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Microbubble generators are in wide demand in industiy following the discoveiy of a number of new 

functions of microbubble mixtures. This paper deals with a Venturi tube microbubble generator in which 

air bubbles at the inlet are fragmented in the diverging part of the tube. ln contrast with past studies, 

we here regulated the flow subsonic so that fragmentation occurred without the help of pressure shock 

waves. Counting the microbubbles in image processing, we found that a single bubble fragmented into 

20-400 microbubbles depending on the Weber number. The power efficiency is found to range from 30 to

50 percent and insensitive to the liquid viscosity. The mechanism of subsonic fragmentation is elucidated

adopting partide tracking velocimetiy, in association with a theoretical description of the translational

motion and the shape oscillation of the bubble. The key event was found to be the bubble's rapid slip

back in the diverging part of the Venturi tube due to a positive pressure gradient. This provides a function

that prevents large bubbles from being released from the subsonic Venturi tube.
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. Introduction

The functions of microbubbles are receiving much attention in 
he fields of science and engineering. Microbubbles have beneficial 
roperties in water; e.g., rheological, electro-chemical, and biome

hanical effects (Agarwal et al., 2011; Terasaka et al., 2011 ). A rep

esentative feature of microbubbles is a high interfacial area con
entration. Microbubbles thus promote heat and mass transfer be
ween gas and liquid phases via densely distributed gas-liquid in

erfaces (Kitagawa and Murai, 2013; Ichikawa et al., 2018). Addi
ionally, the injection of microbubbles into turbulent shear lay
rs suppresses momentum transfer. Progress is now being made 
n reducing frictionaI drag through the injection of microbub

les (Hara et al., 2011; Murai, 2014; Park et al., 2019). The use 
f microbubbles benefits not only the control of fluid proper

ies but also measurement techniques; i.e., microbubbles work 
s tracers in particle image velocimetry (PIV), acoustic echog

aphy, and ultrasonic Doppler velocimetry. Their small size al
ows microbubbles to follow the liquid flow within certain lim

ts of flow turbulence (Mathai et al., 2016). Moreover, microbub

les hardly coaiesce owing to their resistance against deforma-
• Corresponding author: Yuichi Murai. Tel: (+81) 11-706-6372. Fax: (+81)11-706-
889 

E-mail address: murai@eng.hokudai.ac.jp (Y. Murai). 
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ion, and they even repulse each other owing to a zeta poten
ial (Usui and Sasaki, 1978; Calgaroto et al., 2014). These prop
rties warrant the use of microbubbles as a flow tracer, avoiding 

ggregation in flow. In PIV, two additional merits of microbub
les are recognized, i.e., high sphericity for strong surface ten

ion and a brilliant light-scattering property (Cheng et al., 2005; 

ark et al., 2019). In ultrasound Doppler velocimetry, individual mi
robubbles strongly reflect pulsed ultrasound owing to the large 
ap in acoustic impedance at their interfaces (Simpson et al., 1999; 

akeda, 2012). 
The power efficiency of microbubble generation has not been 

valuated in most cases of the applications of microbubbles men

ioned above. The total energy balance needs to be assessed for 

ractical use. In large facilities, such as those used for water purifi
ation, biochemical reactors, and ship drag reduction, the research 

nd design of microbubble generators currently targets improve
ents in power performance. Regarding energy, a microbubble 

enerator adopting the depressurization of bubble nuclei requires 
igh thermodynamic power in a pressure vessel (Maeda et al., 

015). Microbubble generators adopting a mechanicaI shearing de

ice (e.g., Sadatomi et al., 2005) consume power in pumping and 
hearing the liquid. 

A Venturi tube can be used to generate microbubbles in a com

act space. The Venturi tube continuously divides bubbles into 
undreds of microbubbles downstream. Furthermore, the Venturi 



Table 1

Available reports on bubbly flow in Venturi tubes.

Report by Geometry Throat size Throat velocity Gas injection Final bubble size

Uesawa et al. (2012) Axisymmetric 6 mm 10 to 90 m/s Upstream 30 – 80 μm

Kuroshima et al. (2014) Rectangular 2 mm 2 to 11 m/s Upstream 100 – 600 μm

Yin et al. (2015) Axisymmetric 23 mm 4 to 13 m/s Throat surface 300 – 1200 μm

Lee et al. (2019) Axisymmetric 20 -32 mm 2 to 25 m/s Throat surface 20 – 350 μm

Zhao et al. (2018 , 2019) Rectangular 25 mm 2 to 13 m/s Throat surface 1000 – 5000 μm

Huang et al. (2019 , 2020) Rectangular 2 mm 6 to 10 m/s Throat surface 100 – 800 μm

Present study Axisymmetric 2 mm 7 to 12 m/s Upstream 50 – 200 μm
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ube does not need any mechanical moving parts or ambient pres- 

urizing process. The tube is also used for atomization of droplet 

n gas flow ( Silva et al., 2009 ). When bubbly two-phase flow passes

hrough the Venturi tube, it readily reaches the speed of sound 

n bubbly flow ( > 20 m/s) at the throat part and becomes super- 

onic in the diverging part ( Thang and Davis, 1981 ). This results 

n pressure shock waves collapsing the bubbles, the detailed pro- 

ess of which was investigated by Uesawa et al. (2012) . Reduc- 

ng the flow speed to a subsonic level, Yin et al. (2015) mea- 

ured the sizes of fragmented bubbles produced by an asymmet- 

ic Laval nozzle of a Venturi tube at flow speeds of 4 to 13 m/s.

hey formulated the resultant bubble size as being dependent on 

he Reynolds number considering that liquid-phase turbulence de- 

ermines the final bubble size. For a comparable range of the flow 

peed, Lee et al. (2019) injected bubbles directly at the throat part 

f a symmetric Venturi tube and found fragmentation promoted 

y flow separation of the liquid phase at the rear edge of the 

hroat part. Zhao et al. (2018 , 2019 ) and Huang et al. (2019 , 2020 )

njected gas continuously into a rectangular Venturi throat at a 

peed lower than the speed of sound and found the importance 

f slipping due to buoyancy in the destabilization of gas–liquid in- 

erfaces. In their cases, gas was injected from throat surface and 

hus shear stress near the wall played major role of fragmenta- 

ion. Kuroshima et al. (2014) examined bubble fragmentation in a 

wo-dimensional Venturi tube and found reversing water jet in- 

ide a bubble during sharp negative acceleration. Table 1 lists com- 

arison of these experimental conditions. In summary, the Venturi 

ube has several different functions that promote bubble break-up, 

epending on the flow speed of the liquid phase. 

Our study focuses on microbubble generation using an axisym- 

etric Venturi tube operated within subsonic flow conditions. We 

xpect two advantages from subsonic conditions in engineering ap- 

lications. One is the suppression of acoustic noise that reduces 

he signal-to-noise ratio of acoustic echography and ultrasound 

oppler velocimetry. Such suppression is possible using subsonic 
ig. 1. Schematic diagram of the experimental setup comprising a symmetric Venturi tub

pstream part from an injection needle and passes through the throat of the tube to be f
ow for which there is no volumetric pulsation of bubbles. The 

ther is improved controllability of the bubble size through the 

uning of geometric parameters. From an energy perspective, we 

xpect acoustic and thermodynamic loss to be reduced in sub- 

onic operation. In this paper, we investigate experimentally the 

reeding number of bubble fragmentation in a subsonic Venturi 

ube. The data are collapsed using a function of the Weber num- 

er. The mechanism of bubble fragmentation is then discussed re- 

erring to the velocity profiles of liquid and bubbles obtained in 

article tracking velocimetry. The final section gives a theoretical 

escription of bubble fragmentation to explain the trend of mea- 

urement data and to characterize subsonic bubble fragmentation 

n a Venturi tube. 

