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Abstract
This work proposes a marginalised particle filter with variational inference for non‐linear
state‐space models (SSMs) with Gaussian mixture noise. A latent variable indicating the
component of the Gaussian mixture considered at each time instant is introduced to
specify the measurement mode of the SSM. The resulting joint posterior distribution of
the state vector, the mode variable and the parameters of the Gaussian mixture noise is
marginalised with respect to the noise variables. The marginalised posterior distribution
of the state and mode is then approximated by using an appropriate marginalised particle
filter. The noise parameters conditionally on each particle system of the state and mode
variable are finally updated by using variational Bayesian inference. A simulation study is
conducted to compare the proposed method with state‐of‐the‐art approaches in the
context of positioning in urban canyons using global navigation satellite systems.
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1 | INTRODUCTION

Non‐linear state‐space models (SSMs), composed of a non‐
linear system and measurement equations, are applied to a
wide variety of practical applications including global naviga-
tion satellite system (GNSS) positioning [1], radar target
tracking [2] and communication systems [3]. A central problem
when using these models is recursively inferring the state
vector based on a sequence of measurements. In many prac-
tical applications, the measurement noise has non‐Gaussian
statistics resulting from measurement outliers, for instance
when the GNSS receiver is affected by multipath (MP) signals
in urban canyons [4] or when there are irregular electromag-
netic wave reflections from the target surface in radar target
tracking [5].

The probability density function (pdf) of a non‐Gaussian
noise can be well‐approximated by using a finite sum of
Gaussian pdfs according to the density approximation theorem
[6]. As a consequence, different kinds of filters with noises
based on Gaussian mixture models (GMMs) have been
investigated in the literature for solving the state estimation

problem in the presence of non‐Gaussian measurement noise.
One attempt to solve this problem is based on the multiple
model approach, such as the Gaussian sum filter [7, 8] where
each component of the GMM corresponds to a possible noise
distribution and the posterior estimates of the state vector can
be obtained by using a bank of Kalman filters. Mixture
reduction strategies such as the interactive multiple models
(IMM) [9–11] have also been investigated to try to prevent the
number of components of the joint posterior from growing
exponentially over time. When the parameters of the GMM are
unknown a priori, the expectation‐maximisation (EM) algo-
rithm can be embedded into the IMM for simultaneously
estimating the unknown state and noise parameters [12]. In
order to adaptively determine the number of GMM compo-
nents, variational Bayesian (VB) EM approaches have been
studied in Ref [13]. These approaches estimate the state vector
in the VB‐expectation step and then update the posterior
distributions of the GMM in the VB‐maximisation step.
However, to our knowledge, they have only been considered in
a batch manner. A flexible Bayesian non‐parametric model
embedded into the Rao–Blackwellized particle filter has also
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been considered in Ref [14], modelling the measurement noise
as an infinite mixture of Gaussian vectors. However, the price
to pay with this kind of approach is its high‐computational
complexity, which may limit its use in some practical
applications.

This work studies a new marginalised particle filter (MPF)
for non‐linear SSMs with observation noise distributed ac-
cording to a mixture of Gaussian vectors. The MPF studied in
Ref [15] for mixed linear/non‐linear systems is introduced for
state and measurement equations depending linearly on a subset
of the state vector and non‐linearly on the other state variables.
The idea of this technique is to marginalise the distribution of
interest with respect to the state variables appearing linearly in
the state and measurement equations, allowing the linear com-
ponents to be processed using analytical methods (such as the
Kalman filter) and to handle the non‐linear components by
sequential Monte Carlo (SMC) techniques [16]. The MPF has
been used successfully in many applications including navigation
using an inertial navigation system and other aided positioning
and multiple target tracking [17, 18]. For instance, an MPF has
been proposed in Ref [19, 20] to estimate jointly the number of
targets and their states using a sequential algorithm. An overview
of the sequential Monte Carlo methods for tracking different
objects was investigated in Ref [21]. In addition, the MPF has
been applied to track‐before‐detect for a target tracking problem
in Ref [22, 23]. The MPF was also combined with a variational
Bayes approximation in Ref [24–26] to estimate the state and
unknown measurement noise parameters in non‐linear SSMs.
For example, the means and covariances of the measurement
noise were assumed to be slowly time‐varying in Ref [24]. This
assumption allowed the derivation of a marginalised adaptive
particle filter to infer the unknown noise parameters jointly with
the state vector by using maximum entropy with a Kullback–
Leibler (KL) divergence constraint. Finally, it is interesting to
mention the robust particle filter proposed in Ref [25, 26] to
address cases where the additive measurement noise has a
Student‐t distribution.

This work introduces a new strategy for state estimation in
non‐linear SSMs inspired by the MPF. The main innovations
with respect to the existing approaches are summarised below:

� We introduce a latent variable indicating the component of
the GMM used for the measurement noise at each time
instant and specify the measurement mode of the system.

� The joint posterior distribution of the state vector, the latent
variable and the GMM parameters is derived and its pa-
rameters are estimated using an MPF with variational
inference.

