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Couronnées par le prix Nobel 2014, les nouvelles méthodes de microscopie non 

invasives en super-résolution permettant de dépasser la limite de diffraction sont devenues ces 

dernières années un sujet en ébullition, attirant des chercheurs de la Chimie (nouvelles sondes), 

de la Physique (optique, traitement d’image) et de la Biologie (génie génétique). Les retombées 

de ces avancées en imagerie vont de la Biologie fondamentale à la Médecine. 

 

Mon travail de thèse s’inscrit dans un projet financé par l’Agence Nationale de la 

Recherche dénommé « BLINK » ayant pour but de mettre au point des nanoparticules 

luminescentes à clignotement contrôlé comme nouvelles sondes pour l’imagerie en super-

résolution. 

 

Outre la présentation de l’intérêt de méthodes dites stochastiques basées sur le 

clignotement de sources ponctuelles de lumière, la mise au point bibliographique dans le 

premier chapitre permettra de mettre en évidence l’intérêt et les contraintes d’un tel type 

d’imagerie. Nous verrons l’intérêt de s’orienter vers des traceurs, les nanoparticules 

« upconverting », pouvant fonctionner dans l’infrarouge. Après un bref rappel des principaux 

éléments de spectroscopie et des mécanismes mis en jeu dans ce phénomène fascinant 

permettant de produire des photons plus énergétiques (UV-visibles) que les photons incidents 

(proche infrarouge), seront exposées les contraintes liées à une application en imagerie 

biologique in cellulo, donc à terme dans un milieu aqueux. Notre choix ciblé sur les matrices 

de types NaREF4 sera également explicité. Animés par notre objectif de microscopie à l’échelle 

nanométrique, nous nous sommes particulièrement intéressés à obtenir des objets de très petites 

tailles compatibles avec les enjeux de la super-résolutions. L’objectif que je me suis fixé était 

d’arriver à synthétiser des objets de taille comparable aux Quantum Dots, les nanoparticules 

luminescentes de référence à ce jour. Cependant une telle réduction en taille en conservant les 

propriétés d’émission s’avère très audacieuse. En effet, ce phénomène attractif d’upconversion 

est en réalité peu efficace, principalement dû à des problèmes de perte d’énergie, en particulier 

par transfert avec la surface. De ce fait la réduction en taille accentue cet effet. Ces problèmes 

de management de l’énergie à l’intérieur de la particule seront aussi abordés, en présentant les 

stratégies générales permettant de limiter les pertes et d’augmenter l’efficacité du phénomène 

d’upconversion. 

 

Fort de cette description préalable, le chapitre 2 traitera des résultats obtenus pour la 

synthèse de ces objets. En apparence très facile pour des objets de taille moyenne 10-50 nm ou 
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micrométrique, la formation ces particuls s’avère bien plus délicate lorsqu’il s’agit de passer en 

dessous des 10 nm. En effet 2 polymorphes de type NaREF4 coexistent, la phase 

thermodynamique apparaissant en cours de synthèse étant la phase d’intérêt, tout le challenge 

est d’arriver à contrôler la transformation de phase cubique « α », cinétique, généralement de 

petite taille, vers la phase hexagonale thermodynamique « β », généralement de grande taille). 

Après un bref rappel mécanistique des problèmes de nucléation et croissance de nanoparticules 

gouvernées par un mécanisme de murissement d’Ostwald, nous verrons comment à partir d’un 

schéma général de co-précipitation thermique classique, inspiré de la chimie des oxydes de fer 

et des Quantum Dots, nous pouvons améliorer le procédé pour arriver à contrôler la séquence 

d’Ostwald. Dans ce chapitre seront discutés l’importance du mélange et du chauffage à haute 

température. L’accent sera particulièrement porté sur l’utilisation de four micro-onde. Le 

process mis au point ne permettant de préparer de quantité assez limitées de particules ultra-

petites, nous avons en parallèle mis en place une seconde approche afin de préparer des lots 

homogènes plus importants pour pouvoir envisager les modifications de surface nécessaires au 

projet.  

 

Les résultats recensés pour l’exploration du 2nd chapitre ayant permis la création d’une 

librairie de nanoparticules de taille, forme, composition et architecture variées, le chapitre 

suivant est au consacré à leur propriétés photophysiques. Une démarche quantitative sera 

notamment mise en place afin de caractériser complétement le phénomène d’upconversion. Il 

sera montré notamment comment de simples améliorations, à bas coût, d’un fluorimètre 

standard permettent d’amener des informations comme la mesure in situ  de l’absorbance ou la 

caractérisation colloïdale. Par un travail partagé sur trois sites (Toulouse, Berlin & Lille) sur 

des appareils de plus en plus sophistiqués seront explorés à la fois l’absorption et l’émission de 

ces objets. Le comportement non linéaire sera notamment discuté. Dans le cadre des 

nanoparticules ultra-petites destinée à l’application en super-résolution, l’étude stationnaire de 

l’émission sera notamment complétée par une étude des temps de vie de luminescence et de 

l’efficacité (rendement quantique) en fonction de la puissance, afin d’établir la carte d’identité 

de ces « nanolampes ». A terme, les résultats obtenus ayant pour but de déboucher sur le 

développement d’un modèle cinétique complexe pour expliquer et prévoir la redistribution 

d’énergie au sein d’un UCNP, les prémices de ce modèle seront également posés. 

 

Une fois décrites la synthèse et les caractérisations chimique et photochimique, le 

chapitre 4 traitera de la démarche mise en place pour aller vers la microscopie en super-
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résolution. Les particules upconverting étant ultrastable (pas de clignotement, pas de 

photolyse), tout le challenge de ce projet consiste à « faire clignoter l’inclignotable ». De ce 

fait la stratégie repose sur la conception d’un nanohybride comportant une nanoparticule 

couverte de "volets" photochromes à sa surface servant à faire fluctuer l’intensité lumineuse 

globale sortant du nanohybride. Après un rappel bibliographique sur les colorants 

photochromes réversibles et la justification du choix de colorant de type spiropyrane, nous 

verrons comment on peut mettre en place le colorant sur la nanoparticule et quelles sont les 

modifications structurales à faire sur le colorant pour améliorer le recouvrement spectral avec 

l’émission des UCNPs. Deux principales voies de synthèse de ligand photochromes seront 

présentées, en particulier une voie permettant de mettre au point des plateformes polymères 

réactives pouvant laisser libre court à des éventuelles post-fonctionnalisations. A partir de la 

paramétrisation d’un colorant modèle de structure comparable, un premier polymère sera étudié 

seul, puis une fois incorporé sur le nanohybride. Outre ces résultats préliminaires seront 

mentionnées des pistes pour arriver à reproduire nos « fifty shades of blue » ! 
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“Look deep into nature, and then you will understand everything 

better” (Albert Einstein) 



 Chapter I – Literature review and project objectives 
 

-8- 
 

  



 Chapter I – Literature review and project objectives 
 

-9- 
 

 

Contents 

I Optical bioimaging ............................................................................................................ 11 

I.1 Toward the nanoscale: Super-resolution microscopy ................................................ 12 

I.2 Reminder of the specificities of biological media ..................................................... 16 

I.3 Inorganic-based nanoparticles: a promising tool for imaging and microscopy ......... 18 

II Lanthanide-based upconversion ........................................................................................ 20 

II.1 Basics of lanthanide spectroscopy ............................................................................. 20 

II.2 Upconversion mechanisms ........................................................................................ 22 

II.3 Comparison of UCNP mechanism vs standard downconverting luminescence ........ 24 

III From bulk to nano: UCNP design: towards more emissive material ............................ 27 

III.1 Optimal matrix ........................................................................................................... 28 

III.1.1 Reducing non-radiative energy losses within the matrix: matrix phonons ........ 28 

III.1.2 Favoring the emission: choice of appropriate crystal phase .............................. 30 

III.2 Chemical composition ............................................................................................... 31 

III.2.1 High sensitizer content: ...................................................................................... 31 

III.2.2 High emitter content for high laser power density ............................................. 33 

III.3 Downsizing issue: surface quenching ........................................................................ 34 

III.3.1 Source of surface quenching .............................................................................. 34 

III.3.2 Energy transfer to the surface (process F) .......................................................... 34 

III.3.3 Solution to surface quenching: towards surface shielding ................................. 38 

III.3.4 Yb as energy shuttle ........................................................................................... 39 

III.4 Favoring radiative emission (Process D) ................................................................... 41 

III.4.1 UCNP sensitization (process E) ......................................................................... 41 

IV Towards water-soluble UCNP ...................................................................................... 42 

IV.1 Challenge of surface coating for biology and nanomedecine .................................... 42 

IV.1.1 Importance in Biology ........................................................................................ 42 



 Chapter I – Literature review and project objectives 
 

-10- 
 

IV.1.2 Specific issues in Nanomedecine ....................................................................... 43 

IV.2 Strategies for water-solubilization ............................................................................. 43 

IV.3 Limit of water-solubilization ..................................................................................... 47 

V Applications of UCNP ...................................................................................................... 50 

V.1 Overview on UCNP main applications ..................................................................... 50 

V.1.1 UCNP as reporter ............................................................................................... 51 

V.1.2 UCNP as actuators ............................................................................................. 52 

V.2 UCNP as a luminescent probe ................................................................................... 52 

V.2.1 Tm-based UCNP: a multimodal nanolamp ........................................................ 53 

V.2.2 UCNP and Super-resolution microscopy ........................................................... 54 

VI Aim of the manuscript ................................................................................................... 56 

VII References ..................................................................................................................... 57 

 

  



 Chapter I – Literature review and project objectives 
 

-11- 
 

I Optical bioimaging 

The optical observation remains a fundamental of Biology. Since the invention by 

Antoni Van Leeuwenhoek’s in the XVIIth century of the microscope, numerous methods have 

been developed to image biological features at all scales. While the evolution of microscopy 

tends toward observing cell to sub-cellular structures with an improved resolution, larger scale 

imaging techniques enables one to visualize organ and tissues inside a whole body in 3D. For 

the latter case, resolution required is usually of several cells. Figure 1 summarizes the scales 

issues that are relevant in biological imaging, from the biomolecule to the whole organ. 

 

 

Figure 1. Overview of clinical and basic science imaging needs. Reproduced from1. 

 

Photoluminescence (PL) is the luminescence resulting from the radiative relaxation of an 

excited state itself produced by the absorption of light. In other words, it converts high energy 

photons into lower energy ones. Luminescence measurements are known to be more sensitive 

than absorption ones and for dilute systems, since the emitted intensity varies linearly with the 

luminophore concentration. This rule of thumb applies to biological imaging as well, and 

luminescence imaging techniques are now very popular to observe architectural features. 

However, as an excited state can decay non radiatively such as by transferring its energy to a 

quencher, local variations of luminescence is the combination of dye concentration gradients 

and possible presence of quenching processes: this paves the way to sensing techniques, which 

are important tools to answer metabolic questions. In parallel, lifetime measurements that are 
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independent of the dye concentration, are very sensitive to the dye environment and can be used 

for sensing applications. 

I.1 Toward the nanoscale: Super-resolution microscopy  

Whichever the PL microscopy technique used, there is a limit in the observation of 

details in a recorded image: the ability to distinguish two features in close vicinity. Since the 

mid-XIXth century, it was established that due to diffraction, a point source would give rise to 

a disk-shaped image if observed by an optical device. This disk called “Airy disk” was further 

used by Ernst Abbe to establish in 1873 the resolution limit of a microscope. Considering two 

points separated by a distance d, the minimal distance below which these points cannot be 

distinguished is when the two Airy disks are tangent: 

! = "
2#$ sin % 

d: Airy disk diameter (best-focused spot of light),  
n sin θ: numerical aperture (n=refractive index of the media). 
 
For a long time, this limit was considered to be insurmountable. Considerable investigations in 

the 90’s led to new techniques collectively termed super-resolution techniques, bypassing this 

barrier, that were crowned by the 2014 Nobel Prize. Race for an improved image resolution has 

therefore been central to the biologists, challenging fundamental issues in Physics. 

 

The interest in new, non-invasive, far-field super-resolution is now a hot topic. Expected 

fallouts span from fundamental biology to medicine. Two families of super-resolution 

methodologies can be distinguished: the physical approach where the resolution is achieved by 

altering the excitation beam shape, i.e. patterned illumination spectroscopy (Saturated 

Structured-Illumination Microscopy SR-SIM, STimulated Emission Depletion STED), and the 

stochastic approach were the resolution is achieved thanks to probe time-dependent 

characteristics. 



 Chapter I – Literature review and project objectives 
 

-13- 
 

 

Figure 2. Main super-resolution methods. Reproduced from Y. Lin et al. 2 
 

Patterned illumination microscopy: STED 

In order to achieve super-resolution, the principle of STED (Stimulated Emission 

Depletion) relies on limiting the number of excited molecules that can give rise to detectable 

emission. This is achieved by forcing these excited states to relax to the ground state by 

stimulated emission. Thus, a first large beam is used to bring the probes in a certain area into 

their excited state, and another superimposed beam tuned with the dye emission wavelength is 

applied to relax the excited states. This beam is usually shaped as a doughnut. The simultaneous 

application of these two beams induces a depletion of the probe’s excited state over all the 

exposed area with the exception of the doughnut center. Careful adjustment of the beam 

geometries can lead to the survival of very few excited states in a region that can be accurately 

determined.3 

Stochastic approach 

The “stochastic approach” is based on the time-dependent dynamics of a population of 

chromophores under excitation: over a defined time-period not all the probes comprised in a 

limited domain will be in the same energetic state. The monitoring of this fluctuation over time 

is therefore employed to localize the emitting centers. 

The sub-family of “single molecule localization microscopy” (Photo-Activated 

Localization Microscopy (PALM), STochastic Optical Reconstruction Microscopy (STORM)) 

stems on the exploitation of the flickering of luminescent probes:  for particular dynamic 

parameters the probability to have two adjacent probes emitting light at the same time is 

negligible. By recording multiple consecutive frames and comparing the repartition of the 
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emitting centers on each frame, one can reconstruct a synthetic image where all emitting centers 

are localized. Probes however should match several criteria: they must present two states: a 

bright luminescent “ON” one and a dark “OFF” non-luminescent one. The ON-OFF 

transformation can be irreversible (bleaching) or not (photochromic). For practical 

considerations, reversible ones are preferred as they allow for longer experiments, while 

bleaching leads quickly to the disappearance of emitters’ functionality. The density of probes 

in the bright states on each frame should also be sparse to be able to position the point spread 

function as an Airy disc: if a photochromic probe is used it should stay in the OFF state most 

of time.  

The other subfamily is the Stochastic Optical Fluctuation Imaging technique (SOFI). As 

for the STORM technique, a recording of a set of images is first achieved. However, the image 

analysis relies here on the time correlation of the luminescence intensity between consecutive 

frames, pixel by pixel: from the deconvolution of these correlograms is then extracted the 

position of the point sources of light. This technique, although requiring a heavy mathematical 

treatment, is particularly less stringent on the dyes’ dynamic parameters; since only spatial 

fluctuation is needed the dye luminescence may only fluctuate (no need of complete extinction) 

and the density of point emitters can be higher.4,5  

Figure 3 summarizes the optical imaging techniques and compares to other approaches such as 

MRI or PET: 
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Figure 3. Comparison of the spatial and temporal resolutions of biological imaging techniques. 
The size scale is logarithmic. Average sizes of biological features are given; specific sizes vary 
widely among different species and cell lines. The spatial and temporal resolutions are estimates 
of current practices. The spatial resolution is given for the focal plane. The temporal resolution 
is not applicable (NA) for electron microscopy (EM) or Near-field Scanning Optical 
Microscopy (NSOM) because they image static samples. Ground-State Depletion (GSD) and 
Saturated Structured-Illumination Microscopy (SSIM) have not been shown on biological 
samples, and thus their temporal resolutions are not determined (ND). ER:endoplasmic 
reticulum; MRI: Magnetic Resonance Imaging; OCT: Optical Coherence Tomography; PALM: 
PhotoActivated Localization Microscopy, PET: Positron-Emission Tomography; STED: 
STimulated Emission Depletion; STORM: Stochastic Optical Reconstruction Microscopy; 
TIRF: Total Internal Reflection Fluorescence; US: Ultrasound; WF: Wide-Field microscopy. 
Fig and caption reproduced from 6 
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I.2 Reminder of the specificities of biological media 

As imaging is used to explore biological features, one must understand the constraints 

of biological media, either from the physics’ side of in vivo imaging or from the chemical aspect 

in order to take into account the behavior of optical probes in this environment. 

Optical constraints of optical bioimaging 

In vivo imaging relies on 3 main issues: channeling the light from an external source 

within tissues, address the site of interest, and retrieve detectable luminescent signal, all of these 

steps without triggering photodamages. 

     -Because of their architecture, biological samples can be presented in terms of optics as a 

scattering and absorbing media. While scattering is fundamental in optical imaging (on large or 

thick samples),7 it can be neglected for cell imaging with a microscopic technique.  On the other 

hand, light absorption can become a severe limitation. Indeed, the penetration depth is dictated 

by the presence of biological substances competing with the probe absorption. Similarly, the 

probe emission can also be damped significantly by the surrounding biological compounds. 

Figure 4 shows the “NIR imaging optical window”, that is the portion of the electromagnetic 

spectrum for which the deepest light penetration and retrieval can be achieved: it is the 

convolution of the absorption due to organic matter (UV visible range) and to water (near IR to 

IR range).  

     -A corollary issue is photodamaging. Once the light is absorbed, it can trigger photochemical 

events such as DNA base dimerization, or reactive oxygen species generation. According to the 

exposure dose, these phenomena can be deleterious for living objects.  

     -Eventually the signal to noise ratio has to be taken in account:  first, if probes are dispersed 

within the biological sample, a continuous luminescence background will be generated which 

under wide field illumination will limit the resolution, even with confocal techniques. Second, 

light absorbed by endogenous biological compounds can lead to autofluorescence also blurring 

the final image. 

     -Near IR excitation technique can solve several of these issues:  

*it lies typically in the biological transparency window,  

*Modern techniques based on non-linear effects (such as 2-photon absorption or Second 

Harmonic Generation (SHG) approaches) improve the S/R ratio by limiting or even cancelling 

the sample autofluorescence. 
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Figure 4. A) Absorption and emission of some biological components. Reproduced from8.  
B) Depth of the light as a function of the wavelength. Reproduced from 9.  

Biological media: a complex chemical reactor 

When it comes to the making of dedicated probes, an important point to be taken in 

account is the biological medium in which the imaging will take place because it may 

influence the emission properties of the probe and/or the delivery on site of interest. 

The biological media is a complex system. Its main parameters as far as nanomedicine is 

concerned can be summarized in the following table 1: 

 

Table 1. Main chemical parameters from a nanomedicine standpoint.  

Solvent water 
Average temperature 37°C 

pH 

-Mainly pH=7.4 (blood) 
-Acidic compartments:  
       Organ: stomach (pH=1.8) in stomach 10 
       Cancer tissue (pHextracellular=6.5-6.9) 11 
       Cellular organelle : lysosome (pH≈4.6) 10 
-Basic compartment: duodenum (pH=8) 

gases O2, CO2 
Main Electrolytes 

(in decreasing 

concentration order 

from top to bottom) 

Na+ 
K+ 

Ca2+ 

Mg2+ 

Cl - 

HCO3 
- 

HPO4 
2- 

Biological compounds 
Proteins (albumin>90%), carbohydrates, aminoacids, 
enzymes, etc …,  

Others  Immune cells (ex : phagocytes) 

 
Besides genetically engineered proteins that obviously satisfy to the biocompatibility criterion, 

a lot of work involves xenobiotic probes. As a result, biological probes have to be water-

dispersible and stable at least at neutral pH and under oxidation condition (presence of oxygen). 
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In the present manuscript “solubility” will refer to dispersibility and compatibility with 

solvent/biological media. 

Due to the presence of endogenous electrolytes, some byproduct can be formed due to 

complexation. Finally, some deleterious aggregation can occur with biological compounds 

(such as proteins) that can lead to a fast elimination. This requires adapted probe 

functionalization to have in vivo accurate stability and prolonged lifetime. 

I.3 Inorganic-based nanoparticles: a promising tool for imaging and 
microscopy 

Over the past two decades, various inorganic nanoparticles12 have been used as 

luminescent label in various imaging and microscopy techniques, as recently reported by 

Enderlein.13 Among them, quantum dots (QD) currently have the leadership.14 These are 

ultrasmall semiconductors nanoparticles, usually within 2-6 nm size, in which quantum 

confinement makes their optical absorption and emission properties size-dependent. Therefore, 

simple size tailoring induces spectral changes. Converting high energy photons into lower 

energetic ones, the emission spectral window spans from the visible down to the NIR range. 

They also present large quantum yield,15 high photochemical and thermal stability. Combined 

with versatile preparations, these features explain why they are now very popular and easily 

available in trade. However, QDs suffer from certain limitations: they have generally blinking 

luminescence, impeding applications such as in vivo tracking, but allowing either STED or 

stochastic-based super-resolution approaches. More critical is the intrinsic toxicity of such 

materials due to the elements used themselves: typicaly Cd, Se, Te. It can be reduced (but not 

cancelled) thanks to complex nanoparticle architecture (i.e. core shell)  

Another rising class of NIR absorbing inorganic materials is burgeoning since the 

beginning of the 2000’s (figure 5): upconverting nanoparticles also known as UpConverting 

NanoPhosphor (UCNPs) and especially lanthanide-based ones.16,17 Discovered in the 1960’s, 

upconverting crystals (micrometer scale) were first developed for applications in optics, 

telecom and laser. Thanks to advances in chemistry and the development of nanoscale objects, 

UCNP have been brought up to date by Auzel16 at the end of the 1990’s. They present the 

fascinating properties of being able to convert low energy photons (NIR) into higher energy 

ones (visible to UV range) with extremely long lifetimes (µs-ms range). 
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Figure 5. Evolution of the amount of published works referring to upconversion or 
upconverting, including patents (source: Google Scholar). 
 
UCNPs share the thermal stability with QD.15 However, they differ from the latter by their 

emission wavelengths which are no longer sensitive to the crystal size but depend only on the 

chemical nature of the lanthanides. UCNPs are extremely photostable, showing neither blinking 

nor bleaching, with a limited toxicity. Thus, they appear as an ideal tool for imaging, especially 

for tracking. However, this has a cost and such amazing phenomenon has generally quantum 

yield lower than 1%. The dramatically low apparent emission efficiency is compensated by the 

total lack of autofluorescence of any biological compound under NIR excitation. Moreover the 

extremely long UCNP emissions lifetimes allow time-gated detection to remove the eventual 

back-scattered incident light.18 

The commercial availability of Quantum Dots and their largely explored surface 

chemistry explain their involvement in a larger number of imaging techniques. However, 

UCNPs appear as promising challengers due to the several advantages already described and 

despite the limited number of suppliers. The dare to replace QD by UCNP is still open. Having 

in mind the development of innovative probes for biological imaging at the smallest scale 

possible (such as super-resolution), my PhD work was then to contribute to this new field that 

is nanohybrid probes based on a UCNP inorganic core. 
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II Lanthanide-based upconversion 

We have highlighted the fascinating property of UCNP of converting low energy 

photons in higher energetic visible to UV emissions. We will now discuss how this phenomenon 

can occur thanks to the specific spectroscopic characteristics of lanthanides. Then will be shown 

the main underlying mechanisms and the photophysics particularities of these NPs. From these 

considerations will be discussed how UCNP have to be designed to present such upconverting 

behavior. 

 

Although puzzling at first sight, the unusual “upconversion process” draws strongly upon the 

lanthanide spectroscopic properties. In addition, a complex energy redistribution takes place 

between all lanthanide ions leading to the final production of higher energy photons. We will 

now briefly recall the elementary steps of this phenomenon. 

 

II.1 Basics of lanthanide spectroscopy 

Trivalent lanthanide ions electronic configurations are characterized by the filling of the 

f-shell and can be written as [Xe] 4fn (n= 0-14). Electrons in the completely occupied 5s (5s2) 

and 5p (5p6) orbitals efficiently shield off the 4f-electrons from the chemical environment: the 

4f orbitals do not participate in chemical bonding. The spectroscopy of these elements is 

dominated by the states generated from the 4f-orbitals. These shielded 4f states, mostly 

governed by spin-orbit coupling, are only weakly affected by the crystal field (contrary to 

transition metals). These excited states are classically named by their associated spectroscopic 

terms and are classically gathered in the so-called “Dieke diagrams”. The non-participation of 

the f-orbitals in the chemical bonding also leads to a weak electron-phonon interaction. This 

results in a line spectrum whose broadening is mostly due to the crystal field splitting (Stark 

levels).19 
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Figure 6. Lanthanide ions energy splitting. A) Origin of the 4f level splitting in lanthanides, 
reproduced from 20. B) Dieke diagram of lanthanide ions, reproduced from Moore et al.21 
 

Classically, the interaction of an electromagnetic radiation with matter leads to distinguish three 

types of transition moments: electric dipole ED, magnetic dipole MD and electric quadrupole 

EQ. For the lanthanide series, the succession of couplings and interactions leads to complex 

selection rules (Table 2). Thus, although the number of excited states can be very large, these 

rules limit the number of possible transitions. The most intense ones are the electric dipole ED 

transitions. However, involving pairs of 4f states, these are symmetry forbidden22 according to 

Laporte rules. The forbiddance is partly relaxed when the local crystal field is introduced (Stark 

effect).23 Magnetic dipole (MD) and electric quadrupole (EQ) transitions are parity allowed but 

usually much weaker than the partially allowed ED one. The EQ-transitions are usually 

neglected. More detail about lanthanides electronic structure characteristics can be found in 

Bunzli’s work.24  

 

Table 2. Selection rules for f–f transitions between spectroscopic levels. a: J = 0 to J’ = 0 
transitions are always forbidden. 24 

Operator Parity DS DL DJ 

ED Opposite 0 ≤6 ≤6 (2,4,6 if J or J’ =0) 

EM Same 0 0 0, ±1 

EQ Same 0 0, ±1, ±2 0, ±1, ±2 

 



 Chapter I – Literature review and project objectives 
 

-22- 
 

It results from the Laporte rule that absorption cross-sections and the emission efficiencies of 

all lanthanides are very weak, and extremely long luminescence lifetimes (µs-ms) are 

commonly observed. 

However, because the magnitude of the transition moments are bound to the local ligand 

field and therefore to the host material, it is possible to calculate the radiative rate constants for 

the emission decays and associated data (lifetime decay, branching ratio, quantum yield). A 

semi-empirical theory developed by Judd and Ofelt allows one to predict the transition 

probabilities.25 It relies on the parameterization of the ligand field effect obtained by fitting of 

the absorption spectrum. Once this achieved, it is possible to calculate the radiative rate 

constants for the emission decays, and then branching ratios and quantum yields. This requires 

a well resolved absorption spectrum which is not easy to achieve on nanomaterials.26 May et 

al. have extended this methodology to spectra recorded by reflectance spectroscopy.27 

II.2 Upconversion mechanisms 

The phenomenon of upconversion can be seen as an « energy accumulation » within a 

single ion causing it to reach high energy excited states. Decomposition into elementary 

processes can be a little more complicated. It is now commonly admitted that at least up to six 

processes can occur: 17 

The simplest one, termed ESA (Excited-State Absorption) (fig 7a), involves only a 

single ion having two excited state separated by the same energy difference. Successive photons 

absorption can promote the ion in its first (E1) then second (E2) excited state. Among Rare-

Earths, this situation is encountered for Er3+, Tm3+, Ho3+ and Nd3+. Although very simple, this 

process requires “good” NIR absorption cross sections for the ground and the intermediate state, 

which is a tough constraint.  

 To bypass the poor NIR absorption, another strategy was proposed based on inter-ion 

energy transfer. The upconversion results now from multiple energy transfers between a 

sensitizer and the emitter (fig 7b). The sensitizer is typically ytterbium whose Dieke diagram is 

particularly simple. As ytterbium has a larger absorption cross section (compared to the other 

lanthanides) it can be successfully excited at 980nm. This is the so-called Energy Transfer 

Upconversion (ETU) mechanism. Because the energy transfer depends on the distance between 

sensitizer and emitter, this mechanism is highly sensitive to doping content. Recently, more 

complex energy transfer chains were developed that include neodymium. This element is 

indeed able to absorb at 800 nm and can be used to feed the complete upconversion chain.28 

Nevertheless the main issue is the very low absorption cross-section of the lanthanides such as 
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1.2 x 10-19 cm2 (or 31 L.mol-1.cm-1) 29 at 808 nm and 1.2 x 10-20 cm2  (3.1 L.mol-1.cm-1) 30 at 

980 nm respectively for Nd3+ and Yb3+. 

 

Figure 7. Principal upconverting processes of Ln-doped UCNP. Reproduced with permission 
from 31. 

Other mechanisms have been described by Auzel,32 involving more complex sequences, for 

example, three ions for CSU (Cooperative Sensitization Upconversion), or energy looping 

(photoavalanche PA), but they are less efficient.31 Thus in Table 2 are given the order of 

magnitude of each process’ quantum efficiency showing the prevalence of ETU, as proposed 

by Auzel for comparison purpose. Interestingly, the upconversion phenomenon is also more 

efficient that the usual non-linear processes achieved by coherent photon absorption (Two-

photon or second order harmonic generation SHG).  

Table 3. Quantum efficiency comparison of main processes involving 2 photons. Adapted from 
32. KDP is Potassium dihydrogen phosphate crystal. 

 UCNP 
SHG 

2-photons 

absorption 

excitation  ETU ESA CSU 

matrix YF3:Yb,Er SrF2:Er YF3:Yb,Tm KDP CaF2:Eu2+ 

Quantum 

efficiency 

(cm²/W) 

10-3 10-5 10-6 10-11 10-13 
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II.3 Comparison of UCNP mechanism vs standard downconverting 
luminescence 

From the lanthanides’ Dieke diagram, one can derive a pictorial representation of all the 

possible processes leading to upconversion in the ETU case.  On figure 8 is represented the case 

of the Yb-Tm pair and the assignment of all detected transitions.  

 

Figure 8. ETU scheme for a Yb: Tm-based UCNP. Dark grey arrows represent the equivalent 
of energy transfer from one single NIR photon (980 nm) absorption. “Oscillating” light grey 
arrows are non-radiative relaxations. Dash line arrows are energy transfer between sensitizer 
and different energy level of thulium emitter. 
 

Compared to standard luminophores, the overall scheme is much more complex. The main 

feature is that most of the intermediate excited states undergo relaxation processes, but also 

excitations ones thanks to cross relaxation with excited ytterbium ions. As a result, 

experimentally measured quantum yield and lifetimes are not absolute values as for standard 

organic dyes, but more “apparent constant” revealing equilibrium of energy distribution among 

the excited states. However, following the UCNP research community, they will be treated as 

usual constant in the present manuscript. 

Besides the standard luminescent characteristics (nature of emission, duration, efficiency), it is 

common to define branching ratio as the proportion of the radiative processes originating from 

a precise excited state. For example, 1G4 level gives two emissions respectively at 645 nm (1G4 

à 3F4) and 474 nm (1G4 à 3H6): the branching ratio BR is 

&'(645$)*+,- =
.$/0$13/7(645$)*

.$/0$13/7(645$)* 8 .$/0$13/7(494$)* 
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 and vice versa for the second band. It should be also noticed that most of emitter energy levels 

are at the same time producing emission bands and feeding higher energy level.  

 

Dynamics of the energy between levels 

From the above-mentioned upconversion diagram, it is possible to establish the kinetic 

scheme able to reproduce the dynamics of all transient excited states involved in the emission. 

The general level population rate (dNi/dt) is therefore the sum of three kinds of elementary 

processes:   

-monomolecular ones: the radiative- (emission absorption) and non-radiative (phonon 

coupling) one, and  

-bimolecular one:  the cross relaxations.33 It is admitted that these processes are derived 

from dipole-dipole interactions (similarly to classical FRET) and are therefore distance 

dependent.  

The general differential equation is thus: 

 

Aij
ED and Aij

MD are the Einstein coefficients (s-1) for electric dipole (ED) and magnetic dipole 

(MD) radiative transitions from manifold i to j. Wi,i-1
NR is the non-radiative multiphonon 

relaxation rate (s-1) from the manifold i to the manifold i-1. Pij,kl
ET (in nm3s-1) is the microscopic 

energy transfer parameter for the transfer of energy for the donor transition from i to j and the 

acceptor transition from level k to l. 

 In the case of the Yb:Tm system, 10 ordinary differential equations are necessary to describe 

all the usual excited states  involved in the upconversion process. Complete handling of such a 

system of equation is difficult as and is usually treated for steady state situations. Yet theoretical 

predictions are successful especially from the group of the Berkeley Lab’s Molecular 

Foundry.34,35 
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Typical ETU chemical composition 

Within the ETU excitation scheme, upconverting materials are mainly formed by 3 

elements (figure 9): a crystalline host matrix in which are dispersed sensitizers and emitters 

ions.  

Thanks to lanthanide chemistry, salts differing only by the lanthanide nature are usually 

structurally very close, allowing the preparation of mixed element materials that can be 

considered as a solid solution. It is then possible by adjusting their proportions to tune the 

distances between optically active ions within the crystal. 

 

Figure 9. Schematic representation of a UCNP nanoparticle 

Typical emission spectra 

Depending on the nature of the emitter, specific emission patterns are observable: 

 

Figure 10. Typical emission spectra of Yb sensitized Er- and Tm-based UCNP. Each spectrum 
is independently normalized to 1. 
 

Erbium-based UCNP are characterized by two strong emission bands in the green region (525 

& 540 nm), one intense band in the red (650nm) and a weak one at 400 nm. Besides, thulium-

based UCNP have multiple emission bands ranging from UV (312, 345, 362 nm) to NIR (802) 
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through blue (450 & 475 nm) and red (650 & 695 nm) emission bands. The position of emission 

bands is only dependent on the emitter ion. Nevertheless, the intensity ratio between different 

peaks of one emitter are highly sensitive to the temperature and the excitation source (laser 

power, shape of the beam (top-hat or Gaussian), pulsed laser or not, etc…). 

Pulsed excitation 

A less intuitive consequence of the non-linear process is the sensitivity of the energies 

ratio upon pulsed light.  

Appropriate pulsed excitation should be able to modulate and control on demand those emission 

band ratios in order to promote a desired colored light. However, such a purpose is a new area 

of investigation and few investigations have focused on it. An interested reader should read as 

an illustration the work of F.O. Laforge et al.36 

III From bulk to nano: UCNP design: towards more emissive 
material 

Moving from bulk to highly divided material, especially at the nanoscale, introduces 

new constraints on the photophysical scheme. Indeed, we will see that the efficiency of the 

upconversion process depends strongly on the material nature and its size. Thus, maintaining a 

reasonable efficiency while downsizing the crystal enforces chemical choices such as the host 

matrix or the surface chemistry.  

Figure 11 summarizes the main photophysical processes at work when operating sensitized 

(ETU) UCNP. They can be sorted into 3 classes:  

-based on the type of lanthanide ion: absorption (A), emission (D) and the non-radiative 

relaxations process (C);  

-the cross relaxations related to upconversion (B).  

