. Comparison of SiO2 DR (top row) and Si3N4 DR (bottom row) between simulations using  

V1-V4, S1-S3 and experimental ellipsometry results, for varying O2 flow rates at SPT 650°C  

(runs TD7, TD11, TD12). 
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After implementation of the enriched SiOxNy model, a satisfactory agreement is reached for the 

SiO2 DR profiles as presented in Fig. IV.26. The bell shape is reproduced successfully for all three 

experiments. Slight deviations exist, albeit at different regions, meaning that further refinement would 

require the adjustment of more than one reaction. Regarding the nitride phase, the total Si3N4 DR is 

underestimated between 0.2 and 0.4 m at 0.3 sccm O2, while for 0.6 and 1.2 sccm O2 an overestimation 

between 0.35 and 0.5 m is observed instead. It is obvious that the simple increase of S2 or S3 to fit the DR 

profile at 0.3 sccm O2 would result in bigger discrepancies for the two other experiments. Similarly, a 

reduction of the S2 and S3 reaction rates could potentially result in a good agreement of the Si3N4 DR for 

high O2 flow rates, but would also translate into further underestimation for 0.3 sccm O2.  

Fig. IV.27 examines the simulated incorporation of nitrogen and carbon in the films. Globally, the 

simulations have managed to reproduce the composition within the same order of magnitude. Individually 

examined, the curve of the C and N contents are reproduced for 0.3 sccm O2, albeit underestimated. This 

underestimation stems from the lower simulated total Si3N4 deposition at 0.2-0.4 m. Between 0.4-0.5 m, a 

good agreement for the Si3N4 deposition is achieved, however the composition of C and N is still 

underestimated because of the overestimated SiO2 deposition in that region. 

 

 

Fig. IV.27. Comparison of nitrogen (top row) and carbon (bottom row) contents between simulations 

using V1-V4, S1-S3 and experimental ellipsometry results, for varying O2 flow rates at SPT 650°C  

(runs TD7, TD11, TD12). 
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In the case of 0.6 sccm O2, a mixed behavior is observed regarding the composition. Below 0.4 m, 

the simulated carbon and nitrogen contents are slightly underestimated, as the result of the overestimation 

in SiO2 DR in that region. Beyond 0.4 m, the composition in C and N is overestimated as a result of the 

overestimation in total Si3N4 DR from S2 and S3. This is further accentuated by the slight underestimation 

of SiO2 DR in that region. For 1.2 sccm O2, the nitrogen and carbon contents approach a closer agreement 

with the experimental values, although they are slightly underestimated, because of the global 

overestimation of the SiO2 DR.  

The above results make it clear that a good agreement of the simulated DR profiles is important for 

the subsequent simulation of the composition. The definition of the carbonated Si3N4 stoichiometry also 

plays a role, as it affects the corresponding incorporation of N and C. Further refinements were attempted 

to fit the SiO2 and Si3N4 DR profiles, either by adjusting the kinetic constants or the partial order exponents 

of the various species. Despite that, discrepancies continued to be present. This is expected, given the fact 

that all considered reactions are apparent and represent multiple others. Moreover, it is recalled that only a 

few of the gaseous by-products identified by GC-MS are accounted for in the model and potential 

supplementary deposition reactions by them are ignored.  

For a final refinement, the addition of a fifth volumetric reaction is attempted. As illustrated in Fig. 

IV.26, the total Si3N4 deposition is overestimated for the highest O2 flow rates. This overestimation is 

attributed to S3 and is the result of the increased production of the N_INT2 intermediate through reaction 

V3, when sufficient O2 quantity is present in the gas phase. For that reason, a new volumetric reaction, V5, 

is added, with the aim to consume the N_INT2 intermediate at higher O2 flow rates and help regulate the 

total Si3N4 deposition. It is noted that Reaction IV.11, proposed previously in section IV.2, involved the 

consumption of the silanimine intermediate to produce the identified silanamine compound (15), which 

justifies the addition of V5. A similar reaction between the silanimine intermediate and a silanol, diol, or 

methoxysilane compound, for example (1), (2), (4) or (5), can be conceptualized to produce the silanamine 

(13). V5 can therefore represent any of the above. Naturally, the apparent reaction V5 would require the 

addition of an oxygen-containing species, such as a silanol, siloxane or O2, as co-reactant. In order not to 

influence other reactions involving O2 however, the N_INT2 intermediate was used as the sole reactant and 

V5 was formulated as: 

 𝑁_𝐼𝑁𝑇2 →  𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (V5) 

The results upon implementation of V5 into the chemical model are shown in Fig. IV.28. Inspecting 

Fig. IV.28, the addition of V5 did not affect the SiO2 deposition, just as desired, and instead resulted only 

in changes for the Si3N4 DR profile. Consumption of the silanimine N_INT2 intermediate by V5 globally 
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decreased the deposition from S3. This translated in further underestimation of the total Si3N4 deposition 

for 0.3 sccm O2, though the shape of the curve is close to the desired one. At 0.6 sccm O2, the simulations 

approach the experimental data a bit closer, though a slight inconsistency in the shape of the Si3N4 

deposition curve is noted beyond 0.35 m. The effect of V5 becomes clear here: its addition has managed to 

decrease the available concentration of the N_INT2 intermediate, decreasing as a result the Si3N4 

production from S3. For 1.2 sccm O2, even though V5 is once again consuming the silanimine intermediate, 

the higher concentration of O2 in the gas phase compensates with continuous N_INT2 production through 

V3. As a result, V3 and V5 balance each other out, and help regulate S3. An excellent agreement is noted 

between the total calculated and experimental Si3N4 profiles for 1.2 sccm O2.  

 

 

Fig. IV.28. Comparison of SiO2 DR (top row) and Si3N4 DR (bottom row) between simulations using V1-

V5, S1-S3 and experimental ellipsometry results, for varying O2 flow rates at SPT 650°C  

(runs TD7, TD11, TD12). 

 

The effects of the V5 addition on the composition are shown in Fig. IV.29. The reduction of rate 

of S3 through the consumption of the silanimine N_INT2 intermediate by reaction V5 resulted in a decrease 

of the C content for all three runs, which is visible through comparison between the carbon contents of Fig. 

IV.27 and Fig. IV.29. After introduction of V5 (Fig. IV.29), for 0.3 sccm O2, incorporation of N and C is 

underestimated, as expected due to the lower total Si3N4 DR. For 0.6 sccm O2, the slight deviations in the 
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SiO2 and Si3N4 DR profiles cancel each other out and result in a good reproduction of the composition 

profiles. 

 

 

Fig. IV.29. Comparison of nitrogen (top row) and carbon (bottom row) contents between simulations 

using V1-V5, S1-S3 and experimental ellipsometry results, for varying O2 flow rates at SPT 650°C (runs 

TD7, TD11, TD12). 

 

For 1.2 sccm O2, an interesting observation is made: the N and C concentration profiles are 

underestimated by around 1.5 at.% for N and 5 at.% for C, even though the total Si3N4 deposition was 

simulated with very close agreement to the experimental data. This could be the result of the slight 

overestimation in SiO2, which translates in higher concentrations of O and Si, reducing as a result those of 

C and N. However, these results could indicate that potential deviations are also caused by the chosen 

stoichiometry. It is recalled that the deposition of pure SiO2 and Si3N4 is considered for S1 and S2 

respectively, while S3 represents the production of a Si3N4C12 material. It is therefore possible to arrive at 

closer agreements of the composition by redefinition of the stoichiometries and redistribution of the 

incorporated carbon into the other “phases”. Various calculation attempts were carried out, revealing that 

consideration of a SiO2C1 stoichiometry drastically increases the incorporation of carbon along the whole 

length of the reactor. Only when decreasing it to SiO2C0.05 was a satisfactory fit achieved, with parallel 

consideration of a Si3N4C2 stoichiometry for S2, and Si3N4C12 for S3. However, deviations from the 

experimental composition profiles are still observed, and are primarily the result of DR profile discrepancies. 
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The developed chemical model in its final iteration and the kinetic constants of each reaction are presented 

in Table IV.8. Gas velocity, temperature and species mass fraction contours are shown in Appendix 9.  

 

Table IV.8. Proposed apparent chemical model for SiOxNy deposition from TDMSA-O2 chemistry,  

with list of reactions and their respective kinetic laws and constants. 

a) Ts is the temperature of the solid surface; b) The notation bp stands for “by-products”.  

 

IV.3.4. Comparison and validation of the simulations with local experimental results 

Let us recall that ellipsometry results, averaged from 5 points on each Si coupon, were used to 

develop the model. After conceptualization and implementation, the chemical model implemented into the 

CFD code FLUENT® is compared in shape and value to the experimental results, as a means of indirect 

validation. Firstly, the simulated local deposition profiles are visually compared to the experimental ones. 

It is recalled that the observed iridescences are caused by interaction of the film with the light and signify 

changes in thickness. Moreover, since we are dealing with a SiOxNy material with evolving composition, 

the produced color palette deviates from that of pure SiO2 or Si3N4 materials. Given that the iridescences 

 Reaction Rate law Kinetic constantsa) 

Volumetric Reactions (kmol.m-3.s-1) 

V1 𝑇𝐷𝑀𝑆𝐴 → 𝑆𝑖_𝐼𝑁𝑇 + 𝑁_𝐼𝑁𝑇 𝑘1[𝑇𝐷𝑀𝑆𝐴] 𝑘1 =  1.68 × 1014 × 𝑒𝑥𝑝 (−
29954.1

𝑇(𝐾)
) 

V2 4 𝑆𝑖_𝐼𝑁𝑇 + 2 𝑂2 → 𝑠𝑖𝑙𝑜𝑥𝑎𝑛𝑒 + 𝑏𝑝b) 
𝑘2[𝑆𝑖_𝐼𝑁𝑇]𝑎[𝑂2]𝑏 

 𝑎 = 0.50, 𝑏 = 1.00 
𝑘2 = 1.98 × 1014 × 𝑒𝑥𝑝 (−

25201.1

𝑇(𝐾)
) 

V3 𝑁_𝐼𝑁𝑇 + 𝑂2 → 𝑁_𝐼𝑁𝑇2 + 𝑆𝑖_𝐼𝑁𝑇 + 𝑏𝑝 
𝑘3[𝑁_𝐼𝑁𝑇]𝑎[𝑂2]𝑏 

𝑎 = 0.80, 𝑏 = 0.85 
𝑘3 = 2.96 × 1018 × 𝑒𝑥𝑝 (−

29808.7

𝑇(𝐾)
) 

V4 𝑁_𝐼𝑁𝑇 + 𝑂2 → 𝑠𝑖𝑙𝑎𝑛𝑎𝑚𝑖𝑛𝑒 + 𝑏𝑝 
𝑘4[𝑁_𝐼𝑁𝑇]𝑎[𝑂2]𝑏 

𝑎 = 0.45, 𝑏 = 1.26 
𝑘4 = 2.96 × 1020 × 𝑒𝑥𝑝 (−

32334.4

𝑇(𝐾)
) 

V5 𝑁_𝐼𝑁𝑇2 → 𝑏𝑝 𝑘5[𝑁_𝐼𝑁𝑇2] 𝑘5 = 6.276 × 1028 × 𝑒𝑥𝑝 (−
59575.2

𝑇(𝐾)
) 

Surface Reactions (kmol.m-2.s-1) 

S1 𝑆𝑖_𝐼𝑁𝑇 + 𝑂2 → 𝑆𝑖𝑂2 + 𝑏𝑝 
𝑘𝑠1[𝑆𝑖_𝐼𝑁𝑇]𝑠

𝑎[𝑂2]𝑠
𝑏 

𝑎 = 0.40, 𝑏 = 0.37 
  

𝑘𝑠1 = 7.25 × 10−2 × exp (−
7598.5

𝑇𝑠(𝐾)
) 

S2 4 𝑁_𝐼𝑁𝑇 → 𝑆𝑖3𝑁4 + 𝑏𝑝 
𝑘𝑠2[𝑁_𝐼𝑁𝑇]𝑠

𝑎 

𝑎 = 0.70 
  

𝑘𝑠2 = 6.27 × 106 × 𝑒𝑥𝑝 (−
29080.4

𝑇𝑠(𝐾)
) 

S3 4 𝑁_𝐼𝑁𝑇2 → 𝑆𝑖3𝑁4𝐶12 + 𝑏𝑝 
𝑘𝑠3[𝑁_𝐼𝑁𝑇2]𝑠

𝑎 

𝑎 = 0.50 
  

𝑘𝑠3 = 8.61 × 106 × 𝑒𝑥𝑝 (−
29065.5

𝑇𝑠(𝐾)
) 
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from Si3N4 films appear more vibrant than those of SiO2 [185], brighter colors on the coated Si substrates 

could not only indicate higher thicknesses, but also potentially higher N incorporation. With this point in 

mind, the experimental and simulated deposition profiles are presented in Fig. IV.30 and are discussed 

below.  

 

 

Fig. IV.30. Visual validation in shape for the developed SiOxNy model. Photographs of array of samples 

after deposition (a) and simulated total DR profiles (b) at various O2 flow rates (runs TD7, TD11, TD12). 

 

Fig. IV.30a shows photographs of the coated Si coupons for the three runs (TD7, TD11, TD12) that 

were used as the basis for the development of the chemical model. Samples pA to pG present the typical 

silver color, indicating that little to no film has been produced on them. Deposition starts to take place 

beyond sample pH for 0.3 sccm O2. It is recalled that the deposition duration for 0.3 sccm O2 was longer 

than for the other two experiments (Table IV.2), resulting in more material production, with the film 

becoming visible more easily. This explains why deposition is encountered seemingly downhill for 0.6 and 

1.2 sccm O2. For all three runs, a characteristic half-arrow shape is observed due to the high total gas flow 

rate and the progressive film formation thanks to the thermal gradient. The appearance of the “tip” of the 

arrow is connected to the decrease in deposition (circled in white) and is caused by the consumption of O2 

and other film forming species.  

Globally, it is observed that the simulations (Fig. IV.30b) reproduce well the general shape of the 

experimental profiles, validating the model in shape. The “tip” of the arrow is also encountered, with the 
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simulations correctly representing its occurrence earlier for 0.3 sccm O2 (at samples p3/p4) and its extension 

towards the right-most samples (p5/p6) for 1.2 sccm O2. It is also noted that the iridescence of 0.3 sccm O2 

appears brighter. On one hand, this could be attributed to the higher thickness of the films. However, the 

thickness of TD12 is also comparable yet appears less vividly. Therefore, the more vibrant color at 0.3 sccm 

O2 is linked to the higher nitrogen incorporation [185]. 

Fig. IV.31 presents a comparison of local DR and composition profiles for 1.2 sccm O2 (run TD12). 

The local experimental values are extracted from local measurements taken by ellipsometry, by probing the 

point (3) located in the middle of the substrate, as indicated in Fig. II.7. A line passing across the middle of 

all samples is plotted in FLUENT® to extract the respective calculated values. 

 

 

Fig. IV.31. Comparison of local SiO2 (a) and total Si3N4 (b) DR, as well as nitrogen (c) and carbon (d) 

composition profiles, plotted from ellipsometry probing point (3) and the equivalent local values from 

simulations, for 1.2 sccm O2 at SPT 650°C (run TD12). 