More precisely, the proposed approach is decomposed into
two steps: (a) The joint posterior distribution of the state vec-
tor, the latent variable and the GMM parameters is marginalised
with respect to the noise variables. The resulting marginalised
posterior distribution is approximated by using an appropriate
MPF; (b) the noise parameters conditionally on each particle
generated in (a) are updated by using VB inference.

The work is organised as follows: The problem of state
estimation for a non‐linear SSM with a GMM measurement
noise is presented in Section 2. Section 3 studies a new MPF
with variational inference for jointly estimating the state vector,
the mode variable and the GMM parameters of this kind of
non‐linear SSM. The performance of the proposed approach is
evaluated in Section 4 and compared with the state‐of‐the‐art
approaches in the context of positioning in urban canyons
using GNSS. Conclusions are finally drawn in Section 5.

2 | PROBLEM FORMULATION

In this work, we consider the following non‐linear discrete‐
time SSM related to a hidden state vector x t ∈ Rnx and the
measurement vector y t ∈ Rny

x t ¼ f x t−1ð Þ þωt; ð1Þ

y t ¼ h x tð Þ þ v t; ð2Þ

where t¼ 1;…;T denotes the tth time instant, h ⋅ð Þ is a known
non‐linear measurement function, f ⋅ð Þ is a known linear or
non‐linear transition function and ωt is the process noise
distributed according to a zero‐mean Gaussian distribution of
covariance matrix Q . The non‐Gaussian measurement noise is
approximated using a finite GMM with density

pðv tjμ;ΛÞ ¼
XK

k¼1

πkN μk;Λ
−1
k

� �
; ð3Þ

where K denotes the number of Gaussian components in the
mixture, πk is the mixing coefficient for the kth component
with

PK
k¼1πk ¼ 1 and πk > 0,N μk;Λ

−1
k

� �
denotes a Gaussian

distribution with mean vector μk and precision (inverse
covariance) matrix Λk for the kth component, μ¼ μkf g

K
k¼1

and Λ ¼ Λkf g
K
k¼1. Accordingly, the state and measurement

equation in (1) and (2) can be defined by the following con-
ditional pdfs:

x t � p x tjx t−1ð Þ ¼ N f x t−1ð Þ;Qð Þ; ð4Þ

y t �
XK

k¼1

πkN h x tð Þ þ μk;Λ
−1
k

� �
: ð5Þ

Since each component of y t can be considered as a mea-
surement mode with a specified distribution, the measurement
switches among different modes corresponding to the
different GMM components. When working with mixture
distributions, it is common to introduce a latent variable rk
indicating the mode of y t at the tth time instant with a given
probability uk;t defined as [27]

uk;t ≜ Pr rt ¼ kð Þ; ð6Þ
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where k¼ 1;…;K,
PK

k¼1uk;t ¼ 1 and uk;t > 0. On using
these notations, the vector ut ¼ u1;t;…; uK;t

� �T contains the
probabilities that a measurement vector at the tth time instant
belongs to the different GMM components, which are time‐
varying quantities. Moreover, the vector of mixing
coefficients π ¼ π1;…;πKð Þ

T contains the probabilities that
the measurements in y 1:t ¼ y 1;…; y tf g are associated with
the different GMM components, which are assumed to be
constant quantities in this work.

When considering Bayesian estimators, assigning conjugate
priors to π, μ and Λ simplifies the analysis. In this work, we have
assigned a conjugate Dirichlet distribution Dir ⋅ð Þ to π and a
normal Wishart distribution NW ⋅ð Þ to fμ;Λg [28] leading to

p πð Þ ¼Dir πjαð Þ ¼ C αð Þ
YK

k¼1

παk−1
k ; ð7Þ

p μ;Λð Þ ¼
YK

k¼1

NW μk;Λkjmk; βk;W k; νkð Þ;

¼
YK

k¼1

N μkjmk; βkΛkð Þ
−1� �
W ΛkjW k; νkð Þ;

ð8Þ

where α¼ α1;…; αKð Þ
T (αk > 1 and k¼ 1;…;K) is a con-

centration parameter vector, C αð Þ is the normalisation con-
stant for the Dirichlet distribution, W ΛkjW k; νkð Þ is the
Wishart distribution with precision matrix W k and νk degrees
of freedom (with νk > ny þ 1, where ny is the dimension of the
measurement vector). Accordingly, the joint prior distribution
for the parameters of the noise GMM is defined as follows:

p π; μ;Λð Þ ¼Dir πjαð Þ
YK

k¼1

NW μk;Λkjmk; βk;W k; νkð Þ:

ð9Þ

When the measurement vector y t switches between
different modes, the latent variable rt is time‐varying. In
addition, the parameters of the GMM used for the measure-
ment noise are generally difficult to specify a priori. Thus, the
aim of this work is to infer the states x t jointly with the un-
known measurement mode variables and the GMM noise
parameters, leading to the joint posterior distribution of all
unknown variables given the measurement sequence y 1:t,
denoted as p x t; rt; θjy 1:tð Þ with θ¼ π; μ;Λf g. This posterior
distribution is studied in the next section.