-to this basic intrinsic scheme inside UCNP, other additional energy transfers such as 

with external sensitizer or acceptor (E, F) can be implemented. The use of a second sensitizer 

(process E) with higher absorption cross section aims to increase the absorption and eventually 

switch it to a more favorable wavelength (i.e. from 980 nm which is strongly absorbed by water, 

to 800 nm) in order to prevent overheating issue for example. The coupling of UCNP with a 

chromophore acceptor (process F) will be also described as it is particularly of interest to 

explain energy transfer to the surface quenchers and for applications of UCNP that will be 

described at the end of the chapter.  
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Additionally, it can be mentioned that a more sophisticated approach based on the coupling 

with plasmonic NPs such as gold or silver is currently an area in development to enhance the 

emission efficiency. This will not be detailed in the present work, but a curious reader can 

browse the review by Park et al.37 

Optimization of the overall process aims therefore at reducing all competitive processes that 

would divert the energy flow out of the upconversion path (AàBàD) or AàBàF. We will 

now examine how and where the experimental choices to design the UCNPs impact the overall 

chain of energy transfers. 

 

 

Figure 11. Summary of energy entrance and exit in ETU process: A) Yb Absorption; B) Energy 
transfer to emitter; C) non-radiative de-excitation; D) Upconversion emission; E) UCNP 
sensitization; F) Energy transfer involved in FRET application. Dash-line rectangular box 
indicate phenomenon occurring exclusively inside UCNP crystal, while additional cross 
relaxation (E-F) are due to coupling respectively with a second sensitizer (E) or FRET acceptor 
(F). 

III.1 Optimal matrix 

III.1.1 Reducing non-radiative energy losses within the matrix: matrix phonons 

Several theoretical models have been explored in this regard.38 The simplest model 

developed is the so-called “Energy Gap law” that can be expressed as: 33  

:;<>? @ :>?AB #0CDEFGHIJ F KLMNOPQQRS 
where :;<>? is the non-radiative MultiPhonon Relaxation (MPR) rate-constant. This expression 

states that the larger the number of phonons of energy KLMNOPQQ to bridge the gap DE, the less 

efficient the MPR process will be. The parameter α is a function of the nature of the material, 

the temperature and the number of phonons involved ( 
TU

KVWXYZ[[
 ).  

The more phonons involved, the less efficient will be the process of non-radiative energy losses. 
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Thus, reducing multiphonon relaxation implies the selection of matrices with the lowest cutoff 

phonon frequency (K\]^_`aa*.  
Different kind of inorganic crystals including oxides39 (such as Al2O3 40, RE2O3 (RE=Rare 

Earth)41-43, ZnO44, Bi2O3-Li2O-BaO-PbO 45, ZrO2 
46, BaTiO3 47), oxysulfides48,   oxyfluorides49-

51, phosphates52, vanadate53, CaF2 54, and halides55-61, have been used as matrix to build 

upconverting materials.  

Table 4 gathers several examples and an estimation of the number of phonons (last column). 

 

Table 4. Comparison of the phonon energy for different matrices. Adapted from R. Diamenter 
et al. 62 

Material 
Highest phonon energy 

(ћωcutoff) in cm-1 

Number of phonons 

equivalent to one 

photon 980 nm  

(ΔE=10 200 cm-1) 

Phosphate glass 62 1200 8.5 

Silica glass 62 1100 9.3 

Fluoride glass 62 550 18 .5 

Chalcogenide glass 62 400 25.5 

LaPO4 62 1050 9.7 

YVO4 53  890 11.5 

YAG (yttrium aluminum garnet) 62 860 11.9 

Y2O3 63 550 18.5 

Y2O2S 64 520 19.6 

Oxyfluoride or chloride (ex GdOCl) 65 500 20.4 

ZrO2 66 500 20.4 

NaYF4 67 350 29.1 

LaF3 
62 300 34 

LaCl3 
62 240 42.5 

 
Compared to other matrices, lanthanide halides show the lowest phonon energies (around 350 

cm-1)62 making them the most efficient for upconversion due to the minimization of non-

radiative losses. Unfortunately, among halides, only fluorides are chemically stable.39,68 

Moreover, since the 70’s, laser physicists have demonstrated that the ternary NaYF4 matrix was 

more efficient than the binary one YF3.69 As a result, NaREF4 appears as the matrix of choice 

for UCNP nanomaterials.  
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III.1.2 Favoring the emission: choice of appropriate crystal phase 

Local symmetry  

Fluoride MREF4 (M=alkali; RE=Rare Earth), which represent the most commonly used 

matrix69-71 can exist only in 2 crystal phases (figure 12):  a cubic (α-MREF4, space group 

b)cd) ) crystal and an hexagonal (β-MREF4, space group e6fg) ) gargarinite-like 

(NaCaREF6).72   

Cubic phase is similar to CaF2 unit cell in which the Ca2+ sites are randomly occupied by  

½ RE3+ and ½ Na+. However, the hexagonal phase presents three kinds of cationic sites: two 9-

fold coordinated position occupied respectively by RE3+ and randomly ½ RE3+  ½ Na+; and a 

6-fold coordinated occupied by ½ Na+ and vacancies. 

As explained above, absorption and emission selection rules strongly depend on the local crystal 

field symmetry (the lower being the better). Within the cubic phase, the Wyckoff sites of 

lanthanide ions are of high symmetry (Oh symmetry), whereas they have a lower symmetry in 

the hexagonal one (C3h symmetry). Therefore, it is expected that the hexagonal phase presents 

a higher upconversion efficiency, since symmetry is lowered and transitions are “less” 

forbidden. Experimental results show that the hexagonal phase leads to NPs at least one order 

of magnitude brighter than the cubic one.73-75 

 

Figure 12. Representation of NaREF4 polymorphs’ unit cells: cubic α-phase (A) and hexagonal 
β-phase (B). In the cubic phase, equal number of F- cubes contain cations and vacancies. In the 
hexagonal phase, an ordered array of F- ions offers two kinds of cation sites: Na+ sites and 
Wyckoff sites that can be randomly occupied by either Na+ or Re3+. Figure and caption 
reproduced with permission from.75 

Crystal distortion  

A further improvement can be gained by inducing crystal distortion to lower the local 

RE crystallographic site symmetry. This can be achieved by playing on the ionic radius of the 

different cations used. As MREF4 forms solid solutions with various alkali and RE mixture, the 
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only limit is to induce phase demixion. The main approach relies on the cationic site substitution 

by alkali such as K+ or Li+.76-79 A more sophisticated approach of crystal distorsion was 

elaborated by Alivisatos group.80 The idea is to corrugate the crystal by co-substituting the RE3+ 

sites. Indeed, in NaYF4 matrix, Y3+ (104.1 pm) was substituted at the same time by bigger 

lanthanides (Gd3+; 107.8 pm) and smaller ones (Lu3+; 100.1 pm). As a result, the corrugated 

crystal revealed an impressive enhancement of the quantum yield efficiency.  

III.2 Chemical composition 

After having presented the general strategy related to NP general structure (non-

radiative energy losses and appropriate crystal symmetry for desired photophysical properties), 

we shall now investigate how Ln3+ ion density impacts the luminescence. It is commonly 

admitted that the ideal concentrations in terms of Rare Earth molar percentage should be 20% 

for the sensitizer (Yb) and of 2% and 0.5-1% for the emitters respectively erbium and thulium. 

This rule is mostly empirical and is justified by considerations related to concentration-induced 

quenching. However, some groups still work on compositions “outside the box”: dealing with 

higher sensitizer or emitter content.81 As the presence of these two dopants can affect not only 

the photophysics but also nanoparticle crystallization, we will here examine the main issues 

related to changes in composition. 

III.2.1 High sensitizer content:  

 The sensitizer Yb plays the role of an antenna collecting the NIR light and channeling 

the energy to the emitters. One can therefore be tempted to change the sensitizer content. Some 

of the consequences are listed below. 

UCNP absorption  

Higher sensitizer content was investigated by teams working in NaYbF4 host crystal, 

mainly Prasad’s group, envisaging ytterbium as being at the same time host matrix and 

sensitizer.82 From 30% to 70% content of ytterbium, luminescence is rising gradually: indeed 

at 30% and 50% it represents respectively around 3% and 16% of the maximal efficiency 

observed (at 90%). This gain in efficiency seems to be a consequence of the increased 

absorption efficiency of the material at 980nm. One could be tempted to move to Yb-only host 

matrix, however synthesis problems become overwhelming as NaYbF4 tends to lead mostly the 

cubic phase. It can be noted that this team had to introduce a non-negligible amount of 

gadolinium (at least 10%) to produce the hexagonal phase. 
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Interaction with the emitter 

Dopant concentration inside the crystal is a key-point for upconverting efficiency. 

Indeed, the energy transfer mechanism is based on a dipole-dipole coupling and therefore is 

distance-dependent. Increasing the sensitizer induces a new phenomenon known as 

concentration quenching detailed in chapter 3.83 

An important study by Chen et al. 84 exemplifies the impact of rising sensitizer ytterbium 

concentration on both Tm3+ and Er3+ emitters within  a YF3 matrix (figure 13). 

Striking difference can be seen by bare eyes between Tm and Er. While poor if no impact can 

be observed on Tm, keeping a blue-purple emission in the visible range, considerable variation 

is observed on erbium, upon varying the amount of Yb. The color change from mostly green to 

red is evidenced by a change in relative intensity of the two main visible emission bands. 

 

 

Figure 13. Impact of sensitizer content on the emission color. Adapted from 84. 

 

For erbium, the spectacular change in color was explained as an alteration of the upconversion 

energy path induced by the high level of ytterbium, and mostly by the energy back transfer to 

the sensitizer from the erbium energy levels responsible of the green emission. A similar 

mechanism also takes place with Tm but the 700 nm emission is poorly detected by the human 

eye. 
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On the other hand, this change in the energy dynamics induced by the increased amount 

of ytterbium can be exploited to “tune” the emitted light by promoting specifically a desired 

band. The next question is to know whether it is relevant to increase the emitter content. 

III.2.2 High emitter content for high laser power density 

Concerning the variation in ion content, it was shown above that enhancement of the 

sensitizer content can lead to an increased absorption in core@shell structure. Similarly, does 

an increased emitter content lead to an increased emission? Moreover, is it possible to combine 

high sensitizer and high emitter content? 

As evoked earlier (section III.2), the emission efficiency is limited by the low content of 

sensitizer (0.5-1% for Tm or 2% for Er) to prevent concentration quenching occurring at higher 

doping, under usual excitation irradiance such as sub-100 W cm-2 for the macroscopic 

measurement of particles.85 However, single nanoparticle investigations, such as super-

resolution evoked in section I, rely on the use of MW.cm-2 (i.e. 106 W cm-2) power densities. 

Thus, spectroscopists such as B. Cohen 34 and E. Goldys 85 teams investigated the influence of 

emitter content under such conditions. Indeed, by turning from tens of kW cm-2 to MW cm-2, a 

tremendous increase by a factor of 200 was observed in Tm-based UCNP luminescence 

between the usual 0.5% emitter and higher content such as 8%.34,85 It can be explained by the 

following principle: under high laser fluence (MW.cm-2) the population of Yb excited-state is 

increased (until saturation) leading to an increase of ETU probability. If there is a low amount 

of emitter, they are quickly saturated. However, by increasing the emitters concentration, the 

excitation energy stored in the sensitizer excited state will be effectively used. This results in 

luminescence enhancement. 

In summary, current trends on doping content management are mainly focused on an 

increase of emitter content combined to higher laser power density irradiation, forsaking 

sensitizer enhancement. To the best of our knowledge no significant work explored the 

combination of simultaneous sensitizer and emitter increased content. 

The following sections will briefly expose how an external partner (sensitizer or chromophore 

acceptor) can interact with the UCNP. 
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III.3 Downsizing issue: surface quenching 

III.3.1 Source of surface quenching 

Considering NaREF4 nanoparticles, the main origin of non-radiative energy losses is 

due to surface quenching occurring from capping molecules and solvent through CH, OH or 

NH vibrations, especially in aqueous media. 

Most of the efforts in the literature have been focused on the management of the surface 

quenching which is related to two points: NP size and surface passivation. 

Regarding to the size, the smaller the NP, the bigger the surface-to-volume ratio. Thus, size 

reduction leads to a less favorable surface to volume ratio and a drop of luminescence. As a 

result, when small size is not a requirement, NP should be as big as possible to maximize the 

brightness.  

III.3.2 Energy transfer to the surface (process F) 

As it was briefly announced (section III, figure 11, with the AàBàF pathway), it is 

possible to imagine an energy transfer between a UCNP and a chromophore at the surrounding. 

A convenient mechanism commonly invoked in the literature is a FRET (Förster Resonance 

Energy Transfer) mechanism.  

FRET definition 

FRET is defined from Förster theory86,87 as a short-distance non-radiative dipole-dipole 

energy transfer between one donor D and one acceptor A, both being small enough to be 

considered as ponctual. Despite the initial FRET definition for point-to-point energy transfer 

between molecules such as organic dye, it can be also applied to nanoparticles. This energy 

transfer is a bimolecular process whose rate constant  :h is: 

:h = +
jk
l Am

o

<kpo
q with 'Br = t(u;+B*#vw#xk#y

+z{#|}#;-#~p
 and � = � ��("*#��("*#"� !"!

 

��: Avogadro constant 

n: refractive index of the medium (n=1.3 for aqueous media) 

���: distance donor-acceptor 

��: lifetime of the donor excited state, in absence of acceptor 

#�z: orientation factor (usually fixed at 2/3 for randomly oriented systems) 

#��#: quantum yield of the donor 

��(λ): emission intensity of the donor at λ , normalized to 1 over the spectral window concerned 

��(�*# : molar extinction coefficient of the acceptor as a function of the wavelengths  



 Chapter I – Literature review and project objectives 
 

-35- 
 

Beside the mandatory global spin conservation, critical points are the overlap integral J between 

donor D and acceptor A spectra, and the orientation factor #�z. The first can be computed 

separately and is usually used to optimize the choice of the pair (D, A). For a classic pair of 

dyes, presenting an isotropic distribution of mutual orientations,#�z reduces to 2/3. The theory 

brings a new parameter, the “Förster radius” (R0) that enables one to compare the energy 

transfer rate constant to all the other processes that undergoes the excited state D* of the donor 

in the absence of the acceptor. It is convenient to introduce the FRET efficiency E as:  

J = :h
:h 8 �

��
= 'Br
'Br 8 ���r

 

When ���< R0 then E> 0.5: in other words, the RET process counts for more than 50% 

of the total relaxation processes of the donor. Complete extinction occurs at very short distances 

only (fig14). 

 

Figure 14. FRET efficiency as a function of the Donor-Acceptor distance. Reproduced from86  
 

Thus, different requisites are necessary for an efficient FRET: 

-Spectral overlap between donor emission spectrum and the acceptor absorption spectrum; 

-close distance between the dipoles; 

-donor and acceptor should have respectively a high quantum yield and a high molar extinction 

coefficient. 

 

 

Limits of FRET considerations with UCNP 

Once FRET formalism described, we can know focus on its application to energy 

transfer between UCNP and surrounding molecules. 
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The first point to be discussed relies on UCNP quantum yield. In the Forster model, one 

couples the transition moments between ground and excited states of the donor and the acceptor, 

and the square of the transition moment mDD* figures explicitly in the FRET rate constant. This 

transition moment is the link via the oscillator strength of the radiative relaxation of D* to the 

radiative lifetime#�. For standard dyes, this radiative lifetime is 
jk
xk

 , were �� is the fluorescence 

quantum yield, and �� the lifetime of the donor. When UCNPs are concerned it is therefore 

important to know the radiative lifetime of the level involved in the FRET process. It is not 

related to the global upconversion quantum yield, but more akin to a branching ratio b defined 

as b=krad/(krad + knr+k[Yb*]). Very few teams have considered this issue.88  

It has been admitted within the UCNP community that energy transfers between UCNP and 

acceptor are occurring by FRET. However, UCNP have an extremely low quantum yield (less 

than 1%). As a result expected Förster distance should be smaller than the usually expected 1-

20 nm range (with conventional bright donor).86  

 Another critical point on UCNP is that emitted light is coming from several emitters 

disseminated randomly inside a nanoparticle. For a very low emitter content one can neglect 

the possibility of Tm-Tm energy migration, therefore the contribution of each “emitter-to-

acceptor” pairs to the global FRET process should be considered. Establishing a “FRET 

distance” should be at most computed from a weighted distribution of emitter-acceptor 

distances (figure 15): 

 

Figure 15. Different configurations of FRET, depending on emitter position. A-labelled pink 
and D-labelled blue spheres are respectively Acceptor and single emitter. Dark line is used to 
be the so-called “Forster distance”. Pale yellow dash-line represent UCNP radius. FRET is 
represented by red arrow. 
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As a conclusion, FRET with UCNP has to be treated carefully. Indeed, there is uncertainty  

-in the dispersion of emitters (donors) inside one UCNP 

-in the repartition of acceptor at UCNP surface 

-in the definition of the real Förster distance (related to the random emitter localization).  

Despite this lack of clarity, an important number of works with UCNP as donor in energy 

transfer have been reported. Such energy transfer is always described as FRET. Interested 

readers are addressed for example to work by N. Hildebrandt’s team.89,90 

Additionally, no reported experiments were setup to assess if energy transfer, between UCNP 

and an acceptor, could be also coming from long distance mechanism such as trivial transfer. 

UCNP Size effect 

Large objects have a far larger radius (10-25 nm) than usual reported Förster distance 

(<10 nm for UCNP). Thus, only emitters placed close enough to the surface may generate an 

efficient energy transfer. As a result, large nanoparticles with a low surface-to-volume ratio 

show a reduced surface quenching by FRET compared to the small ones, explaining why 

downsizing UCNP results in loss of upconversion efficiency. 

Thus, from assumed FRET mechanism, a simple strategy to enhance upconversion relies on 

enhancing the distance between UCNP donor and surface quenchers. 

Consequences of NP to surface FRET: an inactive inner “dark layer” 

As reported, by May et al.91, and Gargas et al.34 it has been admitted that due to surface 

quenching, an inner “dark” layer (fig 12) being totally surface-quenched can be defined at the 

NP surface (figure 16). 

Extension of Gargas FRET-based model estimated the thickness of this inner “dark” layer as 

1.7 nm. As a result, UCNP smaller than 3.4 nm in diameter are not supposed to have a 

significant emission. Nevertheless, to the best of our knowledge, no experimental data at such 

critical ultrasmall size have been explored to check the validity of Gargas’ model.33  
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Figure 16. Surface quenching in UCNP 

 

III.3.3 Solution to surface quenching: towards surface shielding 

Core@shell structure for luminescence exaltation 

The main strategy to overcome surface quenching consists on intercalating an inert 

spacer, thick enough to shield the surface from molecules at the surface (ligands, solvent, etc 

…). It is generally achieved by growing an epitaxial layer of undoped matrix at the surface. 

This is now a routine architecture on UCNP 92, as for QD. However, it has been empirically 

demonstrated that NaYF4 is a more efficient shielding shell than NaGdF4. This superiority has 

been abundantly reported93 and will not be further discussed in this manuscript.  

Towards UCNP applications: Core@shell consequence on FRET to a desired acceptor  

Concerning doped-core@undoped shell structure, the intercalation of an inert shell 

(usually 1-6 nm thick layer) between donor and acceptor decreases the probability of presence 

of emitters. Consequently, compared to core of similar composition, a lower amount of emitters 

can be involved in such FRET. Thus, a compromised has to be found between luminescence 

enhancement (higher quantum yield) and “active distance” reduction (number of emitter), as 

stressed out by Y. Wang et al. 94 revealing more efficient energy transfer on core@shell from 

singlet oxygen generation by rose bengal acceptor. 

To circumvent this issue, some teams investigate doped-core@doped-shell structure while 

placing sensitizer dopants in core and emitters in shell. However, as it was not explored in the 

present work, and will not be discussed here either. Interested readers should look for example 

at publications of A. Pilch et al.,95 or K. Huang et al.96  
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III.3.4 Yb as energy shuttle 

As stressed out by C. Ma et al., “the optimal sensitizer concentration in single UCNPs 

is not limited by the concentration quenching effect as long as surface defects and interior 

defects can be minimized”.97 Especially, Stanley May & Mary Berry91 and Feng Wang98  

investigated the role of dopants in energy migration within a UCNP to the surface. 

Energy migration in core UCNP 

 Marry Berry and coworkers91 have rationalized this phenomenon for Er-doped core 

UCNP. A rapid energy migration to the surface is occurring via successive energy transfer 

among Yb ions acting as an energy shuttle. It explains why high sensitizer loading in UCNP 

leads generally to a reduced luminescence, especially in the case of small UCNP. 

Such a process is strongly reduced upon addition of an undoped shell suppressing the surface 

quenching, as it will be more discussed in chapter 3. 

 

 

Figure 17. Schematic depiction of the nanoeffect in β-NaYF4:Yb,Er. Rapid energy migration 
at the 1 µm energy-level leads to equilibration between interior and surface sites, such that Er3+ 
(4I11/2) and Yb3+ (2F5/2) both exhibit enhanced multiphonon relaxation, labeled as kNR3 and 
kYb_NR, respectively. Figure and caption reproduced from 91. 
 

Energy migration in core@shell structure 

The impact on energy migration within the crystal as a function of the sensitizer content 

has also been particularly examined by F. Wang’s team working with a standard matrix (NaYF4 

or NaGdF4.)98 
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Figure 18. Impact of Yb content on β-UCNP emission intensity compared in NaYF4:Yb,Er 
cores and their corresponding core@shell. 98 
 

On a usual matrix (figure 18), concentration quenching happens above 20% of 

sensitizer. Nevertheless, core@shell architectures with similar core compositions reveal an 

increase intensity with sensitizer concentration. Indeed, at such high Yb content, sensitizers are 

close enough to ensure energy migration to the surface. When the shell is added, the surface 

cannot quench such energy, leading to luminescence increase. This indicates that high sensitizer 

content is compatible with core@shell structure to enhance upconversion efficiency. However, 

this particular exploration is limited to 40%Yb. 

 

Compiling this work of Wang group with the beneficial effect or higher sensitizer 

content stressed out by Prasad group (section III.2.1), made us think that an original matrix 

Na(Ybx-Gd(1-x))F4 covered by an undoped NaREF4 (RE=Gd or Y) shell should lead to the 

formation of bright objects. Additionally, the work of prasad82 pointed out a second expectation 

of such a matrix: By rising gadolinium content up to 40%, NP size is lowered, but it remain 

constant above this value. As a result an original Yb-Gd matrix with at least 40% Gd appears 

as a good compromise to go towards bright and small UCNPs.  

 

Therefore, most of our work will focus on this original composition to prepare ultrasmall 

UCNPs: Na(Yb57-Gd42%)F4:Tm1%. 



 Chapter I – Literature review and project objectives 
 

-41- 
 

III.4 Favoring radiative emission (Process D) 

III.4.1 UCNP sensitization (process E) 

As previously described, UCNP main phenomenon is ETU, thanks to Yb sensitization, 

setting in stone the excitation at 980nm. However, a chromophore, with an efficient absorption 

cross-section and an excited state higher in energy than the excited Yb one, can be used as a 

relay to feed UCNP system by transferring energy to Yb excited state. Thus, the new incident 

light is chosen to excite this new second sensitizer, following sensitization mechanism. UCNP 

sensitization (figure 11E) can be envisioned for two purposes: either increasing their absorption 

thanks to dye sensitization, or tune the excitation wavelength. 

Absorption enhancement 

Absorption enhancement can be achieved thanks to dye sensitization by incorporating 

highly absorbing antennas.99,100 Nevertheless, such approach is not very popular due to the time-

consuming design of dye antenna and the low efficiency (one 100 or two 99 orders of magnitude) 

compared to upconversion efficiency enhancement with shell growth (up to 4 orders of 

magnitude).101 

Tuning the excitation wavelength to prevent overheating 

The main inconvenient of usual UCNP excitation (980 nm) is the overlap with strong 

water absorption that can induce overheating in biological applications. However, it can be 

overcome either by pulsing the laser (by pulse excitation or using a chopper), or by exciting 

with another wavelength which is less absorbed by water. 

The latter can be achieved thanks to another Rare Earth (RE) element with adapted cross-

section, neodymium, which is absorbing in the 790-810 nm range and used as an antenna to 

excite ytterbium.28 Indeed, by switching from 980 to 800 nm (figure 19) the excitation laser, 

water absorption coefficient is 24 times lowered from 0.482 to 0.02 L.mol-1.cm-1 (fig18).102 This 

strategy may represent the future for biological applications, but is beyond the scope of this 

manuscript.  
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Figure 19. Absorption of water in the NIR and the integration scheme of Nd3+
àYb3+ energy 

transfer process by introducing neodymium in a Nd/Yb co-doped shell physically sepated 
from the emitters.Figure and caption adapted from 28. 
 

IV Towards water-soluble UCNP 

IV.1 Challenge of surface coating for biology and nanomedecine 

IV.1.1 Importance in Biology 

Usually, the nanoparticle’s surface is covered by an organic or inorganic layer, 

providing mainly solubility and long-term stability. Focusing on inorganic@organic 

nanohybrid, such assemblies can be prepared following two approaches: in situ formation, or 

post-modification of NP surface. 

However, once exposed to biological content, the surface will likely be modified, changing the 

complete nanohybrid properties. Nevertheless, organic coating can also give access to other 

properties (for example by grafting another probe for bimodal imaging), or targeting.  

Thanks to the well-known easy NP surface functionalization, a variety of labelling units 

can be exploited such as small organic molecules (folic acid)103, carbohydrates, peptides 

(RGD)104, proteins, antibodies, aptamers 105, etc ... 

Cell internalization of such nanohybrids is related to their hydrodynamic diameter, 

surface charge, and shape. It has been demonstrated by S. Zhang et al. 106 that the rate of cellular 

uptake is maximized via endocytose pathway for nanoparticles having a diameter of about 50 

nm, thanks to an optimized number of interaction with close cellular surface receptors. 

Nevertheless, endocytosis is also affected by the shape: anisotropic rods have been shown to 
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present higher uptake level than isotropic NPs.107 Moreover, as the plasma membrane is 

negatively charged, positively charged nanohybrids are more likely to be integrated. 

IV.1.2 Specific issues in Nanomedecine 

When introduced in the general circulation, two problems can be find: exposition to the 

immune system, and persistence in the body.  

For instance the adsorption of opsonins at the surface can lead to phagocytosis by macrophage 

(opsonization).108 Prolonged circulation half-life can be reached by introducing stealth 

properties, especially thanks to surface PEGylation.109  

Within a whole mammal, nanohybrid elimination is achieved by either renal or hepatic 

clearance. The current trend in reducing NP toxicity relies on promoting renal elimination in 

order to have a shorter in vivo residence time than the kinetics of the toxic phenomenon (such 

as metal leaking for example). Kidney filtration is linked to the permeability of the negatively 

charged glomerulus basement membrane. Experimentally, its threshold allows filtration of any 

kind of sub-6 nm, and positively charged sub-8nm NPs.110 For other non-biodegradable NPs, 

hepatobiliary system is usually considered as the only alternative mode of elimination.110  

IV.2 Strategies for water-solubilization 

As biological medium is mostly aqueous, one can be interested in using water 

dispersible UCNPs. Two main routes are available: except in the case of hydrothermal 

synthesis, crude UCNPs synthesized are hydrophobic due to the nature of the ligand (usually 

oleate OA).  

Brightness seems to be more efficient with hydrophobic nanoparticles.111 As a result, UCNP 

are only soluble in apolar solvents such as cyclohexane, toluene, THF, xylene, octadecene, oil. 

The main application of UCNP being in biology, the challenge is to transfer them into water 

while keeping the optical properties. This problem became a major issue these ten last years 

and a lot of strategies have been reported,71,112 as we summarize below (figure 20) : 
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Figure 20. Schematic representation of strategies to get water-soluble UCNP.  

Two points of view are contrasted: maintaining or not the oleate ligand at the surface of UCNP. 

Maintaining OA 

The first way is to maintain oleate at the surface. By doing this, there are 2 main 

approaches: modifying or not the structure of oleate.  

The most usual strategy for inorganic nanoparticles (for example zinc oxide or iron oxide) is to 

maintain the original oleate capping and grow at the surface a silica shell layer. A silica shell 

can afford directly water-dispersibility, while being a versatile platform for further 

functionalization such as targeting or coupling with other probes. The drawback of 

encapsulating UCNP into a silica shell are the increase in NP polydispersity compared to the 
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uncoated one, the instability in aqueous solution (in acidic or basic media), and the difficulty to 

form a thick silica layer.113,114 

The second approach when keeping unmodified OA is the use of amphiphilic 

compounds, such as phospholipids or amphiphilic comb copolymers such as those derived from 

alternate copolymers of maleic anhydride and various olefins (figure 21). The hydrophobic part 

(usually long alkyl chains) intercalates between the alkyl chains of oleate, while the hydrophilic 

one is directed outward. This bilayer assembly is governed by Van der Waals interactions. 

Contrary to phospholipids, such amphiphilic polymers allow the possibility of multiple 

functionalizations through anhydride “click chemistry”.  

     

Figure 21. Repetitive units of, from the left to the right, poly(octadecene-alt-maleic anhydride) 
“POMA”, poly(isobutene-alt-maleic anhydride) “PIMA”, and poly(styrene-alt-maleic 
anhydride) “PSMA”.  

Post-modification on OA 

The oleate post-modification pathway is related to the reactivity of the carbon-carbon 

double bond of ligand (oleate), mainly through oxidation such as ozonolysis,115 epoxidation (m-

CPBA),116 or more frequently Lemieux-Von Rudloff oxidation (mixture MnO4
-, IO4

-).117 The 

resulting azelaic acid or aldehyde can be well dispersed in water or ethanol, while keeping the 

same size and shape.115 Nevertheless, very harsh reaction conditions, long reaction times, low 

chemical yield associated to a poor colloidal stability in water, and a limited number of ligands 

can explain why this approach is not commonly used. A different strategy was reported, 

although only once, by transposing a well-known maleinization118,119 reaction from lipids 

chemistry to NP surface chemistry by E. Peng et al.120 Despite the attractive post-

functionalization perspectives of succinic anhydride grafting in alfa position of the double bond, 

this strategy remains suspicious while being so unexploited. 

 

Ligand exchange 

An alternative of the above described strategy based on keeping OA at the surface, is to 

clear the latter and build on demand a new organic corona. Such ligand exchange can be 

achieved either by direct contact with higher affinity ligand, or by the removal of OA in acidic 

condition (hydrochloric treatment121 or nitrosyltetrafluoroborate (NOBF4)122 treatment) 
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followed by surface covering with a new capping ligand. NOBF4 approach, being performed in 

organic solvent (DMF), permits a convenient long-term stability in solvent adapted for storage, 

and a more efficient OA removal.123  

Whichever the ligand exchange strategy it has been admitted that the ligand strength of 

interaction should be in rising order: -SH < -NH2 < -COOH < -PO3H.  

Despite the risk of NP crosslinking, polydentate ligands ensure a better stabilization due to 

strong entropic effect. Some usual ligands are listed below (table 5), as an illustration.  

 

Table 5. Usual coating agents suitable for UCNP exchange ligand 

 Compound Capping group 
Apparent 

charge 

Monodentate 
O-phosphorylethanolamine (AEP)124 -PO3H (+) 

PEG-Phosphonate or PEG-carboxylate125 -PO3H or -COOH neutral 

Polydentate 

citrate126 -COOH (-) 

Poly(VinylPyrrolidone) (PVP)127 lactame neutral 

Poly(Acrylic acid) (PAA)127,128 -COOH (-) 

Poly(Vinyl Phosphonic Acid) (PVPA)129 -PO3H (-) 

PAA-b-PEG130 -COOH neutral 

PVPA-b-PEG129 -PO3H neutral 

Poly(Allylamine Hydrochloride) (PAH)131 -NH2 (+) 

Poly(EthyleneImine) (PEI)127 -NH2; -NH3
+ (+) 
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IV.3 Limit of water-solubilization 

Once moving UCNP in aqueous media, following one of the above-described methods, 

one has to considerer the consequences on optical properties and colloidal stability in water and 

biological media. 

Loss of optical properties 

Despite various strategies being available for water-solubilization, all of them lead to a 

drop of upconversion efficiency due to surface quenching from water (sub-section III.3.1).  

Stability in water 

Due to the presence of endogenous electrolytes (section I.2), some byproduct can be 

formed due to ion exchange (table 6).  

Table 6. Solubility product constant (Ksp) at 25°C of some Rare-Earth precipitate, and some 
apatite under physiological condition (pH=7.4; temperature=37°C). 

 Ksp at 25°C Ksp at 37°C, pH≈7.4 

NaYF4 1.6 x 10-26  132  
CaF2 5.3 x 10-9  133  
YF3 8.6 x 10-21  133  
NaF 7.1 x 10-1  134  

YPO4 1.7 x 10-25  135  
GdPO4 4 x 10-26  135  
Y(OH)3 1.0 x 10-22  133  
Gd(OH)3 1.8 x 10-23  133  

Ca10(PO4)6(OH)2 calcium hydroxyapatite  7.4 x 10-60   136 
Ca10(PO4)6F2 calcium fluorapatite  3.2 x 10-61   136 

 

In vitro  

At first, precipitation competition with free electrolytes available in blood (such as 

calcium, potassium and phosphate), have to be envisioned at the in vitro scale. Thermodynamic 

grounds of the particle dissolution can be delineated considering the solubility product of 

NaREF4. It was only estimated in one recent publication,132 no more precise quantitative 

comparison can be made. 

 !
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The solubility can be increased by common ion effect: especially the important 

biological electrolytes calcium and phosphate can indeed form precipitates with the elements 

contained in the nanoparticle. 

Thus, calcium can scavenge fluoride with the formation of fluorine CaF2 according to  

��bz = ��z� 8 2#b�########���(��bz* = 5�c × ���t 

��'Jb� 8 #2#��z� = ��� 8#'Jf� 8 2#��bz########�+ =
������'Jf��
���z��z @ c�c × ���+B 

The second reaction is more important: it is the precipitation of rare earth phosphates.   It was 

found that Rare-Earth phosphate and NaREF4 have similar solubility product (Ksp≈10-26).  

'Je�� =#'Jf� 8 e��f�########���('Je��* @ ���z�('J = �*#/�#���zr('J = �!* 

Therefore, the reaction between NaREF4 and phosphate is rather favorable:!
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������b���
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@ ��� F � 

Experimentally, NaREF4 NPs dissolution was noticed in vitro, in low NP-concentration 

condition and exposed to high phosphate content (phosphate buffer).132,134 However, some 

kinetic considerations should also be taken into account, especially the residence-time of 

nanoparticles in a biological compartment and their surface coating. 