 

As shown in Fig. IV.31a and b, the DR profiles of the SiO2 and total Si3N4 depositions are well 

represented, with the bell shape of the SiO2 profile being reproduced with small deviations noted between 

0.2 and 0.4 m. The total Si3N4 profile on the other hand presents an excellent agreement between the 
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calculated and experimental local data. The comparison between the composition in C and N are shown in 

Fig. IV.31c and d. Similarly to what was discussed previously for Fig. IV.29, the gradually increasing trends 

are well represented, although a general underestimation is noted for both elements. This underestimation 

is attributed to the overestimation of the SiO2 deposition, with Si and O occupying as a result larger 

composition percentages of the film in relation to C and N. For the six samples located in the isothermal 

region (0.36-0.5 m) an average deviation of 9 and 3 % is calculated for the overestimated SiO2 and 

underestimated Si3N4 DR, respectively. The resulting deviations of the underestimated N and C contents 

are 42 and 37 %, respectively, meaning that the model is able to represent the local DR but gives less 

accurate results regarding the film composition. 

 

IV.3.4.1. Validation for different process temperature  

So far, the chemical model was developed from experiments with a variable O2 flow rate and was 

validated partially by comparing local values. Certainly, the local temperature also varies within the reactor 

due to the presence of a thermal gradient. However, it is of interest to see how the model performs for an 

experimental run with different operating conditions. For this purpose, run TD14 (Table IV.2) is simulated, 

described as a deposition under a SPT of 625°C instead of 650°C. Although SPT 625°C is not too far from 

the SPT for which the model was developed, it does constitute an extrapolation, which might result in lower 

accuracy. Comparison of the calculated and experimental DR and composition values is shown in Fig. 

IV.32. 

Indeed an underestimation of the SiO2 and Si3N4 DR profiles is noted in Fig. IV.32a and b, 

respectively. This indicates that the developed chemical model encounters difficulties in reproducing the 

DR profiles for SPT lower than 650°C. However, an important point uncovered in section IV.2 is recalled: 

the addition of 0.6 sccm O2 at SPT 625°C resulted in higher TDMSA conversion than when no O2 was 

present. Reaction V1 however has been formulated as being dependent only on the concentration of 

TDMSA and the temperature. The higher TDMSA conversion (and as a result, higher production of Si_INT 

and N_INT) that takes place in reality for SPT 625°C can thus not be accounted for by V1. This explains 

well why the current simulations underestimate the SiO2 and Si3N4 deposition. Additionally, due to the 

underestimation of the total Si3N4 deposition, the composition in N and C is underestimated as well.  

The results reveal that the deposition mechanism is obviously more complex and in reality involves 

multiple reactions that were not accounted for. Additionally, as all apparent kinetic models, it is only valid 

in the range of deposition conditions for which it has been developed. As illustrated for the run at SPT 

625°C, deposition at temperatures lower than 650°C follows a different mechanism and the kinetic 
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constants of at least one reaction need to be adjusted, in order to have an agreement between the calculated 

and the experimental values. Regardless, the developed model constitutes a significant first step towards 

the simulation of complex ternary SiOxNy systems containing non-negligible amounts of carbon. 

 

 

Fig. IV.32. Comparison of local SiO2 (a) and Si3N4 (b) DR, and nitrogen (c) and carbon (d) composition 

profiles, plotted from ellipsometry probing point (3) and the equivalent local composition from 

simulations, for run TD14 at SPT 625°C. 

 

IV.3.5. SiOxNy deposition in vials: experiment and process simulation 

Following the excellent corrosion resistance of the SiOxNy films as revealed from the P-etch and 

BOE wet etching corrosion results (Fig. IV.14), coating of pharmaceutical vials is undertaken using the 

TDMSA-O2 chemistry. Based on the BOE results, a concentration of maximum 7 at.% N is considered 

sufficient for excellent corrosion resistance. However, incorporation of N from TDMSA is taking place 

only for temperatures higher than 621°C. Moreover, under 0.6 sccm of O2, the desired content of 7 at.% N 

is reached at 650°C (Fig. IV.6). This temperature is above the glass transition temperature of the Type I 

pharmaceutical vials and could pose deformation problems during the deposition process. Despite that, 

deposition is attempted at SPT 650°C (thermal profile shown in Appendix 10), by applying a gradual and 
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very slow temperature increase of 1°C.min-1, to avoid deformation. Cooling after deposition is performed 

at the same rate until 500°C, after which the vial is cooled with a rate of 10°C.min-1. The applied flow rates 

are detailed in section II.1.1.2 of Chapter II. To recall them, the total flow rate is fixed at ca. 2219 sccm, 

with O2, total N2-dilution and N2-bubbler supplies being 0.3, 2195 and 24 sccm, respectively. A photograph of 

the vial after SiOxNy deposition for 1 h is presented in Fig. IV.33. 

 

 

Fig. IV.33. Type I pharmaceutical vial after application of SiOxNy coating (left) and uncoated (right). 

 

The treated Type I pharmaceutical vial coated with a film of approximately 122 nm SiOxNy is 

shown on the left side of Fig. IV.33. Compared to an uncoated vial (right), which appears transparent, the 

SiOxNy treated glass substrate shows a yellow hue on the body of the vial, indicating the production of a 

barrier coating. The average DR deduced from weighing measures 2.02 nm.min-1 for an assumed SiOxNy 

density of 2.65 g.cm-3 and considering deposition on both the internal and external surfaces (external base 

surface is excluded). This value is three times higher than the maximum DR noted on planar Si-substrates 

treated under the same conditions (Fig. IV.6a, 0.6 sccm). A potential explanation could be the difference in 

reactor configuration (impinging jet) and substrate geometry (confined space), which results in different 

gas velocity profiles and residence times compared to the generally unobstructed gas flow in the tubular 

reactor. 

The developed chemical model is implemented in the vial geometry for further investigation. The 

total mass flow rate and the mass fractions of all species at the inlet are fixed to the experimental values 

(Appendix 8). Through this, predictions regarding the hydrodynamic, thermal and mass transfer properties 

of the gas phase and the involved species are obtained. Fig. IV.34 presents the calculated gas velocity and 
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temperature distribution profiles. Fig. IV.34a shows the full range of the velocity profile. Similarly to 

depositions from TEOS, the maximum velocity is noted at the tip of the injector nozzle. In the case of the 

TDMSA chemistry, it reaches around 210 m.s-1, a value logically higher than the one obtained for the runs 

at SPT 550°C (Fig. III.24a). In order to aid the visualization of the impinging jet, the velocity range is 

clipped at a maximum of 20 m.s-1 (Fig. IV.34b). The vortex at the bottom of the vial becomes visible now. 

A smaller vortex is observed near the vial shoulder. Globally, the gas velocity profile is similar to the 

profiles observed previously (section III.2.7). 

 

 

Fig. IV.34. Gas velocity profile at full range (a) and clipped to a maximum value of 20 m.s-1 (b), 

as well as temperature distribution profile (c), for a SPT of 650°C. 

 

The thermal profile imposed on the solid walls and the simulated thermal distribution in the gas 

phase is shown in Fig. IV.34c. The cooler jet and the subsequent heating of the gas upon impact on the 

hotter surfaces of the vial are noted. Globally, it is observed that temperatures above 600°C are reached 

only after the gas has exited the nozzle and met the hotter base of the vial. This indicates that deposition of 

a nitrogen-containing film is first initiated within at region contained within the vial, as is desired. The 

difference in thermal profile between the tubular and vial reactors can be an additional reason why a higher 

DR was observed in the vial reactor: no consumption of film-forming species is taking place before the gas 

enters the vial. In the tubular reactor on the other hand, deposition on the gradually heated quartz wall, 
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substrates and substrate holder is observed, even before the gas manages to reach the isothermal region. As 

a result, the concentration of the film-forming species in the isothermal region of the tubular reactor is lower 

compared to the equivalent vial configuration, where the gas phase is heated more abruptly. This is reflected 

in the mass fractions of the main species shown in Fig. IV.35. 

 

 

Fig. IV.35. Local mass fraction profiles of O2 (a), TDMSA (b), Si_INT (c), N_INT (d)  

and the silanimine N_INT2 intermediate (e) from simulation at SPT 650°C. 

 

Fig. IV.35 shows the local mass fraction distributions of O2, TDMSA, Si_INT, N_INT and the 

N_INT2 intermediate. The mass fractions of O2 and TDMSA remain unchanged until the incoming gas 

flow impacts on the bottom of the vial. Beyond this point, the gas phase is heated abruptly and a series of 

reactions is taking place in quick succession. TDMSA is first decomposed to produce Si_INT and N_INT 

through V1. Si_INT then reacts with O2 to produce siloxane compounds and the solid SiO2 film through 

reactions V2 and S1, respectively. At the same time, N_INT reacts with O2 to produce the silanimine 

N_INT2 intermediate. The species exhibit non-uniform mass fraction profiles and seem to be greatly 

affected by the vortexes present in the gas phase. This is especially emphasized in the vortex close to the 

shoulder of the vial, where an important consumption of TDMSA and O2 is taking place. Additionally, only 

O2 is completely consumed, while a quantity of unreacted TDMSA is noted at the exhaust. Despite that, the 

TDMSA conversion within the reactor is calculated at 97 % and the deposition yield (considering only the 

vial) at 0.7 %. Both values are higher than the respective ones calculated for the tubular reactor (85 % and 

0.2 %, respectively). A similar behavior was also observed for the TEOS-O2/O3 chemistry. Once again, it 



Chapter IV. Deposition of SiOₓNᵧ barrier coatings from tris(dimethylsilyl)amine, TDMSA 

204 

 

is confirmed that the change in reactor configuration and substrate geometry has led to a more efficient 

utilization of the supplied precursor quantity. The constrained thermal profile also plays an important role 

in increasing deposition on regions of interest. 

The simulated distribution of SiO2 (reaction S1) and total Si3N4 deposition (reactions S2 and S3) 

on the internal and external surfaces of the vial is presented in Fig. IV.36. The simulations indicate that 

SiO2 deposition (Fig. IV.36a) is taking place across the whole surface of the vial and appears relatively 

uniform thanks to the distribution of the Si_INT and O2 mass fractions close to the vial wall. A decreased 

DR is noted at the external heel region, which is attributed to the consumption of O2 in the gas phase (Fig. 

IV.35a). Deposition of Si3N4 (Fig. IV.36b) is noted to be more pronounced on the external surface of the 

vial, predominantly at the body and heel regions. Inspection of the mass fractions from Fig. IV.35 shows 

that both N_INT and N_INT2 are indeed present at the exterior of the vial. On the internal surface on the 

other hand, a sharp change in DR is noted around the middle of the vial body region. This distribution of 

the Si3N4 deposition rate is visibly linked to the evolution of the local N_INT2 mass fraction (Fig. IV.35e). 

 

 

Fig. IV.36. Simulated SiO2 DR profile from S1 (a), Si3N4 DR from S2 and S3 (b) on the external 

and internal surfaces of a vial simulation from the TDMSA-O2 chemistry at SPT 650°C (run VTD1). 

 

The evolution of the DRs from each individual heterogeneous reaction on the internal surface of 

the vial are presented in Fig. IV.37. A steep increase is observed for all three reactions at the region where 

the sharp change in DR appears. The steepest increase is observed for the DR of carbonated Si3N4 through 
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reaction S3 (dependent on the mass fraction of N_INT2), the trend of which is naturally closely followed 

by the evolution of the carbon content. The calculated carbon incorporation spans from 4.3 to 6.1 at.%, 

while the nitrogen content ranges between 1.7 and 2.3 at.%. Although the accuracy of these values depends 

on validation of the model after being transposed into the vial reactor, they still serve to demonstrate how 

simulation can be used to acquire compositional information on surfaces that would otherwise be difficult 

to examine non-destructively. Additionally, the model could also help finding new deposition conditions 

that would allow for more uniform film thickness and composition inside the vial. One possible route could 

be to decrease the total flow rate, so as to minimize the recirculation patterns inside the vial. 

  

 

Fig. IV.37. Evolution of simulated DR from reactions S1(SiO2), S2 (Si3N4) and S3 (Si3N4C12) (dashed 

lines), as well as C and N composition (dash-dotted lines) along the body of the vial. 

 

Lastly, an important piece of information is pointed out. Even though a gradual and very slow 

increase and decrease of the temperature was applied during the heating and cooling steps of the deposition 

process, the glass container deformed regardless as soon as the temperature exceeded ca. 600°C. More 

specifically, the vial sagged by 2-4 mm, with one side deforming more than the other. The asymmetric 

deformation made the crown of the vial shift out of axial alignment below the injector nozzle, a change that 

cannot be simulated. This is why no direct comparison is possible between experimental and simulated 

deposited mass. Moreover, the altered and unknown volume of the vial renders it difficult to correctly 
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follow the UPS<660> protocol. The above results underline well the requirement of treating vials within 

the specified temperature margins. At the same time though, the fact that deposition of nitrogen-containing 

films from the TDMSA chemistry is possible only above ca. 621°C is an obstacle. Thus, it is clear that the 

challenges remain: novel, more reactive chemistries are necessary in order to carry out SiOxNy deposition 

at lower temperatures, compatible with the glass transition temperature of Type I pharmaceutical vials.  

 

 

IV.4. Conclusions 
 

The deposition of SiOxNy films from the rarely reported TDMSA precursor was explored in the 

present chapter. Chemistries involving NH3 and O2 were investigated, resulting in successful incorporation 

of nitrogen, a landmark achievement for the present thesis. The reactivity of the precursor enabled SiOxNy 

deposition below the 750-900°C temperature range encountered in conventional thermal CVD processes. 

After extensive parametric analysis, it was uncovered that TDMSA fulfills a dual role as Si and N provider. 

NH3 aids in decreasing organic carbon in the films but does not benefit DR or film enrichment in N. O2 has 

a substantial film-promoting role. However, a trade-off exists in terms of film nitridation: incorporation 

reactions of O and N are highly competitive to each other. Hydration of the network is encountered as N–

H, Si–OH and –CH3, with IBA measuring 17-23 at.% H and 5-20 at.% C. Despite their presence, the films 

exhibited an exceptionally low P-etching rate (0.2 Å.s-1), at least one order of magnitude lower than any of 

the silica films produced so far. Screening using BOE showed that this remarkable corrosion resistance is 

attributed to the presence of nitrogen and to the network densification induced by its incorporation. It was 

revealed that ca. 7-8 at.% N is sufficient for the production a SiOxNy film with excellent corrosion resistance. 

This result is significant and helps frame the previously mentioned trade-off between film growth and 

nitridation. 

Gas phase analysis revealed that the deposition process is initiated through the thermal 

decomposition of TDMSA into radical species. The (Me)2HSi• radical was trapped systematically. 

Compounds from the silanol, silanamine, siloxane and alkoxysilane families were also identified. It was 

observed that the (Me)2HSi• and (Me)2SiHN• radicals, originating from the thermal decomposition of 

TDMSA, are the main building blocks for all detected by-products, with additional indications on the 

presence of CH3
• and H• radicals. At least 14 distinct reactions were proposed to describe the deposition 

process and suggest pathways for the production of the various identified compounds. Among them, 8 

reactions were used for the formulation of an apparent mechanism, implemented for the first time for the 
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simulation of a SiOxNy material with non-negligible amounts of carbon. An innovative methodology 

combining results from ellipsometry, IBA, GC-MS, ESR, NMR and process simulation by CFD was 

applied. The developed model is valid for low O2 flow rates (up to 1.2 sccm) at 650°C and provides 

predictions regarding SiOxNy film thickness and composition. An extrapolated comparison with deposition 

at 625°C was carried out. Discrepancies were observed, which can however be traced back to a difference 

in deposition mechanism at this temperature.  