3 | A MARGINALISED PARTICLE
FILTER FOR NON‐LINEAR SSMs WITH A
GMM FOR THE MEASUREMENT NOISE

According to the MPF concept [15], the joint posterior distri-
bution of the state and unknown parameters p x t; rt; θjy 1:tð Þ can
be factorised according to the following chain rule of probability:

p x t; rt; θjy 1:tð Þ¼ p θjx t; rt; y 1:tð Þp x t; rtjy 1:tð Þ;

¼ p θjx t; rt; y 1:tð Þp rtjx t; y 1:tð Þp x tjy 1:tð Þ;

ð10Þ

where the three pdfs on the right‐hand side of Equation
(10) can be calculated recursively. More precisely, we pro-
pose to approximate the posterior pdf p x tjy 1:tð Þ by using
an empirical density following the principle of particle filters.
The pdf of the mode variables p rtjx t; y 1:tð Þ can then be
computed conditionally on the state x t. Finally, the pdf of
the noise parameters is shown to be a Gaussian mixture
p μ;ð Λjx t; rt; y 1:tÞ conditionally on the state x t and the
mode variable rt, which can be obtained using VB infer-
ence. The different steps required to compute these quan-
tities are described in the next sections.

3.1 | Updating x t; rtð Þ samples based on the
marginalised particle filter

As explained before, the joint posterior pdf of ðx t; rtÞ can be
factorised as follows:

p x t; rtjy 1:tð Þ ¼ p rtjx t; y 1:tð Þp x tjy 1:tð Þ; ð11Þ

where the mode variable rt has been marginalised out in the
second term of the right hand side. This work proposes to
approximate p x tjy 1:tð Þ by using a particle filter, that is,

p x tjy 1:tð Þ ≈
XN

i¼1

ωi
tδ x t − x i

t
� �

; ð12Þ

where N is the number of particles, δ ⋅ð Þ is the Dirac delta
function,x i

t is the ith particle andωi
t is the corresponding weight

at the tth time instant. According to Equation (6), p rtjx t; y 1:tð Þ

can be obtained by computing the mode probabilities condi-
tionally on the state samples x i

t
� �N

i¼1:

uik;t ¼ Pr rt ¼ kjx i
t; y t

� �
; ð13Þ

where k¼ 1;…;K and i¼ 1;…;N . As a consequence, the
joint pdf p x t; rtjy 1:tð Þ is approximated by using a set of
weighted particles, leading to ωi

t;x
i
t;u

i
t

� �N
i¼1, whose update is

described in the rest of this section.
According to the theory of particle filters [29], the weight

ωi
t can be updated as follows:

ωi
t ∝

p y tjx
i
t; y 1:t−1

� �
p x i

tjy 1:t−1
� �

q x i
tjx

i
t−1; y 1:t

� � ωi
t−1; ð14Þ

where x i
t � q x tjx i

1:t−1; y 1:t
� �

, q x tjx i
1:t−1; y 1:t

� �
is an impor-

tance distribution, which is chosen as the bootstrap proposal [16]
in this work, that is,
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x i
t � p x tjx

i
t−1

� �
; i¼ 1;…;N : ð15Þ

Accordingly, Equation (14) can be rewritten as follows:

ωi
t ∝ p y tjx

i
t; y 1:t−1

� �
ωi

t−1; ð16Þ

where p y tjx
i
t; y 1:t−1

� �
can be computed after the following

marginalizations:

p y tjx
i
t; y 1:t−1

� �

¼∭
YK

k¼1

p y tjx
i
t; μ

i
k;Λ

i
k

� �
p μi

k;Λ
i
kjy 1:t−1

� �� �I rit¼kð Þ

p ritjy 1:t−1
� �

drtd μkdΛk; ð17Þ

where I rt ¼ kð Þ is an indicator for the kth component of the
noise GMM (equal to 1 when rt ¼ k and 0 otherwise) and
rt ∈ 1;…;Kf g is the discrete variable indicating the mixture
component. Note that p ritjy 1:t−1

� �
and p μi

k;Λ
i
kjy 1:t−1

� �
are the

predictive distributions for the indicator variable and the mean
and precision matrix of the kth Gaussian component for the ith
particle. The predictive distribution p ritjy 1:t−1

� �
can be defined

according to Equation (6), that is,

bui
k;tjt−1 ¼ Pr rit ¼ kjy 1:t−1

� �
; ð18Þ

where bui
k;tjt−1 denotes the predicted probability of the kth

measurement mode for the ith particle at the tth time instant.
It can be assumed that the mode sequence has the Markov
property. Thus, the joint pdf of the mode sequence can be
defined as follows [12, 30]:

Pr rt ¼ k; rt−1 ¼ ljy 1:t−1ð Þ ¼Π kjlð ÞPr rt−1 ¼ ljy 1:t−1ð Þ; ð19Þ

with

Πlk ¼Π kjlð Þ ≜ Pr rt ¼ kjrt−1 ¼ lð Þ; ð20Þ

where Πlk is the transition probability from the lth to the kth
measurement mode. By marginalising the above expression
over rt−1, bui

k;tjt−1 can be expressed as follows:

bui
k;tjt−1 ¼

XK

l¼1

Πlkbu
i
l;t−1; ð21Þ

where i¼ 1;…;N and k¼ 1;…;K , bui
l;t−1 denotes the

estimated probability of the lth measurement mode for the
ith particle at the ðt − 1Þth time instant. After replacing
Equation (18) into Equation (17), the following result is
obtained:

p y tjx
i
t; y 1:t−1

� �
¼
XK

k¼1
bui
k;tjt−1

∬ p y tjx
i
t; μ

i
k;Λ

i
k; rt ¼ k

� �
p μi

k;Λ
i
kjy 1:t−1

� �
dμkdΛk: ð22Þ

The conditional pdf of the measurement associated with
the kth GMM component can be determined from Equation
(5), leading to

p y tjx
i
t; μ

i
k;Λ

i
k; rt ¼ k

� �
¼N h x i

t
� �

þ μi
k; Λ

i
k

� �−1
� �

: ð23Þ

Since the prior distribution for μk;Λkf g follows a normal
Wishart distribution as defined in Equation (8), the predictive
distribution p μi

k;Λ
i
kjy 1:t−1

� �
can be defined as follows:

p μi
k;Λ

i
kjy 1:t−1

� �

¼NW μi
k;t;Λ

i
k;tj bm

i
k;tjt−1;

bβ
i
k;tjt−1;

cW
i
k;tjt−1; bν

i
k;tjt−1

� �
;

ð24Þ

where bmi
k;tjt−1, bβ

i
k;tjt−1, cW

i
k;tjt−1 and bν

i
k;tjt−1 are the predicted

hyperparameters of the normal andWishart distributions for the
ith particle at the tth time instant. In order to maintain the
conjugacy for the distribution of the noise parameters, bmk;tjt−1,
bβk;tjt−1, cW k;tjt−1 and bνk;tjt−1 can be propagated as follows:

bmi
k;tjt−1 ¼ bm

i
k;t−1;

bβ
i
k;tjt−1 ¼

bβ
i
k;t−1;

cW
i
k;tjt−1 ¼

cW
i
k;t−1; bν

i
k;tjt−1 ¼ bν

i
k;t−1;

ð25Þ

where i¼ 1;…;N and k¼ 1;…;K, bmi
k;t−1, bβ

i
k;t−1, cW

i
k;t−1 and

bνi
k;t−1 are the estimated hyperparameters of the normal and

Wishart distributions for the ith particle at the ðt − 1Þth time
instant. The a priori quantities bmk;tjt−1, bβk;tjt−1, cW k;tjt−1 and
bνk;tjt−1 are then used as the initial values for VB inference
(detailed in the Section 3.2), leading to the a posteriori quantities

bmi
k;t, bβ

i
k;t,cW

i
k;t andbν

i
k;t. As a consequence, p μi

k;Λ
i
kjy 1:t

� �
is also

a normal Wishart distribution denoted as

p μi
k;Λ

i
kjy 1:t

� �

¼NW μi
k;t;Λ

i
k;tj bm

i
k;t;
bβ
i
k;t;
cW

i
k;t; bν

i
k;t

� �
: ð26Þ

Since integration over the product of a normal Wishart
prior and a Gaussian distribution leads to a Student‐t distri-
bution St ⋅ð Þ [31], inserting Equations (23) and (24) into
Equation (22) leads to

p y tjx
i
t; y 1:t−1

� �

¼
XK

k¼1
uik;tjt−1St y tj bm

i
k;tjt−1;

bL
i
k;tjt−1; bν

i
k;tjt−1 − ny þ 1

� �
;

ð27Þ

where bL
i
k;tjt−1 ¼

1þbβ
i

k;tjt−1

bν
i
k;tjt−1−nyþ1

� �
bβ

i

k;tjt−1

cW
i
k;tjt−1 and St

�
y tj bm

i
k;tjt−1;

bL
i
k;tjt−1; bν

i
k;tjt−1 − ny þ 1

�
is a Student‐t distribution defined as

follows:
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with ξit ¼ y t − h x i
t

� �
. Since p rt ¼ kjx t; y 1:tð Þ ∝ p y tjx t;ð

y 1:t−1; rt ¼ kÞp rt ¼ kjy 1:t−1ð Þ, the probability of the kth
measurement mode for the ith particle at the tth time instant
can be obtained as follows:

bui
k;t ¼

bγ i
k;t

PK
k¼1bγ

i
k;t

; k¼ 1;…;K ð29Þ

where

bγ i
k;t

¼ bui
k;tjt−1St y tj bm

i
k;tjt−1;

bL
i
k;tjt−1; bν

i
k;tjt−1 − ny þ 1

� �
: ð30Þ

As a consequence, the maximum a posteriori (MAP) esti-
mator of the indicator rt for the ith particle at the tth time is