To the best of our knowledge only one ligand was proven to afford a protection against water 

dissolution: poly(Maleic anhydride-alt-1-Octadecene)-bis(hexamethylene)triamine (POMA-

BHMT).137 

 

Figure 22. Structure of POMA-BHMT. Reproduced from 137. 
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In vivo 

After validation of the first colloidal stability assays with ion competitors in water, a 

final critical point towards in vivo application is the interaction with biological scavenger such 

as hydroxyapatite. These inorganic complexes136 (mainly located in teeth and bones) made of 

calcium, phosphate and hydroxide have an abysmal solubility product (≈10-60), but even lower 

when substituting hydroxide by fluoride (≈10-61). Thus, it can have a similar deleterious action 

as Ca2+.  
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V Applications of UCNP 

V.1 Overview on UCNP main applications 

Lanthanide-based UCNPs are emerging materials with several applications, until now 

mainly related to biology (figure 23).138 The most evident application is to use them as 

luminescent nanoprobes for optical imaging. However, UCNP luminescence can be also 

exploited either as a reporter or an actuator. As reporter, they are used for imaging and sensing. 

As an actuator, they are used as a local relay to trigger photo-induced transformations, thanks 

to UCNP UV-visible emissions under NIR excitation. 

 

Figure 23. Applications of UCNP classed in two categories: UCNP as reporter (yellow) or 
actuator (light blue). Red arrow indicates FRET (Förster Resonance Energy Transfer) 
phenomena with donors such as chromophore (sensing), photosensitizer (PDT), or 
photocleavable bond (drug release). 
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V.1.1 UCNP as reporter 

Multimodal bioimaging 

Thanks to their intrinsic composition, UCNPs give access to others types of imaging 

techniques, such as MRI, X-ray- (2D) & CT-imaging (3D), and nuclear imaging. Compared to 

usual probes, i.e. single chromophore or metal complex, NP-based probes allow concentration 

and confinement of a high amount of single probe inside one nanoparticle, leading to higher 

signal. 

Gadolinium being the ion of choice for MRI (Magnetic Resonance Imaging), due to its high 

spin number (s=7/2), NaGdF4 appears as an ideal matrix for bimodal MRI/Optical imaging. 

Nevertheless, MRI and optical imaging have an antagonist behavior regarding the nanoparticle 

size: The smaller the NPs, the bigger the surface-to-volume ratio is. Thus, with ultrasmall NPs, 

there is strong surface exchange, leading to a drop of upconversion efficiency but a MRI signal 

enhancement in the context of Gd-based T1 agents.139 As a result, a compromise has to be 

established to design such bimodal probes. Lanthanides are heavy metals; hence they are 

perfectly adapted to X-ray- & CT-imaging to increase contrast. Concerning nuclear imaging, 

fluoride can be substituted partially by its corresponding radioisotope 18F for PET (Positron 

Emission Tomography). However, due to its low half-time (≈110 min) it is not a convenient 

choice. A better strategy for nuclear imaging should be the use of 153Sm3+ for SPECT (Single 

Photon Emission Tomography) with t1/2=46.3h. Such isotope can be incorporated by replacing 

Rare-earth matrix components, either at the early stage of the synthesis, or more easily by 

contact to UCNP already prepared.140 Others techniques start to be transposed to UCNP, for 

example photoacoustic imaging. 

In addition, theranostic UCNP-based platform are design by associating imaging modalities to 

therapy. For example, M. Sun et al 141 designed one of the most relevant multimodal 

nanohybrid, by combining four modalities (optical imaging/MRI/CT-imaging/photoacoustic 

imaging) with two therapeutics actions (photodynamic and photothermal therapies).  

Sensing 

Aside from optical imaging, light emitted by UCNP can be used as reporter or 

actuator. 

Direct sensing involves two major applications: thermometry and invisible inks for security. 

Thermometry imposes the use of Er3+-doped UCNP. In erbium spectra the green-to-red and 

green-to-green intensity ratios, respectively between peaks at 540 & 650 nm, and 525 & 545 

nm are varying with temperature. Thus, once calibrated, it can be used as an accurate 
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temperature sensor. For curiosity, one should address to the work of the leading team of F. 

Vetrone.142 

Indirect sensing is based on on/off FRET activation triggered by close contact with the target 

of interest, as described in FRET subsection (III-3-3). Analytes such as ions, gas (CO2, O2, 

NO2), reactive oxygen species (ROS, NOS), or biomolecules (antigen, protein, enzyme, RNA, 

DNA, …) can be detected.  

For more details about sensing application, reader should address to reviews such as B. Gu et 

al. 143 

V.1.2 UCNP as actuators 

UCNP-assisted phototherapy 

  The second kind of applications, as actuator, are mainly based on the use of UCNP as a 

nanolamp. These nanolamps are used to produce visible to UV light locally in deep-tissue, upon 

NIR excitation. Hence, usual photoreactive systems are transposed with UCNP, such as 

photodynamic therapy (PDT), photothermal therapy (PTT), drug-release or optogenetics.  

The latter being the most outstanding, it enables the manipulation of membrane ion channels 

rhodopsin144 or neuronal activity.145,146  

Other (non-biological) applications  

UCNP can also trigger non-biological actions. As a result they can be used in 

photocatalysis, such as photopolymerization application, for example with trithiocarbonate-

based RAFT agents.147 

In solar cells, UCNP appear as a good complement to the existing devices (limited to 200-1200 

nm for c-Si), as the RE emitters used as antennas should extend the absorbance area to deeper 

NIR.148  

 

V.2 UCNP as a luminescent probe 

Nanoparticle-based probes 

Nanoparticle-based probes are expected to display additional features compared to 

traditional organic dyes.  

*Enhanced photostability, as the luminescent moiety can be shielded from the biological 

quenchers   
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*versatile and simple synthesis, enabling large variation of spectroscopic properties and target 

affinity or the introduction of additional properties leading to multimodal probes  

*Eventually, nanoparticle-based probes are intrinsically large, therefore they can be used to 

address specific metabolic issues such as internalization or trafficking mechanisms.  

As for probes based on conventional organic dyes, luminescent nanoparticles based tags are 

made of two (or more) components: a luminescent core and an organic ligand corona to 

interface with the biological medium.  

 

Among the versatility of potential UCNP application, our focus is on optical imaging at 

different scales. The following short section will present how Tm emitter-based UCNP appear 

as ideal probe to address a unique NP to various optical imaging purposes: from tissue imaging 

towards tracking and super-resolution. 

V.2.1 Tm-based UCNP: a multimodal nanolamp 

NIR-to-NIR imaging of tissue 

In upconversion condition, Thulium emission spectrum is split into 2 regions: a very 

intense emission band in the NIR (802 nm) and multiple more or less intense peaks in the visible 

and UV domains (figure 24). 

As a result, it is the only emitter allowing NIR-to-NIR imaging. Thus, both excitation beam and 

NIR emitted light can go through tissue, allowing a less invasive deep-tissue imaging.  
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Simultaneous tracking and therapy 

Non-blinking NIR emission band is perfectly adapted to tracking, as it allows the 

continuous monitoring through tissue. On the other hand, the other less emissive bands (mainly 

UV and blue, or red) are more adapted to excitation of photosensitive systems for example for 

PDT or drug-release. Thus, local photoeffect can be triggered on demand.  

As UCNP are highly nonlinear materials, low excitation power density allows only the super 

intense NIR band, while the others are gradually revealed at higher power. As a result, a 

potential clinical application should be declined in two steps: 

1) At first, under low power laser excitation, a surgeon should localize the NP, as only the NIR 

band is detectable 

2) once irradiating the target area, the laser power should be raised, revealing visible and UV 

emissions, thus triggering local effect.  

 

Figure 24. Emission spectra of UCNPs. Pink area is attributed to peaks of interest for NIR-to-
NIR deep-tissue imaging. Blue area represents emission bands useful to induce local 
photochemical effect. 

 

V.2.2 UCNP and Super-resolution microscopy 

The former subsection revealed the interest of Tm-based UCNP for imaging. But it is 

not only limited to tissue imaging and can be applied also to modern microscopy techniques 

such as super-resolution microscopy. As it was already presented at the beginning of the chapter 

(section I), two main strategies can be distinguished: STED-like methods or stochastic ones. 

The latter requires the use of light-fluctuating emitter points such as bleaching or blinking. As 

a result, UCNP are not adapted, in appearance, due to their extreme photostability (no blinking, 

no bleaching), but STED approach should be envisioned by interacting with the complex Tm 



 Chapter I – Literature review and project objectives 
 

-55- 
 

excited states’ kinetic network. Indeed, in 2017, the first successful implementations of UCNP 

for super-resolution microscopy were reported, by using STED methodology (figure 25).149 The 

strategy is based on the coupling of 980 nm, for usual ETU phenomenon, with a second one at 

808 nm. The second beam induces depopulation of the 3H4 Tm-level which is responsible of 

the NIR emission (802 nm). However, it should be noted that such STED methods requires 

higher emitter content to get a more accurate excited state relaxation where 980 nm and 800 nm 

beams are superimposed. 

 

Figure 25. Upconversion luminescence using dual-laser illumination. A) Energy level 
diagrams of Yb/Tm co-doped UCNPS under 980 nm illumination (left) or both 980 and 808 
nm illumination (right). b) Confocal images in 455 nm upconversion emission of 8%Tm-doped 
UCNP under CW 980 nm laser (left) or under both 980 and 808 nm dual CW laser excitation 
(right). c) Similar image than B) but with standard 1%Tm doping instead of 8%. For b) and c) 
the 980 nm and 808 nm laser powers measured at the objective back aperture were 1mW and 
5mW respectively. Each inset shows the luminescence signal profile along the diagonal white 
line in that panel across a typical nanocrystal. Pixel dwell time, 4ms; scale bar, 500 nm. 
Reproduced from 149.  
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Nevertheless, up to now, an area of interest remains unexplored: a stochastic approach 

for super-resolution with UCNP. Thus, we decided to investigate it, as described in the next 

subsection and in the last chapter.  

VI Aim of the manuscript 

My PhD topic is part of an ANR-funded project called BLINK: Luminescent 

nanoparticles with remote control of blinking for application in super-resolution microscopy 

and tracking. Hence the aim of my work was at first to design small and bright upconverting 

nanoparticles suitable for super-resolution microscopy, that had not been demonstrated when 

the project started (2016). We focused on stochastic imaging, specifically SOFI. As a result, 

the great challenge is to make the non-blinking UCNP blink. 

The idea was to couple small Tm-UCNP with a photochromic shutter in order to build a pseudo-

blinking nanohybrid. Tm emitter is chosen as blue emission is more adapted to the reversible 

photoswitching of the blinking shutter. Moreover, this probe can also be tracked thanks to its 

NIR emission. 

The present manuscript will describe how my work was setup in order to go towards this 

application. 

-Chapter 2 discusses the synthesis of UCNP nanoparticles from scratch, with a particular 

attention to size reduction. Compared to the existing strategies, an original hybrid Na(Gd42%-

Yb57%)F4 matrix doped by 1%Tm was developed to provide more emissive objects thanks to an 

increased absorption. 

-Chapter 3 highlights photophysical properties of UCNPs and an original analytical approach 

to move towards the proposition of a new kinetic model adapted to energy flux migration 

between dopant energy levels.  

-In Chapter 4 will be developed applications of UCNP as nanolamps.  

At first, attempts to characterize the nanolamps by a chemical actinometry approach will be 

exposed.  

Then, application towards SOFI-based super-resolution application will be introduced: from 

the choice and synthesis of the photochromic shutter, to the design of the water-soluble 

nanohybrid. First results towards the feasibility of this application will be discussed. 
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Synthesis of ultrasmall UCNPs 

 

 

 

 

 

 

 

“Plutôt que de maudire les ténèbres, allumons une chandelle, si petite 

soit-elle” (Confucius) 
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I- Litterature review 

I.1 Theoretical model of synthesis of UCNP  

Theoretical aspects of the preparation of nanocrystals can be found in the literature. In 

particular, an important amount of work has been dedicated to the synthesis of quantum dots as 

their emission properties are strongly bound to their size. The general frame of the Lifshitz-

Slyozov-Wagner (LSW) theory is a biphasic system with a continuous phase and a dilute 

discrete one: spherical independent particles grow and exchange matter by 

dissolution/precipitation process. When the Ostwald ripening regime is established, the amount 

of dissolved material is quasi-negligible and the driving-force of the changes of the particles’ 

shape is the minimization of the interface between the two phases. The particle size distribution 

(PSD) !"(#, $)  presents a self-similar behavior: "(#, $) = %&$'(#)*. +(-)  with r* being a 

critical radius, and - = $(#)/$'(#) an adimensioned length parameter.  For the LSW theory, 

the critical radius is the mean of the PSD and defines the size where the growth rate is null: 

0121342'(3) = 5. The normalized, scaled size-distribution function!+(-) gives the shape of the 

distribution.1 

These results were then adapted to UCNPs: the main difficulty is the presence of two 

polymorphs, the cubic and hexagonalphases. Therefore it requires a triphasic system (one 

continuous phase and two discrete ones). As expected, the succession of crystalline phase 

follows the empirical rule of Ostwald’s “rule of phases”: the polymorphic phases appear by 

order of increasing stability. In this, section the main results achieved by the team of Talapin et 

al. will be recalled, then, their adaptation to the presence of two polymorphs will be presented.  

I-1-1- Two phases: one continuous 1 and one discrete 2 

General growth kinetic scheme 

The growth mechanism is based on continuous exchange of material between 

nanoparticles with the continuous phase.  Classical hypotheses are that nanoparticles stay far 

away from each other and the surface changes do not affect the steady state regime that is 

established quickly around the growing center. Key equations describe the transport, the surface 

reaction and the size changes, and lead to the following expression 

6$
6# = 789

[:]; < >2
?@
>2@

$ A 9
>2@
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Where dr/dt is the radius growth rate, Um the molar volume of the crystal phase, D the diffusion 

coefficient of the dissolved precursor, [M]∞ the concentration of dissolved precursor in the bulk 

solution and k1
r and k-1

r are the radius dependent rate constants of deposition and dissolution 

respectively.  The improvements of the work by Talapin et al.2 are that a general expression for 

the radius change is given without simplifying constraints and that the radius dependent kinetic 

rates constant are related to equilibrium one via the use of transfer coefficients. Rate constants 

are size-dependent and differ from those related to a “flat” surface (when the thermodynamic 

equilibrium is reached), respectively >BCD3@  and >BCD3?@ . In the model developed by Talapin, a 

dependence of the rate constants with r is expressed as 

>2@ = >BCD3@ E?DFGHIJKL  and >2?@ = >BCD3?@ E?MFGHIJKL  with a+b=1, a and b being the transfer 

coefficients usually taken as a=b=1/2. Therefore 
NJOP
NJP =

NQRSTOP
NQRSTP E?FGHIJKL  

At the equilibrium, when the surface is flat, the concentration of monomer is [M]e defined from 

the solubility product Ks =[M]e=  
NQRSTOP
NQRSTP  . The super-saturation being S = [M]∞/[M]e the radius 

change with time becomes 

6$
6# = 789 U < E?VWXI2YZ

$ A 9
>BCD3@ EDVWXI2YZ

 

The magnitude of term 
\

NQRSTP  allows one to distinguish two regimes: diffusion controlled when 

D<<k1
flat and reaction controlled otherwise.  

It can also be seen that if r = r* = (2γUm)/(RTlnS) then (dr/dt)r* =0. This is the so-called critical 

radius: if r<r* the particle dissolves, if r>r* the particle grows. It is common then to use ρ= r/r* 

as a dimensionless length in such problems (note that ρ is a function of time as r* is). Therefore, 

in the PSD function F(r,t) = A(r*(t)).g(ρ), g(r)“tails” down to zero because small particles are 

vanishing. 

The average value <r>  (=r*(t)) evolves with time as  

^$_` = ^$a_` A b# 
α indicates the limit dynamics of the system: α = 2 if reaction controlled and 3 if diffusion 

controlled.3  
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Nucleation  

The classic homogeneous nucleation theory is based on the evaluation of the free energy 

of a transient cluster made of i monomers, that will act as a crystal seed of free energy ΔGi. 

Above a threshold value, d(DGi)/di <0 then the seed grows. The nucleation rate R is then the 

probability for a crystal to grow from monomers: R = [M] A exp(-DGi/RT). 

I-1-2- Extension to UCNP polymorphs α and β phases 

Haase and coworkers have carefully explored the case of the Ostwald ripening with 2 

polymorphs of different stability. The key idea was to simulate the behavior of a population of 

kinetically unstable α phase nanoparticles in the presence of a small amount of β one. A time 

period was predicted during which the α-particles would undergo Ostwald ripening while β-

particles keep growing when both phases are present as supersaturation is controlled mostly by 

the less stable, most soluble α-phase. During this growth stage, the number of β-particles is left 

unchanged and β-PSD experiences size focusing. When the mass transfer from α- to β-

nanocrystals becomes dominant (i.e. when β-particles are big enough), the supersaturation 

drops bringing all α-particles to complete dissolution.  

Figure 1. Nucleation and growth dynamics: Ostwald focusing 

 Once the α-phase has disappeared, Ostwald ripening takes place for the β-particles and 

PSD broadens. As a consequence, the narrowest β-phase PSD should therefore be found right 

after the α-phase has vanished. 4 This mechanism is known as Ostwald focusing. 

I.2 Chemical characteristics of NaREF4 

NaREF4 precipitation considerations 

NaREF4 is  highly insoluble (solubility product estimated at around 10-26 by the work of 

T. Soukka5), the precipitate is formed by a simple precipitation involving 3 components: 

RE3+!!+!!4!F-!!+!!!Na+!!à!!NaREF4!(s)!

This chemical reaction can be run in different solvents, from water to oil. However small sizes 

are generally obtained in apolar solvents, as it is already well-known for QD (CdSe) and iron 
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oxide (Fe3O4) syntheses. As a result, small UCNPs are usually prepared in oleic acid:octadecene 

mixture, the former acting also as a NP stabilizer to control the crystal growth. For such a 

solvent mixture, the precursors commonly used are of three types: 

· Rare-Earths are usually used as metallic soap RE(OA)3 soluble in apolar solvent. It can 

be prepared and stored as a premix, or more usually prepared in situ. Such a soap is 

generally prepared from acetate or chloride precursors. 

· Sodium cations can be introduced from start by using sodium oleate or by introducing 

NaOH in the OA:ODE mixture. 

· Concerning the fluoride anions, two mains strategies have been developed:  

-the direct delivery of ions using inorganic salts (NH4F or NaF), or  

-the introduction of a latent source of fluorure (trifluoroacetate TFA). The latter, coming from 

MOCVD (Metal Organic Chemical Vapor Deposition)6 approach, is based on TFA pyrolysis at 

temperature above 250°C, allowing the delivery of a burst of fluoride. However, TFA pyrolysis 

leads to gas formation, limiting the use of closed reactor devices such as microwave: 

2!CF3-COO-!!à!!2!F-!!!+!!2!CO2!(g)!!+!!F2C=CF2!(g)!

Compared to the thermal decomposition approach (Table 1), the thermal coprecipitation way 

appears as a more user-friendly strategy, despite the apparent poor control of nucleation. Thus, 

my work has focused on this latter.  

 

Table 1. Comparison of pyrolysis and thermal coprecipitation pathways. 

 

 Thermal decomposition (pyrolysis)7 
Thermal coprecipitation 

way8 

Fluoride source TFA NaF; NH4F 

Advantages 
-Smaller NP size: 5-40 nm 

-better control of nucleation step 

-easy to implement 

-size range: 10-40 nm 

Inconvenients 

-Toxic gaseous by-products 

     (F2C=CF2; COF2; HF) 

-pressure issue for closed reactors (MW) 

- bigger object 

- poor control of nucleation 
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I.3 NaREF4 polymorphs: αàβ, an Ostwald’s step rule 

As described in the introduction chapter, NaREF4 can appear in two polymorphs, the β- 

one being the only one interesting for upconversion. Experimentally, it has been noticed that 

when a substance can lead to different polymorphic phases, it crystallizes following a sequence 

process9: crystal phases appear successively in a rising thermodynamic stability order.  

Thus, the challenge is to prepare pure β-phase. Therefore, the usual approach is based 

on heating for a sufficient time and at temperature high enough to ensure the complete α-to-β 

transformation. However, a prolonged reaction time leads to coarsening of the nanoparticle 

size: this is the Ostwald Ripening. The problem gets further complicated by the chemical 

reactivity of the various RE used.  

Lanthanides and yttrium form the family of Rare Earth elements. Lanthanides, although 

very similar, have slight differences in their chemistry which were used since their discovery 

to distinguish two main RE groups:  Light RE elements (LRE) from lanthanum to gadolinium 

and Heavy ones from gadolinium to lutetium (HRE). A third group, the “Middle rare-earth 

elements”, is sometimes used for metals around gadolinium. Although above lanthanum, 

yttrium presents similar chemical properties to the heavy lanthanides. This classification also 

translates in the making of NaREF4. 

Phase diagram 

Phase diagrams of all possible NaF-REF3 mixture were established by Thoma et al.10 in 

1966. At low temperature (300°C), the defined phase is the hexagonal β-one. The α, cubic phase 

occurs only at high temperature and tolerates a larger range of NaF/REF3 ratio. It is therefore 

expected that the less stable cubic phase should appear before the hexagonal one, according to 

the Ostwald rule of phases.9 
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Figure 2. Phase diagrams of NaF-REF3 for Gadolinium and Yttrium. Hatched domains are the 

cubic NaREF4 phase. Hexagonal phase domains are highlighted in orange. 

NaREF4 cubic-to-hexagonal phase transformation 

Over the twenty last years, investigations have compared the feasibility of the formation 

of the hexagonal phase at lower temperature (thermal coprecipitation, hydro/solvothermal or 

pyrolysis routes) according to the nature of the RE ions. In particular, the work by the team of 

Chun-Huan Yan11 revealed some collective crystallization properties and trends for the 

hexagonal phase by thermal decomposition synthesis in Oleic Acid:Octadecene (OA:ODE) 

mixture: 

Group I RE (Pr and Nd) have the particularity of forming REF3 as the transient phase, rather 

than cubic phase. The transformation to the thermodynamically stable hexagonal phase required 

strong conditions, with temperatures around 300-320°C. The two other groups show at high 

temperature a phase transition from the transient cubic phase to the hexagonal one. The main 

difference between them is the ability to achieve this phase transition.  

Metals from Group II (from Sm to Tb) show an easy-going transition phase, that can be 

achieved in mild conditions, by heating only at 280°C.  

However, for elements from the Group III (Y and Lanthanides from Dy to Lu) the access to the 

hexagonal phase is quite difficult, and requires stronger conditions (heating at 300-320°C). The 

following table summarizes these results. 
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Table 2. Trends for the hexagonal phase of the Rare Earth groups in the case of TFA-pyrolysis 

method. 

 Group I Group II Group III 

Rare-Earth elements Pr and Nd Sm, Eu, Gd, Tb 
From Dy to Lu,  

and Y 

Thermodynamically 

stable phase 
β-NaREF4 β-NaREF4 β-NaREF4 

Transient phase REF3 α-NaREF4 α-NaREF4 

Access to β-phase by 

TFA-pyrolysis 

method 

difficult 

(300-320°C 

required) 

Easy 

(mild conditions 280°C) 

difficult 

(300-320°C required) 

 

As a result, some strategies of doping group III matrix  (such as NaYF4) by another element 

from group II such as Gd (at least 30% Gd) were elaborated in order to promote the formation 

of hexagonal phase and/or to be able to perform the synthesis under mild conditions.12  
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I.4 Synthesis of small UCNPs 

I-1-3- General procedure for UCNP preparation 

Reference protocol 

F. Wang et al. established a reference protocol for the preparation of small NaGdF4
8 for 

a thermal coprecipitation pathway, schematized, as below: 

 

Figure 3. General Scheme of NaREF4 thermal coprecipitation synthesis (in the oleic 

acid/octadecene mixture) showing the 3 main steps: (1) ligand exchange from Rare-Earth 

precursors (chloride) to oleates, (2) precipitation with sodium and fluoride, (3) high temperature 

annealing to achieve growth and phase transformation. 

The process can be decomposed into 3 main steps: at first, there is ligand exchange between 

RE precursors and oleate to form at 160°C Rare-Earth oleate. Then at room temperature fluoride 

and sodium sources are introduced, and the precipitation occurs (except for trifluoroacetate 

source). Finally, after removing volatile compounds by degasing, a high temperature step is 

required to perform nanoparticle growth and phase transition to pure beta-phase. Therefore, it 

begs the question of the optimal duration of the step (3) to ensure complete αàβ transformation 

while keeping a controlled size. 

Monitoring the αàβ transformation 

As proposed by May’s group, it is possible to monitor this transformation in real time, 

by recording the emission intensity in situ.13 However, this experiment is not easily set up, with 

regards to optics alignment and laser safety in common laboratory.  



   Chapter II – Synthesis of ultrasmall UCNPs 
 

-77- 
 

As a result, the most user-friendly but tedious approach is to analyze aliquots sampled during 

the process. The most complete example is coming from Resch-Genger’s team14, with the 

comparison of size (TEM, SAXS), crystal phase and luminescence properties (emission, 

lifetimes, quantum yield). 

 

Figure 4. Experimental set up for real-time monitoring of UCP synthesis. Reproduced with 

permission from14. 

I-1-4- Towards size reduction  

Ostwald ripening in the presence of the two polymorphs has to be mastered to get a 

small size with a fine control of the dispersity. As described in the introduction, Ostwald 

ripening can be decomposed in two successive phases: at first the so-called Ostwald focusing 

when the less stable α-phase is disappearing while both polymorphs sizes are rising but with no 

modification of the dispersity of the β-one. Then, once no α phase is remaining, the size 

distribution of the β crystals is increasing and broadening during an Ostwald defocusing step.As 

a result, the optimal condition is to quench the reaction at the end of Ostwald focusing. If the 

number of β seeds was high enough, the average size will therefore be small. 

Experimentally, in the reference protocol, every step seems to be of importance, but two key 

points can be stressed out: 

-the nature of the RE has a strong impact: Gadolinium is known to favor easy transformation to 

the β-phase, and the resulting size are generally lower than with other matrices, in similar 

conditions; 

-NaREF4 nucleation is under kinetic control: it is a dynamic system, and there is some 

uncertainty on the starting moment of the reaction, that can lead for example to batch-to-batch 

reproducibility issues. 
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I-1-5- Reproducibility issue 

Despite the attempt to standardize protocols for the preparation of UCNP8, it has been 

reported that one synthesis reproduced many times gives different results either regarding the 

size distribution or the photophysical properties, as highlighted by Mays’s team13.  

A radical solution was proposed by O. Wolfbeis’ team: the production of UCNP at the 

litre scale.15 Thus, one batch can be characterized once, then sampled for several applications. 

Nevertheless, this strategy brings new scale-up issues such as reactor size, heating device, 

heating rate, precursors mixing, homogeneization of the reaction medium, volatile compound 

evaporation, etc …, storage and aging. 
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I.5 Aim of the chapter 

Since the UCNP research axis was introduced in the IMRCP laboratory simultaneously 

with the beginning of my PhD, my project was initiated from scratch. Concerning the 

nanoparticles synthesis two approaches had to be carried out simultaneously:  

1) Production of high-quality UCNPs for super-resolution application:  

On this first part the challenge was to prepare ultrasmall bright UCNP with a size competitive 

with QD (sub-10 nm). Therefore, starting from the most standard protocol on NaGdF4
8, we 

designed an original Na(Gd-Yb)F4:Tm formulation with a high content of sensitizer (57% Yb) 

to increase the luminescence, as proposed by the work of Prasad16. By successive optimizations 

to enhance the control of Ostwald ripening, including the mixing procedure and the variations 

of heating strategies, we will describe how a size reduction from 10-15 nm to around 3 nm can 

be obtained. 

2) As the preparation of ultrasmall objects is a time-consuming process, with a limited 

amount of matter produced, the second part focused on the simple preparation of large stock of 

bright UCNPs for further applications. These objects are dedicated for the first attempts of 

nanohybrid formation that will be described in chapter IV. Thus, NaYF4 matrix was chosen as 

it is the most efficient for upconversion, in order to maximize the emission, to setup the 

nanohybrid parameters before using the less emissive ultrasmall ones. 

In the present chapter, the validation of some key synthesis is assessed by fast comparison of 

luminescence spectra. However deeper analysis of the photophysical properties will be 

presented in the chapter III. 
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II From small to ultrasmall nanoparticles adapted for super-
resolution 

II.1 Small UCNP nanospheres (10-15 nm) 

II.1.1 Core UCNP 

We selected a quasi equimolar Yb-Gd composition to enhance the luminescence by 

increasing the nanoparticle cross-section at 980 nm. We first explored the protocol described 

by Wang et al. for the preparation of 15 nm Yb-Gd UCNPs of around 50 % Yb content.8 It 

illustrates the very standard “one-pot” approach, as decribed on figure 3: to the metal oleate, 

prepared from the chlorides (step 1), are added premixed sodium and fluorides sources (step 2). 

This protocol is later referred to as a “premix” protocol. The resulting mixture is then heated to 

high temperature (step 3) in order for crystallisation to proceed. 

· During the ligand exchange (step 1), water was removed by argon flush. Some 

simple test during this steps indicated the evolution of HCl coming from RECl3 precursors:  

-test with AgNO3 revealed the presence of chloride (AgNO3 + Cl- à AgCl (s) + NO3
-). 

-pH paper revealed the presence of acidic compound in the fumes. However this point can be 

misleading. Indeed, the volume of the reaction mixture is lowered during the ligand exchange 

step if the argon flush is prolonged. This is due to azeotropic distillation of oleic acid and water. 

As a result, acidic compound revealed by pH paper can be HCl or oleic acid. No attempts were 

made to quantifiy the amount of HCl eliminated this way. 

· Concerning the mixing (step 2), the strategy is to premix NaOH and NH4F 

solution and introduce dropwise this mixture inside the reactor. However it should be noted that 

during this slow addition some white precipitate is observed in the {NaOH+NH4F} mixture. 

This precipitate byproduct is attributed to NaF formation. Over time the precipitate is evident 

bare eye: nanoobjects are thus very large. 

· Our heating device is controlled by an electronic security preventing overshoot 

(that will be discussed on II-2 section). Thus, the heating rate gradually decreases when getting 

close to the setpoint temperature. We decided to record the “reaction time” only when the 

setpoint temperature was reached: For NaGdF4 matrix it is 280°C. 

 

When applied to our new composition, 10.1 ± 0.6 nm homogeneous monodisperse β-

phase nanoparticles were obtained after 90-minute of heating at 280°C using a conventional 
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heating mantle. However, regular sampling during the 90 minutes plateau revealed before the 

end point a bimodal distribution, persisting almost throughout the reaction time, (figure 5 A, 

B). These two populations were identified by XRD and luminescence data as a (less than 6 nm) 

and β (10.1 ± 0.6 nm) particles, the first ones steadily disappearing, leaving only the latter at 

the end of the reaction time. While the small α-population experiences size coarsening before 

vanishing, the average size of the β-population did not drift much with time. 

 

Figure 5. Core synthesis monitoring by analysis of TEM (Transmission Electron Microscopy) 

picture. A) and B) are 2 representations of the size distribution evolution with time. C-E are 

representative TEM images of the nanoparticles: when temperature reached 250°C (C), after 

30 min at 280°C (D), and at the end point of the synthesis (E). 

 

Complementary XRD results attested that the 1rst population (C) was purely cubic, while the 

latter (E) was pure hexagonal phase.  
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Figure 6. XRD analysis of samples taken at various times during the high temperature heating 

step at 280°C of the premix protocol with conventional heating mantle: 30 min (black), 60 min 

(red) or 90 min (blue). Black squares indicate hexagonal phase peaks, while the black stars refer 

to the cubic one. For the 60min reaction time (red line), peak at ca 48° can be attributed to 

overlapped peaks of the cubic and hexagonal phases.  

 

As proposed by Stanley May and Mary Berry,13 luminescence monitoring was also considered 

(Figure 7): a clear increase of the 800 nm emission was observed over the reaction time, and 

especially after 50 minutes. Although not as sharp as expected, this coincides with the 

apparition of a predominant β-phase in the reaction mixture. Luminescence signals, though, are 

quite low, explaining the noisy blue and UV (respectively 474 and 361 nm) peak values. 
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Figure 7. Evolution of average core diameter (green), and luminescence on 3 characteristic 

emission bands (red, cyan, and purple, respectively for 802 nm, 474 nm and 361 nm peaks).  

 

Despite an apparent easy direct visual observation, luminescence monitoring can only give 

indications about qualitative variations of the photophysical properties: upconversion efficiency 

is increased when a certain amount β-UCNP is present in solution. For a precise quantitative 

analysis of the monitoring, XRD is the main tool as it is the only one giving the nature and 

proportion of the crystal phases. In addition, it provides a bulk measurement of the nanocrystals 

size using Rietveld refinement. TEM monitoring is mandatory only for the control of the 

Ostwald focusing as it will be more detailed later in the chapter. But the latter require to be 

coupled to XRD for crystal phase determination. Indeed, High-resolution TEM with electron 

diffraction is a time-consuming approach and can give crystal phase information, but only at 

the single nanoparticle scale, not on bulk. 

These observations (morphological and photophysical) show that such a protocol could 

not yield the desired bright pure β-phase nanocrystals smaller than 10 nm. It is well established 

that a deficit of sodium in the solution mixture at the early stages of the precipitation favors the 

nucleation of α-phase nanocrystals.17 In the present case, significant  precipitation of NaF 

resulting from the premixing of the NaOH and NH4F methanolic solutions were observed 

during the introduction time. We suspected that this could impede the nucleation of the β-phase. 
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The overall luminescence of the core UCNP is weak. In order to increase the 

luminescence, we decided to grow an epitaxial undoped shell of NaYF4that would reduce 

surface quenching. 

II.1.2 Core@shell UCNP 

Synthesis pathway  

As proposed by F. Wang et al., cores can act as seeds under the thermal coprecipitation 

pathway to promote a shell epitaxial growth at their surface.8 Shell growth conditions differ 

from the core preparation only by the fact that core seeds are introduced as a cyclohexane 

suspension prior to {NaF+NaOH} addition. After the concomitant removal of cyclohexane and 

methanol, the synthesis is basically the same except for a shorter reaction time for the high 

temperature heating step (1h vs 1h30 for the core). 

Shell effect on luminescence 

Direct eye comparison of core and core@shell irradiated by the same laser revealed the 

success of the core@shell strategy to obtain brighter UCNP, as seen in the photograph in figure 

8. 

 

Figure 8. Comparison of core and core@shell brightness by direct observation under 58  

W cm-2 CW 976 nm laser. Laser beam passes through the core sample before reaching the 

core@shell suspension. Both samples are prepared at 5 mg/mL in cyclohexane. 

Kinetic monitoring 

As for the core synthesis, sampling during the shell growth was performed to monitor it 

by TEM and luminescence (figure 9). An increase of the luminescence is clearly observed. To 

our delight all emission band intensities (NIR, blue, UV), are increasing abruptly after around 

50 min, following the size rise (figure 9). Our first explanation was that as the shell is gradually 

growing, surface quenching is progressively removed, leading to the apparent luminescence 

rise. Noticeably an experiment over much prolonged reaction time (2h instead of 1h) did not 
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lead to a luminescence plateau as it would be expected if NPs were totally insulated from the 

solvent. This discrepancy was not further explored. 