Unfortunately, the TDMSA chemistries failed to conform to the operating constraints. Nitrogen 

incorporation from this precursor requires a temperature of at least 620°C, rendering this chemical pathway 

incompatible with pharmaceutical Type I vials. Thus, the following chapter focuses on addressing this 

challenge by exploring SiOxNy deposition through a more reactive, novel trisilylamine-derivative precursor, 

developed and provided by Air Liquide.  
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Chapter V. Deposition of SiOₓNᵧ films from a novel 

trisilylamine derivative precursor 

 

 

The present chapter pertains to research on the deposition of silicon oxynitride films from a 

trisilylamine derivative compound. This molecule, referred to as TSAR, is a novel, proprietary precursor 

developed by Air Liquide. This study was conducted during the final months of the thesis, in an attempt to 

further challenge the thermal chemical vapor deposition of SiOxNy films and achieve film formation at 

temperatures lower than 600°C.  

The experimental exploration of this new compound was conducted in absence of ammonia, using 

a TSAR-O2 chemistry. In a first step, a parametric analysis investigating the effect of the temperature and 

O2 flow rate is executed. Focus is placed on the minimum temperature required for deposition, the 

respective deposition rates, as well as the nitrogen and carbon contents of the films. In a second step, the 

produced SiOxNy films from TSAR are compared to those from TDMSA in terms of deposition rates, 

composition and chemical structure. 

In a final step, the corrosion resistance behavior of the films obtained from the TSAR-O2 chemistry 

is investigated. Similarly to TDMSA, improvements in performance are explained by linking them to the 

densification of the network caused by additional enrichment in nitrogen and/or increase in deposition 

temperature. A comparison of all silica-based materials produced in this thesis allows drawing important 

conclusions regarding the correlation between the process-composition-structure triptych and the resulting 

barrier performance of each material. Lastly, differences in possible deposition mechanisms and 

incorporated moieties are discussed.  
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V.1. SiOₓNᵧ deposition from TSAR on planar substrates 

 

Based on the results of Chapter IV, it appears that, for the range of operating conditions tested, a 

chemistry including NH3 does not result in improvements regarding the deposition rate of the films or their 

enrichment in nitrogen. For that reason, the production of SiOxNy films from TSAR was studied using a 

TSAR-O2 chemistry. The operating conditions of the various experiments performed are summarized in 

Table V.1. Flow rates of 3960 sccm and 68 sccm were applied for the N2-dilution and N2-bubbler lines 

respectively, remaining unchanged across all experiments. For these conditions and by keeping the bubbler 

temperature at 60°C, a TSAR flow rate of ca. 2 sccm was supplied in the reactor. 

 

Table V.1. Experimental conditions of the TSAR-O2 chemistry tested in the tubular CVD reactor.  

Run SPT (°C) O2 flow rate (sccm) Deposition time (min) 

AR1 650 0.6 25 

AR4 625 0.6 15 

AR3 580 0.6 41 

AR2 550 0.6 50 

AR5 550 0.3 67 

AR6 550 - 58 

AR7 650 0.6 80 

 

 

The effect of the set point temperature (SPT), as well as the lowest possible temperature for 

deposition of SiOxNy films from the TSAR-O2 chemistry, are investigated through experiments AR1 to 

AR4. Afterwards, the effect of the O2 flow rate for a SPT of 550°C is investigated through experiments 

AR2, AR5 and AR6. Run AR7 is performed to obtain thick SiOxNy films for nanoindentation analysis. 

 

V.1.1. Deposition from TSAR-O2 and comparison with TDMSA-O2 

Fig. V.1 shows that successful deposition of material was achieved for AR1 conditions (2 sccm 

TSAR, 0.6 sccm O2, at 650°C). Similar to previous experiments, the iridescence reveals changes in 

thickness. Interestingly, the minimum temperature required for film formation is noted to be around 510°C, 
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much lower than the 585-610°C required for the TDMSA chemistry. These results translate into lower 

thermal requirements and improved compatibility of the process with pharmaceutical vials.  

 

 

Fig. V.1. Photograph of substrates after deposition for 2 sccm TSAR and 0.6 sccm O2 (AR1), 

with local temperature indicated for selected samples. 

 

Following deposition, the samples are analyzed by ellipsometry to assess if nitrogen incorporation 

was successful. Similarly to TDMSA, application of models based on SiO2 (Fig. II.8b) failed to give a 

satisfactory fit between the measured and simulated ellipsometric spectra. Application of the material-

independent Cauchy and Sellmeier models (Fig. II.8a) revealed a refractive index (RI) of 1.78 for sample 

p6. Once again, this value is well above the value of stoichiometric silica (1.458) and close to that of SiOxNy 

material with around 30 at.% of nitrogen (i.e. 1.85, [263]). The successful incorporation of nitrogen is 

further confirmed by a fit of the ellipsometry spectra to a SiO2+Si3N4 BEMA model (Fig. II.8c), with an R2 

over 0.99. In comparison to TDMSA, which includes 6 Si–CH3 groups in its structure, the TSAR precursor 

features Si–H bonds instead (Table II.1). For that reason, the consideration of a carbon-containing 

component in the BEMA model (Fig. II.8d) was not required. The deposition rate (DR) and nitrogen content 

results for AR1 are shown in Fig. V.2. Results of the TDMSA-O2 chemistry, for an experiment carried out 

under the same flow rates and temperature conditions (i.e. 2 sccm TDMSA, 0.6 sccm O2, SPT 650°C) is 

also included for comparison. 

Fig. V.2a reveals a big difference in DR between the two precursors. A maximum DR of 10.3 

nm.min-1 is reached at ca. 635°C for TSAR, a value that is at least one order of magnitude higher than the 

maximum DR noted for TDMSA under similar conditions. The reactivity of the TSAR molecule thanks to 

the multiple Si–H bonds is apparent and drastically increases material growth rate. Beyond the point at 

which the maximum DR is achieved, the rate of film production decreases similarly to what was observed 

for TDMSA. This behavior has been attributed to the consumption of one or multiple reactants. Fig. V.2b 

reveals that, just like TDMSA, the TSAR precursor can also act as a nitrogen source. Moreover, higher 

nitrogen incorporation is encountered for TSAR. When this trisilylamine derivative molecule is used as the 
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precursor, nitrogen is first probed beyond 0.15 m from the inlet, corresponding to a local temperature of 

around 520°C. Similarly to what was previously observed for TDMSA, the nitrogen content of the films 

increases continuously, despite the deceleration of the DR beyond its maximum. Based on the information 

revealed in Chapter IV and the literature regarding the competition between O and N incorporation, this 

behavior is attributed to the consumption of O2 in the gas phase and/or to the depletion of oxygen containing 

species that participate in film formation [179, 180, 247, 264]. 

 

 

Fig. V.2. Average deposition rate of films (a) and nitrogen content (b) per sample measured by 

ellipsometry, for films produced under 0.6 sccm O2 for a SPT of 650°C. 

 

Ellipsometry revealed that a maximum percentage of 17.4 at.% N is reached on the last sample (p6) 

for films produced from the TSAR precursor. This value is lower than the one calculated previously 

(ca. 30 at.% N) from correlation of the RI to the composition, as provided by the literature [263]. A possible 

explanation could be the presence of Si–Si bonds in the films. Since the RI of Si=3.949 > Si3N4=2.044 > 

SiOxNy > SiO2=1.458 [300-302], a high RI does not necessarily translate to a high nitrogen content. Instead, 

it could be biased by the presence of Si–Si bonds, shifting the RI towards higher values. This assumption 

is investigated further through FT-IR, IBA and XPS analyses in section V.2.  

For the same operating conditions and on the same sample (p6), deposition from TDMSA resulted 

in lower nitrogen incorporation, reaching a maximum of 7.5 at.% N. This could be explained by the 

difference in the atomic N:Si ratio in the precursor molecules, which is 1:3 for TDMSA and 2:3 for TSAR. 

However, nitrogen incorporation from TSAR on sample p6 is more than double that of TDMSA. Therefore, 

the increased N content in films from TSAR cannot be solely attributed to the higher N:Si ratio in the 

starting molecule. It indicates a better efficiency in film nitridation from this particular precursor. 
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V.1.2. Effect of the deposition temperature 

Following the above, a parametric analysis studying the deposition at four different SPTs, namely 

550°C, 580°C, 625°C and 650°C is conducted (runs AR1 to AR4, Table V.1). The evolution of the DR and 

the content in N along the reactor (averaged per sample), as measured by ellipsometry (SiO2+Si3N4 BEMA 

model, Fig. II. 9c), is presented in Fig. V.3. 

 

 

Fig. V.3. Investigation of the SPT on the DR (a) and nitrogen content (b). Respective thermal profiles are 

added in grey triangles. 

 

 Fig. V.3a shows that for a SPT of 650°C, deposition is initiated at ca. 510°C, with an average DR 

of 0.9 nm.min-1. The maximum DR at this SPT is 10.3 nm.min-1, reached at ca. 635°C. As the SPT decreases, 

so does the global DR profile of each experiment, with the corresponding maximum DR values measuring 

8.8, 6.1 and 3.1 nm.min-1 for SPT 625°C, 580°C and 550°C, respectively. This behavior is expected for 

thermally activated processes. Additionally, it is noted that the maximum DR is observed closer to the inlet 

for higher SPT, which is explained by the offset between the thermal profiles. Faster heating of the gas 

phase at higher SPT leads naturally to increased activation of the various gas phase and surface reactions. 

Beyond the maximum DR, the deposition decreases for all experiments, due to the consumption of one or 

multiple reactants, as was previously mentioned. 

Fig. V.3b reveals that for SPT 650°C, nitrogen is first encountered beyond 0.15 m from the inlet, 

corresponding to a local temperature of around 520°C. Nitrogen incorporation is initiated further inside the 

reactor for lower SPT, as a result of the thermal profile offset. The nitrogen content of the films increases 

continuously, attributed to the consumption of O2 and/or oxygen-containing species in the gas phase. 

Deposition at SPT lower than 650°C results in the decrease of nitrogen incorporation, with maximum values 
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of approximately 6.9, 4.1 and 6.4 at.% N noted for SPT 625°C, 580°C and 550°C, respectively. Interestingly, 

most of the values for 580°C and 550°C overlap, even though clear differences in their respective DRs were 

shown in Fig. V.3a. This can indicate that, between 550°C and 580°C, deposition and N incorporation 

proceed through the same intermediate species. Above 580°C, and especially at 650°C, the deposition 

mechanism appears to be changing, with deposition being potentially carried out by multiple intermediate 

species that likely feature higher N:Si atomic ratios. 

 

V.1.3. Effect of the O2 flow rate 

The first set of experiments discussed in the previous section illustrated the ability of the TSAR 

precursor to successfully lead to SiOxNy deposition featuring multiple advantages. Firstly, high DRs of up 

to 10.3 nm.min-1 were noted. More importantly, deposition at temperatures as low as 510°C was achieved, 

with successful nitrogen incorporation at 520°C and above. This feature is seminal for the deposition of 

SiOxNy coatings at conditions that are compatible with the glass transition temperature of Type I 

pharmaceutical vials. Following the achievement of SiOxNy deposition at temperatures lower than 600°C, 

a parametric analysis based on the O2 flow rate for a constant SPT of 550°C is executed (runs AR2, AR5 

and AR6, Table V.1). The results in terms of DR and nitrogen incorporation under variable O2 flow rates 

are presented in Fig. V.4. 

 

 

Fig. V.4. Investigation of the effect of the O2 flow rate on the DR (a) 

and nitrogen content (b), at SPT 550°C. Thermal profile is included in grey. 

 

From Fig. V.4a it is observed that a higher O2 flow rate increases the overall DR of the process. In 

absence of O2, a maximum 2.0 nm.min-1 is noted. This value increases to 2.7 and 3.1 nm.min-1 for 0.3 and 
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0.6 sccm O2, respectively, illustrating the deposition-promoting effect of O2. Similarly to TDMSA, film 

formation is observed even in absence of O2 in the inlet gas composition, indicating that the TSAR precursor 

can dissociate and produced film-forming intermediates on its own. The fact that the measured ellipsometry 

spectra fit to a SiO2+Si3N4 model suggests also the presence of O in the films for 0 sccm O2. The cause 

could be an O2 leak, or the desorption of O2/H2O from the reactor walls. It is however pointed out that no 

bell shape is noted for the experiment carried out in absence of O2, a shape that is typically encountered in 

experiments with O2 in the inlet gas composition, even at 0.3 sccm. Thus, if an O2 leak is the cause for 

oxygen incorporation at 0 sccm O2, it can be concluded that its flow rate is much lower than 0.3 sccm. 

The effect of the O2 flow rate on the nitrogen content is shown in Fig. V.4b. Nitrogen incorporation 

is encountered for all experiments. Similarly to before, the maximum N content is observed on the last 

sample, measuring 6.1 at.% N at 0.6 sccm O2. This value increases to 7.9 and 21.9 at.% N for 0.3 and 

0 sccm O2, respectively. Like for TDMSA, the results illustrate clearly the competitive behavior of O and 

N incorporation, with nitrogen incorporation increasing for lower O2 inlet supply. Because of the continuous 

consumption of O2 in the gas phase, a progressive increase in N concentration is noted along the length of 

the reactor. However, at 0 sccm, a bell curve for the nitrogen content is observed for the first time. Given 

that the DR continues to increase, it is speculated that film formation in this region proceeds through 

multiple species, each containing different atomic N:Si ratios. The depletion of a species with high N:Si 

ratio, along with the prevalence of an intermediate with lower N:Si ratio, could explain the decrease in 

nitrogen content and concomitant increase in DR between 0.4 and 0.5 m.  

 

 

V.2. Chemical bonding state and composition of SiOₓNy from TSAR-O₂ 

 

V.2.1. Infrared analysis 

The chemical bonding state of the films produced by the TSAR precursor is probed with FT-IR. 

Since the material is a silicon oxynitride, the majority of the identified peaks have already been previously 

encountered in TDMSA films and are listed in Appendix 4. The following sections focus on the evolution 

of the FT-IR spectra as a function of the temperature and the O2 flow rate, presenting results by zooming at 

the two main areas of interest, the fingerprint region (600-1400 cm-1) and the region of the hydrated network 

(2800-3700 cm-1). 
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V.2.1.1. Effect of the temperature on the SiOxNy network 

The evolution of the SiOxNy network as function of the SPT is shown in Fig. V.5, after FT-IR 

analysis performed at 60°. Multiple overlapping absorptions are once again encountered in this fingerprint 

region, but general trends can be observed visually. Similarly to what was presented for TDMSA (Fig. 