. Experimental Method

.1. Experimental setup 

Figure 1 is a schematic diagram of the main body of the ex- 

erimental setup. The working fluid is carried by a volumetric dis- 

lacement pump at a constant flow rate and lead into a Venturi 

ube. The tube is made from transparent glass and has an inner 

iameter of D th = 2 mm at the throat section with an axial length

f 2 mm. The inlet and outlet sections both have a diameter of 

 o = 8 mm. The converging and diverging parts both have a length 

f L = 17.3 mm, such that the total length of the tube is 36.6 mm.

n this configuration, the diverging angle is tan 

−1 (3.0 / 17.3) = 10 

egrees, at which liquid flow undergoes separation ( Sparrow et al., 

009 ). We manufactured such a Venturi tube for two reasons. One 

s that the flow is controlled to be subsonic, and an asymmetric 

hape as for a Laval nozzle in the case of adiabatic expansion is 

hus unnecessary. The other is that we want to create a symmetric 

ressure profile inside the Venturi tube, with which an asymmet- 

ic process associated with the dispersion behavior can be clearly 

xtracted. In our experiment, a single bubble was injected at the 
e with a constant taper angle in an open vessel. A single bubble is released in the

ragmented in the diverging part.



Table 2

Experimental and photographic conditions.

Flow rate Q [l/min] 1.50, 1.80, 2.10

Reynolds number Re 6.1 × 10 3 to 23.0 × 10 3 

u th [m/s] 7.9 to 11.5

Frame rate [fps] 8,000

Shutter speed [1/s] 100,000

Focal ratio [-] 5.6

Picture size [pix] 256 × 1024 
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Table 3

Properties of glycerol aqueous solutions.

Concentration [%] 0 10 20 30

Viscosity [x10 −3 Pa ·s] 1.01 1.31 1.77 2.50

Surface tension [x10 −3 N/m] 72.8 72.9 72.4 72.0
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pstream position from a small capillary needle. The carrier liq- 

id conveys the bubble into the throat section, where pressure de- 

reases owing to Bernoulli’s effect. The bubble breaks up in the 

ownstream diverging part, where there is a large slip from the 

iquid phase. The downstream liquid containing fragmented bub- 

les is released into an open vessel. 

When changing the liquid, the effect of viscosity is evaluated 

sing the Reynolds number, defined as 

e = 

u th D th 

ν
, u th = Q 

(
1 

4 

πD th 
2 
)−1

, (2-1) 

here v is the kinematic viscosity of the liquid, u th is the mean 

elocity of the liquid in the throat section, and Q is the liquid vol- 

me flow rate. The experimental ranges for these parameters are 

ummarized in Table 2 . We examined four different liquids as the 

arrier phase; i.e., pure water and 10%, 20%, and 30% glycerol aque- 

us solutions (see Table 3 for properties). The initial diameter of 

ubbles at the inlet section ranged from 0.2 to 1.2 mm. The imag- 

ng area for measuring bubble fragmentation was set such that it 
ig. 2. Consecutive high-speed camera images of bubble fragmentation inside the diverg

acklighting.
ncluded the throat section and the downstream end of the Ven- 

uri tube; the window dimensions were 6.0 mm × 24.0 mm and 

56 × 1024 pixels, giving a magnification factor of 23 mm/pixel. 

Images were recorded by a high-speed digital video camera 

Photron, FASTCAM-MAX) at a frame rate of 80 0 0 fps and shutter 

peed of 10 5 s −1 . Other photographic conditions are summarized 

n Table 2 . The interfaces of bubbles were back-lit such that they 

ould be identified as shadows due to differences in the optical re- 

ractive index between the two fluids. 

Regarding the compressibility of bubbles, we regulate the Mach 

umber as 

a = 

u th 

c 
< 0 . 3 , c = min 

{
c 0 , 

√
p 

α( 1 − α) ρ

}
, (2-2) 

here c is the speed of sound in the bubbly mixture determined 

y the speed of sound in water c 0 , pressure p , density of liquid

, and void fraction α. In the case of shallow water, p / ρ is ap-

roximately 100 m 

2 /s 2 , yielding the speed of sound in the bubbly 

ixture as c = 100 m/s at α = 1%, c = 45 m/s at α = 5%, and

 = 35 m/s at α = 10%. In all cases, the maximum liquid velocity 

as restricted as u th < 12 m/s; i.e., the subsonic state in gas–liquid 

wo-phase flow. 
ing part for a throat flow velocity of u th = 8 m/s, taken as shadow images with 



Fig. 3. Image processing in the counting of the number of fragmentated bubbles:

(a) original image and (b) binarized image obtained using a threshold with Otsu’s

maximum cross deviation scheme, allowing counting of the microbubbles.
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Fig. 4. Relationship between the diameter of the injected bubble d 1 and diameter

of the fragmented bubble d 2 in 100% water at a throat flow velocity of u th = 11.5 

m/s ( Q = 2.10 l/min), showing positive correlation. 

Fig. 5. Relationship between the diameter of the injected bubble and the diameter

of the fragmented bubble in 30% glycerol aqueous solution, which has a viscos- 

ity 2.5 times that of water, measured at a throat flow velocity of u th = 11.5 m/s 

( Q = 2.10 l/min). 
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.2. Method of image analysis 

Figure 2 presents a time sequence of bubble fragmentation in 

00% water. The liquid flow rate is Q = 1.5 l/min and the liquid

elocity at the throat is u th = 8 m/s in this case. A bubble hav-

ng an initial diameter of d 1 = 0.6 mm fragmented after passing 

hrough the throat. The bubble split into several pieces at t = 0.6 

s and became 100 microbubbles at t = 1.2 ms. We counted the 

umber of microbubbles through image processing. The image in 

ig. 3 (a) was converted to that in Fig. 3 (b) by subtracting the back-

round and thresholding the brightness. The maximum cross de- 

iation scheme ( Otsu, 1979 ) was applied in thresholding the im- 

ges. This allowed for the maximum number of microbubbles to be 

aptured accurately. Whereas the individual shapes of microbub- 

les could not be identified due to their small size ( < 10 mm), the

umber of microbubbles could be counted. It is noted that the ra- 

ial position of microbubbles in the image shifts outward owing 

o the refraction of light at the glass–water interface. Therefore, 

icrobubbles flowing close to the inner wall were not counted; 

owever, these were a small percentage (less than 5%) of the total 

ount. An error of 5% can be regarded as a minor effect because 

ragmentation occurs in an exponential manner. We also measured 

he bubble velocity using a PTV algorithm. In PTV, a two-frame 

earest neighbor search was conducted for a pair of consecutive 

mages. The maximum measurable range of the velocity was 0 to 

5 m/s with a velocity resolution of 0.05 m/s. 

In this experiment, the period of the initial bubble injection 

t the inlet of the Venturi tube was controlled to be sufficiently 

onger than the time required for the bubble to pass through the 

ube. This avoided the mixing of microbubbles generated by two 

nitial bubbles. 