Even more interesting is the TEM monitoring. Not surprisingly, early images (figure 

10) show the presence of numerous smaller objects along with the core seeds. At the early stage 

(from 10 to 45 min) these small objects tend to form aggregates of apparent contrast close to 

the seeds, thus difficult to extract from the TEM images before treatment. This explains why 

NP sizes are smaller than seeds over the time period. After 45 min, size increases sharply, 

making the observed luminescence rise due to the shell growth. However, TEM images show 

the persistent presence of smaller objects; we interpreted these as “empty shells”: nano-objects 

made only of NaYF4.  

 

Figure 9. Evolution of core@shell average diameter (green) from TEM pictures analysis, and 

luminescence on 3 characteristic emission bands (red, cyan, and purple, respectively for 802 

nm, 474 nm and 361 nm peaks).  
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Figure 10. Evolution of UCNP during the shell growth. A) initial core nanoparticles. B) UCNP 

obtained after 30 min at 280°C. C) final « core@shell » after 60 min at 280°C. 

 

Limitations 

As revealed by electron microscopy pictures, the coexistence of “real core@shell” with 

bigger size than the former core, and smaller “empty shell-precursors based” nanoparticles can 

be attributed to the nucleation and growth of NaYF4 crystals. Such hypothesis should require 

high-resolution TEM with EDX analysis on single object for confirmation. From this shape 

analysis, two hypotheses can be developed: either some part of the NaYF4 nucleates and grows 

on its side (due or not to a stoichiometry excess), or the reaction time was too short to achieve 

the complete re-dissolution of the NaYF4 matter to feed the complete shell growth. We repeated 

the experiment by doubling the reaction time but it led to similar results. 

This inhomogeneity will be a problem for subsequent steps: 

-for nanohybrid formation: encapsulation attempt (ex: in silica) will lead to the mixture of 

core@shell encapsulated and the coating of inactive NaYF4 impurities; 

-for photophysical characterization: no quantitative approach can be easily envisaged, as all the 

solution prepared in mg/mL of UCNP in solution are in fact a mixture of core@shell UCNP 

and undoped NaYF4 impurities. 

Such NaYF4 impurities may be discarded by developing a purification process by density 

gradient centrifugation. But such protocol optimization is time-consuming, and only adapted to 

a small scale (few mg). 

As a consequence, we decided to abandon this thermal coprecipitation approach for shell 

synthesis, as we cannot have an accurate control on the shell precursor nucleation and epitaxial 

growth. 
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II.1.3 Impact of our high sensitizer content 

We have investigated the interest of our protocol as a function of Yb content addressing 

three issues: size, reproducibility and luminescence. As mentioned in the introduction chapter 

it has been commonly admitted in the literature that optimal sensitizer content is 20% Yb. 

According to the literature17,18, group III RE matrix such as Yb leads to bigger object than group 

II (Gd). Therefore, we compared our original composition (42%Gd, 57%Yb, 1%Tm) to the 

“standard” one (20%Yb) to evaluate the impact on the growth of NP and on their optical 

properties. 

Both compositions led to the formation of pure β-nanospheres. Nevertheless, our high 

Yb doping induced the formation of bigger objects, as revealed by TEM pictures and XRD 

(peaks broadening for 20%Yb due to smaller NP size). 

 

Figure 11. Comparison of small nanospheres with two Yb content (20% or 57%).  

A) Diffractograms from powder XRD. B) and C) TEM pictures for respectively 20% and 57% 

Yb content. 

 

Batch-to-batch size reproducibility is good for the standard 20% doped UCNPs, and 

yields particle of diameter of around 7.5 nm. However, our high doping led to a variable 

diameter between 10 (2 batch syntheses) and 15 nm (2 batch syntheses). The general 

observation that size increases with Yb content is in agreement with the literature, especially 

the work by Prasad team.16 

 Despite size variation, luminescence comparison was investigated between the 7.5 nm-

sized 20%Yb-doped UCNPs and the 15 nm UCNPs with 57%Yb (figure 12). 
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Figure 12. Comparison of luminescence intensity depending on the ytterbium content. Both 

samples were prepared at 5 mg/mL in cyclohexane and observed under 976 nm CW laser 

(P=35W cm-2). 

 

It is obvious that a gain of luminescence is observed at our high doping content, even if we have 

no clear evidence that this enhancement is due to the Yb content effect, size effect, or a 

combination of both. Nevertheless, this allowed us to validate our choice of high ytterbium 

doping composition. 
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II.1.4 Conclusion on small nanospheres 

From these first preliminary investigations, we implemented a simple synthesis to 

produce small UCNPs with an original Na(Gd42%-Yb57%)F4 matrix. By comparing with a lower 

but classical Yb content, we confirmed that our higher sensitizer doping leads to a better 

luminescence emission even if it limits the size reduction. We have demonstrated that the latter 

cannot be achieved by simple reaction time shortening.  

Additionally reproducibility issues were stressed out with our composition, in agreement with 

May and coworkers.13  

Shell growth via thermal coprecipitation was abandoned, due to a lack of control of the 

nucleation. 

As a result, the remaining area of investigation in order to reach size reduction is the chemical 

engineering: either the precursors mixing or the high temperature heating step for the αàβ 

Ostwald’s sequence. 

II.2 Transposition of nanospheres synthesis from premix to in situ mixing 
approach 

We started by the exploration of mixing variation of our above-described protocol. As 

the presence of NaF precipitate was evidenced, our goal was to prevent its formation during 

NaOH and NH4F introduction. We expected a better sodium and fluoride availability, thus an 

increased number of nuclei generation, leading to a final smaller size.  

In an interesting approach by Zhai et al.,19 it was reported that the size of β-NaYF4-based 

UCNPs could be halved by the simultaneous but separate introduction of NaOH and NH4F to 

the OA:ODE solution of rare-earth precursors (hereafter referred to as “in situ” mixing).19 

Differing only by this addition method from of the above-mentioned ”premix” protocol,8 we 

decided to adapt it to our target formulation by coupling 2 syringe pumps containing 

respectively each precursors (sodium and fluoride).   

Two core syntheses were performed from 2 different batches in order to check the 

reproducibility. Contrary to the precedent subsection, only 3 aliquots were sampled on key 

moments during heating at 280°C (either at 15 min, 30 min, and 90 min, or at 30 min, 60 min, 

and 90 min, figure 13). 
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Figure 13. TEM monitoring of thermal coprecipitation synthesis via in situ mixing. A) and B) 

are respectively the result of 2 trials performed with 2 different batches of the same 

composition. 

At first, a lack of reproducibility is clearly visible as both trials led to different size and 

dispersity. Nevertheless, in both cases, global size reduction is obvious compared to the size of 

10-15 nm via premix mixing approach. The size broadening trend is also reproduced in the two 

trials (especially on figure 13 A), suggesting some Ostwald defocusing effect. 

Although no spectacular size reduction was observed, the lack of distinct sub-

populations tended to indicate that the “in situ” introduction process was compatible with our 

aim to prepare sub-10 nm β-UCNPs. Additionally, the automatization of addition rate, thanks 

to syringe pumps, prevents user-dependent reproducibility issue as it could be envisioned for 

premix with manual dropwise addition.  

Once this new mixing approach was adopted, the last point was to question the high temperature 

heating step. The idea was to replace our heating mantle with an apparatus able to give a fast, 

sharp heating, with an accurate control of temperature. Therefore, we turned our attention to 

the transposition of this in situ mixing protocol with the so-called “conventional heating” to 

amicrowave-assisted heating to study its impact on the Ostwald focusing. 
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II.3 Towards sub-5 nm NP obtained via microwave synthesis 

II.3.1 Reminder about UCNP and microwave synthesis 

Principle of microwave heating 

The interaction of MW (microwaves) with a material is usually described by two mains 

mechanisms: dipole rotation and ionic conduction. Polar molecules are involved in dipolar 

polarization, while ions contribute to the latter.20 

The efficiency of MW absorption is the so-called loss-tangent (tan δ) which is the ratio between 

the dielectric constant describing the polarizability of molecules in the electric field (ε’) and the 

dielectric loss (ε”) related to the microwave absorption. The higher tan δ, the more MW are 

absorbed. However, Beer’s law then applies and the MW damping occurs over a thickness (skin 

effect) depending on tan δ as well. 

Microwave ovens 

Two kinds of microwave oven can be distinguished according to the size of the 

resonating cavity coupled to the MW source (magnetron): 

-multimode oven: such as domestic microwave ovens, they have a cavity larger than the MW 

wavelength. Several stationary modes match the cavity geometry and the energy is not evenly 

distributed spatially within the oven. The amount of energy effectively deposited within a 

sample is not known with accuracy. However, their large cavity enables the processing of 

reactors with a large volume. 

-monomode oven: In order to know with precision how much energy is introduced into the 

reactor, another type of cavity has been developed, known as monomode oven. In this 

configuration the energy is localized at the center of the cavity. However, the cavity must have 

the size of the MW wavelength. Therefore, the adapted reactors have a limited capacity.  

Thanks to the BLINK ANR project, the lab is equipped with a monomode reactor from 

Anton Paar. This apparatus can operate up to 300°C for 30 minutes, with a maximum pressure 

of 30 bars. Two different reactors can be used for different scales, respectively of 10 mL and 

30 mL. These test-tube shaped reactors are capped by septum, allowing us to work under 

controlled atmosphere. In the present chapter, all the MW heating step were performed in an 

argon atmosphere. 
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Microwave and chemistry 

Currently, microwave (MW) oven reactor have become a common tool in chemistry 

laboratory. Two phenomena are expected:  

· fast heating in organic reactions for time shortening, compared to standard heating 

devices. Trivial kinetic considerations states that chemical reactions are accelerated upon 

temperature increase. However fast heating also results in the reduction of side reactions. Heat 

generation is usually achieved by a proper solvent choice.  

· or the so-called “microwave effect” that is based on specific MW-induced change of 

activation energy. 

According to Arrhenius law, it has been empirically demonstrated that an organic 

chemical rate constant could be doubled by increasing the reaction temperature by 10°C. As a 

result, reaction time is halved. However, to the best of our knowledge, such a simple Arrhenius 

law consideration has not been applied to the case of nanoparticle synthesis, especially to a 

crystal phase transformation. 

Expectations from microwave heating to UCNP synthesis 

As for organic synthesis, increasing heating rate to high temperature with an accurate 

control of temperature has interested people involved in NP preparation. For inorganic crystals 

formation, such an apparatus has been mainly used as a substitute to the usual 

hydrothermal/solvothermal synthesis performed in stainless steel autoclave, in water or alcohol 

solvents. In the UCNP community, only a few pieces of work have investigated this area. As 

reported in the table 3, autoclave substitution approach usually leads to the preparation of big 

objects. 

However since the seminal work of Thomas Nann21, synthesis in low absorbing “alkane-like 

mixture” solvent (OA:ODE) via “TFA pyrolysis approach” were developed to prepare 

ultrasmall objects, but only crystallized in the cubic phase. Even though not demonstrated 

experimentally, the explanation proposed is that trifluoroacetate is supposed to have a “high 

microwave extinction coefficient” thanks to its ionic character.21 Noticeably, nobody has tried 

to use usual fluoride sources other than TFA in OA:ODE. By continuity with our previous 

results, we decided to study the unexplored area (yellow case in the following table). The 

following points be addressed: feasibility of such high temperature heating in low-absorbing 

solvent, identification of the origin of microwave heating, and the possibility to reach sub-5 nm 

β-UCNPs.  
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Table 3. Overview of reported microwave syntheses of NaREF4 as a function of the solvent and the fluoride source: NaF and/or NH4HF2 (blue), 

NH4F (red), trifluoroacetate (green), or ionic liquid (brown). Yellow case indicates the place we want to investigate with NH4F. 

* represents phase mixture. ODE, OA, OM are respectively octadecene, oleic acid, oleylamine. 

      Ultrasmall size (<10 nm) Size >10 nm 

    tan δ 20 α-phase β-phase α-phase β-phase other phases 

high absorbing 

solvent                        

tan δ>0.5 

Ethylene glycol 1.350     
16-200 nm NaYF4 

22,23 

40 nm NaGdF4 
24                                                 

1-1,5µm NaYF4 
22                      

45-65 nm NaGdF4 
24,25 

  

Ethylene glycol : water    8 nm NaYF4 
26   

35-45 nm NaYF4 * 27 

75 nm NaYF4 28,29 

35-45 nm NaYF4 * 27 

0.2x0.4 µm NaYF4 
28 

orthorhombic YF3 * 27       

ethylene glycol: choline 

chloride 
        

100-880 nm NaREF4                        

(RE=Gd; Y; or Yb) 30 
  

ethanol 0.941       2-3x0.3-0.4 µm NaYF4 
31   

 
Ethanol : acetic acid  

(: water) 
      25-32 nm NaYF4 

32,33                               
107x83 nm NaGdF4 

33  

26 nm NaYF4 
34 

tetragonal 2-4 µm LiREF4 

(RE=Y or Yb) 33 

medium-

absorbing 

solvent                                     

0.5>tan δ>0.1 

Benzyl alcohol : water        15x30-100 nm NaYF4 
35   

Ionic liquid [bmim]PF6  0.185       80-300 nm NaYF4 
36   

Water 0.123     
200 nm NaYF4 

37                                  

9-30 nm M0.67RE0.33F2.33 
38 

µm NaYF4 
37,39-41 

20-750 nm NaGdF4 
42,43  

  

 
oleic acid : alcohol : 

water 
  8-14 nm NaYF4 

44   8-30 nm NaYF4 
44-46  

20-120 nm NaGdF4 
42                

19-150 nm NaYF4 * 46 
  

low-absorbing                          

tan δ<0.1 

“alkane-like" mixture                     

(ODE, OA, OM, etc…) 
 

6-10 nm NaYF4 

21,47,48 
 

13-26 nm NaYF4 
47                          

15-18 nm GdF3 and NaGdF4 
49 

  
tetragonal LiYF4 & 

Li0.8Na0.2YF4 
47 



 Chapter II–Synthesis of UCNP 
 
 

-94- 
 
 

II.3.2 Feasibility of MW heating in OA:ODE without TFA 

We checked if the low absorbing OA:ODE mixture was compatible with microwave 

heating in order to reach 300°C by comparing with a heating mantle. 

The first point was to tune the solvent composition to identify which component was 

responsible of the heating. 

Solvent behavior 

A striking feature of the studied system is the poor absorptivity of the reaction solvent. 

The dielectric properties of oleic acid and 1-octadecene solvents are not well described and 

their dielectric loss (tan δ) can be reasonably estimated to be less than 5x10-3 at 2.45 GHz.50 

However, it is possible to estimate which component is mostly responsible for MW heating 

efficiency using simple calorimetric considerations, by monitoring the temperature rise inside 

the oven under constant MW power irradiation. Blank experiments with solvents, pure or as a 

mixture, or the reaction mixture itself were undertaken. Figure 14 shows the temperature vs. 

time evolution when the oven applies the constant power of 100 W. The initial slope can be 

used to estimate Pabs, the power absorbed by the sample.51 In the vicinity of room temperature, 

one can consider the heating to be adiabatic. All things being equal (vials, stirring bars, etc.) 

the initial slope can be approximated as a function of the oleic acid mass fraction x according 

to the following equation:   

cDMd(e) = %(e)ca = &fa Aghfij\k A e&fijl < fij\k*m* 6n6#  

with P0 the oven power, A(x) the fraction of power effectively absorbed, C0 the specific heat of 

the vessel,  m the sample mass and CP
i the massic specific heats of ODE and OA (1.6 J g-1 52 

and  2 J g-1 respectively).53 As expected, it can be deduced that oleic acid is a better MW 

absorber than 1-octadecene. Noticeably, although relatively transparent to MW, the reaction 

mixture reached the 300°C set point within 5 minutes on a 5 mL scale using the “as fast as 

possible” (up to 850 W, figure 15) routine which is still much faster than with a conventional 

heating mantle. Beside the control of the nanoparticle growth, OA has here an important 

secondary role in the heat transfer capacity of the solvent.  

It should be noted that UCNPs do not contribute significantly to the microwave heating, as the 

same slopes were obtained for the 43% OA composition with or without NP in the mixture. 

 



 Chapter II–Synthesis of UCNP 
 
 

-95- 
 
 

 

Figure 14. Comparison of microwave heating rates for different OA:ODE mixtures (%OA 

being mass percentage) under constant microwave irradiation (P=100 Watt). 

Heating rate 

Once identification of MW absorption in OA:ODE achieved, we turned our attention to 

the MW heating rate comparison with our heating mantle. 

Using the MW heating, the target temperatures (ex: 300°C) were reached within 5 minutes 

using the “as fast as possible“ instrument routine (figure 15), while a little more than 25 minutes 

were required for our heating mantle.  

 

Figure 15. Heating profiles of high temperature heating step as a function of time monitored 

for conventional heating (dark blue curve) (Horst heating mantle and controller) and microwave 

heating (Monowave 300, Anton-Paar) experiment for the 300°C 30 min plateau (orange curve). 

Both orange and blue hatched rectangles indicate for the corresponding curves the end of the 

temperature rise (i.e. beginning of the plateau).  
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In usual UCNP protocol, only plateau duration is considered. Note for the heating 

mantle the heavy damping applied to avoid temperature overshoots. The cooling step was not 

monitored in the case of conventional heating. Practically it was achieved by just removing the 

heating mantle and letting the reactor cool down slowly with ambient air. Typically, it was 

empirically considered that a 20-30 min period was necessary to return to room temperature.  

The temperature rise is sharper with microwave oven: Indeed, it is around 5 times faster to reach 

300°C with microwave oven than 280°C with heating mantle. 

The heating step (temperature rise + high temperature plateau) is shortened by 70% by replacing 

heating mantle with microwave oven, if we consider a 30 min plateau at 300°C which is the 

maximal duration of the microwave heating. Thus, important time shortening due to the sharp 

MW heating is expected if we find optimal microwave heating conditions to prepare the desired 

UCNPs. 

II.3.3 Simple microwave heating: high temperature plateau  

Optimization of the microwave heating 

Based on our previous results, we investigated microwave heating to form homogeneous 

ultrasmall β-UCNP in the usual OA:ODE mixture (43% OA in mass percentage). 

If the empirical Arrhenius law previously described is transposable to nanoparticle synthesis, 

high temperature plateau of 90 min at 280°C should result in 45 min at 290°C or 22.5 min at 

300°C. Starting from this assumption, we investigated the optimization of the microwave 

heating thanks to the comparison of two parameters: at first temperature impact while fixing 30 

min reaction time, then plateau duration for the best temperature conditions i.e. the so-called 

“reaction time” (figure 16). 
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Figure 16. Characterizations of samples prepared by microwave-assisted thermal 

coprecipitation synthesis: A) Size distributions obtained from TEM pictures after 30 min of 

different temperature plateau. B) Size distributions obtained from TEM pictures after different 

plateau durations at 300°C. C) TEM picture for sample obtained by a plateau of 30 minutes at 

300°C. D) XRD of a non-heated sample and a sample annealed at 300°C during 30 min. E) 

Luminescence intensity at 800 nm measured on unpurified crude material, as a function of the 

corresponding UCNPs sizes measured from TEM pictures – The black line is a guide for the 

eyes. 

TEM examinations of the purified nanoparticles revealed no significant morphology 

changes for plateau temperatures lower than 280°C: particles remained almost as small as those 

in the initial precipitate (2.3 ± 0.3 nm). However, the size was found to increase at higher plateau 

temperature (figure 16A). Interestingly, the size distribution narrows down between 20 min (4.1 

± 0.8 nm) and 30 min (4.6 ± 0.5 nm) of heating at 300°C (figure. 16B).   

As observed in figure 16C, after 30 min of heating at 300°C, highly homogenous sub-5 nm 

nanospheres were obtained. Note that this is the only condition that allows us to keep the 
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standard deviation within 10 %. As a result, 300°C 30°C seems to be the optimal condition to 

get sub-5 nm homogeneous NPs. 

More information could be gained from XRD analyses of all the produced samples (figure 

16D). As expected, the diffractograms could be interpreted as mixtures of cubic and hexagonal 

phases in various proportions. Keeping the reaction time constant (30 min), the increase of the 

temperature above 290°C led to the complete disappearance of the a-phase. More interestingly, 

at 300°C, the a-phase was found to be the major component at the early reaction stages but 

disappeared after as little as 20 minutes of heating (figure 17).  

 

Figure 17. Experimental (symbols) powder XRD patterns of NaREF4 synthesized at 300°C for 

various annealing durations: The theoretical patterns for the hexagonal (grey) and cubic 

(magenta) NaGdF4 polymorphs are plotted as solid lines while the stars and diamonds indicate 

the visible peaks of NaF and NaCl, respectively. The broad humps or shoulders observed around 

19° are attributed to the oleic acid used for the syntheses. 

 

In parallel, a sharp rise of the emission intensity of the 800 nm thulium emission under 980 nm 

irradiation could also be observed for reaction times longer than 20 minutes. This a-to-β 

transition is thus analogous to what was observed for premixing conditions, but here it occurred 

between much smaller objects, in a similar way to the report by Zhai et al.19 Clearly, the 
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combination of in situ mixing and microwave-assisted heating at 300°C enabled us to prepare 

ultrasmall Na(Yb-Gd)F4:Tm upconverting nanocrystals of an average size of 4.6 ± 0.5 nm 

within 30 minutes. 

Impact of size reduction on luminescence 

As already mentioned, a sharp rise for all thulium emissions is observed when the 

nanoparticle diameter is above ca. 4 nm (figure 16E). This threshold size is primarily associated 

to the a-population disappearance. However, as described in the introduction chapter, efficient 

surface quenching can impede emission for smaller β-nanoparticles. Indeed, Gargas et al. 

proposed the existence of a “dark layer” extending down to 1.8 to 2 nm below the surface.54 

Therefore, nanoparticles with a diameter smaller than ca. 3.6 nm would relax mostly through 

surface-induced non-radiative processes. Yet, the question remains about the “efficiency in 

depth” of this surface quenching.   

Discussion on β-seeds 

Considering that the α-population survives over 2/3 of the reaction time, the final 

Ostwald ripening of the β-nanocrystals happens on a very short time scale. It is therefore 

possible to approximate the proportion of β-seeds [8.8 % of NaREF4 seeds, see below table 4] 

that should be present at the early stages of the synthesis such as at 1 minute, when all particle 

diameters are about 2 nm, to the number of particles observed after 30 minutes at 300°C. With 

such a small crystallite size, and small relative quantity, those β-particles are hardly visible on 

the XRD patterns measured at the early stage of annealing (figure 17). Complete transfer of the 

material stored as a-particles into the β-ones is compatible with the observed final sizes.  

During the growth phase, the number of β-particles is frozen, and their size increase is solely 

due to the consumption of monomers that are produced by the redissolution of kinetically labile 

α-particles. If one considers that the Ostwald ripening has not started yet, the final number of 

β-nanoparticles is a good estimation of the number of initial β-nuclei. To estimate such a 

number, we first calculate the total volume of NaREF4 that should be recovered after complete 

transformation (when all the material is now under the hexagonal phase). The average unit cell 

volume was calculated from the NaGdF4 and NaYbF4 unit cell volumes, neglecting the 

contribution of thulium. 
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Table 4. Data used for estimation of the number of β-seeds (sample “300°C -30min” figure 16-

17) 

Experimental parameters Crystallographic data 

JCPDS 00-027-0699 

(NaGdF4) 

JCPDS 00-027-1427 

(NaYbF4) 

ICP composition 
Composition for 

calculation 
Experimental data 

(%Gd)mol=46.5% (%Gd)mol=47.06% nRE=1.983 mmol 7oDp1qr = sst.5u!vw 

(Z=1.5) 

(%Yb)mol=52.3% (%Yb)mol=52.94% rTEM= 22.5 Å 7oDxMqr = s5y.z{!vw 

(Z=1.5) 

(%Tm)mol=1.14%    

 

7oDYkqr = |[(}~��)8�C × 7oDYk�qr]
� [(}��)8�C × 7oDxMqr] A [(}�6)8�C × 7oDp1qr]!!!!!!!!(s) 

�Yk = �K�×X�SK��r×o�
�      (2) 

The volume of one average nanoparticle can be obtained from TEM image analysis  

�Zk� = �
w�!$Zk�w        (3) 

The number of seeds is therefore the ratio 

�d��1d = �K�
�L��         (4) 

We can then hypothesize that seed particles were present but undistinguishable from the other 

α-particles at the early stages of the synthesis.  TEM images after one minute of heating give 

an average diameter (i.e. 2!$d��1) value of about 2 nm. Applying this value to the seeds leads to 

an average nucleus volume of:  

�d��1 = �
w�!$d��1w        (5) 
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Knowing the unit cell of β-NaGdF4 (UNaGdF4) and Z, the number of Gd per unit cell it is possible 

to compute the number of gadolinium ions inside a nucleus following: 

�Yk d��1� = �����×�
X�SK��r         (6) 

The number of Gd3+ ions trapped into the seeds is then  

�(Yk)����� = �d��1d ×�Yk d��1�         (7) 

Thus, in moles: 

�(Yk)����� = o(K�)�����
o�           (8) 

Dividing this number of moles by the initial amount of RE used gives the molar percentage of 

the β-phase initially present when all particles are of ca. 2nm in diameter: 

}� = �(K�)�����
�K� � �. �}            (9) 

  We can then calculate the increase of radius due to the complete transfer of the α-

phase material onto the seeds by calculating the volume of β-NaREF4 that can be produced by 

the remaining rare earths:  

The number of moles of rare earth remaining in the α-nanoparticles phase is  

�Yk!DCi�D = �Yk < �(Yk)�����         (10) 

And should produce the volume Vexcess,  if all this material is finally converted into β-NaREF4: 

�����dd = �Yk!DCi�D × X�SK��r×o�
�           (11) 

This volume has to be spread-out over-all nuclei. Therefore, the volume growth of one nucleus 

is 

��2� 3� d��1� = ��¡¢���
o�����              (12) 

The final volume of a β-NaREF4 nanoparticle is now:  

�3�3 = ��2� 3� d��1� A �d��1            (13) 
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Hence the estimated final radius and diameter are:  

$ = £�T¤Tr
¥¦

¥ !!§=¨ © � ª. «!¬­            (14) 

These values are consistent with the experimental one.  
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Nanoparticle formation and Ostwald’s step rule 

It is also worth mentioning that the evolution of the relative standard deviation (<σ>/dm) 

with time, becoming minimal when the α-population vanishes, is in agreement with the intrinsic 

focusing model developed for an α-β population interconversion by Voß et al.18 

 

Figure 18. Evolution of the relative standard deviation (<σ>/dm) with time at 300°C.  

 

No attempt was made to distinguish the two polymorphs as the two populations were found to 

be undistinguishable by TEM. Our experimental σd/dm  values are in agreement with the Voß 

et al. model.18 The β-population is expected to decrease abruptly when the α-population 

vanishes. Subsequent Ostwald ripening of the remaining β-population should then lead to an 

increase of the σd/dm. In the present case, this would probably occur after 30 minutes. 

Conclusion on simple microwave heating 

Transposition to microwave heating was a success for the size reduction down to around 

5 nm. Their luminescence properties (figure 16E) are in agreement with our supposed Arrhenius 

guide rule: indeed, the luminescence of the 290°C_30 min sample sits close to that of the 

300°C_15 min sample. However additional points would be required to validate it completely. 

Moreover, our experimental data demonstrated Oswald focusing mechanism in the nanoparticle 

synthesis. 

Such small UCNP start to challenge the QD size range, but they are still bigger than blue-

emitting QD. We therefore decided to modulate the microwave heating to expect an additional 

size drop. 
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II.3.4 Cycling temperature 

II.3.4.1 Further decrease in size 

Ostwald ripening theory has been developed for isothermal conditions. However, 

temperature changes during the crystal growth have a strong impact on the crystals shape and 

size. Thus, temperature cycling has been identified to cause crystals coarsening in various 

medium (from food processing to geochemistry55), but has also been optimized to become a 

powerful tool to control the size and size distributions of micro-macrocrystals of proteins or 

pharmaceutical compounds. Several crystallization setup based on this principle have thus been 

proposed, such as non-isothermal Taylor vortex flow56 or microwave. 57 

Its grounds rely on the intuitive idea that warming up a suspension of microcrystals will induce 

the dissolution of the smallest one (aka the finest), while subsequent cooling allows the 

remaining ones to grow from the supersaturated solution58.  Yet, the mechanism is probably 

more complex as shown in a theoretical investigation recently disclosed for the diffusion-

controlled growth of microcrystals under quasi-square temperature modulation. It was pointed 

out that Ostwald ripening can take place at both temperatures.59 Depending on the extreme 

temperature plateau’s duration, this can cause the PSD to recover its complete “LSW shape” 

(i.e. its tail) after being truncated by the fast redissolution phenomenon. Despite this PSD 

broadening, the recovery of the fine particles matters as these will feed the growth of the larger 

particles at the next cycle. Eventually, it was shown that globally, temperature cycling 

accelerates particle coarsening. 

Although very efficient, temperature cycling is very scarcely used for the making of 

nanocrystals. Noticeably, a related approach has been developed for the preparation of up-

converting nanoparticles: to induce the formation of a large number of nuclei of the b-phase, 

Li et al60 have proposed to apply repeated very short temperature spikes to the reaction mixture, 

each spike supposedly generating a new bunch of nuclei.   

This strategy is particularly well adapted to the use of a microwave oven as such an apparatus 

allows very fast and sharp temperatures changes. We have therefore implemented temperature 

cycling in order to reach sizes close to the luminescence limit. We will show how using a 

square-temperature profile and microwave oven enables us to determine the time when the  
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α-phase completely disappears. The luminescence properties of the obtained ultrasmall 

nanoparticles will then be discussed. 

Methodology 

Inspired by the work of Li et al.,60 we explored cycling temperature by fixing constant 

durations of the high temperature plateau at (1 min) and of the low temperature plateau (5 min). 

Nevertheless, temperature range, number of cycles, and the eventual subsequent plateaus were 

explored (figure 19 & 20).  

During steps (1) and (2), heating temperature to Tmax allows at least partial dissolution of the 

matter as described above. As a result, regarding figure B, monomer concentration in solution 

is increasing to the labile zone where nucleation can happen. Step (3) is a fast cooling process 

leading to the precipitation of NaREF4: monomer concentration is quickly reduced to the 

metastable zone, but above the solubility curve. As a result, such cycle generates a burst of 

nuclei. By repeating this cycle many times, it is expected to remove quickly α-phases and 

promote the β-ones. We assumed that for at least the first cycle only nucleation occurs if the 

pulse is short enough. Subsequent pulses should induce growth during step (2).  

Another expectation of such cycling temperature is the “proof-reading” behavior. As smaller 

particles are more soluble than bigger ones, size dispersity should be self-restricted. 

 

  

Figure 19. Principle of cycling temperature. A) Schematic representation of one cycle of the 

cycling temperature process. B) Temperature-dependent nucleation-growth model 
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By lack of time, no complete optimization by experimental plan was setup. Few series 

of conditions were tuned to quickly reach the following goal: reproducible synthesis of 

homogeneous UCNP with an average diameter of around 3 nm. 

Cycling temperature “optimization” 

Thanks to previous results on microwave heating plateau, we assume now that no 

homogeneous β-UCNP are formed at temperatures lower than 300°C.We set 300°C as a first 

approximation of Tmax (figure 19). On the same idea, at 280°C and cooler temperature no effect 

is expected. Hence the first attempts focus in this area, between 300°C and 260°C. As the only 

paper on UCNP dealing with temperature fluctuation (with conventional heating) assumed that 

pulses have to been followed by a plateau at lower temperature than the pulses,60 we started by 

exploring the real impact of the plateau. On figure 20 A is compared the effect of additional 

plateau to two kinds of temperature ranges. It was observed that either plateau has dramatic size 

increase and broadening (for 265 to 300 °C or 265 to 285 °C temperature ranges followed by a 

plateau at 300°C) or no effect except extending the reaction time (265 to 285 °C then plateau 

at 275°C). Thus, plateau appears as a useless step. As a result, compared to this pioneer paper, 

we have directly a first improvement by shortening the overall reaction time. 

 

 

Figure 20. Optimization of cycling temperature in 3 steps. Investigation of the effect of: A) 

subsequent plateau, B) temperature range of oscillations, C) number of cycles. 

 

Then temperature range was tuned (figure 20 B): it did not induce large variations between the 

3 conditions (8 cycles between 265 and 285 or 265 and 300, or 6 cycles between 280-285 and 

300°C). The latter was made for only 6 cycles as it was stopped by internal microwave security 
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due to exposure time at such high temperature. Nevertheless, for this condition, dispersity seems 

narrower. 

Finally, figure 20 C addresses the impact of the number of cycles. As the microwave security 

is allowing only 6 cycles between 285 and 300°C, the heating sequence was repeated twice to 

get 12 cycles, or three times for 18 cycles. It is clearly identified that size increases and broadens 

after 6 cycles. 

Therefore, the best condition was 6 cycles between 285 and 300°C. Additional experiments 

revealed similar result by replacing 285°C by 280°C. 

Ostwald ripening control by cycling temperature 

 

Figure 21. Monitoring of the cycling temperature inside 6 cycles: Size distribution compared 

to 12 and 18 cycles (A) and relative standard deviation σ/d (B) from TEM; XRD (C), and 

luminescence (D). On figure D, size of the object is following the number of cycles: from 2 nm 

for 0 cycles (no MW heating) to 3.3 nm for 6 cycles. 
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From TEM consideration (figure 21 A) one can observe an accurate size and dispersity 

control from the first 6 cycles while size increasing and broadening is revealed at 12 and 18 

cycles, attesting the presence of Ostwald defocusing after 6 cycles. 

Deeper analysis of the control of Ostwald focusing is adressed on figure 21 B by 

comparing the evolution of the standard deviation. Our experimental points are in agreement 

with the model proposed by Voss et al.18 Additionally, we can estimate that the cubic phase has 

disappeared between 4 and 5 cycles, according to the apparent position of the extremum. XRD 

monitoring (figure 21 C) is not easily analyzable without refinements as size peaks 

corresponding to the ultrasmall UCNPs are weak and broad. But after Sherrer-based model 

refinement (Table 5), it can be deduced that the cubic phase was in solution during the two first 

cycles. Nevertheless, no cubic phase was detected between 2 and 4 cycles. This is only due its 

low amount compared to XRD sensitivity and the size of the α-phase.  

Concerning the luminescence monitoring (figure 21 D), as expected early small 

nanoparticles are lowly luminescent, while a sharp increase of luminescence is obtained after 4 

and remains constant between 4 to 6 cycles. Such sudden appearance of luminescence matches 

with the disappearance of the cubic phase attested by the evolution of the standard deviation 

(figure 21 B). It should be noted that this can be attributed to a critical size of around 2.8 nm. 

This experimental critical size is of crucial importance, as the present data is the first reported 

experimental demonstration of such small size allowing upconversion phenomena. Up to now, 

critical sizes have been estimated by S. May et al. (dc > 5 nm)61, or Gargas et al. (dc=3.6 nm)54 

models based on extrapolation of Förster-based fitting model. 
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Table 5. Refinements on XRD monitored samples 

Sample 
Cell parameters 

(Å) 

Apparent 

crystallite size 

(nm) 

Corrected 

crystallite size 

(nm) 

Relative 

proportion 

(%) 

No heating Non-refinable 

1 cycle 

a = 5.992(1) 

c = 3.543(2) 

 

a = 5.541(6) 

3.4 

 

 

3.1 

4.5 

 

 

4.1 

87 (β) 

 

6 (NaF) 

7 (α) 

2 cycles 

a = 5.9923(6) 

c = 3.5315(7) 

 

a » 5.55 

3.9 

 

 

N.D. 