IV.11), the trends are symbolized with arrows indicating the shift of the peak position and the change in its 

intensity. The characteristic TO3-LO3 pair of the –Si–O–Si– network is noted as expected for oxide-type 

films [99, 187]. Interestingly, the Si–(CH3)x absorption at ca. 1270 cm-1 is also noted, despite the TSAR 

precursor featuring predominantly Si–H bonds. It is proposed that the methyl moieties originate from the 

alkylamine chain found in the precursor molecule. The Si–N stretching vibration is also noted as a shoulder 

appearing at ca. 940 cm-1 [270, 271]. Various overlapping absorptions at 800 cm-1 are also observed, 

The ellipsometry results of section V.1 revealed higher contents of nitrogen for films produced at 

the higher temperatures. This is reflected in the FT-IR spectra through the decrease of the LO3 and TO3 

intensities and the parallel increase of the Si–N absorptions. Visually, the LO3-TO3 pair is not observed 

anymore for 650°C. At this temperature, the spectrum appears to be “shifted” towards lower wavenumbers. 

This is a result of the disappearance of absorptions above 1200 cm-1 and the increase in intensity of bonding 

states vibrating at frequencies lower than 1000 cm-1.  

The position and intensity of the separate absorptions are identified after deconvolution. As shown 

in Fig. V.5a, the LO3 mode shifts towards lower wavenumbers for increasing SPT and is not detected 

anymore at 650°C. For TO3, its position moves from 1034 to 1036 cm-1 from 550°C to 625°C. It then shifts 

down to 1006 cm-1 for 650°C. The TO3 component has been reported at this exact wavenumber in the 

literature, for silicon oxycarbide and carbonitride films by PECVD [303]. Additionally, referring back to 

Appendix 4, a peak at 1006 cm-1 could also be attributed to a Si–CH2–Si stretching absorption, found 

normally at 1000-1020 and 1060 cm-1 [247, 250]. This assumption could correlate well with the 

disappearance of the LO3 component at 650°C and would translate in the decrease of the number of Si(O)4 

tetrahedra and the appearance of tetrahedra where at least one oxygen is substituted by carbon. A second 

assumption could be made, suggesting that the supplied quantity of O2 is potentially already consumed in 

the gas phase by the time the gas reaches the sample probed by FT-IR (sample p1, local temperature: 650°C). 

Since the maximum DR is encountered at ca. 635°C for this SPT, that is, prior to sample p1, and because 

the DR begins to drop beyond that point, this proposal, i.e. that O2 is potentially already consumed at the 

location where sample p1 is found, seems reasonable. The above-described decrease in Si(O)4 tetrahedra is 

kept in mind and is discussed again in later sections. 
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Fig. V.5. Evolution of the FT-IR fingerprint spectra of TSAR-O2 films as a function of the SPT, analyzed 

for an incidence angle of 60°. Supplementary diagrams show evolution of LO3 and TO3 position and the 

intensity of the 888-864 cm-1 absorption after deconvolution (a), as well as the evolution of the hydrated 

network region (b).  

 

In addition to the above, a new absorption is also noted at around 890 cm-1, appearing as a small 

shoulder for SPT 550°C to 625°C. This shoulder has not been observed for any of the TDMSA films, but 

appears consistently for those produced from TSAR. Tracing its evolution after deconvolution of the spectra 

(Fig. V.5a) reveals that its intensity increases for higher SPT. In parallel, its position shifts from 888 to 

864 cm-1. This absorption has been associated with the asymmetric stretching of Si–N in Si–NH–Si groups 

or the Si–H wagging vibrational mode [304] in the literature and has been seen to shift by more than 50 cm-1. 

Multiple articles mention its appearance at 840 cm-1 even and correlate it to Si3N4 [305, 306]. According to 

Behrens et al. [307], two local structures for SiOxNy are suggested: the random mixture model (RMM) and 

the random binding model (RBM). RMM is identified by a mixture of randomly distributed SiO2 and Si3N4 

phases leading macroscopically to an amorphous SiOxNy. In RBM, “the bonds between Si, O and N 

constitute a fourfold coordination and represent a homogeneous Si–O–N network in five different 

tetrahedral configurations of SiOvN4-v, where v=0-4” [16, 307]. Multiple authors have correlated the 

appearance of the aforementioned asymmetric stretching Si–N absorption to Si3N4, and by extension to the 

RMM model. It is recalled that this newly appearing absorption was not observed for SiOxNy films from 
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TDMSA. Based on the above information, it could be suggested that SiOxNy from TDMSA follows the 

RBM and is comprised of various SiOvN4-v tetrahedral configurations, while SiOxNy from TSAR follows 

the RMM and is comprised of randomly mixed SiO2 and Si3N4 “phases”. Supplementary information from 

other characterization techniques is required to confirm this assumption, a point that is touched upon later. 

The evolution of the spectra in the 2800-3700 cm-1 region, relating to the hydration of the network, 

is shown in Fig. V.5b. Since both Si–OH and N–H bonds absorb in this frequency range, no clear trend can 

be observed due to overlap. Ellipsometry revealed higher N incorporation at elevated temperatures, which 

could translate in larger concentrations of N–H. Overall, the intensity of the whole band appears to be 

increasing from 550°C to 625°C, beyond which it drops again for 650°C. It could therefore be assumed that 

from 550°C to 625°C the continuous enrichment of the films in nitrogen also introduces additional N–H 

bonds, increasing the intensity of the N–H stretching mode at 3400 cm-1 [270, 271, 281]. For high 

temperatures however (650°C), the additional supply of energy aids in the breaking of N–H bonds, 

facilitating network dehydration and densification. According to that scenario, the intensity of the whole 

band decreases due to lower N–H concentrations. This in turn also results in lower –N–H···N– hydrogen 

bonds, which are responsible for the “tail” appearing at ~3300-3400 cm-1. Alternatively, it is also possible 

that deposition at 650°C proceeds through intermediates that do not contain N–H. This point is kept in mind 

for later. The Si–OH bonded to H2O and the free Si–OH stretching modes absorbing at around 3500 and 

3650 cm-1 respectively are also noted [8, 270, 271]. No clear evolution with the temperature can be 

discerned. Lastly, weak absorptions at 2800-3000 cm-1 are also observed [89, 214, 308], further indicating 

the slight incorporation of methyl moieties from the alkylamine chain. 

 

V.2.1.2. Effect of the O2 flow rate on the SiOxNy network 

An investigation similar to the one above is also carried out for films produced by the TSAR-O2 

chemistry, under O2 flow rates varying between 0 and 0.6 sccm at a constant SPT of 550°C. The evolution 

of the various bonding states is shown in Fig. V.6.  

The characteristic TO3-LO3 pair is encountered once more in the two experiments utilizing O2 in 

the inlet gas composition, but disappears for 0 sccm O2. The spectrum appears to shift towards lower 

wavenumbers for decreasing concentrations of O2. Previously, this behavior was encountered for 650°C, a 

temperature at which the network is rich in nitrogen. Similarly, the nitrogen content of the films is also 

increased for 0 sccm O2, and a FT-IR spectrum with no LO3-TO3 is probed. After deconvolution, the 

position of the LO3 and TO3 components is identified (Fig. V.6a). The LO3 mode shifts towards lower 

wavenumbers for lower O2 flow rates and is not probed anymore for 0 sccm O2. The LO3 disappearance 
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was previously noted for 650°C (Fig. V.5a). This behavior is attributed to the reduction in oxide character 

in the films and the gain in nitrogen content. For TO3, its position decreases from 1034 to 1029 cm-1 for 

0.6 and 0.3 sccm respectively. At 0 sccm O2, the vibration shifts significantly down to 1006 cm-1. The exact 

same vibration was probed previously for 650°C. Thus, the same assumptions are made, proposing that the 

TO3 shift down to 1006 cm-1 relates to a decrease in Si(O)4 tetrahedra and the potential appearance of a  

Si–CH2–Si mode. This is highly likely, considering the disappearance of the LO3 component for 0 sccm 

O2. The similarity of this absorption between the spectra of 650°C and 0 sccm O2 could confirm that the O2 

in the gas phase for SPT 650°C has already been consumed once the gas reaches the isothermal region. 

 

 

Fig. V.6. Evolution of the FT-IR fingerprint spectra of TSAR-O2 films produced under various O2 flow 

rates, analyzed for an incidence angle of 60°. Supplementary diagrams show evolution of LO3 and TO3 

position and the intensity of the 888-852 cm-1 absorption after deconvolution (a), as well as the evolution 

of the hydrated network (b) as a function of the O2 flow rate. 

 

Fig. V.6 also reveals the Si–(CH3)x absorption appearing as a shoulder at around 1280 cm-1. Its 

intensity drops significantly at 0 sccm O2, with its position having shifted from 1280 to 1250 cm-1. In terms 

of nitrogen incorporation, the Si–N stretching vibration is once again noted as a shoulder appearing at 

around 940 cm-1 [270, 271], next to the newly reported asymmetric stretching Si–N absorption appearing 
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as a second shoulder at ca. 890 cm-1 [304]. Tracing of its evolution after deconvolution (Fig. V.6a) shows 

once more increasing intensities for lower O2 flow rates, a trend that can be correlated to the increase in 

nitrogen incorporation. Reduction of the O2 supply in the gas phase also shifts this absorption position from 

888 cm-1 (at 0.6 sccm) to 852 cm-1 (at 0 sccm). As previously mentioned, the appearance of this asymmetric 

stretching Si–N absorption could indicate a RMM configuration, comprised of randomly mixed SiO2 and 

Si3N4. 

The evolution of the spectra relating to the hydration of the network is shown in Fig. V.6b. Once 

again, a clear trend is difficult to observe due to the simultaneous contributions of Si–OH and N–H bonds 

in this frequency range. However, the spectra present a distinctly different shape for 0 sccm O2. The 

intensity of the whole band is greatly reduced, which is a bit unexpected given that the higher N content of 

the film should result in a relative increase of the N–H absorption. Since the temperature was kept constant, 

the decrease in N–H is directly correlated to the absence of O2 in the gas phase. It could therefore be 

speculated that incorporation of nitrogen, when in an oxidizing gas phase, proceeds through an intermediate 

that contains N–H groups, which fits the description of the nitrogen contained in the alkylamine chain. This 

assumption correlates in fact well with the higher Si–(CH3)x absorption noted under higher O2 flow (Fig. 

V.6), and means that, under oxidizing atmospheres, the N–Hx and –CH3 groups of the alkylamine chain are 

introduced in the films through the same intermediate. 

Lastly, the plateau between 3450 and 3650 cm-1 (Si–OH:H2O and free Si–OH absorptions) is also 

noted, appearing almost constant at 0.6 sccm, but presenting a more prominent slope when the O2 supply 

in the inlet gas composition is decreased. At 0 sccm O2, even though the spectra show a lot of noise, the Si-

OH stretching mode found at 3650 cm-1 appears to have decreased significantly, as expected for a film 

produced under an oxidant-free atmosphere.  

 

V.2.1.3. Presence of Si–H 

Given that the TSAR precursor contains more Si–H bonds in its structure compared to the TDMSA 

molecule, a closer inspection of the two main regions where this bond absorbs, is advised, in order to 

investigate if higher incorporation of Si–H is taking place. These two regions pertain first to the 620-650  

cm-1 range, where the wagging/rocking Si–H vibrational mode is encountered [309, 310], and then to the 

2000-2250 cm-1 range, where the Si–H stretching mode is found to absorb more prominently [275]. Fig. 

V.7 shows FT-IR spectra of TSAR-O2 films produced under different conditions, focusing on the 2000-

2250 cm-1 range. A TDMSA-O2 film produced at SPT 650°C (run TD7) is also included for comparison. 
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Fig. V.7. Evolution of the Si–H stretching mode in SiOxNy films from TSAR and TDMSA as a function 

of the SPT, under a constant O2 flow rate of 0.6 sccm (a). Influence of the O2 flow rate on the Si–H 

stretching mode in SiOxNy films from TSAR, produced at a constant SPT of 550°C (b). 

 

In the first set of results (Fig. V.7a), no Si–H absorption is noted for the TDMSA film. The small 

peak appearing at around 2280 cm-1 is attributed to the incompletely removed CO2 background signal from 

the atmosphere [195, 196]. Broad absorption bands are noted for the TSAR films however, spanning 

between 2100 and 2300 cm-1. No clear trend exists for the Si–H stretching mode as a function of the 

temperature. The very broad absorption for 650°C is noteworthy.  

When inspected as a function of the O2 flow rate at a constant SPT of 550°C (Fig. V.7b), a clearer 

trend for the Si–H absorption is observed. It appears to increase in intensity with decreasing O2 supply, 

showing a very prominent absorption for the sample produced in absence of O2 in the gas phase. Thus, it 

can be concluded that the presence of O2 gas tends to dehydrogenate the species contributing to film 

formation. Moreover, when O2 is supplied in the gas phase (0.3 and 0.6 sccm), the Si–H absorption is 

centered around 2250 cm-1. Under an oxidant-free atmosphere however, its position visibly shifts to lower 

wavenumbers and its intensity increases. The same behavior is noted for the Si–H absorption from TSAR 

at SPT 650°C (Fig. V.7a), the center of which appears to have shifted down to ca. 2225 cm-1. This shift 

could indirectly indicate that a considerable consumption of the supplied O2 takes place for 650°C. This 
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assumption correlates well the previous discussions on how the similarity between the SPT 650°C and 0 

sccm O2 spectra indicate a significant O2 consumption in the gas phase of the former. 

 

V.2.2. SiOxNy composition from IBA techniques 

More accurate composition results are obtained by Ion beam analysis (IBA) techniques. The p2 

sample position was systematically analyzed to compare compositional changes across experiments directly, 

without locality effects. An additional sample, pG (Fig. V.1), produced for SPT 650°C and 0.6 sccm O2 

(run AR1) was also analyzed, to compare the influence of the sample position between it and sample p2. 

Since sample pG is located outside the isothermal region, its local temperature for SPT 650°C is 605°C. 

Thus, interconnected effects from sample position, local temperature and local gas phase composition are 

expected. 

The influence of a variable deposition temperature (runs AR1 to AR4) on the atomic percentage 

for each element is presented in Fig. V.8a. The presence of carbon is noted. Given that carbon is encountered 

only in the alkylamine chain, the IBA results confirm that this part of the precursor is indeed involved in 

the deposition process. Low percentages spanning from 3.1 to 5.3 at.% C are noted between 550°C and 

625°C. The relatively low content in carbon explains why the utilized ellipsometry model did not require 

the addition of a carbon component. However, incorporation of carbon increases visibly at 650°C, reaching 

12.5 at.%. Similar behavior is noted for hydrogen, with its atomic percentage increasing from 5.0 at.% at 

550°C, to 15.4 at.% at 650°C. The similar trend across these two elements could indicate that they are 

inserted in the film through a common intermediate species. At the same time, it is recalled that low 

absorptions of Si–(CH3)x were indeed probed by FT-IR, along with Si–H and N–H absorptions.  

Nitrogen incorporation on the other hand follows a non-monotonous behavior. The same evolution, 

although reversed, is noted for oxygen, illustrating well the competitive incorporation between O and N. A 

nitrogen content between 7.1 and 16.9 at.% is probed. The lack of linearity, evident in the spike at 605°C, 

potentially hints at the incorporation of nitrogen through different intermediates, depending on the 

temperature and the local gas phase composition. 

The drop in oxygen content at 650°C is also pointed out. This result correlates well with previous 

discussions of the FT-IR data, where the disappearance of the LO3 peak and the shift of the TO3 position 

to 1006 cm-1 was speculated to be caused by the consumption of O2 in the gas phase and a decrease in the 

oxide character of the films. In parallel, the IBA results at 650°C reveal that the decrease of O2 in the gas 

phase allows incorporation of N, C and H, which is expected, given the N/O and C/O competition. 