brit ¼ argmax
rt¼ 1;…;Kf g

bui
k;t; i¼ 1;…;N : ð31Þ

3.2 | Calculating p θjx i
t; r

i
t; y 1:t

� �
using VB

inference

According to the mean‐field theory in VB inference [32], the
joint pdf of the noise parameters q θð Þ can be factorised into
single‐variable factors, that is, q θð Þ ¼ q πð Þq μ;Λð Þ. According
to the factorised approximation, the logarithm of the mar-
ginal likelihood ln p y tjx

i
t; r

i
t; θ; y 1:t−1

� �
can be expressed as

follows [33]:

ln p y tjx
i
t; r

i
t; θ; y 1:t−1

� �
¼ LþKL q‖pð Þ; ð32Þ

with

L ¼ ∫ q θð Þln
p y t; θjx i

t; r
i
t; y 1:t−1

� �

q θð Þ
dθ; ð33Þ

and

KL qkpð Þ ¼ ∫ q θð Þln
q θð Þ

p θjx i
t; rit; y 1:t

� � dθ; ð34Þ

where L is a variational objective function used in VB infer-
ence, KL qkpð Þ is the Kullback–Leibler (KL) divergence be-
tween the true posterior and its approximation. Accordingly,
the joint pdf p y t; θjx i

t; r
i
t; y 1:t−1

� �
can be expressed, according

to Equations (5), (7) and (8), as follows:

p y t; θjx
i
t; r

i
t; y 1:t−1

� �
¼ C αð Þ

�
YK

k¼1

παk−1
k N μkjmk; βkΛkð Þ

−1� �
W ΛkjW k; νkð Þ

n

� πk p y tjx
i
t; μk;Λk; rit ¼ k

� �� �I rt¼kð Þ
o
:

ð35Þ

Considering that the KL divergence is non‐negative, mini-
misation the KL divergence can be achieved by maximising the
lower boundL, which results in the computation of expectations
with respect to q πð Þ, q μ;Λð Þ in turn, that is,

ln q πð Þ ¼ Eθnπ lnp y t; θjx
i
t; r

i
t;y 1:t−1

� �� �
; ð36Þ

ln q μ;Λð Þ ¼ Eθnμ;Λ lnp y t; θjx i
t; r

i
t; y 1:t−1

� �� �
; ð37Þ

where EθtnX denotes the expectation with respect to the vari-
ational distributions of all variables in θ, except those con-
tained in X . Finally, the variational distributions can be
approximated as follows:

ln q πð Þ ≈
XK

k¼1
I rit ¼ k
� �

þ αk − 1
� �

lnπk þ C1; ð38Þ

ln q u;Λð Þ ≈ ln p y tjx
i
t; r

i
t; μ;Λ

� �
þ ln p μ;Λð Þ þ C2;

∝
PK

k¼1 I rit ¼ k
� �

ln N h x i
t

� �
þ μk;Λ

−1
k

� �� ��

þ ln NW μk;Λkð Þð Þg; ð39Þ

where C1 is a constant summarising the terms independent of
π and C2 contains the terms independent of μ and Λ.

The hyperparameters αi
k, m

i
k, βi

k, W
i
k, νik for the variational

distributions of the GMM noise parameters conditionally on
the ith weighted particle ωi

t;x
i
t;u

i
t

� �
can be finally updated at

the tth time instant as follows:

bαi
k;t ¼ bα

i
k;tjt−1 þ I brit ¼ k

� �
; ð40Þ

St y tj bm
i
k;tjt−1;

bL
i
k;tjt−1; bν

i
k;tjt−1 − ny þ 1

� �
∝ 1þ ξit − bmi

k;tjt−1

� �Tbβ
i
k;tjt−1

cW
i
k;tjt−1

� �−1

1þ bβ
i
k;tjt−1

ξit − bmi
k;tjt−1

� �

�
�
�
�
�
�
�

�
�
�
�
�
�
�

−
bν

i
k;tjt−1þ1

2

ð28Þ
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bβ
i
k;t ¼

bβ
i
k;tjt−1 þ I brit ¼ k

� �
; ð41Þ

bm i
k;t ¼

1

bβ
i
k;tjt−1 þ I brit ¼ k

� �

bβ
i
k;tjt−1 bm

i
k;tjt−1 þ I brit ¼ k

� �
ξit − bmi

k;tjt−1

� �� �
; ð42Þ

bνi
k;t ¼ bν

i
k;tjt−1 þ I brit ¼ k

� �
; ð43Þ

cW
i
k;t

� �−1
¼ cW

i
k;tjt−1

� �−1
þ

I brit ¼ k
� �

bβ
i
k;tjt−1

bβ
i
k;tjt−1 þ I brit ¼ k

� �

ξit − bmi
k;tjt−1

� �
ξit − bmi

k;tjt−1

� �T
; ð44Þ

where k¼ 1;…;K and i¼ 1;…;N . According to the estimate
of the indicating variable brit in Equation (31), the indicator

I brit ¼ k
� �

appearing in the above equations is defined as follows:

I brit ¼ k
� �

¼
1 brit ¼ k;

0 brit ≠ k:

(

ð45Þ

According to Equations (40–44), the estimation accuracy for
the hyperparameters associatedwith theGMMnoise parameters
depends on the estimated indicator rt (i.e. the identification ac-
curacy of the measurement mode), while an accurate estimation
for the noise parameters facilitates the identification of the
measurement mode according to Equations (30) and (31).