5.2 

 

 

N.D. 

98 (β) 

 

 

2 (α) 

3 cycles 
a = 5.9906(6) 

c = 3.5507(7) 
3.5 4.7 100 (β) 

4 cycles 
a = 5.9841(5) 

c = 3.5468(6) 
3.2 4.3 100 (β) 

5 cycles 
a = 5.9545(6) 

c = 3.5339(8) 
2.7 3.6 100 (β) 

6 cycles 
a = 5.9790(5) 

c = 3.5433(6) 
3.7 4.9 100 (β) 

 

II.3.4.2 Ultrasmall Core Shell 

There is previous evidence of a lack of control of shell growth via the thermal 

coprecipitation route. Additionally, for small-size core@shell, trifluoroacetate pyrolysis 

appears as a method of choice for the growth of a surface shielding layer. Therefore, we decided 

to move towards this way, following the work of Zhai et al.19 

Shell growth by conventional heating 

A first attempt of shell growth was performed with the heating mantle from cores of 3.2 

nm in diameter. It was monitored by TEM analysis of sampled solution (figure 22). 
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Figure 22. Kinetic monitoring of shell growth followed by TEM. A) Evolution of the size 

distribution with time. B, C, D are respectively initial core, UCNP at 290°C and final sample 

after 1h at 290°C. 

 

Size increase and broadening occur with reaction time, suggesting Ostwald defocusing. It is 

clear that it is not optimized to limit size increase and dispersity. As a result, we turned toward 

microwave heating. 

Shell growth by microwave heating, with a plateau 

As the “Arrhenius acceleration” was a good option for core synthesis we decided to 

transpose such the previous heating step at 290°C for 1h to 30 minutes at 300°C in microwave 

reactor. As a control, a second condition with half of this time was also compared (figure 23). 
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Figure 23. Comparison of Shell growth obtained via MW heating at 300°C during 15 min or 

30 min. 

Smaller size and narrower distribution are obtained by the transposition to microwave heating. 

After only 15 min, homogenous 5.7 ± 1.8 nm objects are obtained (compared to 7.3 ± 2.5 nm 

after 30 min). This appears to be our best condition. No further optimization of the shell growth 

was explored, as this positive result is good enough compared to our objectives which were to 

obtain an homogeneous core@shell UCNP of around 5-6 nm. Contrary to the core@shell 

attempt via thermal coprecipitation (section II.1.2), with this TFA-pyrolysis approach, only one 

homogeneous population is obtained. 

Limitation of the shell growth protocol 

The core size was 3.2 nm, corresponding to a sphere volume of 17.16 nm3. Because the 

amount of RE is identical for core and shell (2 mmol), a “perfect” core@shell should double 

this volume leading to an estimated size of 34.32 nm3. However, the prepared core@shell of 

5.7 nm have a significantly larger volume (96.97 nm3). The mechanism of core formation by 

temperature cycling assumes the partial dissolution of the UCNPs during the high temperature 

spikes at 300°C (6 times 1min). In the present shell growth protocol, the heating step at 300°C 

lasts for 15 min. Therefore, the observed larger volume of the core-shell nanoparticles could 

result from the partial redissolution of the ultrasmall core during their overexposition to such a 

high temperature. As a result, the “core@shell” architecture should be understood more like a 

“core + an intermixing of core and shell material”, in agreement with recent works62. High 

resolution microscopy (HRTEM) should be used to probe the exact local structure of the 
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supposed “core@shell” objects. As the present UCNP are extremely small, such investigation 

could be only performed with a synchrotron source.  

II.3.4.3 Scope 

Based on our pioneering well-controlled preparation of ultrasmall core and core@shell, 

we investigated the robustness of our protocol to variations such as doping content or 

reproducibility. 

Impact of the doping content  

Extension of the protocol to different compositions was evaluated by comparing the 

composition we have been describing (57%Yb) with the standard formulation (20%Yb) and a 

composition containing solely group III RE (99%Yb)  under similar conditions. The desired 

hexagonal phase was obtained only for Yb contents of 20 and 57%. However, the cubic one is 

obtained with almost pure Yb matrix and bigger objects were obtained as demonstrated by the 

XRD (sharper peaks). TEM investigations were performed only on the two first batches. To our 

surprise, similar sizes were obtained with both composition which is in contradiction with the 

literature.16 Such a result will be particularly interesting considering photophysics, as the optical 

properties are strongly dependent on the doping concentration and the size. Therefore, with this 

robust protocol, direct comparison of the sensitizer content effect can be discussed. This will 

be discussed in the photophysics chapter. 

 

Figure 24. Impact of sensitizer content on crystal phase and size distribution. A) XRD obtained 

on ultrasmall core UCNP respectively doped at 20% (grey); 57% (red) or 99% Yb (blue). 

Squares indicate peaks from hexagonal phase, while the cubic ones are indicated by stars.  B) 
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Size distributions obtained from analysis of TEM pictures for ultrasmall core@shell β-UCNP: 

respectively 20% Yb (dark blue) or 57% Yb (red). 

Reproducibility 

Over 6 batches, the size variation was found to be quite limited: core NP were always 

in the 2.5-3.5 nm range while core@shell had an average diameter in the 5-6 nm area. 

 One could here question the reliability of the heating process employed. Indeed, as the 

MW-reactor is limited to volumes from 2 to 20 mL, each UCNP batch (≈40 mL) had to be split 

into different fractions, each undergoing independent microwave heating. Then reaction 

mixtures were combined for purification and analysis. Thus, core and core@shell samples were 

respectively prepared by pooling 2 solutions of 20 mL and 3 solutions of 13-15 mL heated 

independently. Still, dispersity was found to not suffer from this methodology. As a result, it 

can be deduced that the “inter-batch variability” above-mentioned is not due to microwave-

assisted heating but to an upstream step of the synthetic pathway. As far as reproducibility is 

concerned, this demonstrates the robustness of the microwave-assisted heating for ultrasmall 

nanoparticles synthesis. 

II.3.5 Chemical characterization 

In the whole manuscript, compositions are mainly given from theoretical value. If 

chemical yield was calculated, 2 sources of discrepancy between experiment and theory can be 

expected: 

· overestimation of theoretical mass: Rare-Earth precursors used were of chemical  

formula RECl3, xH2O (with x=6 for Gd and Yb; 7 for Tm). As a result, first error is coming 

from this incertitude on the amount of coordinated water molecules. Moreover, such Rare-Earth 

chlorides are hydroscopic and were not manipulated in a glove box, which could accentuate the 

error due to hydration uncertainty. Our calculations were based on the RECl3,xH2O formula 

weight above-described. 

· overestimation of the final UCNP mass produced: indeed NP are covered by a non- 

negligible organic corona of stabilizer (OA) increasing the formula weight. Additionally, the 

final product is not fully dried as it is deleterious for its further redissolution, thus a second error 

can come from solvent content. 
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II.3.5.1 Quantification of the surface coating 

The organic corona was quantified thanks to thermogravimetry analysis (TGA) of 

partially dried UCNPs. A limited weight loss (<5%) at the low temperature is attributed to 

solvent evaporation. The subsequent loss up to 800°C is due to the oleate coating agent. 

 

Figure 25. Comparative thermogravimetry analysis of different UCNP sizes: ultrasmall core 

(3nm, in red), ultrasmall core@shell (6 nm, in blue) and nanohexagons (40 nm, black) 

Results are gathered in the following table (table 6). On ultrasmall UCNP, OA(+solvent) 

content can be approximated as 30% for both ultrasmall core and core@shell samples. On 

bigger object like nanohexagons (that will be described in the next section), OA coating content 

is surprisingly quite similar: indeed, the surface-to-volume ratio is moving from 1 to 0.15 

between NPs with a diameter of respectively 6 and 40 nm, while OA content is only differing 

from 3% (Table 6). Therefore, for the whole manuscript, OA content will be approximated as 

30% in weight of UCNP, for calculation of any kind of NPs between 2 and 40 nm. 

 

Table 6. Result of thermogravimetry analysis on different kind of UCNP size 

Percentage % weight loss 

Ultrasmall core (diameter ≈ 3 nm) 30% 

Ultrasmall core@shell (diameter ≈ 5.5-6 nm) 28% 

Nanohexagon (diameter ≈ 35-40 nm) 25% 
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II.3.5.2 Quantification of the inorganic content 

With the organic corona determined, our attention was turned on the RE mixture. As the 

singularity of our work was the choice of the matrix with a high Yb content (57% Yb, 42%Gd, 

1%Tm), the remaining question was the validity of this claimed composition. 

It was investigated on batches of interest and was found to be reproducible. As an example, we 

will detail only the result for one ultrasmall core and its corresponding core@shell (figure 26). 

 

Figure 26. Determination of Gd-Yb content (percentage of moles) by two methods on 

ultrasmall Na(Gd-Yb)F4:Tm “with 57% Yb”: ICP-OES measurement on bulk solution (in blue) 

and EDX measurements on single nanoparticles (in red) are compared to the theoretical 

composition (dashed line). A) ultrasmall core UCNPs ; B) ultrasmall core@shell UCNP. 

Two methods were used to assess the theoretical composition of UCNP: one on bulk (ICP) and 

one on single nanoparticle scale (EDX). 

ICP-OES is an analytical measurement on bulk. It is the method of choice for accurate 

absolute determination of metal concentration by comparing with standard solution. In our 

hands it was not used as an absolute determination of the moles of Rare-Earth, but only a 

relative comparison of RE content. As thulium reference was not available on time for analysis 

it was not quantified. For both techniques Yb and Gd content were compared, by neglecting 

Tm which represents ≈1%. 

Analysis reported in Figure 26 revealed results in agreement with the theoretical composition 

calculated. We chose not to use it in routine as an absolute method due to sample preparation. 

After synthesis, UCNP are partially dried before dissolution in volatile organic solvent 

(cyclohexane). This partial drying process was a key to enable dissolution.  

 

However, it induces two errors on the declared concentration:  
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-error on UCNP mass as they are not fully dried 

-error on the volume as cyclohexane is volatile at room temperature. Solutions were prepared 

in Toulouse, used for photophysical measurements, transferred to vials, shipped to Rennes and 

stored before preparation for ICP measurement. During each step, solvent evaporation could 

occur, leading to underestimation of the declared concentration. 

ICP is a relative method by comparing peak intensity of well-calibrated standard to solution to 

be analyzed. But for accurate precise comparison, exact concentration in mg/mL of nanoparticle 

have to be known in order to have an accurate absolute quantification. 

 By comparing theoretical composition and ICP we can attest that our declared 

theoretical composition was accurate for both core and core@shell. However, there remains an 

uncertainty on the doping homogeneity within a batch. Hence, elemental analysis on single 

nanoparticle measurement was attempted by EDX. The latter requires high resolution-TEM. As 

it is a time-consuming experiment, we could not explore a large population of nanoparticles, 

but only 3 core nanoparticles and 7 core@shell. It confirms the trend, even at the single 

nanoparticle scale. As SAED revealed also the presence of few α-UCNP that were out of XRD 

sensitivity, it could also be interesting to compare the compositions between cubic and 

hexagonal phases. 

 

Figure 27. Selective Area Electron Diffraction (SAED) pattern obtained by HR-TEM on cubic 
(A) and hexagonal (B) phases 
 

In conclusion, both analytical techniques validated the declared theoretical composition. 
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III Model particles for surface chemistry 

As the preparation of small NP is a time-consuming process giving low yields (300-600 

mg), we decided to prepare another kind of UCNPs following only 2 criteria: 

- fast preparation of bright samples, 

- large-scale synthesis. 

These “easily prepared” NPs will be used as model particle for further explorations of 

nanohybrid design and photochemistry issues. 

III.1 Fast preparation of UCNP on a small-scale batch 

NaYF4 UCNPs were prepared by transposing Zhang et al. protocol,63 (45 mL,  

2.3 mmol of Rare-Earth) which is a standard thermal coprecipitation synthesis based on the 

“premix” way, but with a different sensitizer content: 30% Yb. Compared to this protocol we 

used 1% Tm instead of 0.5, in order to keep the same Tm content as in the previous objects. 

This synthesis was also repeated with erbium (30% Yb, 2% Er). 

Results 

Such protocol led to the reproducible of 30-35 nm hexagons depending on batches: blue 

emitting and green emitting samples respectively doped by Tm (0,5%) or Er (2%). 

 

Figure 28. TEM Picture of NaYF4:Yb(30%),Tm(0,5%) obtained by transmission electron 

microscopy. B) Luminescence of Tm-doped (blue color) and Er-doped (green color) hexagons 

under NIR CW laser (38 W cm-2), at 5 mg/mL in cyclohexane. 
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Limitations 

Three critical points were revealed by these preliminary results: NaF precipitation, the 

evaporation a non-negligible amount of volatile compounds, and the control of the temperature 

of the heating setup. 

Methanol is a convenient volatile solvent to solubilize sodium and fluoride precursors. 

However, along with the precursors addition the reaction mixture is almost doubled. So, it is 

not easy to define the chemical transformation during mixing as the concentrations are highly 

modified. Then, a volume of methanol has to be evaporated. Contrary to standard organic 

chemistry, such step is achieved by argon flush without using a proper distillation equipment, 

following the usual UCNP protocol8. 

As NaYF4 synthesis used to be reported with a plateau set a different temperature between 300-

320°C, we decided to fix 310°C as the setpoint temperature, but starting the timer when 300°C 

is reached.  

As a conclusion of small-scale synthesis, 600 mg of bright homogeneous 35 nm UCNP 

can be produced easily in less than ten hours.  

III.2 Size reduction on UCNP hexagons scale-up issues  

As stressed in the literature15 a great variability in the nanoparticles’ properties 

(composition, size, photophysics…) can be experienced from batch to batch. Furthermore, a 

typical run (1 mmol of Rare Earth scale) yields around 600 mg amount of material quickly 

employed in further transformations. Therefore, a scale-up by a factor of 5 of the previous 

protocol was envisioned: from 21 mL (1 mmol of Rare-Earth) in 100 ml flask to 210 mL (10 

mmol) in 500 mL round bottom-flask.  

Three critical points were identified for scale-up purpose: the heating rate of the heating mantle 

used, the addition rate of precursors, and the evaporation rate of volatile compounds.  

Scale up impact on addition rate 

On small scale, NaOH and NH4F are introduced with a large amount of methanol. On a 

larger scale (x5) it should be even worse. Knowing their low solubility in methanol (table 7), 

we are already close to the saturation in stock solutions.  
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Table 7. Solubilities in methanol 

 
solubility in methanol  

(g/mL) 

Experimental stock solution concentration 

(g/mL) 

NH4F 0.036 (at 25°C) 64 0.024 

NaOH 0.391 (at 28°C) 65 0.017 

 

As we previously stressed out the beneficial use of double syringe pumps to prevent 

NaF formation we decided to implement it for this NaYF4. Moreover, it is really convenient to 

automatize the addition of large amount of solution (2x 100 mL), the only limit being the 

syringe capacity. We expect to obtain smaller size than the 35 nm UCNPs previously prepared. 

Indeed, an a small scale, the modification of the protocol from premix mixing to in situ mixing 

should not have a big impact on the addition time (from 10 minutes to 45 minutes with syringe 

pumps). But with the scale-up, in situ mixing leads to a longer addition time of around 4h30. 

Stock solution storage become also an important parameter as the precursors’ addition last now 

several hours. Due to the reactivity of fluoride on glass, usual glassware for NH4F storage or 

addition had to be forsaken: vial and syringes made of plastic were used.  

Scale up impact on volatile compounds evaporation 

Solvents (water, methanol) evaporation is usually achieved, in reported UCNP’s 

synthesis, by argon flush at high temperature (100°C). For water (used to introduce Rare-Earth 

precursors) it is not an issue as it represents only 0.5% of the reaction mixture. However, 

methanol represents half of the volume when introduced. Such huge volume brings another 

issue: uncertainty on the declared concentration and evaporation. 

The uncertainty on concentration prevents the understanding in detail of the “primo-

precipitation” when fluoride and sodium meet lanthanides. Indeed, along with the slow sodium 

and fluoride methanolic solutions addition (4 hours), the concentration is gradually lowered in 

the flask (to the half part). This brings questions in the comparison of the first droplets added 

to the last ones introduced: we cannot declare a real working concentration. An alternative 

should be the use of sodium oleate, limiting the use of methanol only for fluoride precursors. 

Nevertheless, as the reaction is under kinetic control, such variation may impact the nucleation 

and requires a new complete study. 
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Methanol evaporation is a major issue. Usual UCNP’s protocol involves inert gas 

(argon, nitrogen) flush to remove it. As it was not critical on small scale (20-40 mL) we 

followed the same way. It is now a long process for such huge volume (200 mL of MeOH), 

with a non-negligible gas cost. A more adapted alternative would be the use of rotary vacuum 

evaporator, or a proper distillation setup.  

Scale up impact on heating rate 

The impact of scale-up on the heating rates during high temperature annealing was 

explored (figure 29). Setpoint temperature was 310°C but reaction time was 90 minutes from 

the moment 300°C was reached. 

 

Figure 29. Heating rates comparison during the high temperature annealing step. For the 

500mL reactor setpoint temperature was gradually increased after 40 min from 310 to 350°C 

in order to try to accelerate the heating, resulting in the successive slope failures. Blue stars 

indicate successive rise of temperature (max setpoint temperature was 350°C) 

 

On the small reactor, 3 main steps can be identified: fast heating rate at early stage, then heating 

rate downturn close to the setpoint temperature, finally plateau at the setpoint temperature. 

By scaling up the synthesis to the 500 mL reactor, a slower heating rate can be clearly observed. 

Moreover the 310°C setpoint temperature was never reach, but instead the temperature stayed 
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between 300 and 310°C, even if the setpoint temperature was fixed to higher value (350°C). 

This observation shows the limitation of the scale-up with our heating apparatus. 

Results 

Scale-ups have been performed for both kind of emitters: Er3+ or Tm3+. 

Rare-Earth composition was 30% Yb for both kinds of samples, while the emitter content was 

2% or 1% respectively for Er or Tm (figure 30).  

 

Figure 30. Characterization of nanohexagons prepared on large scale. A and B are respectively 

TEM pictures obtained for Tm-doped or Er-doped UCNP, (scale bar is 100 nm). C is a typical 

XRD obtained for both of them. 

Results show a comparative size or around 20 nm (figure 30 & table 8), that is significantly 

smaller than the former preliminary protocol. All the batches were purely β-phase, as attested 

by XRD diffractograms.  

 

Table 8. Comparison of hexagons size distributions fitted by a Gaussian model.  

 Average diameter FWHM 

Er-Hexagon 37.0 4.0 

Tm-Hexagon 35.9 3.7 

Tm-doped nanohexagons 20.0 2.6 

Er nanohexagons 21.8 1.3 

Conclusion on the large-scale preparation of nanohexagons  

As expected, the convenient automation of the addition of the sodium and fluoride 

precursors thanks to syringe pumps led to a NP downsizing. This spectacular size reduction was 

around 40%. We hypothesized that scale-up had no impact on it.  
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Despite the apparent brightness of the visible emission, the scale-up success (from 600 

mg to 3 g of UCNP produced), such nanoparticles too large to fulfill our goal to have QD-

competitive nanoparticle in term of size. However, they are perfectly adapted for preliminary 

photochemistry and nanohybrid formation attempts, as these batches are easily and fastly 

prepared, especially at the 3g scale. 

Contrary to usual organic reactions, no chemical yield was calculated, as the weight of the 

produced UCNP could not be declared precisely. Indeed, a full drying process to get the precise 

mass of dry UCNPs is deleterious for further dissolution and storage, as dry UCNP could not 

be easily dissolved.  

IV Conclusion on synthesis of ultrasmall UCNP 

In the present chapter we highlighted the importance of the composition, the mixing 

strategy for the introduction of precursors and the heating apparatus in order to reach ultrasmall 

size of appropriate hexagonal phase. Concerning this new topic implemented in the lab, from 

scratch we finally acquired good understanding of a complex polymorphic mixture. Size 

reduction strategy was based on the coupled optimization of primo-precipitation and high 

temperature heating. The present work details the first trifluoroacetate-free microwave 

synthesis of β-phase sub-5nm core UCNPs in commonly used solvent mixture of oleic acid and 

octadecene. The first description of cycling temperature approach assisted by microwave 

reactor, and the empirical validation of Arrhenius law on UCNP synthesis open new 

perspectives for the synthesis of other nanomaterials. Additionally, our microwave-assisted 

cycling temperature is the first protocol allowing such size stability despite doping content 

variation (if Yb content is lowered than 57%). 

 

However some other critical parameters remain to be explored: 

- the use of water: RE precursors being chlorides, they are introduced in water. A small 

amount of water combined to a slow heating rate is required to prevent bumping issue from the 

alkane-like mixture during the RE(OA)3 ligand exchange. Moreover, it can eventually be a 

source of oxygen default in the crystal, due to oxo-bridged lanthanides for example. An 

alternative should be the use of acetate precursors which are directly soluble without need of 

water. Besides, this water has then to be removed, this is done at 100°C under argon flush. This 
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“distillation” results in a drop of the alkane-like mixture amount, due to azeotrope between 

water and oleic acid. As a result, the solvent composition differs from the initial one. 

- the use of methanol: A large amount of methanol is used for sodium and fluoride 

introduction. This large quantity of volatile solvent has then to be evaporated. Thus, at first the 

physicochemical properties change, considering the volume added, as a OA:ODE/MeOH 1/1 

composition is reached after complete addition, and we have no idea how this impacts the 

nucleation. From a technical point of view, this methanol is removed by argon flush, which is 

particularly long especially in the scale-up approach and quite expensive regarding to the 

volume of inert gas used per synthesis. An alternative should be the use of sodium oleate as the 

sodium precursor, that will allow to half the MeOH volume, and/or the use of rotary evaporator 

or distillation apparatus for the volatile compound removal without loss of OA:ODE. 

However, as UCNP formation is under kinetic control, each change in the protocol will impact 

the size. Thus, such alternatives described above will generate a complete re-investigation of 

the synthesis. 

Nevertheless scale-up applications are still limited at the moment. Despite a first attempt 

on conventional heating to form nanoprisms, such approach is highly challenging for ultrasmall 

UCNP: our microwave reactor has a maximum capacity of 20 mL. Scale-up with our 

monomode apparatus can be envisioned only by parallel synthesis from a same starting batch. 

But such process opens questions about the global reaction time, and mainly the aging of the 

initial batch. The main limitation of time is the tedious preparation of reactor tubes with a time-

consuming degassing step (around 1h per tube). 

Large-scale application would require either to go for continuous flow monomode 

reactor, or high-scale multimode one. 

The latter system is already existing at the litre scale. However, reactors for huge batches are 

not a solution, as a key factor for the cycling temperature was the fast cooling down. Turning 

to huge containers open the problem of thermal inertia inside the working reactor. As a result, 

the only viable alternative for large-scale syntheses should be based on a microfluidic 

continuous flow reactor. Such setup should be designed to present a number of loops inside the 

monomode cavity coinciding with the number of desired pulses at high temperature. 

A large variety of nanoparticles was synthesized during this PhD project: 2 size ranges of 

hexagon-shaped UCNP, and various 2.5 to 15 nm-sized spheres. Once this UCNP library 

synthesized and chemically fully characterized, investigations on the photophysical properties 
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have to be performed, especially on the ultrasmall ones. Such details will be treated in the next 

chapter.  

Table 9. Summary or UCNP library synthesis. Syntheses performed with heating mantle are 

labelled in blue, while pink ones were prepared with MW oven. 

Batch name Composition 
Size 

(nm) 

Amount 

(g) 
Preparation time 

 NaYF4:Tm 35 0.6 1 day 

 NaYF4:Er 35 0.6 1 day 

 NaYF4:Tm 20 3 1.5 days 

 NaYF4:Er 20 3 1.5 days 

 Na(Gd42%-Yb57%)F4:Tm 10 0.3 1 day 

 Na(Gd42%-Yb57%)F4:Tm@NaYF4 15 0.6 2 days 

 Na(Gd79%-Yb20%)F4:Tm 7.5 0.3 1 day 

 Na(Gd42%-Yb57%)F4:Tm 15 0.3 1 day 

 Na(Gd42%-Yb57%)F4:Tm 4.5 0.7 2 days 

 Na(Gd79%-Yb20%)F4:Tm 2.5-3.5 0.7 2 days 

 Na(Gd79%-Yb20%)F4:Tm@NaGdF4 5.5 1.4 1 week 

 Na(Gd42%-Yb57%)F4:Tm 2.5-3.5 0.7 2 days 

 Na(Gd42%-Yb57%)F4:Tm@NaGdF4 5.5 1.4 1 week 

 Na(Gd42%-Yb57%)F4:Tm 3 3 1.5 week 
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V Experimental section 

V.1 Materials 

Rare Earth (RE) chloride hydrates, ammonium fluoride, oleic acid (OA) and 1-

octadecene (ODE) were purchased from Alfa Aesar and used as received. All other organic 

solvents were of spectroscopic grade and used as received. Water used was deionized water 

(ρ=18 MΩ cm-1) obtained from Aquadem apparatus. 

Powder XRD measurements of the dried samples were performed on a Bruker D8 

Advance diffractometer working with monochromatized Cu Ka1 radiation (l = 1.5406 Å). 

Transmission Electron Microscopy (TEM) was performed on a Hitachi HT-7700. TEM images 

were analyzed with ImageJ by using the free PSA (Particule Size Analyzer, version r12) macro. 

Size distributions were then fitted by Gauss function with OriginLab, the size in the following 

manuscript being the average size and corresponding standard deviation (xx nm ± yy nm) of 

the Gaussian fit. The UCNP relative composition in the elements Gd, Yb and Tm was 

determined using Inductively Coupled Plasma Optical Emission Spectrometry ICP-OES (icap 

7000 THERMO SCIENTIFIC). 

Heating setups 

Conventional heating steps were performed in 100 mL three-neck round-bottom flasks 

heated by high power heating mantle from Horst Company, placing the temperature probe 

directly in contact with the reaction mixture. Microwave heating was performed in monomode 

Monowave 300 oven from Anton-Paar Company.  
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V.2 Synthesis 

V.2.1 Synthesis of cores UCNPs 

General procedure 

Rare earth oleates
8,19

 

A solution of RECl3.xH2O dissolved in 2 mL water was added to a mixture of OA:ODE 

and water was carefully distilled off. The cloudy mixture was then brought to 160°C under 

gentle argon flush until no solid material remained. During this final stage, it was possible to 

identify the evolution of HCl gas (pH paper and silver nitrate test). The pale yellow clear 

solution was then cooled down under argon and used without further analysis. The volumes of 

OA and ODE used were 12 mL and 18 mL for 1 mmol of RE8 for the standard “premix” 

protocol, and, 12 mL and 30 mL for 2 mmol of RE for the “in situ mixing”, respectively.19   

 

Standard “premix” protocol.  

According to Wang et al.,8 to the lanthanide oleate solution above prepared was added 

dropwise over 30 minutes a freshly prepared mixture of NaOH and NH4F in MeOH, in order to 

reach a final 1:2.5:4 RE:Na:F ratio. Once the addition completed, the methanol was distilled 

off, first at 50°C for 45 minutes then at 100°C for degassing. Temperature was then risen up to 

280°C (20°C min-1) then maintained at this value for 90 minutes. Particles were isolated by 

precipitation in EtOH of combined crude mixtures, followed by centrifugation at 9000 rpm 

during 10 minutes. The pellet being re-dispersed in cyclohexane, the precipitation procedure 

was repeated twice. Particles were then redispersed in cyclohexane. 
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“In situ” mixing  

According to Zhai et al.,19 two methanol solutions of sodium hydroxide (0.326 mM) and 

ammonium fluoride (0.5 mM) were simultaneously added with the help of two syringe pumps 

to a vigorously stirred solution of above-prepared metal oleate (47.6 µM) over 20 minutes (0.2-

0.4 mL min-1) in order to reach a final 1:2.5:4 RE:Na:F ratio. Methanol was gently evaporated 

before carefully degassing at 100°C the resulting mixture.   

Reaction mixture was either heated up to 280°C for 90 minutes as in the standard “premix” 

protocol, or transferred by batches of 4 mL into argon-flushed MW reactors and then heated up 

in the MW oven (see main text). Particles were isolated as above. 

 

Comparison of cores synthesis on 100 mL flask scale 

Table 10. Comparison of core synthesis  

 Nanospheres Nanohexagons 

20 nm  10-15 nm 5-10 nm 4.6 nm 2-3.5 nm 

Matrix Yb-Gd Yb-Gd Yb-Gd Yb-Gd Y 

n(RE) mmol 2.85 2.00 2.00 2.00 2.33 

%Yb 57 57 57 57 30 

%Tm 1 1 1 1 1 

n(Na)/n(RE) 2.85 2.5 2.5 2.5 4 

n(F)/n(RE) 4 4 4 4 5.5 

V(OA) mL 12 12 12 12 7 

V(ODE) 

mL 
18 30 30 30 38 

{Na+F} 

mixing 
Premix In situ In situ In situ Premix 

Heating 

device 

Heating 

mantle 

Heating 

mantle 

MW 

plateau 

MW cycling 

temperatures 

Heating 

mantle 
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Scale up to 500mL round-bottom flask scale 

Similar protocol than for the 100 mL was followed. Scale-up of nanohexagons synthesis 

was achieved by multiplying all the volumes and number of moles by 5. 

V.2.2 Synthesis of core@shell 

Shell synthesis on small nanosphere 

Similarly to the “Standard premix protocol” above-mentionned on core, gadolinium 

oleate was prepared. After cooling to room temperature, core NP dissolved in cyclohexane 

solution were introduced, followed by the premix addition of NaOH and NH4F. Subsequent 

steps are identical than for the core, cyclohexane being removed with MeOH. Noticeably, the 

last high temperature heating step lasted for 1h for shell, instead of 1h30 for core. 

Shell synthesis on ultrasmall UCNP19 

On ultrasmall UCNP the process is the same, except that NaOH and NH4F addition are 

replaced by the simple addition of CF3COONa in MeOH. 

Comparison of both shell growth protocols 

Table 11 gathers the comparison of the protocols. 

Table 11. Comparison of shell synthesis 

 Small nanospheres Ultrasmall NPs 

Shell Matrix Y Gd 

n(RE)shell/n(RE)core 1 1 

Na precursors NaOH CF3COONa 

F precursor NH4F CF3COONa 

n(Na)/n(RE) 2.5 2.5 

n(F)/n(RE) 3.3 ≥ 2.5 

V(OA) mL 9 20 

V(ODE) mL 21 20 

{Na+F} mixing Premix In situ 

Heating device Heating mantle MW plateau 
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V.2.3 Microwave heatings 

For core synthesis, 20 mL of degassed solution was transferred to G30 reactor tube from 

Anton Paar Company. As a result batch of around 40 mL required 2 parallel heating. G30 

reactor was degassed prior to introduction of the solution: It was placed under vacuum during 

at least 1h by a small needle connected to a vacuum line. Then several argon/vacuum cycles 

were applied to prepare argon atmosphere. Degassed solution were transferred from the three-

neck flask to the MW reactor tube with a glass syringe, then followed by new degassing in the 

tube. Reactor were there placed in the microwave oven. 

 For core@shell synthesis, following the same process solutions of only 15 mL were 

submitted to the parallel heating. Therefore, one batch required 3 parallel heating steps. 15mL 

was found empirically as the maximum capacity. With bigger volume (which is limited to 

20mL) some leaking of the solution was observed after heating, probably due to higher gas 

release with bigger volume. 
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V.3 Characterization 

V.3.1 Monitoring of the core synthesis, adapted from F. Wang et al. 8: TEM 
images and image analysis (Image J treatment) 
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280°C t=10 min 
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280°C t=40 min 
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280°C t=70 min 
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Figure 31. TEM monitoring of “premix” and conventional heating protocol 
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V.3.2 Luminescence monitoring of the shell growth 

 

Figure 32. Monitoring of the shell growth for a 60 min plateau at 280°C (280°C (t=0) is reached 

at around 26 min.) 

V.3.3 Luminescence monitoring of the shell growth with doubling of the reaction 
time. 

 

Figure 33. Monitoring of the shell growth for a 120 min plateau at 280°C. Only points of the 

plateau were monitored, compared to figure 32.  
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V.3.4 Combination of “in situ” introduction and conventional heating,19 trial#1 

 

A B 

C 

 

 

 

 

 

 

 

 

 

D 

Figure 34. TEM pictures from sampling reaction mixture during conventional heating with “in 

situ” introduction trial#1: A) No heating. B) heating plateau 280°C 30 min. C) heating plateau 

280°C 60 min. D) heating plateau 280°C 90 min. 
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V.3.5 Kinetic analysis, combination of “in situ” introduction and conventional 

heating,19 trial#2 

 

A B 

C 

 

 
 

 

 

 

 

 

 

 

 

D 

Figure 35. TEM pictures from sampling reaction mixture during conventional heating with “in 

situ” introduction trial#2: A) No heating. B) heating plateau 280°C 15 min. C) heating plateau 

280°C 30 min. D) heating plateau 280°C 90 min. 
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V.3.6 Kinetic analysis, ”in situ” mixing and 30 min microwave oven combination, 

variable temperature  

 

No heating 

 

300°C 30min 

 

290°C 30min 

 

280°C 30min 

 

Figure 36. TEM pictures obtained at different temperature plateau of fixed duration (30 min) 

by using microwave heating and “in situ” mixing approach. 
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V.3.7 Kinetic analysis,”in situ” mixing and 300°C microwave oven combination, 

variable reaction time 

 

No heating 

 

300°C 1min 

 

300°C 5min 

 

300°C 10min 
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300°C 20min 

 

300°C 30min 

 

Figure 37. TEM pictures obtained after different reaction time at 300°C plateau by using 

microwave heating and “in situ” mixing approach. 