Interestingly, the Si content of the films decreases with increasing temperature. 
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Fig. V.8. Evolution of film composition by IBA. Influence of the local temperature under a constant O2 

flow rate of 0.6 sccm (a). Influence of the O2 flow rate, at 550°C (b). 

 

The effect of the O2 flow rate (runs AR2, AR5 and AR6) on the atomic percentages of each element 

is investigated more closely in Fig. V.8b, by keeping the deposition temperature fixed at 550°C. Almost 

linear trends are noted for H and C, with their percentages decreasing as more O2 is added in the inlet gas 

composition. It is concluded that O2 reduces carbon incorporation and/or cleaves organic moieties, as is 

well known in CVD. Nitrogen and silicon on the other hand follow a non-monotonous behavior, which is 

however very comparable between the two elements. The discussion of Fig. V.3 proposed that, at 

temperatures up to 580°C, incorporation of N and Si is taking place through the same species. The IBA 

results reveal that this could indeed be the case, with the two elements following very similar trends. 

Nitrogen content spans from 13.5 to 23.7 at.% N. Oxygen content on the other hand ranges from 48.2 at.% 

at 0.6 sccm O2, down to 12.4 at.% at 0 sccm O2. The presence of oxygen in the films, despite the O2-free 

inlet gas composition, could be the result of a leak or O2/H2O desorption from the reactor walls, as was 

previously discussed. It could also original from surface oxidation upon exposure to air. The low oxygen 

content is in alignment with the FT-IR results of Fig. V.6 that illustrated the decreased oxide character of 

the films based on the disappearance of the LO3 component and the shift of the TO3 position to lower 

wavenumbers.  

The (O+N+C)/Si atomic ratio is also briefly discussed. At 0.6 and 0.3 sccm O2, this ratio is equal 

to 2.2 and 2.4, respectively. At 0 sccm O2 however, the (O+N+C)/Si atomic ratio drops to 1. Indeed, the Si 

content increases from 29.5 at.% at 0.6 sccm O2, to 45.1 at.% at 0 sccm. It is concluded that the absence of 



Chapter V. Deposition of SiOₓNᵧ films from a novel trisilylamine derivative precursor 

224 

 

oxygen in the inlet gas composition results in silicon-rich films. Since similarities have been observed 

between the films at 0 sccm O2 and the films at 650°C, one could assume that films produced in the 

isothermal of SPT 650°C are also slightly rich in silicon, as a result of the consumed O2 in the gas phase. 

This correlates well with the discussion at the start of this chapter, where it was proposed that the higher 

refractive indexes measured by ellipsometry could be induced by a silicon-rich network instead of being 

solely the result of high nitrogen content.  

 

V.2.3. X-ray photoelectron spectroscopy 

XPS analyses were carried out by Takashi Teramoto at Air Liquide, Innovation Campus Tokyo, 

Japan. Although in-depth analysis of the results is still in progress at the time of the present writing, some 

initial information is discussed, as it can help confirm previous assumptions made during the discussions 

of the ellipsometry, FT-IR and IBA results. Additional information on the incorporation of carbon is also 

provided. 

Elemental analysis by XPS is performed after an etching of the surface for 240 s, in order to assure 

analysis in the bulk of the material. Globally, the produced results replicate the trends revealed by 

ellipsometry and IBA, namely that nitrogen incorporation increases with the deposition temperature and 

decreases for higher O2 flow rates. At the highest O2 flow rate, the films have a predominant Si–O–Si 

character. In terms of carbon content, 3.7 at.% C is probed at 550°C, increasing to 14.1 at.% for 650°C. 

These values are very close to the ones noted by IBA in Fig. V.8a. Under varying O2 flow rates, the 3.7 

at.% C probed previously at 550°C for 0.6 sccm O2 increase to 9.8 at.% when no O2 is supplied in the inlet 

gas composition. XPS slightly overestimates the 8.0 at.% C probed by IBA for this experiment, but such 

deviations are expected given that the former technique does not consider hydrogen.  

XPS also provides valuable information on the chemical environment of the elements. 

Deconvolution analysis was executed by Jerome Esvan (CIRIMAT, ENSIACET, Toulouse), with the aid 

of the CasaXPS© software. Table V.2 includes a list of all considered bonding states identified with the help 

of the literature [253, 276, 277, 311].  

The deconvolution results allow the tracking of Si–Ox–Cx, O–Si–N–O and other bonding states. 

Consideration of the spectra as a function of the O2 flow rate reveals that the Si(O)4 bonding state decreases 

when O2 supply is decreased from 0.6 to 0.3 sccm, in favor of an increase in Si–Ox–Cx, O–N–Si and  

O–Si–N–O. The competitive incorporation of N and O is once more encountered. At 0 sccm O2, no Si(O)4 

bonding state is probed anymore, which is favorably coherent with the absence of the LO3 component in 

the FT-IR spectra (Fig. V.5 and Fig. V.6) and the “shift” of the TO3 bond to 1006 cm-1. 
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Table V.2. XPS deconvolution analysis of SiOxNy films produced by TSAR-O2 at 550°C under variable 

O2 flow rates. 

Bonding state O2 flow rate (sccm) 

  0.6 0.3 0 

  Binding 

energy (eV) 

Atomic 

% 

Binding 

energy (eV) 

Atomic 

% 

Binding 

energy (eV) 

Atomic 

% 

S
i2

p
 

Si-Si/Si-Si-C - - - - 100.20 4.20 

SiOxCx (x≈2) 101.40 0.66 101.41 0.85 101.50 9.36 

SiNx - - - - 102.23 35.84 

O-N-Si-O 102.40 4.16 102.60 5.96 - - 

Si(O)4 103.45 29.52 103.67 27.90 - - 

C
1
s 

Si-C - - - - 281.95 0.25 

SiOxCx (x≈2) 283.70 0.68 283.69 0.59 283.89 8.33 

CC or CH 284.76 1.39 284.65 2.43 - - 

C-C - - - - 285.11 1.28 

C-O 286.15 0.93 286.00 0.93 - - 

C=O 287.98 0.40 287.51 0.75 286.78 0.21 

O=C-O 289.49 0.31 289.60 0.47 - - 

N
1
s 

N-Six - - - - 398.18 25.73 

O-N-Si 398.84 4.47 398.89 6.18 - - 

O-N-Si2 - - - - 399.70 0.94 

N-O 401.19 0.14 401.06 0.25 - - 

 O1s 533.02 57.32 533.06 53.68 532.50 13.84 

 

 

In light of the XPS results, one can safely conclude that the absorption at 1006 cm-1 should rather 

be attributed to the Si–CH2–Si absorption instead. Additionally, the N–Si bonding state appears in the N1s 

and Si2p spectra for 0 sccm O2. A noticeable increase in Si–Ox–Cx in both Si2p and C1s spectra is observed 

in oxidant-free atmospheres too, confirming the previous assumption that the shift of the TO3 component 

down to 1006 cm-1 relates to a decrease in Si(O)4 coordination and potential insertion of carbon in the 

tetrahedra (Fig. V.5a and Fig. V.6a). This is in agreement with the appearance of the Si–C bonding state 

for the C1s spectrum at 0 sccm O2. Another new state appears in the spectral deconvolution of the Si2p and 
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C1s spectra, namely Si–Si–C. The presence of a Si–Si–C bonding state at these conditions correlates well 

with the silicon-rich composition revealed by the IBA results and confirms the initial assumption made at 

the start of section V.1, where it was proposed that the higher RI was biased by high Si contents. Ultimately, 

it appears that the presence or absence of O2 in the gas phase plays a key role in the chemical structure of 

the film-forming intermediates and consequently the chemical environment of the resulting SiOxNy material. 

 

V.2.4. Influence of composition on wettability and mechanical properties 

V.2.4.1. Mechanical properties 

Nanoindentation analysis is performed on samples taken from the isothermal region, that is, a local 

temperature of 650°C, of experiment AR7 (Table V.1). The particular evolution of the nitrogen content 

along the length of the reactor as a result of the evolving gas-phase composition is utilized to extract 

multiple measurements from just one single experiment. Results on the hardness H and elastic modulus E 

of the SiOxNy films from TSAR-O2 are shown in Fig. V.9.  

 

 

Fig. V.9. Influence of the local nitrogen content on the elastic modulus E and hardness H of TSAR-O2 

films produced at 650°C and 0.6 sccm O2. 

 

Given that the temperature remained constant in this region, any change in mechanical properties 

can be safely attributed to the change in local film composition and, consequently, the resulting network 



V.2 Chemical bonding state and composition of SiOₓNy from TSAR-O₂ 

227 

 

structure. However, regardless of the evolving composition and increasing nitrogen content along the length 

of the reactor, both H and E values appear to remain constant within certain ranges. Hardness values span 

between 6.6 and 11.0 GPa, while elastic modulus values measure from 76.6 up to 121.8 GPa. Both values 

are higher than those measured for the TDMSA precursor at the same temperature and O2 flow rate. If the 

“outliers” are ignored, it could be assumed that the relatively flat behavior is due to the nitrogen content 

surpassing a minimum required value. It is recalled H and E results from TDMSA (Fig. IV.12) increased 

with increasing nitrogen incorporation up to ca. 7 at.%, after which they seemed to stabilize. Perhaps a 

similar behavior is exhibited with TSAR and the flat evolution is the result of the nitrogen content exceeding 

7 at.%. On the other hand, the measured mechanical properties are notably lower than those of Si3N4 

produced by PECVD [312], which is to be expected given the stiffer network structure of stoichiometric 

Si3N4. Regardless, they are comparable to values obtained from PECVD SiOxNy films with up to 10 at.% 

N [278]. 

The dispersion of the acquired values is also discussed. It is speculated that this is the result of local 

compositional inhomogeneities. The previous discussion of the FT-IR results of section V.2.1 is recalled. 

Samples produced either at 550°C and 0 sccm O2 (run AR2), or at 650°C and 0.6 sccm O2 (runs AR1 and 

AR7), the latter of which applies for the nanoindentation films, showed the appearance of an asymmetric 

stretching Si–N bond that has been linked to the Random Mixture Model (RMM). It is therefore proposed 

that the deviations and spikes of the H and E values originate from regions rich in a Si3N4 “phase”. A co-

existence of amorphous oxynitride and crystalline Si3N4 phases in SiOxNy films produced by PECVD was 

recently reported in the literature [278]. The authors additionally mention the appearance of silicon-rich 

compositions. This is coherent with our XPS and IBA results that revealed an excess of Si content and the 

presence of a Si–Si bonding state under an oxidant-free atmosphere. High-resolution TEM (HRTEM) 

analysis is currently underway to provide further information. 

 

V.2.4.2. Surface wettability 

Water wettability measurements performed on various SiOxNy films of the TSAR-O2 chemistry are 

presented in Fig. V.10. The global water contact angle (WCA) of samples produced at different 

temperatures is measured between 53.5 and 57.0° (Fig. V.10a). The films are globally hydrophilic and 

present a relatively flat behavior with most values lying within the error bars. No particular behavior in 

terms of deposition temperature can be concluded. When deposition temperature is fixed at 550°C, WCA 

values range between 55.9 and 63.2° depending on the O2 flow rate (Fig. V.10b). Comparing all of the 

above values for SiOxNy films from TSAR to those from TDMSA (76.9-89.4°) reveals that the latter are 
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less hydrophilic. The difference in the wettability behavior of these two oxynitride types lies most probably 

in their different organic content, although multiple other factors such as surface roughness also play a role. 

 

 

Fig. V.10. Water wettability of multiple SiOxNy films from TSAR-O2. Evolution of the contact angle as a 

function of the temperature for a constant 0.6 sccm O2 flow rate (a), and the O2 flow rate for a constant 

temperature of 550°C (b). Representation of wettability results as a function of the carbon and hydrogen 

content (c) and O2 flow rate variable results (d). 

 

Plotting of the above WCA values from TSAR-O2 SiOxNy films as a function of the nitrogen 

content was attempted, but no clear correlation was found. In contrast, trends can be inferred when the two 

sets of results are plotted based on the atomic C and H percentages (Fig. V.10c and d). It appears that for 

both sets, i.e. a variable temperature or a variable O2 flow rate, WCA increases with the C and H contents. 

This is not surprising given that the presence of organic –CH3 moieties tends to increase the contact angle 

[280]. The trends are not completely linear, which is not a surprise since carbon and hydrogen are involved 

in multiple species (Si–C–Si, N–H, Si–H, Si–OH) and are not found solely in organic moieties. Lastly, 

although the presence of Si–H has been linked to a reduction in wettability (i.e. higher WCA) [282, 285], 
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no such correlation was found, and plotting of the WCA versus the absorbance at 2100-2250 cm-1 (Si–H) 

showed great dispersion. 

 

 

V.3. Corrosion resistance of SiOₓNᵧ films from TSAR 

 

V.3.1. Global Buffered Oxide Etchant (BOE) results 

The wet corrosion resistance of films from the TSAR-O2 chemistry is assessed by immersion in the 

buffered oxide etchant (BOE) 6:1 solution, with the aim to compare them directly to the other chemistries 

studied previously in section IV.1.7. The global results are presented in Fig. V.11, featuring the etching 

rates obtained from all film types produced in this thesis, under various deposition temperatures and 

conditions, plotted as a function of their atomic content in nitrogen as measured by ellipsometry. 

 

 

Fig. V.11. BOE etching rate of SiOxNy films from TSAR (light blue squares and triangles), TDMSA 

(purple squares), as well as SiO2 and SiOx films from TEOS (dark blue triangle) and HMDS-TEOS  

(red triangle), respectively. Power trend lines added for visual aid. All triangle symbols refer to a 

deposition temperature of 550°C. 

 

Fig. V.11 reveals that the BOE etching rates of the TSAR precursor are overall lower than those of 

the HMDS-TEOS (ca. 88 Å.s-1) and TEOS samples (ca. 66 Å.s-1). Similarly to the etching rates observed 
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for TDMSA, progressive incorporation of nitrogen in the silica network results in decreasing BOE etching 

rate values for TSAR as well, ranging from 57 Å.s-1 down to 0.2 Å.s-1, depending on the nitrogen content 

and the specific deposition conditions. Although produced at different conditions and from a different 

chemistry, the measured etching rates of the SiOxNy films from TSAR are in the same order of magnitude 

as those noted in the literature (Table IV.4). For the TSAR chemistry, the BOE etching rates start 

converging towards values below 4 Å.s-1 at approximately 9 at.% N. The equivalent convergence is reached 

earlier for the TDMSA chemistry, at ca. 7 at.%. The power trend lines serve as a visual guide to illustrate 

this. These results indicate that below 9 at.% N, films from the TDMSA precursor present an improved and 

more efficient corrosion resistance compared to those from TSAR. This behavior can be attributed to 

multiple factors. One could be the higher DR from TSAR, which could translate to less dense films with 

larger amounts of nanoporosities. Thus, even if the nitrogen content is at a similar value, the TSAR films 

are more susceptible to corrosive attack by a hydrofluoric solution. However, beyond 9 at.% N, both 

chemistries behave similarly and present an excellent corrosion resistance. Further incorporation of nitrogen 

beyond this point does not appear to be necessary. Moreover, in contrast to TDMSA, TSAR allowed the 

study of the corrosion behavior of SiOxNy films at lower deposition temperatures (<600°C), which are 

appropriate to coat pharmaceutical vials. Thus, the above information can help define operating conditions 

for performance optimization. Obviously, multiple factors influence the BOE etching rate, such as SPT, 

inlet gas composition and flow rates. The following section breaks down the above results into sets of data, 

each studying the effect of different operating conditions on the etching rate. 