Remark 1: As for particle filters, resampling is conducted
to rejuvenate the particles and reduce the effects of degeneracy.
Resampling does not have to be performed at every run of the
proposed approach. In this work, the resampling procedure is
implemented only when the estimated effective sample size
bN eff ¼

1PN

i¼1
ωi
tð Þ
is below the user‐defined threshold N thres (for

more details, see Ref [16, 34, 44]).

Algorithm 1 Proposed marginalised particle filter for
non‐linear SSMs with Gaussian mixture noise
Inputs: ωit−1;x

i
t−1; bαi

k;t−1;
bβ
i
k;t−1; bm

i
k;t−1; bν

i
k;t−1;

nn

bW
i
k;t−1g

K
k¼1g

N
i¼1

Outputs:

ωit;x
i
t; br

i
t; bαi

k;t;
bβ
i
k;t; bm

i
k;t; bν

i
k;t; bW

i
k;t

n oK

k¼1

� �N

i¼1
1: for i¼ 1;…;N do
2: Generate xit and compute bu

i
tjt−1 according

to Equations (15) and (21), respectively.

3: Compute bmi
k;tjt−1, bβ

i
k;tjt−1, bW

i
k;tjt−1 and bν

i
k;tjt−1

according to Equation (25).
4: Compute the weight ωit for the ith particle

xit according to Equations (16) and (27).
5: Compute buit by using Equation (29), and

then determine brit according to Equation
(31).

6: Compute bαi
k;t;

bβ
i
k;t; bm

i
k;t; bν

i
k;t; bW

i
k;t

n oK

k¼1
conditionally on the ith particle
according to Equations (40–44).

7: end for
8: Normalise eωit ¼ ω

i
t=
PN

i¼1 ωit
� �

and evaluate
bN eff ¼ 1=

PN
i¼1 eω

i
t

� �
.

9: if bN eff < Nthres then
10: Perform particle resampling.
11: end if
12: Recursion: t¼ t þ 1.

Finally, the GMM noise parameters at the tth time instant
can be obtained as follows:

bπk;t ¼
XN

i¼1
ωi

t
bαi
k;t

PK
k¼1bα

i
k;t

; ð46Þ

bμk;t ¼
XN

i¼1
ωi

t bm
i
k;t; ð47Þ

bΛk;t ¼
XN

i¼1
ωi

t

�

bνi
k;t
cW

i
k;t

� �−1

þ bmi
k;t − bμk;t

� �
bmi

k;t − bμk;t

� �T
�−1

; ð48Þ

where k¼ 1;…;K. The proposed MPF for non‐linear SSMs
with a GMM measurement noise is summarised in
Algorithm 1.

4 | EXPERIMENTS

This section validates the proposed MPF for non‐linear
SSMs with a GMM measurement noise in the context of
GNSS‐based positioning in urban canyons. The pseudo‐
range (PR) measurement noise in urban canyons is
considered as a non‐Gaussian stochastic process due to the
fact that the tracking loop within the GNSS receiver is
impacted by interferences, for example, due to multipath
(MP) signals that severely impair the GNSS‐based posi-
tioning accuracy [36]. One important remaining challenge
for the application of GNSS in urban environments is
reduction of the impact of MP signals on positioning
methods. Generally, reflected MP signals affecting the
received direct GNSS signal can be divided into two kinds
of signals: (a) MP interferences defined as the sum of the
direct signal and the delayed reflections handled by the
GNSS receiver; (b) non‐line‐of‐sight (NLOS) signals
resulting from a unique reflected signal received and tracked
by the GNSS receiver [37]. In addition, an important
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property of MP signals is that they not only depend on the
relative position of the receiver (which is generally moving)
and GNSS satellites but also on the environment where the

receiver is located, especially in urban canyons [38].
Accordingly, these two reception situations can occur both
separately or jointly inside the tracking loop of the GNSS
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F I GURE 1 Error rate for the maximum a posteriori estimates of rt
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receiver, leading to a PR measurement model that switches
between different modes [39].

4.1 | Simulation scenario

Since the GNSS positioning solution depends on the dynamic
level of the vehicle, a second‐order model (i.e. a constant

velocity model) is used to describe the dynamics of the vehicle
in the earth‐centred earth‐fixed (ECEF) frame. Moreover, the
GNSS receiver clock offset and its drift are taken into account.
Therefore, the state vector considered in this simulation is
defined as follows [40]:

x t ¼ xt; vx;t; yt; vy;t; zt; vz;t; bt; dt
� �T

; ð49Þ
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where t ¼ 1;…;∞ is the tth sampling time instant,
pt ¼ ðxt; yt; ztÞ

T and v t ¼ ðvx;t; vy;t; vz;tÞT are the vehicle po-
sition and velocity in the ECEF frame (Cartesian coordinates),
and bt and dt are the GNSS receiver clock offset and drift. The
velocity can be reasonably modelled as a random walk, for
example, x