. Experimental Results and Discussion

.1. Performance of bubble fragmentation 

We collected data of the performance of bubble fragmentation 

y injecting bubbles having various initial diameters, d 1 . Figure 4 

hows the case for pure water while Fig. 5 shows that for 30% glyc- 

rol aqueous solution. Each plot shows the relation between d 1 and 

he average diameter of fragmented bubbles d 2 . The initial diame- 

er d 1 was measured by image processing for individual bubbles 

ntering the inlet plane of the tube. To obtain d 2 , we used a rela-

ionship between d 2 and the fragmentation number N , which gives 

he arithmetic average diameter of the bubbles after fragmenta- 
ion: 

1 

6 

πd 1 
3 = N · 1 

6 

πd 2 
3 
, → d 2 = N 

−1 / 3 d 1 . (3-1) 

Both for the water and for the glycerol aqueous solution, the 

verage size of fragmented bubbles was in the range of 50 mm to 

00 mm. The size d 2 of fragmented bubbles decreased with a de- 

reasing size d 1 of the initial bubble. For the glycerol aqueous so- 

ution, no significant change is observed in the plot, inferring that 

iscosity does not affect fragmentation in the range of viscosities 

nvestigated here. It is interesting that the sizes of fragmented bub- 

les did not exceed 200 mm in both cases. 



Fig. 6. Fragmentation number versus Weber number defined by Eq. (3-2) in the

case of pure water. The curve is fitted adopting Eq. (3-3) and the least-squares ap- 

proach.

Fig. 7. Fragmentation number versus Weber number defined by Eq. (3-2) in the

case of the 30%-glycerol aqueous solution. The thin curve is a function fitted using

Eq. (3-3) while the thick curve is a secondary fit drawn manually to highlight a

concentrated band in the plot.
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Figures 6 and 7 plot the fragmentation number N as a function 

f the Weber number for pure water and the 30%-glycerol aqueous 

olution, respectively. The Weber number is defined by 

 e = 

ρu th 
2 d 1

σ
, (3-2) 

here r and σ are respectively the density of the liquid and the 

urface tension. The fragmentation number increases with the We- 

er number for both liquids. The maximum fragmentation num- 

er was around 350 at We > 20 0 0. The thin curve on each graph

hows the fitting of a function derived adopting the least-squares 
pproach, which collapses in both liquids to be 

 = Int 
[
exp 

(
0 . 22 W e 0 . 42 

)]
, 1 ≤ W e < 2500 . (3-3) 

The exponential function of the powered Weber number infers 

ow effectively bubble fragmentation occurs in the subsonic Ven- 

uri tube. From this function, the first emergence of fragmentation 

i.e., N > 1) is estimated as 

xp 

(
0 . 22 W e 0 . 42 

)
= 2 , → We = exp 

[
1 

0 . 42 

log 

(
log N 

0 . 22 

)]
= 15 = W e c . (3-4) 

This critical Weber number between 10 < We c < 20 corre- 

ponds well to data reported in many other studies on bubble frag- 

entation in various flow geometries. The thick curve in Fig. 7 in- 

icates a second fitted function that was manually found to pass 

hrough a concentrated band in the plot. This curve has a frag- 

entation number higher than that for Eq. (3-3) . This is attributed 

o the viscous effect which rather promotes bubble fragmentation 

n a certain range of the Weber number. 

.2. Fragmentation energy efficiency 

Theoretically, the energy �e required to divide a single spheri- 

al bubble into N small spherical bubbles is simply expressed as 

e = N p 2 V 2 − p 1 V 1 = N 

2 σ

d 2 / 2 

(
1 

6 

πd 2
3
)

− 2 σ

d 1 / 2

(
1 

6 

πd 1
3
)

= 

2

3 

πσ
(
N d 2 

2 − d 1 
2 
)
, (3-5) 

here p is the internal pressure of bubbles due to surface tension 

while V is the volume of a single bubble. As expressed on the 

ar right side of the equation, �e is a function of the squared bub- 

le diameter, d 2 . Because the total mass inside the gas bubble is 

onserved during fragmentation, Eq. (3–5) can be rewritten for an 

ncompressible state as 

e = 

2

3 

πσd 1
2 
(
N 

1/3 − 1 

)
, ∵ 

1 

6 

πd 1 
3 = N 

1 

6 

πd 2 
3 
. (3-6) 

The energy required to fragment a single bubble having an ini- 

ial diameter of d 1 is thus a function of the cubic root of the frag-

entation number. This energy is supplied by liquid flow through 

he bubble’s motion relative to the surrounding liquid. To evaluate 

he energy efficiency, we define 

= 

�e

E 
, (3-7) 

here E is the energy consumed in driving the single bubble in- 

ide the Venturi tube. Thus, η is the ratio of energy conversion 

o the interfacial energy acquired by the bubble fragmentation. In- 

ide a symmetric Venturi tube (i.e., a tube having the same cross 

ectional areas for inlet and outlet sections), the consumed energy 

 is estimated only using the viscous energy dissipation obeying 

arcy’s law as 

 = V 1 · �p, �p = 

∫ L

0

λ
1 

D (x ) 
· 1 

2
ρu l 

2 (x ) · dx , (3-8) 

here V 1 is the bubble volume before fragmentation, �p is pres- 

ure loss inside the Venturi tube (energy dissipation per volume), 

nd u l ( x ) is the liquid velocity profile as a function of position x .

ere, x = 0 is defined at the center of the throat part (see Fig. 1 ).

 ( x ) is the local diameter of the Venturi tube and u ( x ) is the cor-

esponding local liquid velocity. λ is the friction factor of the tube, 

aking the value around 0.03. The equation of continuity for the 

iquid phase is 

 = 

1 

πD 

2 (x ) u l (x ) = 

1 

πD th 
2 u th = const. (3-9) 
4 4 



Fig. 8. Relationship between the consumed energy estimated using Eq. (3-10) and

the supplied surface energy due to fragmentation measured using Eq. (3-6). A neg- 

ligible difference in plots between the water and glycerol aqueous solution is con- 

firmed.

Fig. 9. Bubble fragmentation energy efficiency h defined by Eq. (3-7) having a de- 

creasing trend with an increasing Weber number, showing no significant effect of

the viscosity of the liquid. The large deviation in h observed for We < 100 originates

from the small integer-number dependence of the fragmentation number.
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Equation (3-8) is therefore rewritten as 

 = 

8 

π2 
λρV 1 · Q 

2 

∫ L

0

1 

D 

5 (x ) 
· dx . (3-10) 

Figure 8 plots the relation between the interfacial energy sup- 

ly D e and consumed energy E for injected bubbles of various size. 

he general trend is simply an increase in D e with E . There is no

ppreciable difference between the pure water and 30%-glycerol 

queous solution. The corresponding energy efficiency η is plot- 

ed as a function of the Weber number in Fig. 9 . The measured η
s of the order of several tens of percent, which means that half 

he energy consumed in pumping the bubble is used in breaking 
p the bubble. Sometimes, η takes a value larger than 80% at the 

ower limit of the Weber number; i.e., We ~ We c = 15. As the We 

umber increases, h gradually decreases and converges to around 

= 20%. This dependency on the Weber number is explained by 

ubstituting Eqs. (3-6) and (3-10) into Eq. (3-7) , yielding 

= 

π2 σ

2 λρd 1 · Q 

2 
∫ L

0
1

D 5 (x )
· dx

(
N 

1 

/ 3 − 1 

)
. (3-11) 

Further rewriting with the expression for the Weber number in 

q. (3-2) yields 

= 

8 D th 

λ
∫ L 

0 [ D th /D (x ) ] 
5 
dx

· N
1 

/ 3 − 1 

W e 
. (3-12) 

The energy efficiency thus decreases in inverse proportion to 

he Weber number. This trend agrees with that of the measure- 

ent data. At a low Weber number of We < 100, the data of η
catter largely. This is because the regime corresponds to N < 10 

n Eq. (3-3), in which the integer-number dependence of a single 

igit sways the efficiency accidentally. However, the average value 

as around η = 50% in the high Weber number regime. 