 

V.3.2. Effect of deposition conditions and comparison to TDMSA 

The etching rates of Fig. V.11 were measured from films that have been processed under a variety 

of operating conditions. Although the link to the nitrogen content is well established, it shall be mentioned 

that plotting of the BOE values versus the DR did not yield any clear correlation. For further analysis, a 

closer look at how the specific experimental conditions affect the BOE etching rate is presented in Fig. 

V.12. Comparisons with films from TDMSA are also drawn. 

Fig. V.12a examines the evolution of the etching rate across 6 samples from the same experiment 

(AR1, SPT 650°C, 0.6 sccm O2) as a function of their nitrogen concentration. The local temperature of each 

sample is also noted, in order to consider the thermal gradient existing along the length of the reactor. For 

a sample produced outside the isothermal region with a local temperature of 560°C and a nitrogen content 

of 5.7 at.%, a BOE etching rate of 15.3 Å.s-1 is noted. Then, samples closer to and within the isothermal 

region (646 and 650°C), show etching rates below 1.2 Å.s-1. Their content in nitrogen exceeds 14.5 at.%. 

Globally, a decreasing trend is observed for a simultaneous increase in temperature and nitrogen content, 
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similarly to what was noted previously from TDMSA and the literature [291]. The improvement in 

corrosion resistance is attributed to the lower hydration of the network and the resulting densification at 

higher deposition temperatures, with the parallel increase in nitride character. No clear break in the slope 

is observed, contrary to the respective results from TDMSA (Fig. IV.15a).  

 

 

Fig. V.12. BOE etching rate of SiOxNy films from TSAR-O2, produced at SPT 650°C and an O2 flow rate 

of 0.6 sccm (AR1), plotted as a function of the nitrogen content along the length of the reactor (a). BOE 

etching rate of SiOxNy films from TSAR and TDMSA for variable O2 flow rates (b), and of TSAR-O2 

films for 0.6 sccm O2, as a function of the SPT (c).  

 

Fig. V.12b examines the effect of the O2 flow rate on the BOE etching rate, under a constant 

deposition temperature. When no O2 is added in the inlet gas composition, a BOE etching rate of 0.2 Å.s-1 

is noted for films from TSAR at 550°C. It is recalled that, although IBA revealed 12.4 at.% O in these films, 

XPS and FT-IR results respectively showed the absence of the Si(O)4 bonding state and the LO3-TO3 pair. 

Thus, this low etching rate can be linked to the higher nitride character of the film. An increase of the O2 
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supply to 0.6 sccm reduces the corrosion resistance of the films, with the BOE etching rate increasing 

abruptly to 42.8 Å.s-1. A similar upwards trend is also followed by the TDMSA-O2 chemistry. The increase 

of the BOE etching rate with the O2 flow rate reflects the reports in the literature [180]. It is worth noting 

that the slope from TDMSA is less steep than the one noted for TSAR. Examining this slope can help assess 

how sensitive the film corrosion resistance from each chemistry is to further addition of O2. The steeper 

slope observed for TSAR illustrates that films produced from this precursor are more strongly impacted by 

the addition of O2 in the gas phase. This could be related to the lower deposition temperature (550°C). The 

overall upwards trend under higher O2 flow rates (Fig. V.6b) can also be linked to the higher hydrogenation 

of the incorporated nitrogen (i.e. –N–H), which is speculated to be taking place through film formation 

characterized by the participation of the alkylamine chain, as was discussed in section V.2.1. Given that the 

presence of N–H groups has been reported to be detrimental to the corrosion resistance of SiNx films [313] 

and translates to a less dense network, the higher BOE etching rates for TSAR noted at increasing O2 flow 

rates are coherent with this assumption. 

Lastly, Fig. V.12c presents the corrosion performance of the films as a function of the SPT, for a 

contant O2 flow rate of 0.6 sccm. When deposition is performed at 550°C, a BOE etching rate of 42.8 Å.s-1 

is noted, increasing to 57.1 Å.s-1 at 580°C. This result is unexpected, since higher temperature normally 

results in increased densification of the network. To better understand this behavior, the IBA composition 

results are recalled (Fig. V.8a). The film at 580°C was noted to contain lower nitrogen (8.2 at.%) than the 

one at 550°C (14.2 at.%). This difference could explain the decreased corrosion resistance of the former. 

Upon further increase of the temperature, the BOE etching rate decreases once more, reaching 0.5 Å.s-1 at 

650°C. These results reflect well the combined effect of the deposition temperature and N incorporation in 

the performance of the films against corrosion. 

 

 

V.4. Conclusion 
 

This final chapter explored anew the deposition of SiOxNy films, with the goal to go below the 

usual thermal ranges for SiOxNy film production by thermal CVD. A novel chemistry was utilized, based 

on a proprietary trisilylamine-derivative precursor, TSAR, developed by Air Liquide. The presence of 

multiple Si–H bonds in this precursor molecule increased its reactivity by up to one order of magnitude and 

enabled film formation at temperatures much lower than those noted when using TDMSA. More 

specifically, high DRs of up to 10.3 nm.min-1 were achieved, a value that is rarely encountered in thermal 
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CVD of SiOxNy films at temperatures below 700°C. Incorporation of nitrogen was successful as well, 

starting at temperatures as low as 520°C. Similarly to TDMSA, the TSAR precursor fulfills a dual role as 

silicon and nitrogen provider and showed a more efficient nitridation of the films. A parametric analysis 

was executed to investigate the effect of the deposition temperature and the O2 flow rate on the film 

composition and material properties. With increasing deposition temperatures, the films are enriched in 

nitrogen and film formation takes place at a higher rate. Increase of the O2 flow rate also promotes 

deposition, but reduces nitrogen incorporation, due to the competitive pathways for O and N insertion in 

the films.  

The above transition from an oxide to a nitride character and vice versa was also confirmed by  

FT-IR. The participation of the alkylamine chain in the deposition process was confirmed through the 

detection of N–H and –CH3 bonds. Higher N–H contents were probed for higher O2 flow rates, indicating 

a potential reaction between the alkylamine chain and O2. Additionally, a new absorption was probed at ca. 

888 cm-1, attributed most likely to an asymmetric stretching Si–N vibration and is speculated to hint at a 

random mixture model (RMM) configuration of the network. In contrast to TDMSA, films produced from 

TSAR also revealed clear absorptions of the Si–H stretching vibrational mode at 2000-2250 cm-1, which 

became more prominent under O2-deficient or O2-free atmospheres. Additionally, the disappearance of the 

LO3 mode was observed, in parallel to a “shift” of the TO3 mode from its usual 1070-1030 cm-1 range 

down to 1006 cm-1. XPS analysis confirmed that this “shift” related in fact to the disappearance of the TO3 

mode and the appearance of Si–CH2–Si instead, given the disappearance of Si(O)4 bonding state to the 

benefit of SiOxCx and various Si–N bonding states. 

SiOxNy films from TSAR were found to be more hydrophilic compared to the SiOxNy films from 

TDMSA, with WCA values ranging between 53.5 and 63.2°, potentially related to the lower amounts of 

incorporated methyl moieties. The mechanical properties were found to be relatively insensitive to the 

nitrogen content of the films. However, dispersions in both hardness and elastic modulus results were noted. 

The lowest H and E values (6.6 and 76.6 GPa) that were measured fit with literature values on SiOxNy films, 

while the highest values (11.0 and 121.8 GPa) approach those observed for non-stoichiometric SiNx. Thus, 

it is assumed that the dispersion of results originates from a compositional and structural inhomogeneity, 

caused by individual SiO2 and Si3N4 phases. This assumption correlates well with the RMM configuration 

proposed through the FT-IR results, but needs to be confirmed with supplementary characterizations. 

Lastly, SiOxNy films from TSAR-O2 revealed an excellent corrosion resistance, with BOE etching 

rate values as low as 0.2 A.s-1. The etch resistance of the films globally improved for higher deposition 

temperature and/or lower O2 flow rates, both of which translate to higher incorporation of nitrogen. SiOxNy 

films from the TSAR precursor proved to be slightly more susceptible to corrosion upon addition of O2 in 
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the gas phase than those from TDMSA. This is however expected, given that lower deposition temperatures 

were used for TSAR. Overall, TSAR films were slightly less resistant than TDMSA ones, a behavior that 

can be potentially attributed to their much higher deposition rate or lower deposition temperatures, both of 

which lead to less dense network structures. Despite that, a nitrogen incorporation of 9 at.% was sufficient 

to reduce the etching rate at extremely low values and result in excellent corrosion resistance. It is once 

again illustrated how the partial replacement of O by the higher coordinated N leads to better performance, 

regardless of the precursor used. The positive BOE etching rate results, combined with the ability of TSAR 

to produce SiOxNy films by thermal CVD at temperatures below 600°C, managed to address the previously 

faced challenges. Although USP <660> and <1660> tests are underway and will be the direct indicator of 

hydrolytic performance, the challenge in terms of process temperature compatibility with the 

pharmaceutical glass container was overcome successfully, constituting a major step towards reaching the 

ANR objective. 
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GENERAL CONCLUSIONS 

 

The various types of pharmaceutical glass exhibit distinct functionalities and hydrolytic resistance. 

The network forming and modifying elements composing these amorphous materials are involved in 

covalent and ionic bonds respectively, influencing, among others, the density and workability of the glass. 

When in an aqueous environment (e.g. during the storage of liquids), ion exchange takes place between the 

water molecules and the network modifying ions of the glass. Under prolonged contact with the aqueous 

solution, ion exchange progresses to a stage where the water molecules diffuse to an extent that leads to the 

hydrolysis of the covalent bonds of the network. Elements diffuse from the glass surface towards the 

solution, altering the composition and concentration of the liquid, while also augmenting its pH. At 

progressed stages of glass alteration, delamination of whole glass flakes can occur, posing sanitary risks. 

Barrier coatings deposited on the internal surface of pharmaceutical vials have attracted attention 

as a solution to the above. When applied by CVD processes, which have the advantage of uniform coverage 

of such complex 3D substrates, barrier coatings can effectively limit the interaction between the container 

and the stored solution. The composition of the coatings is key to their hydrolytic resistance: absence of 

modifying elements (Na, K, etc.) in a vitreous network results in reduced alteration kinetics, while low 

concentrations of hydrated species (Si–OH, Si–H, etc.) lead to denser lattices. In that context, current 

commercial products (e.g. SCHOTT AG) are based on the application of pure silica (SiO2) coatings, 

offering good hydrolytic resistance when subjected to accelerated ageing tests described in the USP <660> 

recommendation. However, when subjected to more aggressive assessments like those proposed in the USP 

<1660> chapter, the covalent bonds of the SiO2 network fail to withstand hydrolysis and the coating is 

eventually dissolved in the solution. Ponton in his thesis (2019) demonstrated how the hydrolytic 

performance of SiO2 barrier coatings, applied via a thermal CVD process using TEOS-O2, is tightly linked 

to the process parameters. Operating conditions such as inlet gas composition and process temperature can 

lead to enhanced network densification and improve hydrolytic resistance. 
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In the present thesis, a similar approach was pursued initially, namely the deposition of SiO2 barrier 

coatings from a TEOS-O2/O3 chemistry by thermal CVD. The motivation lied in achieving comparable, if 

not better, hydrolytic resistance to TEOS-O2, with the addition of O3 enabling this feat at much lower 

temperatures. Indeed, the use of reactive O3-based chemistries allowed SiO2 deposition at temperatures as 

low as 150°C. Evolution of the refractive index and infrared spectra indicated that films elaborated above 

500°C are stoichiometric. Additionally, they contain lower concentrations of hydrated species in 

comparison to films produced from TEOS-O2 and global hydrogen content ranges between 4.5 and 7.8 at.%. 

Their resistance to P-etch chemical abrasion is comparable. A chemical model was also developed to 

provide additional information regarding the deposition process, gain understanding of the phenomena 

involved and find optimized deposition conditions for other substrate geometries and/or reactor 

configurations in its range of validity. This part of the thesis was published in 2020 [314]. SiO2-coated vials 

from the TEOS-O2/O3 chemistry demonstrated excellent barrier properties, with up to 92 % less extractable 

elements being probed in the solution in comparison to uncoated vials. The results indicated that the ionic 

exchange, i.e. the initiating step of the hydrolysis mechanism, is taking place at reduced rates when a SiO2 

barrier coating is applied. Unfortunately, despite efforts made in Ponton’s and the present thesis to deposit 

dense SiO2 coatings from different chemistries and operating conditions, hydrolysis of the SiO2 barrier was 

still observed. Concentrations of Si were probed in the solution, indicating that the coating dissolved after 

a hydrolysis reaction between the hydroxide ions and the covalent bonds of the silica network. Thus, a key 

point was underlined: the SiO2 material is at its performing limit. If further network densification is to be 

induced, solutions should be sought in alternative compositions. 

In this context, the project HEALTHYGLASS financed by ANR was conceptualized, proposing 

the deposition of denser silica-based coatings through the partial replacement of O2- divalent anions by 

higher coordinated trivalent N3- and/or tetravalent C4- ones. A partnership between three laboratories (LGC, 

CIRIMAT INPT and UPS, and CEMHTI) embarked on this endeavor. The goal to deposit silicon oxynitride 

(SiOxNy) and silicon oxycarbide (SiOxCy) coatings inside a pharmaceutical vial proved to be challenging 

however. The barrier coating must on one hand be dense enough to withstand alteration, but also be 

deposited at conditions compatible with the glass fabrication process and the container itself on the other. 

Thus, certain constrictions are imposed: operation at atmospheric pressure is advised to facilitate transfer 

to production lines, while deposition temperatures ideally below 600°C are imperative to ensure 

compatibility with the glass container. These limitations constrict the production of SiOxNy and SiOxCy 

coatings, given the fact that, thermally, they are conventionally deposited at temperatures well above 700°C. 

To tackle this challenge, careful selection of precursor molecules and reacting chemistries has been 

executed. The strategy developed for this selection process was validated by an exploratory chemistry using 
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hexamethyldisilazane (HMDS), tetraethylorthosilicate (TEOS) and O2/O3 gas mixtures. No nitrogen was 

detected in the films from HMDS-TEOS-O2/O3, proving that the presence of Si–O bonds in the precursor 

molecule (TEOS) and the use of highly reactive oxidants (O3) impedes the incorporation of nitrogen. On 

the other hand, incorporation of carbon was observed for temperatures equal to or below 450°C, albeit in 

organic form. The inserted carbon originated from the incomplete decomposition of the HMDS precursor 

and resulted in substantial reduction of the films corrosion resistance, and by extension the integrity of the 

material network. This part of the thesis was published in 2021 [315]. In light of these findings, novel 

silanamine precursors were selected on the basis of avoiding Si–O bonds and preferably including Si–N 

ones. Additionally, O3 was excluded from SiOxNy-producing chemistries and NH3 was added as an external 

nitrogen source. In order to address deposition of SiOxNy at moderate temperatures, precursor molecules 

with multiple Si–H bonds were prioritized, as they demonstrate increased reactivity. Following this strategy, 

two silanamine precursors were selected: the rarely reported tris(dimethylsilyl)amine (TDMSA) and a novel 

proprietary trisilylamine-derivative precursor (TSAR) developed and provided by Air Liquide. The 

consequent CVD routes are innovative regarding the state-of-the art. 