̈
¼ ex, where ex is a zero‐mean Gaussian noise of

variance σ2
a. For short‐term applications in which the periodical

clock resets of the GNSS receiver are not taken into account, the
GNSS receiver clockoffsetbt and its driftdt can also bemodelled
as random walks, that is, b

̇
t ¼ dt þ eb and d

̇
t ¼ ed , where eb and

ed are zero‐mean Gaussian white noises of variances σ2
b and σ2

d .
Based on the above assumptions, the discrete‐time state model
that describes the propagation of the vehicle state x t can be
formulated as follows:

x t ¼ F tjt−1x t−1 þ et; ð50Þ

where et ¼ ex; ey; ez; eb; ed
� �T is the zero‐mean Gaussian

white noise vector of covariance matrix Q, that is,
et �N 0;Qð Þ. Expressions of the matrices F tjt−1 and Q can
be found in Ref [41].

Considering that the atmospheric propagation errors can be
compensated within the GNSS receivers, the PR measurement
model of the sth in‐view satellite at the tth time is defined as

ys;t ¼ ∥ps;t − pt ∥þbt þ vs;t; ð51Þ

where ys;t (s¼ 1;…;N s, N s being the number of in‐view
satellites) is the PR measurement associated with the sth in‐
view satellite, ∥ ⋅ ∥ is the Euclidean norm, ps;t ¼

xs;t; ys;t; zs;t
� �T

is the sth satellite position in the ECEF frame,

and vs denotes the measurement noise of the sth in‐view sat-
ellite. In the absence of MP signals, the measurement noise has
a Gaussian distribution with zero mean and variance σ2

s;1
(referred to as a nominal value). For different reception situ-
ations, in the presence of MP signals, two possible models are
considered according to the availability of the direct signal, that
is, variance jumps affecting the zero‐mean Gaussian white
noise in the context of MP interferences and mean value jumps
for NLOS signals [42, 43]. Thus, the measurement noise in the
presence of MP signals has a Gaussian distribution with non‐
zero mean μs;2 and variance σ2

s;2. Accordingly, the PR mea-
surement noise vs;t can be modelled as a GMM with two

components, that is, vs;t � π1N 0; σ2
s;1

� �
þ π2N μs;2; σ2

s;2

� �
.

The state space model defined in Equation (50) has been
simulated with the following parameters: process noise standard
deviation σa ¼ 0:1 m=s2, clock offset deviation
σb ¼ 3c � 10−10 m and drift standard deviation σd ¼

2πc � 10−10 m=s, where c ¼ 3� 108 m=s denotes the velocity
of light. The simulation is conducted using N s ¼ 4 in‐view sat-
ellites. The noise‐free GNSS PR measurements have been
computed based on an almanac file including all useful satellite
orbit data in the simulations. The standard deviation of the
measurement noise in the absence of MP signals is set to

σs;1 ¼ 10 m, where s ∈ 1; 2; 3; 4f g. In this simulation, the sec-
ond satellite PR measurement (s¼ 2) is affected by MP in-
terferences, resulting in μ2;2 ¼ 0 and σ2;2 ¼ 30 m, while the
fourth satellite PR measurement (s¼ 4) is simultaneously
affected by the mean value and variance changes, resulting in
μ4;2 ¼ 10 m and σ4;2 ¼ 20 m. Accordingly, the noise GMM
associated with all in‐view satellite measurements is defined as
π1N μ1;Σ1ð Þ þ π2N μ2;Σ2ð Þ where μ1 ¼ diag 0; 0; 0; 0½ �, Σ1 ¼

diag 102; 102; 102; 102½ � and μ2 ¼ diag 0; 0; 0; 10½ �, Σ2 ¼

diag 102;½ 302; 102; 202�, where diag ρ1;…; ρN s

� �
denotes a di-

agonalmatrixwith diagonal elementsρ1;…; ρN s
. In addition, the

mixture coefficients are set to π1 ¼ 0:7 and π2 ¼ 0:3,
respectively.

4.2 | Validation of the proposed algorithm

In order to validate the capability of the proposed approach for
adaptively determining the number of components, the num-
ber of GMM components is set to K ¼ 3. The transition
probability matrix Π used for computing the predicted mode
probabilities is defined as [39]

Π ¼
0:98 0:01 0:01
0:01 0:98 0:01
0:01 0:01 0:98

0

@

1

A:

Accordingly, the initial values for each Gaussian component
are set to πk;0 ¼ 1=K , αk;0 ¼ 1, mk;0 ¼ 0; 0; 0ð Þ

T, βk;0 ¼ 1,
W k;0 ¼ diag 0:12; 0:12; 0:12½ � and νk;0 ¼ N s with k ∈ 1; 2; 3f g.
The simulation time and the number of particles are set to
T ¼ 600s and N ¼ 2000.1 The different algorithms are run for
Nm ¼ 100 Monte Carlo (MC) runs. The MAP estimates of rt
and the root mean square errors (RMSEs) of the states for the
different MC runs are defined as follows:

brt ¼ argmax
rt¼ 1;…;Kf g

1
Nm

XNm

m¼1
buk;t mð Þ; ð52Þ

and

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nm

XNm

m¼1
bx t mð Þ − x tð Þ

2

v
u
u
t ; ð53Þ

where buk;t mð Þ and bx t mð Þ are the mth estimates
(m¼ 1;…;Nm) of the measurement mode probability and the
state at the tth time instant. All algorithms have been coded

1
The number of particles has been chosen to meet a compromise between the estimation
accuracy of the proposed approach and its computational load. A larger number of
particles might be considered for other applications.
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using MATLAB and run on a laptop with Intel i‐5 and 8 GB
RAM.