.3. Bubble translational motion 

How does a bubble acquire interfacial energy in the Venturi 

ube? The question can be solved by looking at the motion of bub- 

les. We measured the motion of a bubble and obtained the spa- 

ial evolution of the bubble velocity as shown in Fig. 10 (a) . This

s the case of a bubble with d 1 = 1.0 mm in water, fragmented

t u th = 11.1 m/s. The orange curve indicates the liquid flow ve- 

ocity u ( x ) in the tube, calculated using the equation of continuity, 

q. (3-9). The bubble had a velocity higher than that of the liquid 

ow in the converging section at x < 0. This was because of the 

egative pressure gradient of liquid according to Bernoulli’s law, 

hich accelerates the bubble forward faster than the liquid flow. 

mmediately after the throat part, in contrast, the bubble rapidly 

ecelerated to a low velocity and was much slower than the liquid 

ow there. The deceleration was also due to the pressure gradient 

hat became positive in the diverging part. Therefore, the slip of 

he bubble from the liquid flow saw sharp switching between con- 

erging and diverging parts ( Fig. 10 (b) ). The local maximum slip 

elocity was faster than 5 m/s, which is high for such a small bub- 

le with d 1 = 1 mm. This is understood as a major mechanism 

ausing fragmentation. 

Figure 11 (a) plots the spatial evolution of a bubble’s accelera- 

ion obtained by differentiating the measured velocity. The magni- 

ude of the acceleration of the bubble was twice that of the liquid. 

s known from the inviscid theory of a bubble’s acceleration (e.g., 

an Wijngaarden, 1972 ) 

d u b 

dt 
= 

1 + β

β
· d u l

dt
≈ 1 + β

β
ul

d u l 

dx 
, (3-13) 

wice the liquid acceleration means the added mass coefficient of 

he bubble is β = 1, which is greater than that of a spherical bub- 

le at β = 1/2. This is attributed to the bubble’s expansion in the 

adial direction of the Venturi tube. Instantaneously, the accelera- 

ion is of the order of 50,0 0 0 m/s 2 ; i.e., 50 0 0 times the accelera-

ion due to gravity. Moreover, the bubble acceleration has two neg- 

tive peaks, which are near the inlet and outlet of the throat part. 

his infers a shaking action of bubbles in the streamwise direction 

hat activates the shape deformation. 

Figure 11 (b) shows the spatial evolution of force components 

cting on the bubbles in the streamwise direction. In this compu- 

ation, the added inertia force F ( Michaelides, 1997 ) is obtained 
A 



Fig. 10. Kinematics of bubbles measured by bubble tracking in consecutive images for u th = 11.1 m/s and d 1 = 1.0 mm: (a) spatial evolution of the bubble velocity (blue 

dots) and liquid flow velocity (orange curve) estimated using Eq. (3-9) and (b) slip velocity of the bubble from the liquid flow velocity displaying a sharp reversal.
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rom the measured velocity as 

 A = βρV 

[
d u b (x ) 

dt 
− D u l (x )

Dt

]
= βρV 

[
d u b (x ) 

dt 
− u l (x )

d u l (x ) 

dx 

]
.

(3-14) 

The pressure gradient force F P is obtained via Bernoulli’s law as 

 P = V 

dp(x ) 

dx 
, p(x ) = p 0 − 1 

2 

ρu l 
2 (x ) . (3-15) 

Thus, 

 P = −ρV · u l (x ) 
d u l (x ) 

dx 
. (3-16) 

The drag force F D is estimated using the force balance equation 

s 

 A + F P + F D = 0 , F D = −( F A + F P ) . (3-17) 

The magnitudes of the three force components are of the same 

rder, approximately 1 mN. The pressure gradient force and drag 

orce strongly oscillated as a pair of positive and negative pulses, 

ostly in directions opposite to each other. During these oscilla- 

ions, the added inertia force fluctuated in two cycles of the pair. 
onsidering these fluctuations of forces accompanying changes in 

igns, the excitation of bubble deformation and resultant fragmen- 

ation are explained next. 

. Theoretical interpretation of fragmentation

In this section, we explain experimental results based on the 

undamental theory of bubble dynamics. All possible governing 

actors are considered in seeking the dominant factor promoting 

ubble fragmentation. 

.1. Pressure gradient profile 

From Bernoulli’s theorem, the pressure profile inside the Ven- 

uri tube based on the inviscid assumption is estimated as 

p(x ) = p 0 − 1 

2 

ρu l 
2 (x ) , (4-1) 

here p 0 is the ambient pressure outside the Venturi tube. The 

iquid velocity is given by the tube diameter profile D ( x ) obtained

rom the equation of continuity as 

 l (x ) = Q

[ 
1 

4 

πD 

2 (x ) 
] −1

. (4-2) 



Fig. 11. Dynamics of a bubble obtained from the measured bubble velocity evolution for u th = 11.1 m/s and d 1 = 1.0 mm: (a) spatial evolution of the bubble’s Lagrangian 

acceleration compared with the convective acceleration of liquid flow and (b) the bubble’s force components obtained from the acceleration using Eqs. (3-14), (3-16), and

(3-17).
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The pressure gradient profile is therefore 

dp 

dx 
(x ) = −ρu l (x ) 

d u l (x ) 

dx 
= 

32 ρQ 

2

π2 D 

5 (x ) 
· dD (x )

dx
. (4-3) 

Equation (4-3) tells us that the local pressure gradient, which 

rives bubble motion in the liquid, is sharply magnified when us- 

ng a small diameter of the Venturi tube (according to the negative 

fth power of the diameter). 

.2. Translational velocity profile of a bubble 

The bubble velocity u b is the sum of the liquid velocity u l plus 

he slip velocity relative to the liquid u s : 

 b (x ) = u l (x ) + u s (x ) , u l (x ) = 

Q

A (x ) 
, (4-4)

here A ( x ) is the cross-sectional area of the tube at position x . In

he case of spherical bubbles, the terminal slip velocity (without 

cceleration) is estimated using the force balance between the lo- 

al pressure gradient and drag force, 

 

dp(x ) = −C d 
1 

ρ| u s (x ) | u s (x ) · 1 

πd 2 , V = 

1 

πd 3 , (4-5) 

dx 2 4 6 
here C d is the drag coefficient of the bubble, which is modeled 

sing either the following Reynolds number or Weber number, de- 

ned by the slip velocity, u s ( Magnaudet and Eames, 20 0 0 ): 

e s = 

| u s | d 
ν

, W e s = 

ρ| u s | 2 d
σ

. (4-6) 

According to measurement data of the slip velocity, Re s and We s 
re respectively within the ranges of 50 0 < Re s < 50 0 0 and 10 <

e s < 2500. This means that drag departs from the Reynolds num- 

er dependence regime and can be approximated by a constant 

alue around C d ~ 1 ( Bhaga and Weber, 1981 ). The combination of 

qs. (4-3) and (4-5) leads to 

 

u s (x ) | u s (x ) = − 4 d

3 C d ρ
· dp(x )

dx
= −128

3 C d 
· Q 

2 d

π2 D 

5 (x ) 
· dD (x )

dx
. (4-7) 

The sign of the slip velocity depends on the sign of dD/dx ; i.e., 

he position of the bubble. The slip velocity is thus given by 

 s ( x ) = + 

8 Q
πD 2 ( x )

√
2

3 C d
· d

D ( x )
·
∣∣ dD ( x ) 

dx

∣∣ for dD ( x ) 
dx

≤ 0 , 

u s ( x ) = − 8 Q
πD 2 ( x )

√
2

3 C d
· d

D ( x )
·
∣∣ dD ( x ) 

dx

∣∣ for dD ( x ) 
dx 

> 0 .