 

V.3.8 Typical run for the “as-fast-as-possible” routine and 300°C plateau 

 

Figure 38. Typical heating profile performed with microwave oven (Monowave 300 Anton 

Paar) for a 30min plateau at 300°C: during all heating steps (temperature increase, plateau, 

cooling down), temperature, pressure, and magnetron power are monitored respectively in dark 

curve, blue curve and red curve. 
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V.3.9 Summary of the TEM analyses 

 

Table 12. Summary of the TEM analyses 

 
TEM picture 

diameter 

(nm) 

Standard 

deviation 
FWHM 

 (nm) (%) (nm) (%) 

« premix » + conventional 

heating      (figure 31) 
280°C t=90 min 10.3 0.56 5.6% 1.3 13.0% 

“in situ” mixing + 

conventional heating       

(figure 34) trial#1 

B 5.58 0.86 15.4% 2 35.8% 

C 7.43 1.13 15.2% 2.65 35.7% 

D 8.54 2.26 26.5% 5.31 62.2% 

“In situ” mixing + 

conventional heating        

(figure 35) trial#2 

A 1.95 0.51 26.2% 1.19 61.0% 

B 3.69 0.6 15.2% 1.32 35.8% 

C 4.2 0.51 12.1% 1.18 28.1% 

D 5.7 0.99 17.4% 2.32 40.7% 

“in situ” mixing + 

microwave heating           

(figure 36) 

no heating 2.32 0.3 12.9% 0.71 30.6% 

280°C 30min 2.94 0.85 28.9% 1.99 67.7% 

290°C 30min 4.08 0.53 13.0% 1.24 30.4% 

300°C 30min 4.55 0.45 9.9% 1.04 22.9% 

“in situ” mixing + 

microwave heating           

(Ffigure 37) 

300°C 1min 2.31 0.57 24.7% 1.33 57.6% 

300°C 5min 3.06 0.78 25.5% 1.84 60.1% 

300°C 10min 3.55 0.88 24.8% 2.06 58.0% 

300°C 20min 4.06 0.75 18.5% 1.75 43.1% 

 

For each sample, TEM pictures were taken in a minimum of five different locations per grid (at 

the center of the grid, and at least one per quadrant). For each batch, the statistics were run on 

a minimum of 2k nanoparticles ensemble, using the PSA macro. 
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Chapter III 

Upconverting nanolamps 

 

 

 

“La musique est l’arithmétique du son, comme l’optique est la 

géométrie de la lumière” (Claude Debussy) 

 

“Pour atteindre la vérité, il faut une fois dans la vie se défaire de toutes 

les opinions qu’on a reçues, et reconstruire de nouveau tout le système 

de ses connaissances” (René Descartes) 
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I Introduction 

The main parametrization of a nanolamp relies on knowing the efficiency of the light 

emissions. Classically, this is achieved with two quantifiers: quantum yields and lifetimes. In 

order to know whether such descriptors apply to UCNPs and their ultrasmall versions, we have 

initiated a detailed photophysical study of a library of nanoparticles. Before exposing our 

results, a brief introduction to the photophysics of upconversion is necessary. 

I.1 Non-linear behaviour 

One of the most characteristic property of UCNP emissions is the non-linear behavior 

of the emission intensities with the excitation power !". It is commonly written as  

!#$% & (!")' (1) 

It is common to analyze the data using log-log plot, since one expects:  

*+,-!#$% . = /0*+,!" 1 02 (2) 

Indeed, for a range of powers, a linear correlation is usually observed.  

By analogy with NLO, it would be tempting to correlate the exponent / to the number of 

980nm-photon used to populate the emitting level. The following will show that such a 

hypothesis is not valid. 

I.2 Theoretical models 

To understand the “exponent issue”, it is important to remind the complex energy 

redistribution network leading to the energy emission. Beside the classic monomolecular 

processes (radiative and non-radiative decays), key kinetic features are bound to the 

bimolecular processes, ensuring the upconversion and the transport of the energy.  

Depopulation pathway of sensitizer (Yb) 

Contrary to the emitter, the behaviour of the sensitizer is easy to understand: it is similar 

to standard luminophores, such as an organic dye for example, as it has only one excited state. 

The emission from the ytterbium ions is not expected to be power-dependent. Beside the 

spontaneous first order processes (radiative and non-radiative relaxations), the Yb excited state 

(Yb*) within UCNPs can disappear via the so-called “energy migration” toward the surface. 

This elementary step can be written as: 



 Chapter III – Upconverting nanolamps 
 
 

-152- 
 
 

Yb* + Yb à Yb + Yb*  (3) 

Rate constant models are resonant-like and depends on the inter ions distance within the crystal 

(i.e. the ytterbium concentration).  

Depopulation pathway of emitter (Tm) 

As the optimal concentration of Tm emitters has been adopted as 0.5-1%, [Tm]-

dependent effect can be neglected. However, the multiple excited states can suffer from back 

transfer, mainly to sensitizer, or to other Tm excited states. For simplicity we will represent 

only the cross relaxation to Yb which is [Yb]-dependent : 

Tm* + Yb à Tm + Yb* (4) 

Thus, high doping content (Yb or Tm) can increase the depopulation of the Tm excited states.  

In addition to these processes, many possible cross-relaxations can happen. They can be 

schematized according to the following general bimolecular process: 

Tm(n*) + Tm(j*)  à Tm((n+1)*) + Tm((j-1)*)   (5) 

These are mainly controlled by the (Tm-Tm) distance. 

Complete models 

As summarized by M. Kraft et al., several propositions of kinetic pathways have been 

proposed in the literature.1 
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Figure 1. Energy level diagram of Yb3+, Tm3+ codoped UCNP particles. The Yb-to-surface 

energy migration path is not mentioned for clarity. The black short dotted lines represent the 

ETU steps, the orange short dotted lines the CR processes and the zig-zag lines MPR processes. 

The possible CR processes according to H. Zhang et al.,2 Y. Liu et al.3 and Y. Zhang et al.4 are 

respectively highlighted with blue, red and yellow background colours. ETU: energy transfer 

upconversion; CR: cross-relaxation; MPR: multiphonon-relaxation. Reproduced from 1. 

 Beside the “standard” processes evoked in the Introduction (Chapter 1, section II-2) and 

describing the global ETU phenomenon, the Tm-Tm bimolecular cross-relaxations were added. 

The number and associated levels differ from authors to authors 

Stationary state experiments: simple, three Tm-levels kinetic model. 

 In the absence of emitter-emitter cross relaxation, a simple model to explain the 

observed dependence of the luminescence as a function of the excitation intensity (power) was 

developed by the team of S. Andersson-Engels in 2013.5 Using the general formalism 

commonly encountered in laser material science, this model is the translation into kinetic 

equations of the ETU mechanism involving ytterbium and an emitter. It is a “2+3” level system 

with two levels describing the ytterbium ground state Yb and excited state Yb*, and three levels 

for the emitter (ground state 0 and two excited states 1 and 2). Kinetic parameters are given in 
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figure 2. The emission is associated to the radiative lifetime 3456 for level 1 (it is of course a 

part of the lifetime 37 of the excited state 1). 

 

Figure 2. Kinetic scheme used by S. Andersson-Engels for the ETU mechanism  

 

In order to give simple analytical expressions, several simplifying assumptions are made: 

· Concentrations of excited states are always negligible compared to ground states 
· ETU processes from Yb*-to-Yb are negligible compared to Yb* spontaneous decay 
· Photo-stationary state is reached 

 

The system of equations driving the populations of each excited state becomes: 

 8[92 :]
8; = <>?!"[92] @ A

3>? [92 :] @ (B"C"[92 :] 1 B"CD[92 :])
E <>?!"[92] @ A

3>? [92 :] = F 

6[GH]
6I = B"C"[92 :] @ B"CD[92 :] @ D

JHCD = F                                 (6) 

8[C7]8; = BDCD[92 :] @ A
37C7 = F 

 

  

 Remarking that the emission rate is  !#$ =0 GKJLMN , simple calculations give the following 

dependence of the exponent (p) of the log-log plot slope with the power I0:  

/ = 6OPQRST
6OPQRU = A 10 D

DVWHJKJXY[>?]ZXYRU (7) 
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At low power (I0), p is close to 2, at higher power p is closer to 1. 

 Upconversion quantum yield being defined as:  \ = RST
RUMY^ =

RST
ZXYRU[>?] , it becomes: 

\ = _^ `U`Ua
DV`U`Ua

   (8) 

Two key parameters are thus defined: 

· the balancing power !"b =0 D
(WHJKJXY[>?]ZXY)  and  

· the maximum quantum yield \c = B"C"[92 :] JXYJKJLMN .  

 
When the power reaches the balancing power !"b , the quantum yield is at the half of the 

maximum available \c  : this pivotal power completely determines the photophysics of the 

UCNPs. The same authors have extended this modeling to more complex systems. 

This model reproduces the apparent curvature of the log-log plot, stressing out the impact of 

the kinetic network on the emission. However, although very straightforward, it suffers from 

limitations: the hypotheses are very strong and the numbers of levels and processes are limited 

as an analytical expression of the system response is sought.  More complex models have been 

developed without assumptions, including all levels.6 

I.3 Aim of the chapter 

The synthesis (chapter 2) has shown that it is irrelevant to try and reproduce exactly a 

defined size and composition (as it would be for organic compounds), therefore each batch had 

to be considered independently. The following list gathers all the samples examined for their 

photophysical properties. Furthermore, it is possible to envision different techniques and setups 

to achieve this goal. Beside the equipment available at IMRCP, other instruments have been 

used (table 1) thanks to collaborations established over the duration of my PhD. In the 

following, we will summarize the results obtained using different setups among 3 laboratories. 

I performed experiments myself at IMRCP and BAM (under the guidance of Dr Ute Resch-

Genger), while the ones made at LASIR were conducted by Drs Aude Bouchet and Michel 

Sliwa.  
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Table 1. Summary of samples presented in this chapter. Analyses marked with “X” were carried 
out. Sizes are average diameters. (BA1 & BA4), (BA2 & BA5), (BA3 & BA7), (BA 11 & 
BA12), (BA13 & BA14), (BA15 & BA16) are respective pairs of core and core@shell 
originating from the same core. 

S
ha

pe
 

Sample 

Batch 

code 

Steady-

state 

IMRCP 

Steady-state 

Time-resolved 

BAM 

Integrating 

sphere 

BAM 

Time-

resolved 

LASIR 

U
lt

ra
sm

al
l s

ph
er

es
 

U
C

N
P

s

Core 2.5 nm 20%Yb BA1 X X X X 

Core 2.8 nm 57%Yb BA2 X X X X 

Core 3.2 nm 57%Yb BA3 X   X 

Core@shell 5.5 nm 20%Yb BA4 X   X 

Core@shell 5.5 nm 57%Yb BA5 X   X 

Core@shell 5.7 nm 20%Yb BA6 X X X X 

Core@shell 5.7 nm 57%Yb BA7 X X X X 

Core@shell 5.5 nm 57%Yb BA17 X   X 

S
m

al
l s

ph
er

es
 

Core 7.5 nm 20%Yb BA8 X X X X 

Core 7.5 nm 20%Yb BA9 X   X 

Core 15 nm 57%Yb BA10 X   X 

Core 10 nm 57%Yb BA11 X    

Core@shell 15 nm 57%Yb BA12 X    

Core 10 nm 57%Yb BA13 X    

Core@shell 15 nm 57%Yb BA14 X   X 

Core 9.3 nm 57%Yb BA15 X    

Core@shell 10.2 nm 57%Yb BA16 X    

 

The selected samples were chosen to explore the effect of the size, doping effect, and shell on 

the overall luminescence. At first, as the full chemical and the corresponding photophysical 

characterizations are time-consuming, a straightforward protocol was established at IMRCP in 

order to rapidly obtain emission spectra by maximizing the detection of each different sample. 

Therefore, the limit of this approach is the lack of calibration, as acquisition parameters were 

not identical. These issues were then taken into account during my internship at the BAM. 

There, the extensive knowledge of the upconversion phenomenon has led to a standardized and 
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calibrated routine previously put in place, and I was able to work under more comparable 

excitation conditions than at IMRCP (laser power density in the 1-125 W cm-² range). 

Additionally, time-resolved experiments at BAM were performed by using the same laser as 

for steady-state studies. A signal generator was used to trigger long excitation pulses (500 µs). 

Meanwhile, collaborators at LASIR have achieved a complementary study by investigating 

UCNP behavior under higher laser power (kW-GW) with very short pulses of 5 ns, either 

isolated to record luminescence rise and decay or grouped by trains to simulate square pulsed 

excitation. 
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II Photophysical properties of UCNP 

We started to look at the optical properties of UCNP by investigating the “entrance” of 

the ETU (i.e. the Yb absorption) and its result (the up-converted Tm emissions). 

II.1 Absorption 

It is notorious that UCNPs display a very weak electronic absorption due to the poor RE 

cross section and also to the colloid nature of the material (high scattering and limited colloidal 

stability at high concentrations). Nevertheless, we attempted to record absorption spectra was 

in dispersed suspensions or in the solid state. 

II.1.1 Absorbance in solution 

Usual UV-visible spectrophotometers suffer a drop of detector sensitivity above 800 nm 

therefore the recording of a complete UV-vis-NIR spectrum requires a dedicated instrument. 

 

 

Figure 3. UV-vis-NIR absorbance spectrum of BA5 sample at 50 mg/mL in cyclohexane. 

The typical spectrum presented in figure 3 shows the expected features of nanoobjects 

containing Yb; scaterring dominates the response in the visible range (300 nm down to 500 

nm). The absorption of ytterbium generates in all recorded spectra a large band centered at 976 

nm. This broad band is the convolution of the different transitions within the 4f Stark sub-levels 

of Yb.  

As expected, despite the extremely high declared concentration of 50 mg/mL, maximum 

absorbances at 976 nm, Amax were extremely low, ranging from 0.01 to 0.1. Table 2 gathers the 

absorbance of all the samples to be studied. Ultrasmall core and core@shell prepared in the 

same conditions (50 mg/mL of UCNP@OA) differ in absorbance by only a factor of around 3. 
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It matches with the difference of Yb content (respectively 20 and 57%) as expected following 

Beer-Lambert’s law.  

Table 2. Absorbance measurements of ultrasmall UCNPs in cyclohexane solution at 976 nm. 

BA4 and BA5 are respectively core@shell of BA1 and BA2 cores. 

 BA1 BA2 BA4 BA5 BA8 

Amax 0.036 0.109 0.018 0.063 0.059 

 

However, at such a concentration, some part of the nanoparticles sedimented. A simple 

experiment (figure 4) of absorbance spectra comparison of BA2 before and after manual stirring 

highlighted the decantation phenomenon. Starting from Amax=0.1099 at 976 nm for a solution 

left at rest, this value was multiplied by 3 (Amax=0.3276, red curve) when measured a few 

seconds after vigorous agitation. Monitoring when left at rest shows that the absorbance is 

already back to 0.1319 (yellow curve) after 1h30, and to the initial point after at least 3h (dark 

blue curve). This absorbance no longer varies after 2 or 5 days, indicating the “saturated” 

character of the solution. Similar behavior was observed for the different batches. Therefore, 

the apparent factor of 3 above-mentioned seems to indicate that the batches BA1 and 2 or BA4 

and 5 seem to have similar colloidal stability. 

 

Figure 4. Evolution of Amax on BA2 after agitation. Light blue and dark blue overlapped 

curves are Abs spectra measured before agitation and since 3h after agitation. Red and yellow 

ones were respectively acquired a few seconds and 1h30 after agitation. 
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In the following, all the experiments were run on “rested” colloidal suspensions. The ytterbium 

absorbance was then used to estimate the amount of NPs  in solution (supernatant) or decanted 

(pellet), knowing the chemical parameters (table 3) of the UCNPs stock solutions (in mg/mL) 

and using defghi(Yb) = 3.1 L mol-1 cm-1,7 as reported in table 4. 

Table 3. Chemical parameters of the nanoparticles of different compositions. BA4 and BA5 

are respectively core@shell of BA1 and BA2 cores. 

 BA1 BA2 BA4 BA5 BA8 

dTEM (Å) 24 28 55 55 75 

%Yb 20.29 57.48 10.15 28.74 20.00 

%Gd 78.68 41.5 89.34 70.75 79.00 

%Tm 1.03 1.02 0.51 0.51 1.00 

MNaREF4 (g/mol) 259.57 265.44 257.08 258.55 259.52 

UNaREF4 (Å3) 111.513 108.752 112.270 110.897 111.535 

Z 1.5 1.5 1.5 1.5 1.5 

RE/NP 97.4 158.5 1163.9 1178.3 2970.7 

Yb/NP 20.0 92.1 118.7 340.4 600.1 

Tm/NP 1.0 1.6 6.0 6.0 29.7 

[UCNP@OA]theo 

(mg/mL) 
50.036 49.986 50.038 49.926 50.000 

OA content 30% 30% 30% 30% 30% 

[UCNP]theo 

(mg/mL) 
35.025 34.990 35.027 34.948 35.000 

 

Noticeably, among the samples, the average concentration of inorganic matter in suspension 

was found to be around 10 mg/mL, corresponding to 15 mg/mL of UCNPs, taking into account 

the amount of oleic acid per particle. In other words, in our attempt to use a 50 mg/mL 

concentration, only 30% of the weighted particles remain in solution without agitation. These 

calculations are in agreement with the absorbance measurements on BA2 previously described: 
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the discrepancy between agitated (Amax=0.3276) and calm solution (Amax=0.1099) represents 

33%. 

This value seemed to be the solubility limit for of UCNPs in this range of size. However, sample 

BA8 was found to be much more soluble. This difference can be explained by the variation of 

NP drying, as discussed in chapter 2 for redissolution issues. Indeed, BA8 batch was the last 

one to be prepared and probably not as dried as the other ones.  

Table 4. Estimation of the concentration in suspension 

 BA1 BA2 BA4 BA5 BA8 

[Yb]suspension 

(mol/L) 
0.0116 0.0352 0.0058 0.0203 0.0190 

n(NP)/L 

(mmol/L) 
5.82*10-4 3.82*10-4 4.89*10-5 5.97*10-5 3.17*10-5 

m(NP)/L 

(mg/mL) 
0.1510 0.1014 0.0125 0.0154 0.0082 

m(NaREF4@OA)/L 

(mg/mL) 
14.86 16.24 14.71 18.28 24.70 

[NaREF4]suspension 

(mg/mL) 
10.40 11.37 10.30 12.80 17.29 

[NaREF4]settled 

(mg/mL) 
24.63 23.62 24.73 22.15 17.71 

%NP in suspension 30% 32% 29% 37% 49% 

 

On the instrument used, the spectral window is truncated after 1000 nm. To get more insight on 

the IR absorption we moved to reflectance measurements on dry powders. 
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II.1.2 Reflectance/transmittance on powder 

All spectra (figure 5) are characterized by a poorly defined visible range section, and 

absorptions in the IR range could be clearly observed only for the “core” nanoparticles. These 

latter transitions were assigned according to literature data (Table 5). Thus, Yb absorption is 

centered at around 975 nm, while Tm ground state (3H6) absorptions to 3H5 and 3F4, give bands 

at respectively 1210 and 1725 nm. Some Tm excited states absorptions (from 3F4 and 3H5) 

occurring in the SWIR area (1000-2500 nm) (table 5) could be detected as well.  

For core@shell nanoparticles (BA4 and BA5), these transitions were undetectable. This was 

attributed to the dilution of the IR-active Ln3+ in such architectures. 

 

Figure 5. Reflectance (A) and Transmitance (B) measurement on powder for ultrasmall 

core@shell UCNPs with respective BA1 (blue) or BA2 (orange). 

 

Table 5. Ln3+ absorption bands revealed by transmittance and reflectance measurements 

performed on powders of ultrasmall core 1%Tm-doped Na(Gd-Yb)F4 with 20% (BA1) or 57% 

Yb (BA2). 

Peak (nm) Absorption assignation 

975 2F7/2à
2F5/2 (Yb ground state) 

1210 3H6à
3H5  (Tm ground state) 

1400-1424 3F4à
3H4 (Tm 1rst excited state) 

1725 3H6à
3F4  (Tm ground state) 

2307 3H5à
3H4 (Tm 2nd excited state) 
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The broad band centered at 1935 nm is probably due to the organic oleate coating layer.  

Unfortunately, we could not get enough resolution to have details over the NIR -visible range, 

where the Tm absorptions bands to higher excited states should be found. This was 

disappointing as these transitions mirror the UCNPs emissions: their observation would be of 

importance to parametrize the radiative rate constants according to the Judd-Ofelt theory. The 

lack of such emissions was attributed to a strong scattering at the surface of the powder sample, 

due to an inhomogeneous flat surface layer, and also to the low amount of sample. Eventually, 

a drop of sensitivity of the spectrophotometer in the UV part prevented an accurate analysis of 

the Gd3+ absorption (312 nm expected). 

II.2 Emission 

II.2.1 Experimental considerations 

II.2.1.1 Setup from IMRCP 

 

Fluorimeter scheme 

 

Figure 6. Home-modified standard fluorimeter. 

A standard fluorimeter was modified in order to be used as a control instrument for 

routine measurements (figure 6). As a source, we used a fibered CW 980 nm multimode laser 

(MDL-H 980nm, Acal BFi/Changchun Industry) of a power range spanning from 0 to 35.4 W 

cm-2. The beam was collimated before crossing the cuvette. We further upgraded the instrument 

by inserting a power-meter probe in front of the laser beam directly behind the quartz cell. This 
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allowed us to have an estimation of the laser power (P) in realistic conditions, and for UCNP 

suspensions, the transmitted power P0 was used to standardize the suspensions as, in section 

II.1.1, according to: 

j2k+l2mnop = *+, qr"r s = *+, t ruvuOPw#x5y#rc5$'O#!zy!uvuOPw#x5y#{ 

On the detection side, a water filter was introduced in front of the PM to eliminate the 

scattered 980nm light.   

II.2.1.2 Setups from BAM 

Steady state & Time-resolved measurements 

Steady state measurements and Time-resolved measurements were acquired by using a 

standard fluorimeter FLS 980 from Edinburgh instruments equipped with a 976 nm laser. Laser 

power and beam were calibrated, giving power densities up to 124.4 W cm-2. Measurements 

were performed with a fluorimeter bandpass of 10 nm. 

The same laser used for steady-state studies was employed for time resolved measurements 

thanks to the addition of a signal generator to trigger long excitation pulses of 400 µs. Under 

such conditions, the luminescence rises during the pulse (figure 7). It can be assimilated to the 

filling of the excited levels to photostationary point (PSS), comparably with usual 

photochemical process. 

 

Figure 7. Typical result of lifetime measurement at BAM  

Fluorimeter detection curve was recalibrated prior to my internship at the BAM, allowing us to 

obtain well-standardized measurements. 
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Integrating sphere 

  

Figure 8. Schematic presentation of the custom-built integrating sphere setup. The setup could 

be either operated with the focusing lens with a focal distance of 500 mm, or with the lens with 

a focal distance of 125 mm. Reproduced from 1. 

The benefits of the BAM custom-built setup dedicated to the UCNP luminescence 

measurements stems from the use of an integrating sphere.(figure 8).8 The excitation channel 

consists of a 976 nm laser diode, collimating and focusing optics, a shutter that can block the 

excitation light, filter wheels with neutral density (ND) filters, used to attenuate the excitation 

light without affecting its stability, and a beam dump that collects the reflected light from the 

filter wheels. Furthermore, to excite the UCNPs, two beam shapes are available: the initial 

Gaussian beam profile with an average power spanning from 2.5 to 3,400 W cm-² that can be 

converted into a top-hat one (from 0.25 to 410 W cm-²), simply by choosing the appropriate 

focusing lens (focal distance of 500 or 125 mm). The setup was recently upgraded during the 

PhD of M. Kraft.1 The detection channel has been extended with an additional indium-gallium-

arsenide (InGaAs) charge-coupled device (CCD), and with a new integrating sphere (diameter 

of ca. 11 cm, coated with high reflectivity hydrophobic Spectralon – 99 % from 400 to 1,500 

nm; equipped with six ports), allowing to cover the NIR emission of UCNPs up to 1,550 nm.  

The integrating sphere contains the sample holder, and baffles to protect the optical fibre from 

direct illumination. The detection channel consists of the optical fibre, the monochromator 

(Andor 303i) with a filter wheel at the front and the two Peltier-cooled CCDs (T = 188 K; 

silicon (Si)-CCD: iDus Si DU4230_DD, Andor Technology PLC; CCD line, 1024×256 pixel, 

pixel sizes of 26×26 µm; InGaAs-CCD: iDus InGaAs DU491A, Andor Technology PLC; CCD 

line, 1024×1 pixel, pixel sizes of 25×500 µm). The whole system is controlled and operated via 

a custom-built software that was programmed with LabView. My work was performed only 

with the top-hat beam profile. 
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II.2.1.3 Setups from LASIR 

Partners at LASIR usssed a flash photolysis set-up based on the use of a linearly 

polarized pulsed 976 nm laser (5ns, 4mJ, beam size 10mm) obtained by a 10-Hz Nd:YAG laser 

coupled to an OPO (Continuum Panther EXOPO pumped by a Surelite II). The excitation light 

was focused (≈500 µm) into a 1 cm x 2 mm spectroscopic cell (Thorlabs). The emission light 

was collected by a 100 mm lens, dispersed by a monochromator (bandpass 12 nm) (Horiba 

Jobin-Yvon, iHR320) and analyzed with a photomultiplier (R1477-06, Hamamatsu) coupled to 

a digital oscilloscope (LeCroy 454, 500 Mhz). The output of the PMT was multiplied by a 

resistance of 5 kOhms that leads to an IRF of 0.5 microsecond. The experiment was repeated 

for different wavelengths of the monochromator and accumulated 64 times (each acquisition 

separated by 1 second). Time windows range studied was from 0 to 2 ms with 10000 points 

(0.2 microsecond/ point).  

 

Figure 9. Schematic representation of the setup developed at LASIR 

 

Thus, compared to the typical lanthanide lifetimes, the pulse shape (single 5 ns pulse) is akin to 

a Dirac function at t=0 s (figure 10). Rises are occurring after the end of the excitation pulse. 
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Figure 10. Typical result of lifetime measurement in LASIR. In black, the laser pulse. In red 

the emission rise and decay. 

 

II.2.2 Comparative study of UCNPs under steady–state conditions 

This first study was achieved on the IMRCP modified fluorimeter. The various analyses 

of samples were acquired with different configurations, in particular the slits of the 

monochromators were varied. Therefore, they will be presented by groups of experiments 

recorded in similar conditions. 

II.2.2.1 Steady-state comparison of nanospheres 

Chemical parameters  

From the previous chapter, a library of core and core-shell Na(Gd-Yb)F4:Tm 

nanoparticles was available, comprising large objects and ultrasmall spheres (diameters of 

respectively 7.5–15 nm or 2–6 nm). Table 6 gathers the first group of samples compared by 

using both slit apertures of 6 nm. 
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Table 6. Chemical parameters of the studied nanoparticles. 

 BA3 BA6 BA9 BA10 

diameter (Å) 32 57 75 150 

%Yb 57.63 28.71 19.78 58.02 

%Gd 41.39 70.79 79.28 40.93 

%Tm 0.98 0.51 0.94 1.05 

UNaREF4 (Å3) 108.860 111.001 112.832 109.853 

Z 1.5 1.5 1.5 1.5 

Yb/NP 136.2 376.2 580.9 14*103 

Tm/NP 2.3 6.6 27.6 253.4 

Surface/Volume 0.188 0.105 0.080 0.040 

 

Comparison of such a range of UCNP is difficult as several key points can impact the 

observed luminescence. A preliminary question is: how to best manage the apparent energy 

absorption? As previously explained (section II.1.1), the ytterbium concentration, and 

consequently, a nanoparticle concentration (in mg/mL) can be assessed by monitoring the 

absorption of the studied sample at 980 nm. A standard power of P0=1.6269 W (after a 

cyclohexane cuvette) was used for the Beer-Lambert law. Results are gathered in Table 7.  

 

Table 7. Estimation of the number of UCNP. (P0=1.6269 W) 

 BA3 BA6 BA9 BA10 

P (W) 1.4366 1.3543 1.4769 1.4244 

Abs=log(P0/P) 0.05402 0.07966 0.04202 0.05773 

[Yb] (mmol/L) 17.42 25.70 13.55 18.62 

N(Yb) 2.6*1019 3.9*1019 2.0*1019 2.8*1019 

N(RE/NP) 236 1310 2937 24130 

N(NP)/L 1.93*1017 1.03*1017 3.51*1016 2.00*1015 

[NP] mg/L 33.95 17.82 6.05 0.35 
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Recording conditions 

As discussed in the absorption section (II.1.1, fig 3), the scattering was found to be 

important in the high energy spectral range. To limit such diffusion issues, nanoparticle 

concentrations were fixed at 5 mg/mL for all the studied samples.  

A crucial point is then: How to perform accurate comparison of batches displaying very 

different brightnesses?  

The main issue was the huge gap in intensity between the strong 802 nm emission 

(despite the drop of sensitivity of the detector) and all the other higher energy emissions bands. 

Consequently, slit apertures were adjusted for each batch in order maximize the intensity at 802 

nm up to 1 million counts per seconds, keeping the detector response in its linear regime. For 

batch-to-batch comparison purposes, a compromise had to be found, with conditions giving 

almost no signal for the batch showing the weakest emission (BA3) and a non-analyzable 802 

nm peak (i.e. beyond the PM linearity threshold) for the brightest one, BA10 (figure 11). 

 

Figure 11. Comparison of NPs luminescence recorded in similar conditions: solutions at 5 

mg/mL in cyclohexane, under CW 976 nm laser excitation at 35.39 W cm-2 with identical 

fluorimeter slits configuration: BA10 (grey curve), BA9 (cyan), BA6 (black) and BA3 (orange). 

A) full spectra. B) Zoom-in to reveal UV and visible emission peaks. 
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Figure 12. Comparison of NPs luminescence normalized by the number of nanoparticles per 

sample estimated from absorbance measurement, under CW 976 nm laser excitation at 35.39 

W cm-2. A) Luminescence spectra of BA10 (grey curve). B) and C) are overlaid spectra of resp. 

the UV-vis part and the NIR (800nm) part of BA9 (cyan), BA6 (black) and BA3 (orange).  

Comparison of BA3 and BA10 highlights the effects of size reduction on UCNP with 

similar composition (57% Yb, 1% Tm) but with diameter of 3.2 nm and 15 nm respectively 

(figure 12). Indeed, BA3 (3.2 nm) has almost no signal in these recording conditions while 

BA10 (15 nm) exhibit very intense emission. Such discrepancy (≈5 orders of magnitude) can 

have two origins for ultrasmall core samples:  

-the very different amounts of active ions per particle: 2 orders of magnitude separate these two 

samples for both absorbing (Yb) and emitting (Tm) centers (table 7). 

-the large change of surface to volume ratio (4.7 factor) that should lead to an increase of the 

surface quenching for ultrasmall nanoparticles compared to larger ones. 
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Noticeably, the ultrasmall core@shell of 5.7 nm (BA6) shows upconversion emissions 

which are almost as intense as the emission of the 7.5 nm core (BA9). The shell limits at least 

partially the energy loss via the surface, compared to the core. Despite its uncertain composition 

as mentioned in Chapter 2, it behaves here as a simple undoped barrier.  

The cumulative effect of size and Yb composition is exemplified on the pair BA9 and 

BA10. The latter (larger and with a higher [Yb]) was found to be vastly more luminescent, with 

all the emission peaks at least 2 orders of magnitude higher in intensity. Surprisingly, except 

for the emission band at 450 nm and the noisy 500-630 nm area, it appears that these spectra 

are proportional by a factor 20 (figure 13), but no interpretation was found to this result. 

 

Figure 13. Comparison of small nanosphere luminescence normalized by their sensitizer 

content: with 20% (BA9, cyan) or 57% Yb (BA10, grey), under CW 976 nm laser excitation at 

35.39 W cm-2. Light blue dashed-line is the cyan curve multiplied by a 20 factor along the 

spectra. A) full spectra. B) Zoom-in on 802 nm peak. 

 

It appears difficult to choose between normalization by the number of nanoparticles or by the 

total ytterbium content for batch-to-batch comparison. 

Therefore, we turned our attention to ultrasmall nanoparticles, as they were the only group of 

samples whose size was not affected by the sensitizer content.  
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II.2.2.2 Size effect, evidence of a critical size 

Monitoring of the ultrasmall core synthesis by cycling temperature can have a second 

utility: the regular sampling generates a convenient library to explore the effect of the size on 

the luminescence (figure 14). Despite very weak signals, two main bands can be detected at 800 

nm and 475 nm. As exposed in the chapter II, luminescence of both emissions is slightly rising 

with the size from 2 to around 2.9 nm. Then a sharp increase of upconversion between 3 and 

3.1 nm stresses is observed. Afterward, the luminescence intensity remains constant while the 

size increases from 3.1 to 3.4 nm. This abrupt change in the luminescence properties is 

reminiscent of the interpretation proposed by Gargas et al.9 as evoked in the introduction 

chapter. In their model, the surface quenching extends below the surface and significantly 

quenches all the emitters of this zone. Therefore, the luminescence is expected to rise only if 

the particle’s diameter is big enough. For comparison purposes, the authors have defined a 

“volumic emission”, Iem/VNP(r), for each size of particles. Setting this ratio to unity for the large, 

“unquenched” nanoparticles (r ≈ 100 nm) and considering that the observed emission for any 

NPs was coming from the fraction of the particle made of a similar “unquenched” material, led 

the authors to estimate the thickness of a “dark layer”:  particles below the critical size of 3.4 

nm diameter were declared to have negligible emission. Unfortunately, the range of sizes 

explored was above this critical size. In our study, the observed threshold at around 3 – 3.1 nm 

sits in the range of size of the very small crystals we have prepared. To our knowledge, this 

represents the first experimental study confirming the existence of such a critical size. 
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Figure 14. Evolution of photophysical properties along the size growth of ultrasmall cores. 

Luminescence intensity was measured on 5 mg/mL cyclohexane solution irradiated at 35.39  

W cm-2. Black curve is a guideline for the eye.  
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II.2.2.3 Doping effect on ultrasmall UCNP 

Quantitative comparisons of the Yb effect were done for the brightest samples available:  

two core@shell of 5.7 nm, respectively with a core composition of 20% Yb (BA7) and 57% Yb 

(BA6) (figure 13). As the sizes (and shell) are identical, we can now clearly identify the effect 

of the Yb doping without any surface effect consideration. 

Spectra of figure 15 reveals that a higher sensitizer content leads to a luminescence increase of 

each emission bands. This rise, by a factor of around 2.8, correlates nicely with the ratio of Yb 

content (57% vs 20%) and was therefore interpreted as a better light collecting efficiency 

(antenna effect).   

 

Figure 15. Comparison of ultrasmall core@shell with 20% (BA7) or 57% Yb (BA6) content 

in core, both prepared at 5 mg/mL in cyclohexane, under 976 nm CW laser at 35.39 W cm-2. 
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II.2.2.4 Shell effect on small UCNP 

As revealed by the picture (chapter II, figure 8), a huge enhancement of the 

photophysical properties after shell growth could be clearly seen by direct eye observation when 

Na(Gd-Yb)F4 NP core of 10 nm (BA11) was compared to its core@shell analogue of 15 nm 

(BA12). The recording of a luminescence spectrum (figure 16) shows that this qualitative 

observation is a gain of around 3 orders of magnitude of upconversion efficiency.  

 

 

Figure 16. Comparison of core BA11 (A) and its corresponding core@shell BA12 (B) at  

5 mg/mL in cyclohexane, under 976 nm CW laser at 22.66 W cm-2. 
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II.2.3 Exploration of Tm-based UCNP’s nonlinear behavior 

The power-dependency of our synthesized UCNPs was assessed by recording the 

complete emission spectra at different power laser density. Then the maximum intensity of each 

peak was plotted against the laser intensity in a log-log lot as previously explained. In order to 

focus on the measurement of the slope we have privileged to optimize the signal intensity and 

reset the recording parameter (inter alia the detection slits) for each sample. This unfortunately 

precludes any comparison from sample to sample, beside the slopes of the log-log plots. The 

non-linear behavior of the UCNPs was explored according to two different criteria: the 

influence of the shell, and the impact of the laser source. While figure 17A is a simple overlap 

of power-dependent spectra, Fig 17B shows the typical representation of the nonlinear behavior. 