Using a thermal CVD process, SiOxNy films were successfully produced from TDMSA-NH3-O2 

and TDMSA-O2 chemistries. It was revealed that, for the conditions tested, the incorporated nitrogen 

originates in fact from the precursor molecule and that NH3 mainly serves to cleave –CH3 moieties from 

the film-forming intermediate species. Moreover, a trade-off between deposition rate and nitrogen 

incorporation was underlined. The former is promoted for higher O2 flow rates, while the latter is impeded. 

The structure and composition of the produced SiOxNy films were characterized extensively and their 

resistance to wet etching corrosion induced by hydrofluoric solutions was evaluated. Etching results from 

SiO2 and SiOx films were used as reference points to compare the performance among the various material 

types. A clear dependency between the level of nitrogen incorporation, and the network densification 

induced through it, was established. Films with a higher nitride character were almost unaffected by the 

etching solutions, exhibiting exceptionally low etching rates down to 0.1 Å.s-1. A limit level of nitrogen 

incorporation was also defined: it appeared that up to 7 at.% N in silica-based films is sufficient for excellent 

corrosion resistance. Further densification is induced by increasing the deposition temperature, which acts 

as a means to enhance nitrogen incorporation and decrease the concentration of hydrated species in the 

network.  

Given the novelty of the chemistry and the lack of data in the literature, deposition experiments 

were coupled with gas phase analyses to shed more light into the homogeneous and heterogeneous reactions 

describing this particular chemical pathway. By an innovative approach combining three gas-phase 

characterizations, the radical species (Me)2HSi• and up to fifteen stable by-products were identified. Parallel 
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consideration of solid phase results allowed the proposal of a comprehensive deposition mechanism. This 

specific part of the thesis is currently in press. These results were used as the basis for the development of 

an apparent chemical model for the deposition of SiOxNy and its application in numerical simulations 

through an original methodology combining gas phase analysis, solid phase ellipsometry results and CFD 

codes. The model consisted of eight chemical reactions and was able to predict local deposition rates and 

film composition profiles of N and C in a SiOxNy system with non-negligible amounts of carbon. Film 

formation was described by three surface reactions defined by Arrhenius-type kinetic laws and based on 

the contribution of three intermediate species: the detected (Me)2HSi• radical, a ((Me)2SiH)2N• radical, and 

a fictitious intermediate species N_INT2. The deposition process was defined as a simultaneous formation 

of SiO2, Si3N4 and carbonated Si3N4 “phases”, homogeneously distributed towards the formation of a global 

carbonated SiOxNy material. Controlling the respective deposition rates of each “phase” allowed for the 

modulation of the resulting film composition in N and C. The model also accounted for the competitive 

incorporation of N and O by including homogeneous reactions that reduce the available concentration of 

nitrogen-containing species in the gas phase when in presence of O2. After validation, the apparent model 

was transferred to the vial reactor and demonstrated its utility in estimating, non-destructively, local 

deposition rates and film composition in hollow bodies. To the best of our knowledge, such a model has 

not been reported in the literature to this date. A publication on the above aspects is under preparation. 

However, chemistries involving the TDMSA precursor failed to adhere to the defined prerequisites 

of the application targeted within this thesis and the overarching HEALTHYGLASS project. Production of 

SiOxNy films from TDMSA demanded namely a minimum temperature of ca. 620°C, rendering this 

chemistry incompatible with Type I pharmaceutical vials, which visibly creeped when subjected to such 

temperatures. Thus, it became clear that the operating limitations must be strictly respected. These 

constraints were addressed through the selection of a second, more reactive, novel molecule; the 

trisilylamine-derivative TSAR, developed and provided by Air Liquide. Similarly to TDMSA, TSAR also 

fulfilled a dual role as silicon and nitrogen provider. Thermal CVD of SiOxNy from this precursor was 

successful at temperatures as low as 520°C. Similar trends with the TDMSA chemistries were noted, with 

the competitive incorporation of O and N being at the forefront. Additionally, films from TSAR were found 

to be rich in silicon when deposited under O2-impoverished atmospheres. By parallel consideration of 

multiple characterization techniques, Si–O–Si, O–N–Si–O and Si–Ox–Cx bonds were identified. For an O2-

deficit in the gas phase, the disappearance of the SiO4 tetrahedra was noted, evidenced through the lack of 

the Si(O)4 bonding state by XPS and the absence of the TO3-LO3 pair by FT-IR. These changes benefited 

an increase in Si–N states. Wet etching corrosion results revealed the requirement of ca. 9-10 at.% N for 

excellent corrosion resistance. The above characteristics enabled by the reactive TSAR precursor render 

SiOxNy barrier coatings as a promising alternative for the hydrolytic protection of pharmaceutical vials. 
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PERSPECTIVES 

 

Multiple chemistries were tested in the frame of the present thesis. The wealth of results, be they 

from characterizations or numerical simulations, allows the proposal of various perspectives for further 

research, even beyond the scope of a pharmaceutics-centered application. Each chemistry is addressed in 

its own dedicated paragraph. 

Deposition of SiO2 from TEOS-O2/O3 is generally considered a conventional deposition pathway 

and has been well documented in the literature. Its respective kinetic model was adapted to unexplored 

conditions in hot-wall CVD reactor configurations and was modified to define all surface reactions with 

thermal dependency. An improved understanding of the SiO2 deposition mechanisms can be gained through 

it, which can be used as a tool of process optimization in diverse applications. The model can be improved 

by expanding its range of validity in terms of total flow rate and operating pressure. Additional deposition 

reactions from INT can be considered to address discrepancies beyond 520°C. In its current state, the model 

can be used for optimization studies involving different reactor and substrate geometries. However, it must 

be noted that since the model is apparent and is strongly influenced by mass transport, transposing it to 

different reactor configurations must always be accompanied by validation experiments. Optimization-wise, 

multiple O3 inlets for higher deposition yield could be investigated for the tubular reactor. Such a 

configuration could likely increase the occurrence of powdering phenomena common to chemistries 

utilizing high O3 concentrations. Thus, installation of a condensation particle counter (CPC, or condensation 

nucleus counter, CNC) at the exhaust of the reactor, similarly to Okuyama et al.’s [114] or Fujimoto et al.’s 

[316] studies, could be implemented as a means to monitor particle size and population. For the vial reactor, 

the exploration of different nozzle characteristics (diameter, distance, etc.) and thermal profiles could be 

undertaken to achieve more uniform coverage. The gas-phase analysis methodology established in Chapter 

IV could also be applied to the TEOS-O2/O3 chemistry: the identification, qualitative or quantitative, of 

radical species and stable by-products could confer additional accuracy to the model. The low deposition 

temperatures enabled by O3 could also warrant the placement of spin-trap pellets closer to the inlet instead 

of the exhaust of the reactor, allowing for the identification of radical species with shorter lifetimes.  
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The HMDS-TEOS-O2/O3 chemistry resulted in the production of films that transitioned from SiOx 

to SiOxCy:CH3 with decreasing process temperature. Carbon was incorporated mostly in organic form, 

evidently increasing the water contact angle of the films. Although their corrosion resistance was low, 

coatings from this chemistry could find application in other fields such as in sacrificial silica-based films, 

often encountered in the fabrication process of MEMs devices [317, 318]. Another alternative relates to the 

storage of lyophilized products. The TopLyo® product marketed by SCHOTT AG is based on the concept 

of using hydrophobic Si-O-C-H coatings on the internal surface of vials, which can reduce fogging, 

decrease residual volumes and improve dosing accuracy [319]. A contact angle of 110° and reduced protein 

aggregation is advertised. In that context, the tunability of the HMDS-TEOS-O2/O3 films can prove 

beneficial for desired functionalities and performance. Investigation of higher HMDS:TEOS flow ratios 

can be explored to achieve hydrophobic wetting behavior and test the resulting corrosion resistance, which 

is reported to decrease surfaces with lower wettability [320].  

Deposition of SiOxNy from chemistries using TDMSA was eventually proven to be incompatible 

with the glass transition temperature of Type I pharmaceutical vials. However, this does not exclude their 

application for the treatment of less heat sensitive substrates, like those used in the semiconductor, optics, 

energy harvesting or gas separation industries. Apart from the desired nitrogen, carbon was also 

incorporated in the films. Interestingly, its presence did not affect their corrosion resistance. Investigation 

using XPS and solid NMR analysis could aid in identifying the elemental environment more accurately and 

clarifying the bonding characteristics that led to network densification. ESR analysis of the solid film would 

also prove insightful. Normally used for the identification of lattice defects [321], ESR could be applied for 

analysis of radical species potentially trapped in the solid film during deposition. From a process point-of-

view, experiments with higher NH3:TDMSA ratios could be performed. Given the demonstrated –CH3 

cleaving effect of NH3, higher NH3 flow rates could be explored for the production of carbon-free SiOxNy 

films. From a mechanistic point-of-view, section IV.2.2.3 described a series of gas phase reactions, none 

of which however include the involvement of O2. Instead, it was suggested that O2 forms H2O, which in 

turn reacts with the (Me)2HSi• radical towards the production of silicon-containing compounds that 

eventually lead to film deposition. The formation of H2O however requires the presence of H• radicals. It is 

possible that the H• generation through a seemingly slow homolytic breaking of the TMDSA precursor at 

the Si-H bond could be a rate-limiting step. This would well explain the low deposition rates noted for this 

chemistry. As an alternative, TDMSA-H2O gas mixtures could be investigated, given that the involvement 

of water vapor in ALD and CVD processes has been documented to promote the growth rate of SiO2 and 

SiOxNy films [118, 322]. 
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Further improvements can be proposed in relation to the gas phase analyses and the kinetic model. 

Additional information on the radical species could be gained by selection of an ESR spin-trap molecule 

with higher decomposition temperature, with the goal to enable trapping of short-lived radical species at 

critical regions and illuminate the various TDMSA decomposition pathways. For GC-MS analysis, external 

calibration using standards of identified compounds is proposed, in order to obtain valuable quantitative 

information on the concentration of each species and better define the kinetic parameters of the respective 

homogeneous reactions. Further improvements to the model could be introduced by considering a siloxane 

by-product as a co-reactant in reaction V5. Such a formulation is in fact very likely given Reaction IV.11. 

In its current state, reaction V5 serves to reduce nitride deposition through consumption of the N_INT2 

intermediate. It is balanced out by reaction V3 (production of N_INT2) at higher O2 flow rates, but as a 

consequence, nitride deposition is underestimated at lower O2 flow rates. Adding a siloxane co-reactant to 

V5 would help address this discrepancy by modulating the consumption of N_INT2 in relation to the O2 

flow rate. Further amelioration can be achieved by considering different kinetic constants for V1 depending 

on the temperature. By defining this reaction through a UDF, the change in deposition mechanism below 

SPT 650°C could be accounted for. Global improvements to the model could also be made by basing its 

development on IBA results directly. In the present thesis, ellipsometry was used for this purpose, since it 

can provide compositional information for a large number of samples relatively rapidly. If the same task 

could be executed through IBA, accuracy would increase and hydrogen incorporation could also be 

considered. 

The SiOxNy films produced from TSAR-O2 demonstrate effective nitrogen incorporation at 

temperatures compatible with the pharmaceutical Type I glass and other heat sensitive substrates. Thus, it 

is of great interest to assess their hydrolytic resistance under the USP <660> and <1660> tests. Deposition 

on vials and USP tests are planned in 2021, serving as demonstrators for the main objective of the ANR 

HEALTHYGLASS project. Additionally, although organic carbon incorporation is below 13 at.%, it could 

be minimized through the addition of NH3 in the chemistry. A parametric analysis studying the TSAR-NH3-

O2 chemistry would also be of interest to investigate the effect of the NH3 flow rate on the deposition rate 

and the global composition in C, N and H. The high deposition rates noted from this chemistry also render 

it attractive for industrial implementation, provided that the security and environmental aspects are 

mastered. Since scale-up is anchored to in-depth understanding of the deposition process, application of the 

methodologies established in Chapter IV could aid in the analysis of the gas phase and the subsequent 

development of a kinetic model from this chemistry. This model could be used for numerical simulation 

and optimization of the deposition from TSAR, or even open the possibility for application of this original 

CVD chemical pathway to other fields. 



Perspectives 

242 

 

Lastly, general suggestions for further research are proposed. For all utilized chemistries, the 

precursor flow rate calculated by Hersee and Ballingall’s equation [161] deviated, oftentimes substantially, 

from the values measured experimentally. These discrepancies can be well explained by the incomplete 

liquid exchange between the carrier-gas and the precursor liquid in the bubbler, as well as by the non-

infinite conductance of the gas lines that connect the bubbler to the reactor volume. More detailed 

calculations, considering these characteristics, are available [323] and can be used in its place. Available 

experimental weight data before and after deposition could be utilized to adjust these equations for each 

precursor molecule. From a materials perspective, the variety of produced films allows for the proposal of 

multilayered barrier coatings [324], such as SiO2/SiOxNy or SiOxNy/SiCxNy, with the extreme surface 

ideally being hydrophobic, so as to reduce the contact surface between coating and stored solution. Finally, 

it is recalled that the production of a carbidic network could prove beneficial to the hydrolytic resistance. 