(4-8) 



Fig. 12. Theoretical bubble velocity profile inside the symmetric Venturi tube at u th = 11.5 m/s ( Q = 2.10 l/min) obtained using Eq. (4-9) for various sizes of bubble, 

confirming similarity with the measured bubble velocity shown in Fig. 10 (a).
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Using Eq. (4-4), the bubble’s absolute velocity is derived as 

 b (x ) = 4 Q 

πD 

2 (x ) 

[
1 ± 2 

√
2 

3 C d 
· d

D (x ) 
·
∣∣∣∣dD (x ) 

dx

∣∣∣∣
]

, (4-9) 

here the plus and minus signs in Eq. (4-9) correspond to the con- 

erging and diverging parts of the Venturi tube, respectively. 

Using the geometric parameters of the present Venturi tube, 

q. (4-9) is calculated to obtain the bubble velocity profile shown 

n Fig. 12 . A red curve indicates the liquid velocity profile. The 

ubble travels faster than the liquid flow in the converging part 

t dD ( x )/ dx < 0 and accelerates until entering the throat part be-

ause of a gradual decrease in D ( x ). In contrast, the bubble pass-

ng through the throat part sharply slows down and experiences 

 large negative slip from the liquid flow; i.e., the bubble slips 

ack and resists transportation by the liquid flow. The estimation 

ata for d 1 = 1.0 mm agree well with the measurement data in 

ig. 10 (a) . The trend is more remarkable for a larger bubble. The 

ubble with a diameter of d 1 > 1.5 mm has zero or negative ve-

ocity in the diverging part. This means that such a bubble will be 

rapped there and does not pass through the tube. Soubiran and 

herwood (20 0 0) theoretically estimated a possibility of bubble’s 

scillation within the region of negative velocity if bubbles keep 

heir size. In reality, the bubble in this region are fragmented and 

onveyed downstream obeying the different curves of smaller di- 

meter in the diagram. This two-phase flow dynamics allow the 

enturi tube to act like a high-pass filter for the bubble size. This 

unction is regarded an important mechanism for converting large 

ubbles to microbubbles. 

.3. Bubble slip characteristics 

The maximum slip-back velocity of a bubble in the diverging 

art is calculated using Eq. (4-8) as depicted in Fig. 13 . The slip-

ack velocity increases with the throat flow velocity u th . The trend 

s amplified by enlarging the initial bubble size d . This explains 
1 
hy a large bubble can be fragmented easily. Figure 14 presents 

he slip storage distance, which is defined by 

 x = 

∫ ∞ 

0
[ u l (x ) − u b (x ) ] · dt =

∫ L

0

[
u l (x )

u b (x )
− 1

]
· dx,

∵ dx = u b (x ) · dt. (4-10) 

The distance refers to the delay in the bubble outflow relative 

o the liquid flow with a unit of distance. The distance S x increases 

ith the throat flow velocity u th and the bubble diameter d 1 . For 

 small bubble having a diameter of d 1 < 0.2 mm, the distance is 

horter than the length of the diverging part; i.e., S x < L. In con-

rast, a large bubble corresponds to a distance longer than L as the 

hroat flow velocity increases. 

Figure 15 depicts the bubble’s relative residual time R t , which 

s defined by 

 t = 

T b 
T l 

= 

∫ L

0

1 

u b (x )
dx / 

∫ L

0

1 

u l (x )
dx , (4-11) 

here T b is the residual time that the bubble remains within the 

iverging part at x < L while T l is that for liquid. The data show

hat a large bubble has a large ratio, implying that such a bubble 

omes to the outlet of the Venturi tube late in comparison with 

he liquid flow. At d 1 > 2 mm, the bubble velocity is zero such 

hat there is local bubble trapping, and the residual time increases 

o infinity. Thus, the large bubble, which maintains its size, does 

ot exit the Venturi tube. 

The critical bubble diameter for falling in the trapping condi- 

ion, d c , is theoretically derived from Eq. (4-9) by setting u b = 0

s 

8 

3 C d 
· d

D ( x ) 
· dD ( x )

dx
= 1 , → d = d c ≡ 3 C d

8 

· D ( x )

(
dD ( x ) 

dx 

)−1

.

(4-12) 

This equation shows that the diameter of the trapped bubble is 

ndependent of the flow speed u and flow rate Q , as long as C 
th d 



Fig. 13. Maximum slip-back velocity of bubbles in the diverging part as the throat flow velocity increases, calculated using Eq. (4-8) for dD/dx > 0. Greater slip-back velocities

occur for larger injected bubbles.

Fig. 14. Slip storage distance of bubbles calculated with Eq. (4-10) for various sizes of bubble. Large bubbles have a longer slip storage as the throat flow velocity increases.
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a d 
s unmodified. The diameter is determined by the geometric pro- 

le, D ( x ). The local tube diameter at which bubbles are trapped is

stimated from Eq. (4-12) as 

 (x ) = 

8

3 C d 
· dD (x )

dx 
d. (4-13) 

The present Venturi tube has the diameter profile of 

 ( x ) = D th + 

x − x 0 
L 

( D o − D th ) , x 0 ≤ x ≤ L, (4-14) 

here x 0 = 1 mm as the rear edge position of the throat part, 

 o is the outlet diameter and L is the streamwise length of the 

iverging part. Substituting this equation into Eq. (4-13) gives the 

rapping position x t as 

 = x t = x 0 + 

L 

D 0 / D th − 1 

[
8 

3 C d 
· d

L

(
D o 

D th 

− 1

)
− 1

]
. (4-15) 
This equation shows that a larger bubble is trapped at a more 

ownstream position. If the position is outside the diverging part 

i.e., x t > L ), the tube does not work as a bubble size filter. To sat-

sfy x t < L , we require the initial bubble size to meet the condition

hat 

d 

L 
<

3 C d 
8 

(
1 − x 0

L 
+ 

D th / D o

1 − D th / D o 

)
, (4-16) 

here the term in the parenthesis is approximately unity, there- 

ore, 

 < 

3 C d 
8 

L. (4-17) 

Namely, the initial bubble diameter should be small enough to 

ealize bubble trapping inside the diverging part. In the regime of 

 spherical cap bubble, C ~1/4 thus d < 0.1 L should be satisfied. 



Fig. 15. A bubble’s residual time inside the diverging part of the tube relative to the liquid residual time, calculated with Eq. (4-11), demonstrating long-term interaction

between the two phases as the initial bubble diameter d 1 increases.
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We next evaluate the supply of energy from the liquid to a sin- 

le bubble as the bubble slowly migrates in the diverging part. The 

nergy is estimated from 

e = F · [ u l (x ) − u b (x ) ] dt = F · [ u l (x ) − u b (x ) ] 
1 

u b (x )
dx, (4-18) 

here F is the force acting on the bubble due to the pressure gra-

ient, 

 = V 

dp 

dx 
(x ) = −ρV · u l (x ) 

d u l (x ) 

dx 
. (4-19) 

Therefore, the total energy transferred to the bubble in the di- 

erging part at 0 < x < L is 

 b = 

∫ L

0

F · [ u l (x ) − u b (x ) ] 
1 

u b (x )
dx 

= 

1 

6 

πd 3 ρ

∫ L

0

u l (x )
d u l (x ) 

dx 

[
1 − u l (x )

u b (x )

]
· dx. (4-20) 

Using Eq. (4-4) and Eq. (4-9), the numerical solution for Eq. (4- 

0) is obtained as shown in Fig. 16 . The results indicate that the

nergy increases exponentially with the bubble diameter (where

he ordinate is a logarithmic scale). The energy also increases with

he throat flow velocity u th . A large bubble thus receives much en- 

rgy during its advection, which promotes fragmentation. A com- 

arison with the measurement data in Fig. 8 reveals that the en- 

rgy acquired by fragmentation is of the order of a few microjoules

or a single bubble with d 1 = 1.0 mm. This energy level matches

he present estimation.