 

Figure 17. Power dependent optical properties of BA12 at 5 mg/mL in cyclohexane. A) Overlap 

of emission spectra. B) Log-log plot of the emission bands power-dependency. 

Contrarily to the predicted behavior in the power range explored, the global shape is a slightly 

deformed straight line with curvature convexity varying according to the emission monitored:  



 Chapter III – Upconverting nanolamps 
 
 

-177- 
 
 

while low energy, intense emission shows the expected behavior (negative convexity at high 

power, the high energy one shows the reverse (positive convexity at low power) especially for 

the poorly luminescent batches. Therefore, we decided to compare a linear fit to a 2nd order 

polynomial one (table 8). 

Table 8. Comparison of linear and polynomial fit of the log-log plot of BA12. Emission bands 

with comparable behavior are labelled by color. 

 Linear fit 2nd order polynom 

Peak (nm) Slope R² Slope R² 

802 1.69 0.9992 1.6-1.7 0.9993 

697 1.5 0.9879 1.2-2.1 0.9996 

647 2.24 0.9942 1.9-2.8 0.9988 

475 2.48 0.9995 2.4-2.6 0.9996 

452 3.25 0.9928 2.2-5.1 0.9972 

362 3.85 0.9978 1.9-5.1 0.9949 

346 4.35 0.9952 0.5-5.3 0.9932 
 

312 4.5 0.9942 0.8-5.8 0.9953 
 

 

Whichever the type of fit chosen, the apparent exponents can be classified in four groups:  

around 1.5 (green), 2.5 (orange) 3.2 (blue) and 4.3 (white). Clearly the values are not equal to 

the number of photons necessary to excite the emitting level. A simple calculation shows that 

on average half of the 980 nm photon energy is used for the upconversion process whatever the 

emission band which is considered (table 9). 

Table 9. Energy balance of the upconversion process. Slope of linear fit was used for 

calculation. E(eV) was calculated from |(p}) = D7~"
%  , with λ expressed in nm. 

λ (nm) 346 362 452 475 647 697 802 980 

(exc) 

E (eV) 3.57 3.43 2.74 2.61 1.91 1.78 1.54 1.27 

E/E(980) 2.83 2.71 2.17 2.06 1.51 1.41 1.22  

slope * E 5.50 4.87 4.11 3.14 2.83 1.90 2.14 

%E(980)used 51% 56% 53% 66% 53% 74% 57% 
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However, the observed grouping is in agreement with the Dieke diagram (figure 18) indicating 

the origin of the radiative transition: 802 and 697 nm are coming from 3F2,3 level while 647 and 

475 nm peaks result from radiative desexcitation of 1G4. The third one (452 nm and 362 nm), 

originate from 1D2 excited state. 

 

Figure 18. Dieke diagram completed with the representation of ETU scheme for a Tm-based 

UCNP. Dark grey arrows represent the equivalent of energy transfer from one single NIR 

photon (980 nm) absorption. “Oscillating” light grey arrows are non-radiative relaxations. Dash 

line arrows are energy transfer between sensitizer and different energy level of thulium emitter. 

 

From this initial observation we compared the log-log plot of various types of NPs according 

two different criteria: the influence of the shell, and the impact of the laser source. For clarity 

purpose, the behavior of only the 802 and 475 nm emission bands will be presented.  
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II.2.3.1 Shell effect 

Two batches prepared following premix way and conventional heating were used for 

core and core@shell comparison (figure 19). 

Remarkably, for the two samples, the linear parts of the 475 nm have quasi identical slopes, as 

highlighted by the blue guideline (the situation is almost the same for the 800 nm one.) 

Thus, UCNP’s non-linear behavior seems not to be affect by the surface, as the exponents are 

conserved. The efficiency of the surface quenching can be responsible for the delayed rise in 

the 475 emission.  

 

Figure 19. Comparison of two batches of core and their corresponding core@shell Na(Gd-

Yb)F4:Tm@NaYF4 prepared following premix way and conventional heating. Light and dark 

red are respectively 802 nm peak of core and core@shell, light blue and dark blue are the 

equivalent for 475 nm emission band. A) core BA11 and its corresponding core@shell BA12. 

B) core BA13 and its corresponding core@shell BA14. Blue lines are guideline for the eye, 

showing a similar slope on 475 nm emission peak. 

II.2.3.2 Excitation source effect 

We then addressed the question of the excitation source (figure 20). We compared the 

use of two lasers: a monomode and a multimode one. Monomode lasers are more focused than 

multimode ones, therefore enabling higher energy densities favorable to non-linear phenomena. 

The monomode laser beam employed (ThorLab 976 nm, 1 W) delivers a gaussian beam 

(r(1/e)2=0.07 mm) narrower than the multimode one (MDL-H 980 nm, Acal BFi/Changchun 

Industry, 3-5 W, beam radius: 0.175 mm). 



 Chapter III – Upconverting nanolamps 
 
 

-180- 
 
 

Luminescence spectra were measured on one batch of core (BA15) and its corresponding 

core@shell BA16 (figure 20). 

 

 

Figure 20. Comparison of the impact of the excitation source on log-log plot. A) core BA15 

and B) Core@shell BA16. Red and blue colors are respectively for the 802 nm and 475 nm 

emission bands. Experimental points obtained with the multimode laser are represented by 

circles while triangles are from the monomode one.  

In the case of cores (figure 20A), the observed behavior is markedly different. Indeed, 

UCNP emissions under multimode irradiation show a steady and weak increase. On the other 

hand, the use of a monomode excitation leads to a delayed sharp exponent. This unexpected 

result is of importance, as it can explain the problem of reproducibility measurement among 

laboratories. These differences are considerably smoothed for the core@shell samples (figure 

20B): no significant differences were observed and all emission tends to rise steadily as for the 

core NPs under multimode excitation. The slight difference in absolute intensities between 

multimode (35.39 W cm-2, discs) and monomode (58 W cm-2, triangles) lasers was attributed 

to the differences of the beams’ diameters. As our monomode laser has a smaller beam section 

than the multimode one, it deposits more energy than the multimode one but on a lower amount 

of NP. 

 The impact of the type of excitation laser can be used to alter the emission spectrum: the power 

of the monomode laser affects the overall luminescence intensity, but also the emission bands 

ratio (fig 21), in particular between the two “blue emission” bands (450 and 475 nm) which are 

of interest for our application (see chapter IV). At low power, the 475 nm is the main emission, 
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while at higher power, the 450nm one becomes predominant thanks to a higher exponent. From 

this highly sensitivity, emission band ratio between 450 and 475 can be manipulated simply by 

laser power tuning.  

 

 

Figure 21. Comparison of the emission spectra of BA15 under CW 976 nm monomode laser 

at different laser powers, respectively 28.19 (blue); 40.35 (orange); and 50.02 W cm-2 (grey). 

Intensity is normalized by the intensity at 475 nm of each sample. 

 

The present data show that even one sample can give different signals depending on the CW 

laser. Thus, it opens questions of standardization of the photophysical measurements. A 

solution should be the use of a well-defined UCNP standard to standardize the analysis. 
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II.2.3.3 Conclusion on log-log plot 

Gathering the measurement of log-log plots among the different samples helped us to 

distinguish some particular behaviors. Indeed, 3 main groups of peaks stand out, with similar 

exponent behavior (shape and slope factor): 

· 450 nm and 361 nm (and 344 nm) 

· 474 nm and 645 nm 

· 800 nm and 694 nm  

By refering to the Dieke diagram, we can see that emission bands of similar exponent come 

from the same excited state (figure 22). 

 

Figure 22. A: Comparison of the average exponents for the samples above described in the 

chapter. B: Correlation between exponent and excited state level energy. 

Eventually, samples could be classified as described below (table 10): 

Table 10. Classification of UCNPs batch exponents, as a function of their composition 

 %Yb %Tm Matrix core shell 800 nm exponent 475 nm exponent 
BA11 57.38 1.02 Gd - 2.25 2.30 
BA15 57.35 0.99 Gd - 2.25 2.30 
BA12 57.38 1.02 Gd 100%Y 2.3 3.15 
BA14 57.28 1.18 Gd 100%Y 2.3 3.15 
BA6 57 1 Gd 100%Gd 2.32 2.80 
BA17 57 1 Gd 100%Gd 2.32 2.80 
BA16 57.35 0.99 Gd 100%Gd 2.40 2.70 
BA7 20 1 Gd 100%Gd 2.85  
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Independently of their size, sub-10 nm cores have similar behavior. Core@shell of all sizes are 

rather similar: all of them have an exponent of 2.3-2.4 for the NIR emission. However, the 

nature of the shell (Y or Gd) has an impact on the 475 nm: lower slope is obtained with Gd. 

This last point is in agreement with NaYF4 known as a more efficient shielding layer.10 

Eventually the restriction of the log-log plot to only he linear domain as commonly seen in the 

literature can be questioned. Comparison with realistic numerical models might be a solution. 

III Quantitative photophysics of the ultrasmall UCNPs 

In the up-coming section we focus on the exploration of the photophysics of the very 

small nanoparticles prepared in chapter 2 and already presented in the “Absorption” section: 

BA1, BA2, BA4, BA5, BA8, whose chemical parameters were presented in Table 1. As 

explained previously, the modified fluorimeter of IMRCP is insufficient to analyze 

quantitatively extremely weak signals. We therefore moved to the dedicated equipment 

available at BAM and LASIR as introduced earlier (section II.2.1). To record the data, a “50 

mg/mL” concentration was used for all the measurements. However, one has to remember that 

some of the particles tend to settle down. 
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III.1 Identity card of ultrasmall UCNP nanolamp 

III.1.1 Steady state 

Emission spectra 

These spectra were collected at the BAM in Berlin. As expected, and despite potential 

sedimentation, cores-shell samples were found to be qualitatively brighter than the cores only. 

An example is shown in figure 23, comparing the 57% core (BA2) and Core-shell (BA5) 

sample. The important point is that because of higher laser energy density (124.4 W cm-2 instead 

of 58.4 W cm-2 or 30 W cm-2 at IMRCP), all lines can be observed even for weakly luminescent 

samples.  

 

Figure 23. Comparative emission spectra of BA2 and BA5 under 976 nm CW laser at  

124.4 W cm-2. 

 

In the following, sedimentation issue will not affect the observed results. If necessary, ytterbium 

absorption will be used to calibrate the suspension as in sections II.1.1 and II.2.2.1. 

Energy breakdown analysis 

Area under the peaks of emission spectra were integrated and multiplied by the energy 

(in eV) of the corresponding emission band wavelength to show the energetic proportion of 

each emission band, as summarized in the table 11. 
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Table 11. Energy breakdown of ultrasmall UCNP under 976 nm CW laser at 124.4 W cm-2. 

 

The Branching Ratio (BR) can be calculated from the percentage of area under the peaks of 

emission coming from the same excited state, as evoked in the introduction chapter. In the 

present case, two BR could be compared among samples: BR(1G4) and BR(1D2) as shown in 

table 12. 

Table 12. Comparative Branching Ratio (BR) extracted from emission spectra under 976 nm 

CW laser at 124.4 W cm-2. 

 BR(1G4) BR(1D2) 

%(476 nm) %(648 nm) %(362 nm) %(453 nm) 

BA1 77.3 22.7 25.7 74.3 

BA2 76.8 23.2 31.5 68.5 

BA8 73.2 26.8 29.6 70.4 

BA4 76.4 23.6 32.5 67.5 

BA5 77.0 23.0 36.7 63.3 

 

Among the samples studied, it appears that globally the Branching Ratio evolves in the same 

way: for each excited level, there is no inversion of the balance between the two emissions i.e. 

476 nm is the main radiative relaxation path of 1G4 (73-78%) while it is 453 nm for 1D2 (63-

75%). 

III.1.2 Time-resolved emission 

III.1.2.1 Design of experiments 

Two different set-ups were tested for the measurements of the time-dependent 

luminescence data. Our aim was to check the influence of the pulse shape and intensity on the 

dynamics of each emission lines.  
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Classically, time-dependent emissions monitor the first-order disappearance of an 

excited state, thus are characterized by lifetimes. Only relative amplitudes are considered as 

pertinent parameters, so the data acquisition favors the signal-to-noise ratio, typically by fixing 

a limited number of counts as a stop condition. The consequence is that duration of a 

measurement is signal-dependent: bright emissions are analyzed within 5 min while weak ones 

can take hours. Subsequent data treatment consists generally in fitting the experimental decays 

with a multi-exponential function.11 

From the Dieke diagram it is clear that the energy redistribution dynamics, presenting several 

bimolecular processes, will give rise to luminescence kinetics that should be sensitive to 

acquisition conditions, and should differ for each studied line. Therefore, the validity of the 

standard approach can be questioned. In particular, it becomes important to collect all the lines’ 

traces under identical recording conditions.  

During my stay at the BAM, I explored the two different approaches:  

- measurements with a constant amount of 4k counts,  

- or with an identical acquisition time (15 min).  

Noticeably, the second type of recording, which was found to be very uncommon in the 

literature, was motivated by the desire to implement and feed a kinetic modeling of the 

upconversion phenomenon.  

Since the Yb plays the role of antenna, we also paid special attention to the recording of a signal 

originating from its excited state.12 Ytterbium has broad emission due to the splitting of the 

Stark levels, peaking at 1030nm, beyond the detection limit of the fluorimeter, However, this 

emission tails up to 940nm. Despite close vicinity with the excitation laser (980 nm) and the 

large slits aperture (10 nm), meaningful signal could be collected at this wavelength to monitor 

this excited state. 

III.1.2.2 Lifetimes measurement with BAM setup 

Lifetime acquisition in “standard conditions”: example of BA5 

 At first, decays were acquired by fixing a number of 4000 counts as the stop-limit of the 

lifetime measurements. As mentioned previously, the very large intensity range between strong  
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and weak emission transpires into the acquisition times. Thus, for a laser power of 115.5  

W cm-2, the recording of the 940 nm decay took 2 min, while 15 min were required for 476 nm 

emission. More spectacular was the low emissive 345 nm band, requiring more than 12 hours! 

Similarly, diminishing the excitation power led to an increase of the acquisition time. Thus, for 

a laser power of 76.4 W cm-2, the 476 nm decay required 45 min. 

With such conditions, all the emissions reach the same maximal intensity in arbitrary units and 

the decay traces are then subjected to multiexponential fit. In our case, data treatment routine 

was performed using a dedicated biexponential-based software delivered from the fluorometer 

manufacturing company. 

Typical result of decays obtained are gathered in figure 24. 

As evidence by the partial mismatch between experimental points and fit curve, coupled to the 

poor quality of the residuals, this multiexponential approach does not seem ideal. 

 

Figure 24. Typical fit routine of decay at BAM. Insets are residuals obtained with the fit. 
Decays represented in the figure were obtained under 976 nm CW laser at 115.5 W cm-2. A) 
940 nm decay. B) 475 nm decay. 



 Chapter III – Upconverting nanolamps 
 
 

-188- 
 
 

By applying this measurement routine, several lifetimes were measured. They are gathered in 

table 13. Surprisingly, except for 940 nm (Yb), core BA1 and BA2 seem to have longer lifetimes 

than core@shell BA5. From this first experimental database supposedly obtained in “ideal 

conditions” with the 4000 counts approach, we started then to modify the acquisition parameters 

in order to progres towards a description of the kinetic network. 

Table 13. Summary of lifetimes (in µs) obtained in the “4000 counts” approach 

 BA1 BA2 BA5 

940 nm 11.7 7.3 13.9 

802 nm 1680 (80%) & 165 (20%) 727 (85%) & 97 (15%) 424 (13%) & 98 (87%) 

475 nm 934 617 515 (69%) & 290 (31%) 

452 nm 681 321  

362 nm 791  216 

 

Lifetime acquisition in “kinetic conditions”: example of BA5 

In order to be able to compare simultaneously the instantaneous radiative relaxation of 

all the states involved, the amplitude of all emissions had to be recorded under similar 

conditions. This precluded the previous approach (i.e. “the 4k counts” in BAM routine).  

Consequently, we arbitrary fixed the acquisition time at 15 min. In order to accumulate 

enough signal, measurements were performed with different temporal step (i.e. the number of 

channels): small step (1 µs) was required for sharp decays such as 940 nm, while acquisition 

was done with 4 µs for low emissive bands such as 452 and 362 nm that have longer lifetimes. 

These data were then fitted using a multiexponential function, providing lifetimes. 

The comparison of the absolute amplitudes required the same time scale. Therefore, the binning 

was converted to a 4 µs step, common to all the measurements. Then, these rescaled data were 

corrected by the specific wavelength-dependent detection calibration curve of the PM. 

Therefore, the comparison of the amplitudes between the different emission bands and sample 

was now quantitative. BA5 is presented as an illustration in figure 25.  
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The 940 nm emission was found to be very intense and followed remarkably the laser profile 

(980nm). This was somewhat expected as this emission is the ytterbium’s one. On the opposite, 

all the other lines, originating from thulium, presented a steady rise during the excitation pulse. 

This is a characteristic of the ETU process. In terms of relative intensities, the 802 nm was 

found to be very intense and 476 nm and the two red emissions (647 and 697nm) as well. 

However, 452 nm and UV bands are weak and will be challenging to observe while decreasing 

laser power.  

 

 

Figure 25. Emission bands decays recorded under 976 nm CW laser at 124.4 W cm-2. 

Data treatment routine: example of BA5 

Fit of the decay traces were made on Origin software with mono or biexponential model. 

Due to overlap of the large laser pulse (IRF, 400µs pulse) with the rise, the latter could not be 

exploited. Results of multiexponential decaying functions are gathered in table 14, residuals of 

the fits are in figure 26. As expected, regarding to their shape, most of the decays could be fitted 

by biexponential function. The main difficulty for the fit comes from the noisy signal obtained 

with such a short time of experiment (900 s). On unmodified raw data, the lack of signal cannot 
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be fitted by biexponential function despite the clear multiexponential observable. Thus, the 

rebinning normalization for quantitative comparison of the shape was crucial for the treatment. 

This artificially increased the signal-to-noise ratio, leading thus to a better quality of the fits. 

However, figure 26 shows that this treatment is still not optimal and.  

Table 14. Results of linear fits by mono- or bi-exponential decaying function for BA5 

(lifetime, error bar, and R2). 

λ(nm) τ1 (µs) τ2 (µs) R² 

940 13.54 ± 0.02 - 0.99998 

802 81.1 ± 0.3 207 ± 3 0.99988 

697 9.8 ± 0.4 - 0.98445 

647 178 ± 12 486 ± 10 0.99504 

476 163 ± 4 449 ± 3 0.99957 

453 16.6 ± 1 363 ± 8 0.79974 

362 48 ± 5 264 ± 12 0.9054 

347 32 ± 32 246 ± 20 0.51313 

 

940 nm 802 nm 
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476 nm 453 nm 

647 nm 697 nm 
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Figure 26. Experimental fit by multiexponential fit presented in table 14 (for BA5 at 124.4  

W cm-2). Fit were obtained from biexponential decay function except for 940 nm and 697 nm. 

For these last two, the fit did not converge as a biexponential function but only with a 

monoexponential one. Blue points are experimental data, red ones are obtained by fit (fit 

curve and residual) 

Comparison of ultrasmall samples at power constant  

Once adopted a routine of measurement and data treatment, we could then start to 

compare ultrasmall batches at the same laser power (figure 27). 

Generally, the same behavior in term of amplitudes order can be found in each batch. 940 nm 

is higher than 802 nm. Then are following in order of decreasing amplitude: 476 nm > 697 nm 

and 647 nm > 452 nm > UV. 

However, two unexpected facts can be observed: 

· Core seems to have longer lifetimes, especially for 20% Yb content 

· Batches at 20% Yb show unexpected negative convexity, in particular on core 20% Yb 

We were unable to explain these two points.  

Measured lifetimes are gathered in the table 16. 

362 nm 
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Figure 27. Comparison of luminescence decays for ultrasmall core and core@shell at both Yb 

composition (20% or 57% Yb) recorded over 15min. A) core 2.4 nm with 20%Yb. B) core 2.8 

nm with 57%Yb. C) core@shell 5.5 nm with 20%Yb. D) core@shell 5.5 nm with 57%Yb. 

Black curve is IRF (laser 976 nm at 124.4 W cm-2). Other curves are luminescence decays of 

Ytterbium at 940 nm (grey), and decays of the respective Tm emissions: 802 nm (pink), 697 

nm (dark red), 647 nm (red), 476 nm (yellow), 452 nm (green), 362 nm (light blue), and 347 

nm (dark blue).  

 

Table 16. Comparison of ultrasmall UCNP’s emission decays (in µs) 

λ(nm)  BA1 BA2 BA4 BA5 BA8 

940 No convergence No convergence 81 13.54 No convergence 

802 No convergence No convergence 151 & 1368 81 & 207 No convergence 

697 177 & 1975 56 149 & 26 10 138 & 376 

647 3189 299 309 & 742 178 & 486 36 

476 1354 796 444 & 1300 163 & 449 138 & 742 

453 1251 801 999 17 & 363 165 & 507 

362 1117 362 1050 48 & 264 69 & 331 
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Noticeably, the shape of some emissions’ decays revealed strong similarities reflected in the 

results of the fit. The same group behavior as already seen in stationary state experiments  (in 

section II.2.3.3) was confirmed: 

 -476 and 697 nm 

-454 and 362 nm 

-347 nm emission behaves quite similarly to the 454-362 nm group. 

· Concerning the Yb emission at 940 nm, decays are shorter  

-for core than core@shell,  

-for 57% Yb than 20% 

Increasing the size of the core (BA8 vs. BA1) also leads to longer lifetime. 

· Concerning the Tm emission: 

- lifetimes are longer with 20% Yb content than with 57% 

- cores have longer lifetimes than core@shell, 

One exception to this last conclusion concerns the batch BA2 (Core, 57% Yb) for which 

the 802 nm emission lifetime is 2.5 larger than for a 20% Yb particle of similar size (batch 

BA1). 

The effect of the ytterbium content on the thulium emissions can be rationalized in terms of 

“concentration quenching” (section III-1-2): the more ytterbium, the faster the transfer to the 

surface, thus the more energy is dissipated through this process. Back transfers from Tm excited 

states to ytterbium are also more probable.    

The most intriguing result is the effect of the shell on the Tm-emissions compared to core 

nanoparticles. Indeed, addition of a shell was expected to suppress the surface quenching and 

an increase of the lifetime was foreseen. The exact opposite was observed. We have not found 

any explanation to this counter-intuitive result.  
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Power-dependent behavior: example of BA5 

As an illustration, only results obtained for BA5 batch will be presented in figure 28. 

The objective was now to evaluate the sensitivity of the recorded lifetimes to the excitation 

power 3(r"). 
Power-dependent measurements were difficult to perform due to the very large difference in 

noise between all the emission bands. Data could be accumulated mainly on 940, 802 and 476 

nm. The other emissions gave noisy signal at lower laser power. 

For one emission wavelength, decays were found to have similar features over the 3 – 124  

W cm-2 power range explored, implying lifetimes to be power-independent. Similar results were 

found for all the other batches (cf experimental section). 
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Figure 28. Power-dependent measurements of BA5. Power laser is decreasing following 

rainbow colors from dark red to purple (respectively 124.4; 98.53; 83.09; 64.91; 43.55; 33.90; 

22.64; 10.02 and 3.33 W cm-2).  

 

As the data have been acquired in a quantitative way, we can also use them to explore the non-

linear behavior. Hypothesizing that at the end of the pulse the concentrations have reached their 

steady-state values, the emissions’ intensities at this very moment are stacked as for stationary 
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state experiments. Plotting these intensities as a function of the power in a log-log plot give a 

similar graph as in section II.2.3 (figure 29). 

 

Figure 29. Typical log-log plot extracted from power-dependent lifetimes of BA5. The 

different emission band detectable are overlapped: 940 nm (black), 802 nm (pink), 697 nm 

(dark red), 647 nm (light red), 476 nm (yellow) and 452 nm (green). 

 

Among the five samples, experimental points seem to be well aligned, without significant 

curvature. Hence, the exponents were directly obtained from the slope of linear fits. Results 

are gathered in the following table 17: 

Table 17. Exponent obtained from power-dependent lifetimes 

 BA2 BA1 BA5 BA4 BA8 

 slope R² slope R² slope R² slope R² slope R² 

940 1.71 0.9037 1.24 0.9612 0.98 0.9961 0.96 0.9995 0.61 0.9538 

802 2.33 0.9267 2.48 0.9867 1.99 0.9932 1.90 0.9999 1.44 0.9945 

697     1.67 0.9912 1.91 0.9971 1.14 0.9845 

647   2.29 1 2.09 0.9914 2.44 0.9786 1.33 0.9818 

476   2.34 0.9765 2.47 0.9853 2.67 0.9999 1.94 0.9987 

450 4.32 0.8912   1.03 0.9981 2.66 0.993 2.26 0.9913 
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As expected, the analysis of the exponents revealed the grouping of some emission lines: 802 

nm with 607 nm (green boxes) and 647 nm with 476 nm lines (orange boxes). More 

interestingly, the slopes were also consistent with the previously recorded one. The observed 

trends are: for the 802 nm and 607 nm lines, a slope slightly lower than 2 instead of ca 1.5, 

section II-2-3; for the 647 nm and 476 nm lines, a slope about of 2.5 instead of ca 2.3, section 

II-2-3. Surprisingly, the BA8 batch consisting of larger core particles was found to not follow 

this classification: all exponents being lower than for the other batches. No explanation was 

found for this feature. 

Conclusion on BAM setup 

This first series of lifetimes measurement was successful. We could record data in a 

kinetic mode for a large amount of emission bands and at different power on samples varying 

in composition, size and architecture. 

Thus, for the batches under scrutiny, the conclusions are: 

- apparent lifetimes seemed grouped in a similar way as the exponents in the steady 

state measurements.  

-lifetimes are longer for the standard 20% Yb composition than for the 57% one. 

-core@shell NPs seem to have as yet unexplained shorter lifetime than the 

corresponding cores. 

The only limitation found was the poor signal-to-noise for the weak emissions, precluding the 

extraction of quantitative information for the levels concerned.  Additionally, with this shape 

of excitation profile, closer to a chopped illumination, we cannot extract easily some 

information on the “rise” part.  

Thus, subsequent measurements were performed in different conditions at LASIR.  
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III.1.2.3 Lifetimes measurement with LASIR setup 

New fitting approach 

 In the LASIR setup, the very short excitation pulses deliver a power several orders of 

magnitude than the BAM excitation laser. This generates “instantly” a limited but large amount 

of Yb* that will further feed the Tm emissions. Therefore, rise and decays of all Tm-based 

signals are well separated from the excitation pulse. Compared to the Berlin setup, the main 

differences come from the PM whose sensitivity drops above 600 nm: the 800 nm line will then 

be apparently weaker, and no Yb emission can be recorded. Consequently, no quantitative 

amplitude analysis has been attempted yet.  

From the previously encountered fitting issue, another approach was employed to sort the 

kinetic traces. It is based on the measurement of their luminescence averaged lifetime: 

 

 

Effect of the power: case of BA5 

 

Figure 30. Typical kinetic traces recorded in Lille showing the rise and decay of each 

emissions (BA5 batch)  (NB: the 5ns excitation pulse is merged with the intensity axis). 
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Results of the fit for different powers are gathered in the table 18. Here again, the 

averaged lifetimes could be gathered by groups, in particular the pair (475 nm, 650 nm). 

 

Table 18. Luminescence averaged lifetimes (µs) of power-dependent decays fit of BA5 

sample (laser power in MegaWatt (MW)) 

 255 MW 132 MW 63.2 MW 32.6 MW 

360 nm 72.0 67.1 61.0 59.5 

450 nm 71.6 68.2 55.2 63.7 

475 nm 354.0 362.7 384.2 250.4 

650 nm 321.5 297.5 177.3 - 

800 nm 93.9 90.5 68.8 - 

 

Lifetimes were found to be power independent, except for the 650 nm that is increasing with 

the power. To investigate the effect of batch-to-batch variations, we only focused on the three 

emission lines: NIR (800 nm), and blue emissions (475 and 450 nm). Main conclusions were 

(table 19) (i): whatever the architecture (core or core@shell), an increase of ytterbium 

concentration leads to the decrease of lifetime of all the Tm emissions, and (ii): the introduction 

of a shell leads to an increase of the lifetime as evidenced by the comparison of core 

nanoparticles with core@shell ones of similar Yb content (BA1 vs BA4, 20%Yb or BA2 vs 

BA5 57%Yb). 
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Table 19. Comparison of batch variation effect on photophysics of ultrasmall UCNP at 255 

MW. Samples made of 57% Yb in core are written in brown. Blue one have 20%. Yellow lines 

indicate Core@shell.  

 800 nm 475 nm 450 nm 

BA2 25.2 76.2 24.5 

BA1 68.6 158.5 115.7 

BA5 93.9 354.0 71.6 

BA4 187.4 510.6 158.3 

 

Compared to what was observed on the BAM setup:  

· The independence of the lifetimes with the excitation power, with the exception of only 

one line (650 nm), is remarkable in view of the very high powers available at the LASIR.  

· The ytterbium effect can be considered as a general property since the same trend is 

observed for both setups and can be interpreted as the manifestation of the concentration 

quenching effect. 

· Remarkably the effect of the shell gives opposite results, depending on the setup used.  

· In general, lifetime determinations at the BAM were more difficult due to the quality of 

some of the data. The use of more intense laser square pulses would certainly help to 

record decay traces with a better signal-to-noise ratio, even for the less efficient 

transitions. This could be achieved at LASIR by grouping the ns-pulses in trains of 

various durations.  
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III.1.3 Quantum yield – efficiency 

Final point was to evaluate the efficiency of the UCNPs. It was made at BAM with a 

dedicated setup allowing power-dependent measurement with an integrating sphere.  

A measurement consists of the recording of the power-dependent quantum yield by browsing 

back and forth a series of laser power. For statistical accuracy, each measurement was 

triplicated (figure 31). Absorbance was checked to remain constant throughout the experiment. 

 

Figure 31. Comparative Power-dependent measurement of two ultrasmall core@shell  

UCNPs(5.5 nm) with respectively 20% (green) or 57% Yb (red). and one small core (7.5 nm) 

with 20% Yb (dark). 

 

Noticeably, reference sample (core 20% Yb 7.5 nm) shows a curvature that can be attributed to 

a saturation effect with rising power. On the other hand, quantum yields of the two ultrasmall 

core@shell batches rise linearly with power density in this range of power (25-375 W cm-2). 

Among all samples ultrasmall core@shell with 20% Yb has the highest quantum yield. 

Nevertheless, for all these three samples, the overall quantum yield is spanning the 10-4 to 10-3 

% range. As a result, quantum yield values recorded at a single excitation power cannot be used 

on its own to characterize the upconversion phenomenon and its efficiency. It should be given 
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as a function of the laser power. Moreover, it should be not considered as an absolute value, but 

more an “apparent quantum yield”. Ultrasmall core were not bright enough to be accurately 

treated in similar conditions.   

To conclude, low quantum yields were obtained as expected, due to the ultrasmall size of the 

NPs. It should be noted that for all samples and laser power, 802 nm emission band contributes 

to at least 85% (85-90% depending on the laser power) of the global quantum yield.  
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IV Towards our own kinetic model 

IV.1 Description of the model 

 Inspired by the simple kinetic model of Andersson-Engels described in the introduction 

of this chapter, our approach is based on the explicit description of all the kinetic events 

involved in ETU process up to 3P0 level.  

 A crucial step is to define the pertinent species. Using the Dieke diagram (figure 32), 

one can see that thulium will give rise to 8 species (ground state and relevant excited states (3F2 

and 3F3 levels are considered as a unique “3F” level).) On the other way round, ytterbium will 

give 2 species. These are gathered in table 20. Detailed balance will also be employed meaning 

that at any time the total concentration of a dopant ion is constant. In other words, a constraint 

involving all Tm-species is applied [Tm]°= Cte = Σi[Tm i*]; a similar constraint is defined for 

both  Yb species. 

 

Figure 32. Description of the kinetic model 

Table 20. Simplified labelling of the energy levels. Yb and Tm energy levels are respectively 

written in red and blue. Each constitutes a distinct “species” in the model. 

2F7/2 2F5/2 3H6 3F4 3H5 3H4 3F2,3 1G4 1D2 3P0 
A B C D E F G H I J 
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Translation of all the single arrows of the Dieke diagram into “chemical reaction rate” 

leads to implement thirty-nine processes. Importantly, it includes four Tm-Tm cross 

relaxations, but no back-transfers processes Tm-to-Yb. It should be noted that in our model 

(figure 32), no simplifying hypotheses have been made beside the choice of the processes:  

· radiative processes are not separated from the non-radiative ones. 

· ytterbium-to-thulium processes (“activation” processes) are not neglected regarding to 

the ytterbium relaxations ones. 

· conservation equations of ytterbium and total thulium species are taken into account. 

· no stationary state hypotheses are made.  

The conservation equations enable the simulation of high power excitations as [Yb*] is not 

considered negligible regarding to [Yb]. 

However, no explicit description of the surface quenching is given: this will be introduced once 

the model is validated to fit experimental data. This preliminary model therefore does not take 

in account the size of the material under investigation. Its aim is only to reproduce the general 

shape of the power-dependent or pulse shape-dependent decays.  

The methodology used rely on the expertise in Chemical Dynamics of the team at treating 

complex kinetic networks, either by fitting13 kinetic data or by simulating14 them in a 

multivariate analysis approach. 

 

IV.2 Mathematical expression of the model 

a-Ytterbium-centered processes (ph1: 980 nm photon) 

· A + ph1à B 
· B à A 
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b-Ytterbium-Thulium energy transfers and Thulium relaxation processes. As radiative- and 

non-radiative processes are first order, they are not distinguished in the model:  

 
· B + C à D + A 
· B + C à E + A 
· D à C 
· E à D 
· E à C 
· F à E 
· F à D 
· F à C 
· B + D à G + A 
· G à F 
· G à E 
· G à D 
· G à C 
· B + F à H + A 
· H à G 
· H à F 
· H à E 
· H à D   
· H à C 
· B + H à I + A 
· I à H 
· I à G 
· I à F 
· I à E 
· I à D 
· I à C 
· B + I à J + A 
· J à I 
· J à H 
· J à G 
· J à F 
· J à E 
· J à D 
· J à C 

 
c-Thulium cross-relaxation processes 

· C + I à H + D 
· C + I à F + F 
· C + H à F + D 
· C + F à D + D 
· D + D à C + F 
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IV.3 Data mining of rate constant 

A first basis to implement the model was to report rate constants extracted from the 

literature mainly from laser spectroscopy. Such data are gathered in the following tables: 

 

Table 21. “Activation” i.e. Cross-relaxation rate constants between Yb and Tm, respectively 
labeled in red and blue 

 
Range of rate 

constant (cm3 s-1) 

Average rate constant 

k (cm3 s-1) 
Ref 

2F5/2 + 3H6 à 3H5 + 2F7/2 - 1.6*10-18 15,16 
2F5/2 + 3H6 à 3F4 + 2F7/2 1.2*10-17 – 1.8*10-17 1.5*10-17 16,17 

2F5/2 + 3F4 à 3F2.3 + 2F7/2
 - 6.2*10-16 15 

2F5/2 + 3H4 à 1G4 + 2F7/2
 1.6*10-18 – 2.7*10-16 1.4*10-16 15,17 

2F5/2 + 3H4 à 3F2 + 2F7/2 8.8*10-15 – 1.2*10-14 10-14 17 

 

 

Table 22. Tm-Tm Cross-relaxation rate constants. 