Gumpher et al. [73] noted that incorporation of highly covalent Si-C bonds can reinforce the nitride network, 

leading to improved etching resistance. Thus, production of silicon carbonitride (SiCxNy) and SiOxCy 

coatings, poor in organic content, could be explored. The strategy for the selection of appropriate precursor 

molecules and chemistries developed in this thesis could be used and transposed for the production of 

SiCxNy and SiOxCy at moderate temperatures. Chemistries involving a reactive Si-C precursor containing 

multiple Si-H bonds such as dimethylsilane [123] could be investigated. As a closing remark, it is important 

to underline that the utilized chemistries were primarily investigated on Si substrates instead of glass, one 

of the reasons being the exploratory nature of the majority of the experiments. Another reason was 

practicality, since, in the case of SiOxNy films from TDMSA, their deposition was impossible on glass due 

to the high temperatures (>600°C). Given that depositions at temperatures compatible with glass are 

enabled through the TSAR precursor, it is now possible to coat this heat-sensitive substrate. An in-depth 

characterization of the elemental diffusion at the coating-to-glass interface, as well as potential incubation 

effects due to the different substrate composition, would be of interest. 
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APPENDIXES 

 

Appendix 1 Comparative FT-IR spectra (60°) of SiO2 films deposited at 

550°C from different TEOS chemistries 
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Appendix 2 Apparent chemical reactions and respective kinetic laws in the 

TEOS-O2/O3 model developed by Nieto et al. [158] 

 

  𝐂𝐡𝐞𝐦𝐢𝐜𝐚𝐥 𝐫𝐞𝐚𝐜𝐭𝐢𝐨𝐧𝐬 𝐑𝐞𝐚𝐜𝐭𝐢𝐨𝐧 𝐑𝐚𝐭𝐞  
𝐚𝐧𝐝 𝐊𝐢𝐧𝐞𝐭𝐢𝐜 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐬  

 

Volumetric 

Reactions

(𝑘𝑚𝑜𝑙 𝑚3𝑠⁄ ) 

(R1) 𝑂3 + 𝑀 → 𝑂2 + 𝑂∙ + 𝑀 

𝑘1[𝑂3][𝑀] 

𝑘1 =  2.5 × 1011 × 𝑒𝑥𝑝 (−
11430

𝑇(𝐾)
) 

(R2) 𝑂3 + 𝑂∙ → 2𝑂2 
𝑘2[𝑂3][𝑂∙] 

𝑘2 = 1010 × 𝑒𝑥𝑝 (−
2090

𝑇(𝐾)
) 

(R3) 2𝑂∙ + 𝑀 → 𝑂2 + 𝑀 

𝑘3[𝑂∙]2[𝑀] 

𝑘3 = 4 × 108 × 𝑒𝑥𝑝 (+
720

𝑇(𝐾)
) 

(R4) 𝑂3 + 𝑇𝐸𝑂𝑆 + 𝑀 → 𝐼𝑁𝑇 + 𝑅 + 𝑀 
𝑘4[𝑂3][𝑇𝐸𝑂𝑆][𝑀] 

𝑘4 = 4 × 1017 × 𝑒𝑥𝑝 (−
14099

𝑇(𝐾)
) 

(R5) 𝐼𝑁𝑇 → 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑘5[𝐼𝑁𝑇] 

𝑘5 = 5 × 103 × 𝑒𝑥𝑝 (−
5539

𝑇(𝐾)
) 

 

Surface 

Reactions

(𝑘𝑚𝑜𝑙 𝑚2𝑠⁄ ) 

(R6) 𝑇𝐸𝑂𝑆 + 6𝑂3 → 𝑆𝑖𝑂2 + 𝑂2 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 
𝑘6[𝑇𝐸𝑂𝑆]𝑠

𝑎[𝑂3]𝑠
𝑏 

𝑘6 = 4.1 × 10−4  

𝑎 = 0.4, 𝑏 = 0.25 

(R7) 𝐼𝑁𝑇 → 𝑆𝑖𝑂2 + 𝑏𝑦 ̵𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

𝑘7[𝐼𝑁𝑇]𝑠 (1 + 𝑘8[𝐼𝑁𝑇]𝑠)⁄  

𝑘7 = 1.2 × 𝑒𝑥𝑝 (−
4053

𝑇𝑠(𝐾)
) 

𝑘8 = 1.482 × 106 × 𝑒𝑥𝑝 (−
2578

𝑇𝑠(𝐾)
) 
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Appendix 3 FT-IR spectra (0°) of SiOxCy:CH3 film deposited at 360°C from 

HMDS-TEOS-O2/O3, before and after annealing at 550°C 
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Appendix 4 List of FT-IR absorptions encountered in SiOxNy films produced 

from TDMSA 

 

Bond 

family 
Bond Vibrational mode 1/λ (cm-1) Ref. 

Organic 

carbon 
C-H Stretching 2800-3000 [89, 214, 308] 

CH3 Rocking in Si(CH3)2 groups 800 [246] 

CH3 Asym. stretching 2970 [242] 

CH3 
Sym. Bending in Si-(CH3)x 

groups 
1260-1278 

[216, 245] 

[325] 

CH3 Rocking in Si-(CH3)3 groups 845 [242, 246] 

=CH2 Stretching 3050 [308, 326] 

Oxide Si-O-Si TO1 rocking 455 [270, 271, 275] 

Si-O-Si TO2 stretching or bending 805-820 [275] 

Si-O-Si TO3 asymmetric stretching 1080 [275] 

Si-O-Si TO4 asymmetric stretching 1160-1180 [270, 271, 327] 

Si-O-Si LO4 asymmetric stretching 1165 [327] 

Si-O-Si LO3 asymmetric stretching 1254 [327] 

Nitride Si-N Symmetric stretching 490 [272] 

 Si-N 
Stretching of locally distorted 

Si-N configurations 
790-800 [272] 

 Si-N Asymmetric stretching 850 [272] 

 Si-N Stretching 940 [270, 271] 

Carbide Si-C Stretching 790-820 [214, 328, 329] 

 Si-CH2-Si Stretching 1000-1020 [247, 250] 

 CH2 Wagging in Si-CH2-Si groups 1060 [247] 

 Si-O-C Stretching 1100 [249] 

Network 

Hydration 
Si-H Wagging or rocking 620-650 [309, 310] 

 Si-OH Stretching 940-960 [8, 188] 

 Si-H Stretching 2000-2150 [275] 

 N-H Stretching 3250, 3400 [270, 271, 281] 

 N-H···N 
Hydrogen-bonded, 

asymmetric stretching 
3320-3350 [273, 281] 

 
Si-OH:H-

OH 

Silanol bonded with water, 

stretching 
3400-3500 [8, 200, 270, 271] 

 Si-OH Stretching 3600-3650 [8, 270, 271] 
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Appendix 5 Identified GC-MS by-products from TDMSA-NH3-O2  

GC-MS by-product information NH3 flow rate (sccm) T (°C) 

No# Formula Abbreviation 
Retention 

time (min) 
TD3 TD4 TD5 TD6 TD8 

1 
 

- 1.82-2.15      

2 
 

MeOTMS - - - - - - 

3 
 

TMDSo 1.76      

4 
 

- 2.42-2.45      

5 
 

- - - - - - - 

6 
 

PMDSo 2.51  -  - - 

7 

 

TMDSz - - - - - - 

8 

 

PMDSz - - - - - - 

9 

 

- 7.71-7.74      

10 

 

HMDSz - - - - - - 

11 
 

HMTSo 10.27-10.63      

12 

 

HMCTSo 11.22-11.42 -   -  

13 
 

- 13.06 -  - - - 

14 

 

TDMSA 12.40      

15 

 

- 11.40      
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Appendix 6 HRTEM-EELS of SiOxNy film from TDMSA-NH3-O2 (TD3-p6)  
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Appendix 7 Species used in the TDMSA-O2 chemical model and their 

respective L-J parameters 

 

Species 

(abbreviated 

name) 

Full compound name 
Matched chemical 

structure 

Mr 

(g.mol-1) 

σ 

(Å) 

ε/k 

(K) 

TDMSA Tris(dimethylsilyl)amine 

 

191.492 3.71 78.6 

Si_INT Dimethylsilyl radical 
 

59.162 3.71 78.6 

N_INT 
1,1,3,3-tetramethyl 

disilazane radical  
132.330 3.71 78.6 

Siloxane 
1,1,3,3,5,5-

hexamethyltrisiloxane  
208.476 3.54 1182.4 

Silanamine 

N-(dimethylsilyl)-1-

(methoxy)-1,1-

dimethylsilanamine  
163.364 3.54 1182.4 

Silanone Dimethyl silanone 
 

74.153 5.25 522.7 

N_INT2 

Dimethylsilanimine 

(Imine-family 

intermediates) 
 

72.161 5.25 522.7 

CH3OH Methanol  32.041 3.63 481.8 

CH4 Methane  31.077 3.76 148.6 

H2O Water vapor  18.015 2.61 572.4 

O2 Oxygen gas  31.999 3.46 107.4 

N2 Nitrogen gas  28.013 3.62 97.5 
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Appendix 8 Inlet boundary conditions for FLUENT® simulations 

 

Precursor Runs 

Inlet mass 

flow rate a) 

(kg.s-1) 

Inlet mass fractions 

Tubular reactor 

   Precursorb) O2 O3 N2 

TEOS E1, E4-E6 9.19653 e10-5 0.00181 0.50534 0.02414 0.46871 

TDMSA TD11 8.39434 e10-5 0.00353 0.00009 - 0.99638 

TDMSA TD7 8.28763 e10-5 0.00265 0.00017 - 0.99718 

TDMSA TD12 8.39017 e10-5 0.00278 0.00034 - 0.99688 

TDMSA TD14 8.39319 e10-5 0.00331 0.00017 - 0.99652 

Vial reactor 

   Precursorb) O2 O3 N2 

TEOS V1-V6 5.06537 e10-5 0.00219 0.50515 0.02413 0.46853 

TDMSA VTD1 4.62568 e10-5 0. 00265 0.00017 - 0.99718 

a) Values correspond to the whole inlet surface area and do not account for symmetry. 

b) Supply of precursor measured experimentally by weighing the respective bubbler system before and 

after deposition. 
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Appendix 9 Gas velocity, temperature and species mass fraction profiles in 

the gas volume (XZ plane) and reaction rates near the samples 

surface (YZ plane) for TDMSA-O2 chemistry, run TD12.  

 

 

V1 to V5: Volumetric reactions; S1 to S3: Surface reactions 
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Appendix 10 Thermal profile of the vial reactor, measured experimentally for 

various SPT.  
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Le dépôt de matériaux à base de silice est largement utilisé dans de nombreux secteurs industriels, dont la 

microélectronique, l'emballage alimentaire, la séparation des gaz et la pharmacie. Selon l'application cible, ces matériaux doivent 

répondre à des besoins spécifiques en termes de propriétés mécaniques, durabilité et composition. La mise en œuvre de tels 

revêtements dans des applications pharmaceutiques nécessite, plus précisément, de bonnes propriétés de barrière aqueuse et anti-

diffusion, ainsi qu'une résistance efficace à la corrosion. La résistance hydrolytique et la durabilité des revêtements sont directement 

liées au niveau de densification du réseau céramique. Dans le cas de SiO2 amorphe, une réticulation et densification de réseau 

améliorée peut être induite par le remplacement partiel des anions O2- par des anions N3- ou C4-, produisant des revêtements 

d'oxynitrure (SiOxNy) et de l'oxycarbure (SiOxCy) de silicium plus dense qui peuvent répondre aux exigences de performances 

dictées par les différentes applications pharmaceutiques. Cependant, très peu d'informations sont disponibles dans la littérature 

concernant le dépôt de revêtements SiOxNy et SiOxCy en fonction des contraintes spécifiques à l'application: à savoir la réalisation 

de films chimiquement inertes sur des substrats 3D complexes, déposés à pression atmosphérique et à température modérée 

(<570°C), avec des taux de dépôt élevés. Pour atteindre les objectifs ci-dessus, le dépôt de films à base de silice amorphe est 

entrepris via l'utilisation d'un procédé CVD thermique défini autour de nouvelles chimies réactives. Les voies chimiques réactives 

aident à la production de SiOxNy et SiOxCy à des températures inférieures aux températures conventionnelles et, plus important, 

compatibles avec les substrats thermosensibles. L'augmentation progressive des teneurs en N et C dans les dépôts est réalisée grâce 

à des molécules précurseurs et des compositions de gaz réactifs soigneusement sélectionnées. Des voies de dépôt innovantes, basées 

sur des combinaisons de précurseurs classiques contenant du silicium tels que le tétraéthylorthosilicate (TEOS) ou 

l'hexaméthyldisilazane (HMDS), et d'autres composés nouveaux tels que la tris(diméthylsilyl)amine (TDMSA) sont explorées. 

L'incorporation progressive d'azote et de carbone dans les films étant au cœur de ce travail, l'évolution qui en résulte du réseau 

silicaté est largement étudiée à travers des protocoles de caractérisation physico-chimique, structurale et mécanique. Une approche 

multidisciplinaire est adoptée, combinant la science des matériaux, la chimie analytique et l'ingénierie des procédés d'une manière 

qui implique le développement simultané de films barrières résistants grâce à des expériences CVD, parallèlement à l'analyse en 

phase gazeuse, à la simulation et au calcul numérique. Les informations expérimentales obtenues grâce à cette approche sont 

utilisées pour enrichir les modèles de la littérature ou définir des mécanismes de dépôt complètement nouveaux. Grâce à une 

représentation 3D du domaine spatial du réacteur, les modèles chimiques développés sont mis en œuvre afin de reproduire le 

processus de dépôt par simulation. Les calculs de mécanique des fluides numérique (MFN) sont utilisés pour comprendre les 

particularités de la formation du dépôt dans les espaces confinés et les pièces 3D complexes, obtenir des prédictions en termes de 

composition en phase gazeuse et solide, ainsi que pour étudier les potentiels et les solutions pour l'optimisation du processus de 

dépôt. Les corrélations établies entre les conditions de processus, la structure des films, la composition et les propriétés, ainsi que 

l'intégration d'une approche informatique et expérimentale couplée, sont utilisées pour arriver à des matériaux durables à base de 

silice avec des performances de barrière efficaces, flexibles pour une utilisation dans divers domaines d'application.
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The deposition of silica-based materials is widely used in numerous industrial sectors, including microelectronics, food 

packaging, gas separation and pharmaceutics. Depending on the target-application, these materials are required to fulfil specific 

requirements in terms of mechanical properties, durability, and composition. The implementation of such coatings in pharmaceutics 

applications require, more specifically, good aqueous barrier and anti-diffusion properties, as well as effective corrosion resistance. 

The hydrolytic resistance and the durability of the coatings is directly linked to the level of densification of the ceramic network. In 

the case of amorphous SiO2, an improved network cross-linking, and by consequence densification, can be induced through the 

partial replacement of the O2- anions by N3- or C4- ones, producing denser amorphous silicon oxynitride (SiOxNy) and silicon 

oxycarbide (SiOxCy) coatings that can meet the performance requirements dictated by the various pharmaceutical applications. 

However, very little information is available in the literature concerning the deposition of SiOxNy and SiOxCy coatings in accordance 

to the application-specific constraints: namely the production of chemically inert films on complex, 3D substrates, deposited at 

atmospheric pressure and at moderate temperatures (<570°C), with high deposition rates. To achieve the above goals, the deposition 

of amorphous silica-based films is undertaken via the utilization of a thermal CVD process defined around reactive, novel 

chemistries. The reactive chemical pathways aids in the production of SiOxNy and SiOxCy at temperatures lower than the 

conventional ones, and more importantly, compatible with thermosensitive substrates. The gradual increase in N and C contents in 

the deposits is carried out through carefully selected precursor molecules and reagent gas compositions. Innovative deposition routes, 

based on single or dual-precursor combinations of classic silicon-containing precursors such as tetraethylorthosilicate (TEOS) or 

hexamethyldisilazane (HMDS), and more novel compounds such as tris(dimethylsilyl)amine (TDMSA) are explored. Since the 

progressive incorporation of nitrogen and carbon in the films is at the core of this work, the resulting evolution of the silicate 

network is extensively studied through physicochemical, structural and mechanical characterization protocols. A multidisciplinary 

approach is embraced, combining materials science, analytical chemistry and process engineering in a way that involves the 

simultaneous development of resistant barrier films through CVD experiments, alongside gas phase analysis, simulation and 

numerical computation. The experimental information obtained through this approach is utilized in order to enrich previous 

literature models or define completely novel deposition mechanisms. Through 3D representation of the reactor spatial domain, the 

developed chemical models are implemented in order to replicate the deposition process via simulation. Computational fluid 

dynamics (CFD) calculations are used to understand the particularities of film formation in confined spaces and complex 3D-parts, 

obtain predictions in terms of gas phase and solid phase composition, as well as investigate potentials and solutions for optimization 

of the deposition process. The established correlations between process conditions, films structure, composition and properties, 

alongside the integration of a coupled computational and experimental approach, are used to arrive at durable silica-based materials 

with sustainable barrier performance, flexible for utilization in diverse application domains.
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