.4. Fragmentation triggered by oscillation of a bubble’s shape 

Natural frequency of shape oscillation of a bubble with a diam- 

ter d 1 in quiescent liquid is described by 

f n = 

1

2 π

√
( n − 1 ) ( n + 1 ) ( n + 2 ) 

8 σ

ρd 1
3
, → f 2 = 

2

π

√
6 σ

ρd 1
3
,

(4-21) 

here n is the mode of shape oscillation; i.e., n = 2 refers to el-

ipsoidal deformation and n = 3 refers to triangular deformation 

 Feng and Leal, 1977 ). In the diverging part of the Venturi tube, the
iquid flow experiences Lagrangian pressure fluctuation of a half 

avelength at 0 < x < L . The liquid pressure p thus fluctuates at a

haracteristic frequency of 

f l ≈
1

2 L 
· 1

L

∫ L

0

u l (x ) dx ≈ 5

64 

· u th 

L 
, (4-22) 

here Eq. (4-2) and Eq. (4-14) are applied to the spatial integration 

f liquid velocity. The acceleration of the bubble depends on the 

dded mass coefficient β , and the bubble experiences fluctuation 

f the liquid pressure at a frequency of 

f b = 

(
1 + 

1

β

)
f l = 

5

64 

(
1 + 

1

β

)
· u th 

L 
. (4-23) 

The matching condition f b = f n in the lowest mode of shape 

scillation (i.e., ellipsoidal mode at n = 2) is described by 

5 

64 

(
1 + 

1

β

)
· u th

L
= 

1

π

√
6 σ

ρd 1
3

→ u th =
(

1 + 

1

β

)−1 64 L 

5 π

√
6 σ

ρd 1
3
.

(4-24) 

For the present configuration of the Venturi tube, the throat 

ow speed at this resonance is calculated as u th = 3.6 m/s for 

 1 = 1 mm and u th = 10.1 m/s for d 1 = 0.5 mm. These speeds

re easily realized and overlap with the present experimental con- 

itions for subsonic bubble fragmentation. The flow speed in Eq. 

4-24) is rewritten using the Weber number as 

 e ·
(

d 1 
L 

)2

= 6 

(
1 + 

1

β

)−2 ( 64 

5 π

)2

∼= 

11 . (4-25) 

As an example, the combination of a bubble size of d 1 /L = 0.1

nd We = 1100 excites ellipsoidal deformation. Such matching oc- 

urs for a single value of the Weber number for a given bubble 

ize. This explains why scattering was observed for the fragmenta- 

ion number and energy efficiency Fig. 9 ). It is worth noting that 

he shape oscillation mode of n > 2 has a high frequency (Eq. (4- 

21) ), and the matching flow speed departs the subsonic condition

f bubbly flow, being faster than the speed of sound. That is to say,

he initial trigger of bubble fragmentation in the subsonic Venturi

ube relies on ellipsoidal shape oscillation.



Fig. 16. Supply of energy from the liquid to a single bubble estimated using Eq. (4-20). The energy increases with the throat flow velocity u th and the initial bubble diameter

d 1 .
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.5. Effect of the bubble’s volumetric motion 

Even in nearly incompressible flow at Ma < 0.3, bubbles have 

 resonance frequency in terms of volume oscillation, which might 

rigger fragmentation. The Rayleigh–Plesset equation is {
r b 

d 2 r b 
d t 2 

+ 3

2

(
d r b 
dt 

)2
}

= p b −
2 σ

r b 
− 4 μ

r b

(
d r b 
dt 

)

−
{ 

p − 1 

4 

ρ| u b − u l | 2
}
, (4-26) 

here r b is the bubble radius; i.e., r b = d 1 /2. p b is the gas pressure

nside the bubble. For a small fluctuation in bubble size around 

he diameter d 1 , the resonance frequency of volumetric oscillation 

 Plesset and Prosperetti, 1977 ) is derived as 

f v = 

1

πd 1 

√
1 

ρ

(
3 p + 

8 σ

d 1 

)
. (4-27) 

The frequency takes the value f v = 3 kHz in the case of a bubble

ith d 1 = 1 mm at atmospheric pressure, p = 10 5 Pa. Inside the

enturi tube, the liquid pressure has a streamwise profile (Eq. (4- 

)), and it takes its lowest value in the throat part as 

p th = p 0 − 1 

2 

ρu th 
2 . (4-28) 

Substituting p th into p in Eq. (4-27) gives 

f v = 

1

πd 1 

√
1 

ρ

[
3 

(
p 0 − 1

2 

ρu th 
2 

)
+ 8 σ

d 1

]
. (4-29) 

The matching condition of this frequency f v with the pressure 

uctuation frequency f b (Eq. (4-23)) is described by 

5 

64 

(
1 + 

1

β

)
· u th

L
= 

1

πd 1 

√
1 

ρ

[
3 

(
p 0 − 1

2 

ρu th 
2 

)
+ 8 σ

d 1

]
. (4-30) 

The solution to the equation for the throat flow velocity is ob- 

ained as 

 th = 

√√√√ 2
ρ

(
p 0 + 

8 σ
3 d 1 

)
1 + 

2 
3 

[
5

64 

(
1 + 

1 
β

)]2 (πd 1
L

)2
. (4-31) 
In operation with the atmospheric pressure ambience, i.e., p 0 
> σ / d 1 and d/L << 1, Eq. (4- 31 ) is approximated as

 th = 

√
2 p 0 
ρ

, (4-32) 

nd u th becomes independent of the bubble size, d 1 , in terms of 

he resonance condition. This is because the bubble size depen- 

ency is cancelled out by pressure lowering inside the throat part. 

quation (4- 32 ) estimates the throat flow velocity at u th = 14 m/s

or any case as the ambient pressure is p 0 = 10 5 . This value is

igher than the present maximum flow speed, and the effect of 

he volumetric oscillation is thus regarded as a negligible factor in 

ubsonic bubble fragmentation. 

.6. Effect of velocity gradient in liquid phase 

The velocity gradient tensor field of liquid phase inside 

he Venturi tube also influences on bubble fragmentation 

 Sherwood, 20 0 0 ). Two-dimensional components are generally de- 

cribed as 

 

D ] = 

[
∂u
∂x

∂u 
∂y

∂v 
∂x

∂v 
∂y

]
= 

1

2 

[
2 ε x γxy 

γxy 2 ε y 

]
+ 1

2

[
0 −ω z

ω z 0

]
, (4-33) 

here ε, γ , and ω are stretch, shear, and rotation rates. Inside the 

iverging part of the Venturi tube, magnitude of the stretching rate 

s estimated as 

 = 

√
ε x 2 + ε y 2 ≈

√
2 

U o 

L 

[
1 −

(
D th 

D o 

)2 
]

≈
√

2 U o 

L 
, (4-34) 

here subscript o stands for the inlet plane of the tube. Magni- 

udes of shear rate and rotation rate are scaled as 

= 

√
2 γxr 

2 ≈
√

U o + U th 

D o + D th 

≈
√

U th 

D o 
, (4-35) 

 = 

√
2 ω z 

2 ≈
√

U th 

D o 
. (4-36) 