Figure 1 displays the error rates ϵ2 for the MAP estimates of
rt for the 100MCsimulations. The corresponding averaged value
of the error rates is 4:47%, demonstrating that the measurement
mode can be well‐identified by using the proposed MPF. In
addition, the means of the mixing coefficients computed using
100 MC simulations are depicted in Figure 2. It is clear that the
means of bπ1;t mð Þ and bπ2;t mð Þ gradually converge to the true
values (i.e. 0.7 and 0.3), whereas themean of bπ3;t mð Þ approaches
zero when time increases (m¼ 1;…;Nm). These results show
that the number of mixture components and the values of the
mixing coefficients can be adaptively determined by the pro-
posed approach.

The RMSEs of the mean and standard deviation of each
Gaussian component (i.e. bμs;1, bσ s;1, and bμs;2, bσ s;2 for
s¼ 1; 2; 3; 4f g) obtained with the proposed approach are
depicted in Figures 3 and 4. The RMSEs associated with the first
(s¼ 1) and third (s¼ 3) PR measurements are obviously smaller
than those associated with the second (s¼ 2) and fourth (s¼ 4)
PR measurements. This is due to the fact that the first and third
PR measurements were not affected by MP signals, contrary to
the other two PR measurements. Moreover, the estimation re-
sults obtained for the second and fourth PRmeasurements show
that the false identification of the measurement mode impairs
the estimation accuracy of the GMM parameters, especially for
the fourth PR measurement, where the noise mean and variance
change simultaneously, due to the presence of MP.

4.3 | Comparison with the state‐of‐the art
approaches

The position and velocity estimation accuracies obtained with
the proposed method are compared to those obtained using the
marginalised adaptive particle filter (MAPF) of Ref [24] and the
robust particle filter (PF) of Ref [25]. Figures 5 and 6 display the
RMSEs of position and velocity estimations obtained with the
different methods. As shown in Figure 5, since the estimates for
the parameters of the noiseGMMare inaccurate at the beginning
of the simulation, the corresponding position estimation accu-
racy is reduced for the proposed approach when compared to

those obtained with the MAPF and the robust PF. However, it is
clear that the proposed approach provides a better positioning
estimation accuracy when time increases. Figure 6 shows that the
velocity estimation obtained with the proposed method is very
competitive with respect to the state‐of‐the‐art approaches.
Overall, these results show the interest of using the proposed
approach for mitigating the impact of MP signals on GNSS‐
based positioning in urban canyons.

The computational complexities of the MAPF, the robust
PR and the proposed approach are O NTð Þ, O κmaxNTð Þ,3 and
O KNTð Þ. Table 1 shows the execution time of a single MC
run for the three approaches with different numbers of par-
ticles. One can conclude that the increased estimation accuracy
is obtained at the price of a moderate computational cost,
which will be acceptable in many practical applications.

5 | CONCLUSION

This work studied a new marginalised particle filter with
variational inference for non‐linear SSMs with a Gaussian
mixture model (GMM) for the observation noise. A latent
variable was introduced for indicating the measurement mode
of the SSM, corresponding to a specific component of the
GMM. The joint posterior distribution of the state, the latent
variable and the parameters of the GMM was then derived and
sampled using a new marginalised particle filter combined with
variational Bayesian inference. The samples generated
sequentially by this particle filter were finally used to estimate
the unknown parameters of the SSM. A simulation study was
conducted for a realistic GNSS‐based positioning problem in
urban canyons. The proposed approach was compared to the
state‐of‐the‐art approaches, more precisely to the marginalised
adaptive particle filter and the robust particle filter, providing
accurate estimates of the state and noise parameters at the
price of a moderate computational cost. In particular, the
number of mixture components and the GMM parameters
(including the mixing coefficients and the parameters of each
Gaussian distribution) were adaptively estimated by the pro-
posed approach in a recursive way. Our future work will be
devoted to implementing the proposed approach for SSMs
with other mixture noise model, such as the Gaussian‐uniform
mixture noise [35]. In addition, testing of the proposed algo-
rithm in the context of radar target tracking is also an inter-
esting prospect.
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TABLE 1 Execution times for the three approaches with different
numbers of particles

N

Execution times (s)

MAPF Robust PF Proposed method

2000 89.42 169.50 128.24

4000 189.13 274.63 223.42

6000 273.17 545.31 407.21

2
ϵ¼ NF

NT
� 100%, where NF and NT denote the number of false MAP estimates and the

total number of samples for rt in the time interval T .

3
κmax denotes the maximum number of iterations for the VB inference step of the robust
PF.
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