Substituting our experimental conditions into these three for- 

ulae provides ε = 40 s −1 and γ = ω = 200 s −1 . In contrast, bub- 

le’s slip back due to high positive pressure gradient takes the bub- 

le’s relative velocity to the liquid phase over 5 m/s as shown in 



Fig. 17. Throat flow velocities for three types of bubble motion in the present Venturi tube. The vertical black line is the criterion of a bubble’s slip-back estimated using

Eq. (4- 41 ), the red curve shows resonance with ellipsoidal shape motion given by Eq. (4- 42 ), and the horizontal blue line is the border of excitation in volumetric motion

estimated using Eq. (4- 32 ).
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ig. 10 . This effect can be represented by bubble stretching rate 

hich is given by streamwise velocity gradient in terms of bub- 

le’s relative velocity to liquid phase as 

 b = 

∣∣∣∣�( u b − u l ) 

�x 

∣∣∣∣. (4-37)

The value of εb is approximated to be 6/0.002 = 3000 s −1 ,

hich is much greater than ε, γ , and ω of liquid phase. There- 

ore, we can conclude that bubble’s fragmentation in the Venturi 

ube is dominated by bubble’s rapid translational motion driven by 

ressure gradient. Contribution of shear in the base flow is not a 

rimary factor to govern the microbubble generation. 

.7. Fragmentation associated to energy dissipation rate 

Martinez-Bazan et al. (2010) reported a scaling for the limit of 

ubble fragmentation caused by turbulence in the liquid phase. 

hey indicated a critical Weber number which is a function of tur- 

ulent dissipation rate εt as 

 e t = 

ρε t 2 / 3 d 5 / 3

σ
, (4-38) 

here d stands for bubble diameter survival in turbulence. In the 

resent Venturi tube, bubble fragmentation occurred without sig- 

ificant help of stress field of liquid phase. Hence, the phenomenon 

s scaled by the following Weber number defined by the slip veloc- 

ty, 

 e s = 

ρ( u b − u l ) 
2 d

σ
, (4-39) 

here u b and u l are for the velocity of bubble and liquid phases, 

espectively. If Eq. (4- 38 ) can stand extensively to estimate the 

ubble fragmentation limit, We t = We s can be assumed to obtain 

ρε t 2 / 3 d 5 / 3 = 

ρ( u b − u l ) 
2 d 

, → ε t = 

( u b − u l ) 
3

. (4-40) 

σ σ d 
Now εt corresponds to energy dissipation rate of bubble, which 

s proportional to the relative velocity cubed. According to the 

resent measured data, the order of εt is estimated to be 5 3 

100 × 10 −6 ) −1 ~10 6 m 

2 /s 3 . Substituting this value to Eq. (4- 38 )

eads to We t = We s = 30. The value is of the same order of We c 
efined in Eq. (3-4). 

.8. Summary of bubble fragmentation 

To find the trigger of bubble fragmentation in the Venturi tube, 

hree types of bubble dynamics were discussed above: (1) the bub- 

le’s rapid slip-back in translational motion, (2) the bubble’s shape 

scillation, and (3) the bubble’s volumetric oscillation. The criti- 

al condition for exciting these bubble motions was derived as a 

utual relation between the throat flow velocity and the bubble 

iameter as below. 

1) Translational motion (slip-back condition):

 1 < 

3 C d 
8 π

L ≈ 0 . 1 × L. (4-41) 

2) Shape motion (ellipsoidal shape oscillation condition):

 th = 

(
1 + 

1

β

)−1 64 L 

5 π

√
6 σ

ρd 1
3

∝ d 1 
−3 / 2 

. (4-42) 

3) Volumetric motion:

 th = 

√
2 p 0 
ρ

∝ d 1 
0 = const.. (4-43) 

Figure 17 presents the relationship between the above three 

ypes of throat flow velocity and the initial bubble diameter. Equa- 

ion (4- 41 ) gives d < 1.73 mm for the present geometry of the Ven-

uri tube, which is indicated by a black vertical line. On the left 

ide of the line, there is bubble slip-back regardless of the throat 

ow velocity. A bubble in this case receives much energy from liq- 

id flow for a long period in the diverging part. Only the frag- 

ented bubbles migrate downstream, such that the Venturi tube 
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orks as a bubble size filter. In the present subsonic experimental 

ange at u th < 12 m/s, the excitation of shape motion estimated 

sing Eq. (4- 42)  overlaps as indicated by the red curve in the dia-

ram. This enhances rapid bubble distortion and bubble fragmen- 

ation for bubbles larger than 0.8 mm so that the fragmentation 

umber exceeds 100 at We > 1500 (see Figs. 6 and 7 ). However,

t matches the resonance frequency in a discrete manner so that 

cattering of the resultant bubble fragmentation number becomes 

emarkable. In contrast, the excitation of volumetric oscillation be- 

ins at a throat flow velocity of u th > 14 m/s. This factor is con-

luded to be irrelevant to bubble fragmentation in subsonic opera- 

ion. 

. Conclusions

Bubble fragmentation in a Venturi-type microbubble generator 

as investigated experimentally and theoretically. We focused on 

he performance and mechanism of bubble fragmentation realized 

nder subsonic flow conditions; i.e., we investigated how a sin- 

le bubble breaks down to microbubbles without a pressure shock 

ave. The number of microbubbles ranged from 20 to 400, de- 

ending on the initial bubble size. This relation collapsed to a sin- 

le formula as a function of the Weber number; i.e., an exponen- 

ial function of the powered Weber number (Eq. (3-3)). The energy 

fficiency of fragmentation ranged from 30 to 50 percent. Bub- 

le tracking measurements made from high-speed images revealed 

apid bubble deceleration in the diverging part of the tube. This 

otion resulted in a high slip-back velocity relative to the liquid 

ow; i.e., a slip velocity exceeding 5 m/s even for bubbles smaller 

han 1 mm in water. During the deceleration, the three force com- 

onents of the bubble (i.e., the drag, pressure gradient force, and 

dded inertia force) had fluctuation amplitudes of the same or- 

er. Theoretical analysis supported these measurement results and 

ed to the conclusion that slip-back promoted fragmentation most 

ominantly. It also explained that a bubble larger than the crit- 

cal size given by Eq. (4- 41)  cannot migrate downstream before

ragmentation. Such dynamics of the bubbles mean that the sub- 

onic Venturi tube primarily functions as a microbubble generator. 

urthermore, resonance with natural shape oscillation of a bubble 

aised the fragmentation number to N > 100 at We > 10 0 0, but

ith a scattering due to resonance occurring in a discrete manner. 

eclaration of Competing Interest 

The authors whose name are listed below certify that they have 

O affiliations with or involvement in any organization or entity 

ith any financial interest (such as honoraria; educational grants; 

articipation in speakers’ bureaus; membership, employment, con- 

ultancies, stock ownership, or other equity interest; and expert 

estimony or patent-licensing arrangements), or non-financial in- 

erest (such as personal or professional relationships, affiliations, 

nowledge of beliefs) in the subject matter or materials discussed 

n this manuscript. 

RediT authorship contribution statement 

Yuichi Murai: Conceptualization, Methodology, Writing – origi- 

al draft. Yuji Tasaka: Writing – original draft, Writing – review  & 

diting. Yoshihiko Oishi: Visualization, Writing – review  & editing. 

atricia Ern: Writing – review  & editing. 

cknowledgment 

This work is supported by JSPS KAKENHI (Basic Research A: 

7H01245) and Tokyo Electric Power Co. Ltd (TEPCO). The authors 
hank Mr. Koji Yoshida and Mr. Toshiyuki Sampo, Hokkaido Univer- 

ity for their technical support and Glenn Pennycook, MSc, from 

danz Group for editing a draft of this manuscript. 

eferences 

garwal, A. , Jern Ng, W. , Liu, Y. , 2011. Principle and applications of microbubble and

nanobubble technology for water treatment. Chemosphere 84, 1175–1180 .
haga, D. , Weber, M.E. , 1981. Bubbles in viscous liquids: shapes, wakes and veloci-

ties. Journal of Fluid Mechanics 105, 61–85 .
algaroto, S. , Wilberg, K , Q., Rubio, J. , 2014. On the nanobubbles interfacial proper-

ties and future applications in floatation. Mineral Engineering 60, 33–40 .

heng, W. , Murai, Y. , Sasaki, T. , Yamamoto, F. , 2005. Bubble velocity measurement
with recursive cross correlation PIV technique. Flow Measurement and Instru- 

mentation 16, 35–46 .
eng, Z.C. , Leal, L.G. , 1997. Nonlinear bubble dynamics. Annual Rev. Fluid Mechanics

29, 201–243 .
ara, K , Suzuki, T. , Yamamoto, F. , 2011. Image analysis applied to study on friction-

al-drag reduction by electrolytic microbubbles in a turbulent channel flow. Exp.

Fluids 50, 715–727 .
uang, J. , Sun, L. , Mo, Z. , Liu, H. , Du, M. , Tang, J. , Bao, J. , 2019. A visualized study of

bubble breakup in small rectangular Venturi channels. Experimental and Com- 
putational Multiphase Flow 1, 177–185 .

uang, J. , Sun, L. , Du, M. , Liang, Z. , Mo, Z , Tang, J. , Xie, G. , 2020. An investigation on
the performance of a micro-scale Venturi bubble generator. Chemical Engineer- 

ing Journal 386, 120980 .

uroshima, R. , Otaka, T. , Kado, H. , 2014. The mechanism of micro-bubble generation
in a two dimensional Venturi tube. Transaction of the JSME 80 (2014) fe0318

(in Japanese) .
chikawa, K. , Maeda, S. , Yamanishi, Y. , 2018. Evaluation of invasiveness by break-

down phenomena of electrically induced bubbles for a needle-free injector.
Journal of Microelectromechanical Systems 27, 305–311 .

itagawa, A. , Murai, Y. , 2013. Natural convection heat transfer from a vertical heated
plate in water with microbubble injection. Chemical Engineering Science 99,

215–224 .

ee, C.H. , Choi, H. , Jerng, D.W. , Kim, D.E. , Wongwises, S. , Ahn, H.S. , 2019. Experimen-
tal investigation of microbubble generation in the venturi nozzle. International

Journal of Heat and Mass Transfer 136, 1127–1138 .
aeda, Y. , Hosokawa, S. , Baba, Y. , Tomiyama, A. , Ito, Y. , 2015. Generation mechanism

of micro-bubbles in a pressurized dissolution method. Exp. Thermal Fluid Sci.
60, 201–207 .

agnaudet, J. , Eames, I. , 20 0 0. The Motion of High-Reynolds-Number Bubbles in

Inhomogeneous Flows. Annu. Rev. Fluid Mech. 32, 659–708 .
artinez-Bazan, C , Rodriguez-Rodriguez, J. , Deane, G.B. , Montanes, J.L. , Lasheras, J.C. ,

2010. Considerations on bubble fragmentation models. Journal of Fluid Mechan- 
ics 661, 159–177 .

athai, V. , Calzavarini, E. , Brons, J. , Sun, C. , Lohse, D. , 2016. Microbubbles and mi-
croparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117,

024501 .

ichaelides, E.E. , 1997. Review- the transient equation of motion for particles, bub- 
bles, and droplets. ASME J. Fluids Eng. 119, 233–247 .

urai, Y. , 2014. Frictional drag reduction by bubble injection. Exp. Fluids 55, 1773
Article No. .

tsu, N. , 1979. A threshold selection method from grey-level histograms. IEEE Trans- 
actions on Systems, Man and Cybernetics 9, 62–66 .

ark, H.J. , Saito, D. , Tasaka, Y. , Murai, Y. , 2019. Color-coded visualization of mi-

crobubble clouds interacting with eddies in a spatially developing turbulent
boundary layer. Experimental Thermal and Fluid Science 109, 109919 .

lesset, M.S. , Prosperetti, A. , 1977. Bubble dynamics and cavitation. Annual Rev. Fluid
Mechanics 9, 145–185 .

adatomi, M. , Kawahara, A. , Kano, K. , Ohtmo, A. , 2005. Performance of a new mi-
crobubble generator with a spherical body in a flowing water tube. Exp. Therm.

Fluid Sci. 29, 615–623 .

ilva, A.M. , Teixeira, J.C.F. , Teixeira, S.F.C.F. , 2009. Experiments in large scale Venturi
scrubber Part II. Droplet size. Chemical Engineering and Processing; Process In- 

tensification 48, 424–431 .
impson, D.H. , Chin, C.T. , Burns, P.N. , 1999. Pulse inversion Doppler: a new method

for detecting nonlinear echoes from microbubble contrast agents. IEEE Transac- 
tions on Ultrasonics Ferroelectrics and Frequency Control 46, 372–382 .

herwood, J.D. , 20 0 0. Potential flow around a deforming bubble in a Venturi. Inter-

national Journal of Multiphase Flow 26, 2005–2047 .
oubiran, J. , Sherwood, J.D. , 20 0 0. Bubble motion in a potential flow within a Ven-

turi. International Journal of Multiphase Flow 26, 1171–1796 .
parrow, E. , Abraham, J. , Minkowycz, W. , 2009. Flow separation in a diverging con-

ical duct: Effect of Reynolds number and divergence angle. Int J. Heat Mass
Transfer 52, 3079–3083 .

akeda, Y. , 2012. Ultrasonic Doppler velocity profiler for fluid flow. Springer Book .
erasaka, K. , Hirabayashi, A. , Nishino, T. , Fujioka, S. , Kobayashi, D. , 2011. Develop-

ment of microbubble aerator for waste water treatment using aerobic activated

sludge. Chemical Engineering Science 66, 3172–3179 .
hang, N.T. , Davis, M.R. , 1981. Pressure distribution in bubbly flow through venturis.

Int. J. Multiphase Flow 7, 191–210 .
esawa, S. , Kaneno, A. , Nomura, Y. , Abe, Y. , 2012. Study on bubble breakup behavior

in a Venturi tube. Multiphase Science and Technology 24 (3), 257–277 .



U  

v

Y  

Z

Z

sui, S. , Sasaki, H. , 1978. Zeta potential measurements of bubbles in aqueous sur-
factant solutions. Journal of Colloid and Interface Science 65, 36–45 .

an Wijngaaden, L. , 1972. One-dimensional flow of liquids containing small gas bub- 
bles. Annu. Rev. Fluid Mech. 4, 369–395 .

in, J. , Li, J. , Li, H , Liu, W. , Wang, D. , 2015. Experimental study on the bubble gener-
ation characteristics for a venturi type bubble generator. Int. J. Heat Mass Trans- 

fer 91, 218–224 .
hao, L. , Sun, L. , Mo, Z. , Tang, J. , Hu, L. , Bao, J. , 2018. An investigation on bubble
motion in liquid flowing through a rectangular Venturi channel. Exp. Thermal

Fluid Sci. 97, 48–58 .
hao, L. , Sun, L. , Mo, Z. , Du, M. , Huang, J. , Bao, J. , Tang, J. , Xie, G. , 2019. Effects of the

divergent angle on bubble transportation in a rectangular Venturi channel and
its performance in producing fine bubbles. Int. J. Multiphase Flow 114, 192–206 .