 
Range of rate 

constant (cm3 s-1) 

Average rate constant 

k (cm3 s-1) 
Ref 

3H6+ 1D2 à 1G4 + 3F4 - 5*10-17 16,18 
3H6+ 1D2 à 3H4 + 3H4 - 4.8*10-17 16 
3H6+ 1G4 à 3F4 + 3H4

 - 7.5*10-16 16 
3H6+ 3H4 à 3F4 + 3F4 1.1*10-16 – 4.2*10-16 1.9*10-16 16,19 
3F4 + 3F4à 3H6+ 3H4

 - 10-18 16,19 
3H6+ 1G4 à 3F4 + 3F2.3

 Only mentioned, no value 18,20 
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Table 23. Excited state relaxation rate constants. Yb and Tm levels are respectively labeled in 

red and blue 

transition Range of rate constant (s-1) Average rate constant k (s-1) Ref 

2F7/2 à 2F5/2 340 – 760 530 12,15,18,21-23 
3P0 à 1D2 - 41.7 20 
3P0 à 1G4

 - 1.35*103 20 
3P0 à 3F2.3

 - 1.39*103 20 
3P0 à 3H4

 - 1.49*103 20 
3P0 à 3H5

 - 41.7 20 
3P0 à 3F4

 - 8.19*103 20 
3P0 à 3H6

 - 41.7 20 
1D2 à 1G4

 6 – 89.6 48 18,20 
1D2 à 3H4

 164 – 821 493 18,20 
1D2 à 3H5

 - 149 20 
1D2 à 3F4

 376 – 5400 2.26*103 18,20,22 
1D2 à 3H6

 454 – 12500 5.58*103 18,20,22,24 
1G4 à 3F2.3

 36 – 56.7 46.4 20,25 
1G4 à 3H4

 70 – 222 137 18,20,22,25 
1G4 à 3H5

 222 – 435.39 363 20,22,25 
1G4 à 3F4

 100 – 1690 613 18,20,22,25-27 
1G4 à 3H6

 495 – 12500 2.29*103 18,20,22,24-27 
3H4 à 3F4

 55 – 1610 366 18-20,22,25 
3H4 à 3H6

 350 – 14300 2.28*103 8,18,20,22,24,26,27 
3H4 à 3H5

 - 19.8 20 
3H5 à 3F4

 5.45 – 17000 1.1*104 15,20,22 
3H5 à 3H6

 182 – 24000 1.2*104 20,22 
3F2.3 à 3H4

 2.6 – 178000 1.1*105 15,20,28 
3F2.3 à 3H6

 - 2.37*103 20 
3F2.3 à 3H5

 - 189 20 
3F2.3 à 3F4

 - 65.6 20 
3F4à 3H6

 90 – 300 169 19,20,25 
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IV.4 Preliminary results 

Simulation of experimental lifetime measurement 

From the first approximation of our model we started by checking whether it was 

possible to reproduce the shape of decays measured at LASIR. As an example were investigated 

the 475 nm emission band decays of BA7 and BA9 (figure 33). 

It can be clearly observed that the shape of the decay can be reproduced with our simulation. 

However, the time scale is not consistent with the experiment.  

 

 

Figure 33. Comparison of 475 nm decay measurement on BA7 (A) and BA9 (B) with simulated 

one with our model (C) 

Saturation effect on the 800 nm emission 

Lifetime decays performed at LASIR are recorded under high laser power (MW to GW). 

Therefore, as we aim to explore the power-dependency, one remaining question is to know 

when the saturation regime is occurring. 

In our model the total ytterbium excitation is monitored. However, as the pulse width at the 

LASIR is very short, one can neglect the processes that consume the ytterbium excited-state 

([Yb*] or species “B” in the model) during the pumping of the system: the ytterbium excited-

state concentration reaches therefore a PSS situation reflecting the absorption cross-section and 

the ytterbium excited-state lifetime. Thus, to simulate the effect of the application of instant 

pump pulse, one deliberately fixes a [Yb*] respecting the detailed balance:  

[Yb]0 = [Yb]+[Yb*] = A+B= 21*1021 atom cm-3. These data are gathered on table 24. 
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Table 24. Concentration of Yb* (and Yb) used to simulate short pulses of various laser power 

initial ytterbium concentration: [Yb]0 =21*1021. Concentrations are given in atom cm-3. 

experiment [Yb*] [Yb] %Yb* 
k 2.1*1021 18.9*1021 10% 
l 1.05*1021 19.95*1021 5% 
m 0.525*1021 20.475*1021 2.5% 
n 4.2*1021 15.8*1021 20% 
o 8.4*1021 12.6*1021 40% 

 

Noticeably, using the ytterbium photophysical parameters (cross-section and excited-state 

lifetime), one can estimate the laser power required to reach such a Yb* PSS-concentration. We 

have observed a significant depopulation of the Yb ground state (species “A” in the model) 

only when the excitation power is higher than 500 W cm-2 (cases k, n and o).  

The effect of the initial Yb* population on the 800 nm emission was obtained by following the 

population of the emitting level 3H4 (named F in the model). On figure 24 are overlaid the time-

dependent 3H4 excited-state concentrations.  Curves are labeled according to the “initial” Yb* 

concentration (from table 24).  

 

 

 

 

 

 

 

 

 

Figure 34. Results of the laser power simulation. 
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Two regimes can be distinguished: a first phase where the maximum concentration of the 3H4 

state” is increasing with [Yb*], or the excitation power; then a saturation regime where there is 

no apparent gain at increasing the power: the maximum amount of 3H4 state available to 

generate the 800 emission remains globally constant.  

The delayed rise of the 3H4 state is expected as a signature of the ETU mechanism. For the last 

three curves this delay time drifts with the power.  Such a result was not expected  

Both phenomena have not been noticed yet on the LASIR experiments despite excitation 

powers falling in this critical zone. This can be due to poorly adapted parameters: the rate 

constants used have been extracted from data related to larger objects or macrocrystals. Next 

step will therefore be to fit the experimental curve and retrieve the “appropriate” rate constants. 

Some of these (transient excited state lifetimes) should then be compared to radiative rate 

constants computed from the Judd-Ofelt theory (but this requires absorption spectra). 

Eventually, especially in the high power excitation part, the probability of having more complex 

processes, such as the trimolecular CSU involving two Yb* and one emitter’s state should not 

be eliminated.29 
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V Conclusion 

In the following chapter we could address various points: 

· Exploring the photophysical behavior of UCNP: 

Complete characterization of the luminescence was achieved with an approach towards 

standardization: from the absorption, to the emission intensity and lifetimes. Even estimation 

of the “efficiency” was achieved by measuring the quantum yield. However, the reader should 

be reminded that quantum yield and lifetime measured are not absolute values but apparent 

constants. 

Moreover, an easy and cheap customization of a standard fluorometer can allow the 

simultaneous measurement of the absorption. Despite its importance for calibration purpose, 

the latter also afforded additional data, regarding the colloidal stability issues. 

As UCNP are non-linear phosphors, standard quantifiers are probably inaccurate too 

describe these particles. Thus apparent “exponent”, “efficiency” (i.e. quantum yield) or 

“lifetimes” were measured under various conditions: these parameters (exponent, lifetime) were 

found to match the predictions obtained from the thulium Dieke diagram, and transitions 

originating from the same levels share common features. Yet, the understanding of the energy 

redistribution has still to be confirmed. The experiments recorded at the BAM can be considered 

as preliminary, and the choice of the experimental conditions could not be further optimized 

due to a lack of time: my internship there was limited to two months. Another alternative would 

be to use more intense laser square pulses in order to get more signal, even for the less efficient 

transitions. This could be achieved at LASIR by grouping the ns-pulses in trains of various 

durations.  

· Case of ultrasmall UCNP : 

A chemical parameter that was not considered at first emerged: the number of emitting atoms 

in an ultrasmall nanoparticle. Indeed for the range of size we explored, Indeed, according to 

calculations of their chemical parameters (table 3), 2.5 nm UCNP such as BA2 should have, in 

average, a single emitter per NP. Such a content makes these objects comparable to the 

upconverting molecular complexes described in the literature,30 bridging the gap between these 

two domains.  
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This could impact the photophysics for our super-resolution goal. If the NP are really 

made of single emitters, they probably could blink without need of coupling with external 

shutter. On the other hand, single NP imaging will then become challenging, as for single 

emitter with long lifetimes, long durations of experiments will be required to get enough 

photons to have accurate analysis. 

· Starting to elaborate a kinetic model:  

Based on data coming from data mining of the literature, we were able to build the early stages 

of a 9-level kinetic model in order to explain the energy redistribution within an UCNP. 

Lifetimes data accumulated will be implemented to afford more realistic constants. Even if 

preliminary simulations show that decay can be reproduced in terms of shape, they are not 

accurate at the moment. Once the final model will be established, it could be used also to 

simulate the non-linear behavior (log-log plots). 
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VI Experimental section 

Laser power calibration at IMRCP 

A laser power calibration curve was established in such conditions. At first rising powers 

were monitored by rising arbitrary value (0-600) controlled by a potentiometer. Same 

experiment was performed by decreasing power. The calibration curve was established as an 

average of both values (power rise and power decrease). 

Beam diameter was evaluated as being 3.5 mm (based on the numerical aperture of the fiber 

and the parameters of the collimating lens). 

Power density was then implemented in the calibration curve from the following equation: 

r+�pl08pnk�;� = r+�pl
��l�mop =

r+�pl
� × � × �2pm�08�m�p;pl� �7

 

 

Figure 35. Calibration curve of multimode laser at IMRCP 

 

Determination of NP content from absorbance (used in section II.1.1) 

Diameter of the NPs obtained by analysis of TEM pictures is used to calculate the 

volume of these nanospheres (}���). 

Volume of the NaREF4 unit cell (UNaREF4) is extracted from XRD analysis and Rietveld 

refinements. 
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Therefore, the number of Rare Earth per NP (RE/NP) can be deduced by comparison of the 

volume: 

C(�|�Cr) = �0�00}����G5���~  

Knowing the Rare Earth composition, the number of Yb/NP can then be determined as: 

C(92�Cr) = (�92)0� C(�|�Cr) 
From the absorbance measured in solution, [Yb] in mol/L can be found, applying Beer-

Lambert’s law: 

[92] = j2k(���0n�)
�efg0y$(92)  

Thus, the concentration of NaREF4 in mol/L can be calculated by: 

[Cm�|�~] = [92]
C(92�Cr) 

As a result, the number of UCNP per litre can be deduced by multiplying by Avogadro’s number 

(NA=6.022 x 1023 mol-1): 

[� Cr�¡] = [Cm�|�~]0� ¢£ 

To determine NPs concentration in mg/mL, the formula weight (FW) has to be calculated, 

depending on the NP composition: 

�¤G5���¥ = ¦(Cm) 1 �0�00¦(�) 1 [(�§8)0�¦(§8) 1 (�92)0�¦(92) 1 (�¨�)0�¦(¨�)] 
Then the concentration of UCNP in solution in mg/mL can be calculated as: 

[Cm�|�~©ªj] = AFF0� [92]0� �¤G5���¥(�92)  

Knowing the content of the OA organic layer from TGA analysis (30%), we can therefore 

estimate the concentration of bare NP: 

[Cm�|�~]c«c'#yczPy = ¬A @ (�ªj)AFF ­0� [Cm�|�~©ªj] = F��0[Cm�|�~©ªj] 
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By comparison with the initial concentration [� Cr]Iw#P0we can determine the concentration 

of settled NPs: 

[Cm�|�~]c#IIO#6 = [� Cr]Iw#P @ [Cm�|�~]c«c'#yczPy 

The proportion of NP in solution can be deduced by: 

�0Cr0�n0k+*�;�+n = [Cm�|�~]c«c'#yczPy[� Cr]Iw#P  

 

Emission spectra and lifetimes acquisition at BAM 

Emission spectra and lifetimes measurement at BAM were performed on FLS980 

fluorometer from Edinburgh Instruments, fed by 976 nm CW laser with power range up to 

124.4 W cm-2. Sample were thermostated at 25°C. Measurements were done with slits bandpass 

∆λ=10 nm.  

Quantum yield measurement procedure at BAM 

Power-dependent quantum yield measurements were achieved with BAM home-

designed setup. Before starting measurement, laser was warm-up for at least one hour. Quality 

criteria was to wait for laser stability >99.5% to initiate measurement. For each recording, the 

sample was first measured then immediately followed by blank solvent. Therefore, laser 

stability issue upon a succession of sample can be prevented. One measurement consisted in at 

first measurements performed by increasing the laser power, then by decreasing it. Experiment-

to-experiment laser power variations are responsible of the error bars.  

The complete emission spectrum of sample is reconstructed from the juxtaposition of smaller 

spectra recorded over different ranges of wavelength. For each range the gain is optimized to 

have an accurate signal along the full spectra. There is an overlap of at least 10 nm between 

successive ranges of wavelength to allow the quantitative comparison.  

Eventually, the 976 nm absorbance (given in %) is simultaneously measured. It should remain 

constant among the different laser power. For my samples it stood at around 10%, the value 

depending on the nature of the samples. 
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Results of Power-dependent lifetime measurements at BAM 

 

  

  

  

 

Figure 36. Power-dependent lifetime measurements of BA2 
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Figure 37. Power-dependent lifetime measurements of BA1 
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Figure 38. Power-dependent lifetime measurements of BA4 
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Figure 39. Power-dependent lifetime measurements of BA8 
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Upconverting nanohybrid:  

towards super resolution 

 

 

 

“Gardez le cap dans la tempête et tenez fermement la barre.” (Guy 

Roux) 

 

“Truth will ultimately prevail where there is pains to bring it to light.” 

(Georges Washington) 
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I Introduction 

I.1 Strategy for Blinking UCNP-based nanohybrid 

As it has been seen in the introduction, UCNPs are notoriously non-blinking. While this 

property is of interest for tracking techniques, it is a major problem for the stochastic super-

resolution microscopy we envision. 

The approach we are developing is to equip the nanocrystal with an intermittent 

“shutter”: the luminescence of the resulting object would then switch randomly between an 

“ON” (bright) state to an “OFF” (dimmed) one. One possibility is to take advantage of the light 

emitted by the particle via a photochemical reaction: the system would then be completely 

autonomous.  

UCNPs are now extensively used as “Nanolamps” typically to trigger irreversible 

photoreactions. Thus photo-uncaging as for drug release,1-3 photopolymerization4,5  have been 

described. Photochromic dyes were also explored mostly P-photochromic systems.6-8 Few 

examples are found with T-photochroms.9-12  

On the other hand, the use of photochromic dyes to control the emission of a 

nanoparticle has been shown in the group (P-photochrome and ZnO)13 and elsewhere 

(spiropyran and CdTe14 or  CdSe@ZnS15; P-photochrome and quantum dots.16,17 To reach our 

goal, we planned to couple a UCNP to a suitable photochromic dye, whose photochemistry 

would be powered by the UCNP itself. Because the colored form of a photochromic organic 

dye has usually a spectrum that covers the UV and (part of) the visible range, some lines of the 

Ln-UCNP (particularly the NIR one) can be kept free of any perturbation and could be used to 

track the object. 
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Figure 1. The BLINK project with the 2 treated cases to monitor the high (<500nm) and low 

(> 600nm) energy emissions of the UCNP with a bound photochromic dye. Case A the dye is 

operated with an independent wavelength: the sample will be illuminated with NIR and λdye. 

Case B: the dye’s photochemistry is UCNP-sensitized via RET: only NIR illumination is 

necessary. On the right, the resulting effect on both emissions at the single NP level. The dye’s 

quenching dynamics affects only the emission <500 nm. 

 

The ideal dye should therefore meet the following criteria 

· Because the re-emitted energy (in relative intensity: peaks height) decreases enormously 

from the NIR to the UV, the dye should be operated in the visible range,  

· and, for the same reason (few or no UV light available), should reverse back to its 

original form spontaneously.  

This fits the profile of a negative, T-photochromic compound.  

The questions will then be how to keep the dye in close proximity to the nanoparticle, whatever 

the mechanism expected for the energy transfer between the two components, and how such an 

“immobilization” would impact the dynamics of the dye. We therefore chose a polymer-based 

nanohybrid structure benefiting from the expertise of the team in this field. To reach this point 

a dye with a suitable anchoring handle had to be developed and a capping polymer had to be 

selected. 

 



 Chapter IV – Upconverting nanohybrid: towards super resolution 
 
 

-229- 
 
 

I.2 Photochromic dyes  

Photochromism is a general property, not related to a specific chemical feature.18 It is 

defined as a color change induced by light, and this color change must be reversible. That is, 

conditions reversing the coloration should exist. 

 

 

If A is less stable than B: 

negative photochromism 

 

P-photochrom 

 

T-photochrom 

 

Figure 2. Spectral difference between the two isomers of a photochromic compound: B is the 

“low gap” isomer, A is the “high gap” one. Definitions of P- and T-photochromism: (Blue 

arrows photochemical processes; black arrow thermal process.  

This property exists in inorganic materials (typically via photoinduced redox reactions)19 and 

organic compounds. Photochromic materials have been classified first according to the number 

of mandatory photochemical processes to achieve the color changes: 

· T-photochroms require only one photochemical process: if the light is switched off, the 

material returns to its original state.  

· P-photochroms are interconverted between the two states by light only: the color change 

persists in the dark. 

Another level of classification is on the color of the most stable state that these materials can 

present: 

· Positive photochromism gathers materials that are stable in the colorless form 

· Negative photochromic materials are stable in the colored form.  
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Inorganic Photogray® glasses by Corning or organic Transition® by Essilor are typical 

examples of positive, T-photochromic materials. 

Photochromism consists of photochemical reactions, described by quantum yields (ΦAB  for the 

Aà B process, ΦBA for the reverse), backed by thermal or “dark” reaction processes (k1 and  

k-1). 

 

Figure 3. Kinetic processes describing photochromism. black: thermal forward (k1) and 

backward (k-1) Blue: photochemical processes: AàB and BàA quantum yields ΦAB and ΦBA. 

Other important parameters are the extinction coefficients of the photoisomers, in particular at 

the wavelength used to trigger the process. The major kinetic issues come from Beer-Lambert’s 

law:  

-in a solid material or in a non-/poorly stirred photoreactor, light is spatially unevenly 

absorbed thus concentration gradients, and potentially inner filter effects, occur;  

-the fact that the starting material’s concentration evolves with time makes the apparent 

rate constant a function of time: as the photoreaction progresses the transformation becomes 

more and more sluggish. The photokinetic factor F, F=A/(1-10-A) with A the total absorbance 

at the irradiation wavelength, is responsible of this property. Therefore, direct numerical fits of 

the kinetic curves are preferred to retrieve thermodynamic, kinetic and spectral parameters.20  

Because of the presence of backward reaction(s) (that can occur simultaneously as the 

forward process), the transformation is usually not complete: a photostationary state (PSS), 

defined as the ratio of the two photoisomers’ final concentrations, is reached after an infinite 

irradiation time. Interestingly, for a simple A-to-B, “ideal” transformation, the initial slope of 

d[A]/dt, containing both forward and backward processes, can be very steep only because of 

efficient antagonist processes. 
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Photochromic materials have been developed mostly for optics (as in the above-mentioned 

example of the sunglasses). Optimization is guided by three criteria: the colorability (related to 

the proportions of the PSS and to the extinction coefficients of the species at the observation 

wavelength), the rate of coloration changes (linked to the quantum yield of the reaction and the 

rate constants of all processes) and the cycling ability (benchtop stability and photobleaching).  

New applications of organic photochromic compounds as “photoswitches” can be found in 

Physics (from data storage to molecular electronics)21, Chemistry (photoswitchable catalysis or 

supramolecular chemistry)22 and Biology (optogenetics).23 In particular, natural photochromic 

fluorescent proteins are used for superresolution microscopy. 

I.3 Organic negative T-photochromic dyes  

For organic compounds, photochromism is due to a photochemical rearrangement of the 

bonds. With the exception of hexaaryl-bisimidazole compounds (“lophines”) that are split in 2 

radicals (homolytic σ-bond cleavage) or triphenylcarbinols (heterolytic C-OH bond cleavage), 

this reaction is essentially an isomerization (first order with respect to the organic material). 

The high HOMO-LUMO gap (i.e. the high-energy absorbing) isomer is the ”colorless isomer”, 

the low HOMO-LUMO gap one, the “colored” one. The energy gap change is due to a 

deconjugation or to an aromatization of the structure. There is no specific architecture attached 

to photochromism and discovery of new compounds is usually based on serendipity. 

Furthermore, negative T-photochromic dyes were poorly explored, as, for the eyes, coloration 

is more easily detectable (and spectacular) than bleaching. Therefore, the desired property is 

shared only by a limited number of compounds. Most are gathered in table 1.24 
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Table 1. Main families of negative, T-photochromic dyes 

High energy form  Low-energy form family 

  

dimethyl-dihydropyrene/ 

metacyclophane-diene 

  

Methylenequinone-

imidazole 

  

“Donor-Acceptor Stenhouse 

adducts” 

  
Spiropyran 

 
 

Spiro-naphtooxazin 

  

The dimethyl-dihydropyrene/metacyclophane-diene is an example of an “all carbon 

compound”. Its chemistry is limited due to a rather difficult access.25 

The “methylenequinone-imidazole“ family was recently introduced by Jiro Abe’s laboratory.26 

This dye is the fruit of a long exploration of hexaaryl-bisimidazoles and related dyes and was 

developed to obtain fast switching rates. However, such molecules are prepared after very long 

syntheses, and some important oxidation steps are not compatible with further 

functionalization.  

The “Donor-Acceptor Stenhouse adduct” (DASA) compounds are one the most recent family 

of negative, T-photochromic compounds discovered.27 Spectrally very interesting with a single 

sharp band in the visible for the colored form and a UV-only spectrum for the colorless one, 

these compounds suffer from a photochromism that is very solvent dependent.  
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I.4 Spiropyran dyes  

The spiropyran and spirooxazins are classically positive, T-photochroms, easy to 

prepare, some being commercially available. The spiropyran motif is usally called “BIPS” for 

“BenzoPyran-Indolenine-Spiro”28, and is typically parepared by the Knoevenagel reaction 

between a salicyladehyde and a Fischer base (methylene-indolenine). These molecules switch 

from closed “colorless” spiro forms SP to colored, open, flat merocyanine forms MC, starting 

by the heterolytic C-O bond cleavage followed by molecule unfolding steps. As a push-pull 

compound, the MC form exists under two mesomeric forms, a quinoid, non-aromatic one, and 

a zwitterionic, aromatic one, the latter being responsible for thermal ring closure by direct 

nucleophilic attack on the iminium moiety. Thus, the colorability improvement of these dyes 

aimed at favoring the quinoid form (annelation in the naphtooxazin series), reducing the charge 

density on the anionic atom (electron withdrawing group in the spiropyran series: “nitroBIPS”) 

or increasing the hindrance on the iminium ion (bulky substituents).29 (figure 4).  

 

Figure 4. Merocyanin mesomeric forms and stabilization strategies to improve colorability. 

Annelation with an aromatic ring is used for spiro-oxazin series (Z=N).  

Although more stable than spiropyran (better photostability), the intrinsic electron-deficient 

character of spirooxazins make them less sensitive to acidic guests (H+, Mz+) and therefore these 

dyes are much less represented in sensing/actuating applications.30 

The very large change in geometry, polarity and hydrophilicity made them essential in 

supramolecular sciences. Furthermore, the zwitterionic form can bind to metals or protons and 

several sensors applications exploit this particularity. These recent applications of spiropyrans 

have been recently and exhaustively reviewed  by Rafal Klajn.31 

Protonation of the MC form induces large spectral blue-shifts, and usually destabilizes the 

closed SP form shifting all “dark” processes to the MCH+ state. Interestingly, the compound is 
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then a negative, photochromic compound.32 This property is thus bound to the pKa of the 

MCH+-phenol group: the higher the better. This goes against the classical optimization above-

mentioned! The renewal of the exploration the negative photochromic compound was launched 

as such dyes are cheap, easily introduced in larger structures and present a very large spectral 

difference between colored and colorless forms.24  

 Their sensitivity through the above-mentioned reactions with guests makes them 

suitable photoactivatable actuators or sensor units. Main applications are found in three 

directions described below. 

 

I.4.1 Reversible photoacid  

The protonated merocyanine form MCH+ of a spiropyran can be considered as a 

reversible photoacid. In particular a simple water-soluble dye initially proposed by Li33 was 

completely explored in our team for such a purpose (figure 5).34 The photoreaction was initially 

written as  

MCH+ à SP + H+ 

Therefore, the expected pKa variation was considerable, from a phenol to a sulfonic acid. The 

study aimed at determining the number of relevant species to explain the observed pH drop, 

and also to quantify the “strength” of the photoacid, upon reaction with a weak base. The 

conclusions were inter alia that the protonation of the closed SP form (whose concentration 

builds up as the photocyclization progresses) eventually scavenge some protons, thus limiting 

the acidity window explored. This illustrates a common problem in photoswitchable chemicals: 

time-dependent speciation issues.   
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Figure 5.  Kinetic scheme used to describe the “Li photoacid” by Vallet et al.34   

Nevertheless this simple photochromic compound is now commonly employed to trigger 

protonation reactions, for instance to trigger polymerizations.5  

 

I.4.2 Negative photochromic hydrogels 

The exchange of protons with the surrounding medium and the very large change of 

polarity and charge accompanying the MCH+-to-SP isomerization can been used to trigger 

photomechanical effects. In the literature, several hydrogels have been realized where the 

photochromism induces changes of swelling of the hydrogel. To achieve this, the usual strategy 

is to prepare a spiropyran-containing monomer. As explained above, the introduction of an 

esterified phenol group at the para position to the MCH+ phenol increases its pKa, therefore the 

working pH window (close to neutrality) is less aggressive. Therefore, most of the reports 

involve the acrylate of OH-BIPS, a spiropyran deriving from 4-hydroxysalicyladehyde.  

Spectacular applications can be found as phototriggered microvalves for microfluidic circuits 

(figure 6).35 Very active groups in this fields are in Japan (K. Sumaru),35,36 or in Ireland (D. 

Diamond).37,38 Great care about the local environments (“self-protonating hydrogels”) and 

electronic effects (pKa engineering) are taken to increase the change rate between the “OFF” 

(swollen) and “ON” (shrunken) states.37 



 Chapter IV – Upconverting nanohybrid: towards super resolution 
 
 

-236- 
 
 

 

Figure 6. PNIPAM derived photochromic hydrogel developed by Sumaru et al.  Left: Polymer 

used and speciation of the dye according to the pH.36 Right : Example of microfluidic 

photosensitive valves.35 

Swollen states are typically due to the charged, open-forms. Interestingly, the number of 

pertinent species necessary to describe photochromism can be reduced depending on the pH 

window used. As an example, the group of S W. Thomas has recently described the behavior 

of spiropyrans bound to water soluble polymers. Instead of four species (MCH+, MC SPH+ SP), 

the observed properties are can be derived from a three species model SP, MC and MCH+ 

(figure 7) .39 
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Figure 7. Speciation of the spiropyrane embedded in a water-soluble polymer according to 

Feeney et al. in the pH window 5-9. 

I.4.3 Photoactivatable “Staples“ 

This is not directly related to the negative photochromism but has to be considered when 

using spiropyran dyes. Indeed, beside their planar shape, the zwitterionic presents a very large 

dipole moment. Consequently they easily form aggregates via π-stacking.40 Once aggregated, 

the dynamics of all processes can be extremely slowed. Thus, Achilleos et al. succeeded at the 

preparation of hollow nanocapsule based on this concept: a silica bead ATRP-macroinitator is 

decorated by polymerization with a brush of polymerized spiropyran monomer (figure 8). Upon 

irradiation for a long time, the stacking of the MC-form induces a supramolecular reticulation 

of the polymer corona, sufficiently stable so that the supporting silica can be dissolved in HF. 

The result is a hollow capsule.41  

 

Figure 8. Preparation of a hollow capsule according to Achilleos et al.41, and photochromic 

monomer used for this objective. 
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I.5 Aim of the chapter 

In view of what was explained in the introduction (chapter 1) we have chosen the 

following strategy for the grafting of the photochromic dye. 

To simplify the encapsulation, we moved to a completely hydrophilic strategy involving the 

complexation of bare nanoparticles with a polyanionic ligand.42  

 

Figure 9. Strategies explored to build our nanohybrid 

The technical specifications addressed in this chapter are the following (Table 2): 

 

Table 2. Techincal specifications towards UCNP-based blinking nanohybrid for super-
resolution microscopy 

Choice of  
UCNP 

Choice of  
photochromic dye 

Towards blinking nanohybrid 

· Emission spectra 
adapted 
· UCNP brightness 

· Spectral overlap with 
UCNP 

 
· Photochromic 

behavior in water 
 
· Stability of the dye in 

water 

· Nanohybrid architecture 
         - formation of the nanohybrid 
         - characterization 
         - post-functionalization possible? 
· Conservation of photochemical 

behavior in the nanohybrid 
· Validation of the dye photoswitching 

induced by UCNP emission 
· Is it a blinking nanohybrid? 
· Performance in super-resolution 

microscopy 
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II Toward a negative photochromic spiropyran based UCNP 
nanohybrid 

II.1 Strategy for dye integration: UCNP ligand exchange 

II.1.1 Removal of OA  

According to Dong et al.‘s procedure43 introduced in chapter 1 (section water-

solubilization), again OA removal was achieved via the NOBF4 way. After uncapping the 

surface, UCNPs were isolated by precipitation with chloroform and centrifuged. The 

precipitation/centrifugation process was repeated 3 times in order to eliminate oleic acid and 

NOBF4 derived side-products. Eventually, particles are stored as a suspension in DMF. They 

are soluble in water or DMF. Remarkably, when the bare UCNPs are dispersed in water, the 

observed pH is around 5 indicating a strong interaction of the particles with water as already 

noticed.44  

The UCNP@oleate (black, figure 11) IR spectrum is mostly dominated by the CH (2850 cm-1) 

and the two carboxylates vibrations (1458 and 1558 cm-1) of the oleate ligand. These two latter 

bands at 1458 and 1558 cm-1 are respectively characteristics for the symmetric and asymmetric 

stretch vibrations of carboxylate. According to S. Masur et al.45 and G. Deacon et al.,46 such a 

wavenumber separation (lower than 110 cm-1) reveals that oleate ligand interaction with UCNP 

is due to a chelating bidentate interaction (figure 10).  

 

Figure 10. Schematic representation of the interaction between oleate and UCNP. M 

representing metal at the NP surface. 

After treatment with NOBF4, and after repeated washings to eliminate reactants and side 

products, one can notice a complete modification of the spectrum. In particular, the oleic acid 

vibrations are quantitatively replaced by the DMF and BF4
- (orange spectrum) one. 
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Figure 11. FTIR spectra of A) UCNP@OA. B) UCNP obtained after OA removal. 

As a first proof of concept of the easy surface functionalization, we coated them with different 

kinds of ligands. We have chosen the stoichiometry commonly adopted but not rationalized 

(Dong and Mely),43,47 that is, using same concentration in mg mL-1 of bare UCNP and ligands, 

assuming that it represents a large excess of ligands (ex: 100 mg of ligand to treat 100 mg of 

bare UCNP). 

II.1.2 Different surface functionalization 

The isolelectric point of bare UCNPs being about 5.8, the particle can accommodate 

various types of ligands able to exchange electrostatic or coordination interaction with the 

surface. The coating is achieved by simple mixing, of a DMF suspension of bare nanoparticles 

with a solution of the desired ligand in an appropriate solvent. Particles were isolated by 

repeated centrifugation/redispersion in water. After dialysis against deionized water (2-days, 

membrane cutoff 12-14 kDa), aqueous suspensions were freeze-dried, As a first proof of 

concept of the easy surface functionalization, we coated them with different kinds of water-

soluble ligands: monodentate (o-phosphorylethanolamine (AEP)) or polydentate ligands such 

as poly(allylamine hydrochloride), poly(acrylate)-b-poly(ethyleneoxide) (PAA-b-PEO), 

poly(vinylphosphonate) (PVPA) of poly(vinylphosphonate)-b-poly(ethyleneglycol) (PVPA-b-

PEG). For most of them, such a procedure was followed by FTIR monitoring (figure 12), 

showing the spectroscopic features of the new ligand. Thus, phosphate or carboxylate 

characteristic vibrations were noticed when the ligands were AEP or PAA-PEO.  
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Figure 12. FTIR monitoring of oleate removal and UCNP capping with different surface 

agents. PAH: Poly(allylamine hydrochloride); AEP: o-phosphorylethanolamine; PAA-b-PEO: 

diblock Poly(acrylate)-b-poly(ethyleneoxide).  

Physicochemical parameters of such new nanohybrids in deionized water could then be 

recorded (Table 3). The hydrodynamic diameter was obtained by DLS. Aquation of the surface 

leads to the formation of larger objects than when surface interacts with a ligand. Interestingly 

the smallest dh was observed for AEP. Dissolution in water also affects the pH: the highly 

protonated PAH was found to give rather acidic solutions. Eventually we measured the zeta-

potentials under these conditions:  a positive potential was found for all the particles examined. 

The largest values were for the AEP and PAH ligands. Positive charge was found to be in 

agreement with the expected coordination of the ligands: AEP, interacting through the 

phosphate head with the nanoparticle’s surface would therefore present the amino group to the 

aqueous solution. 
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Table 3. Nanohybrid physico-chemical parameters in water, as a function of the UCNP surface 

ligand. 

dh represents the hydrodynamic diameter. 

Surface ligand BF4-DMF PAH AEP 

dh (nm) 
Average intensity 930 ± 210 320 ±130 210 ± 130 

Average Number 950 ± 195 180 ± 95 70 ± 30 

pH 5.14 3.88 5.20 

zeta-potential +13.9 mV +32.9 mV +32.9 mV 

 

Regarding the colloidal stability in water, polyallylamine appeared less efficient and NP settled 

down quickly. However, UCNP coated by PAA-PEG or AEP were highly soluble and stable 

for an indefinite time.  

The polydentate PAA-PEG poses the risk of multi-NP encapsulation which is an issue for our 

goal of single NP localization for super-resolution. Additionally, PAA-PEG as hydrophilic 

stabilizer induces the management of the mixture of 2 ligands, a second one bearing the 

photochrome. AEP has strong interaction due to its phosphate and free amino group for further 

functionalization such as dye grafting. Despite the less-than-simple chemistry with AEP 

(soluble only in water), it was envisioned as the most promising ligand for accurate strongly 

UCNP-coupled ligand with easy functionalization.  

It should be noted that in all cases, average hydrodynamic diameter is highly bigger compared 

to the one measure from TEM pictures on native nanoparticles (5.5 nm). This can be explained 

by the fact that NP were stored as dried powder over 6 months, leading to aggregation prior to 

this measurement of hydrodynamic diameter. It is just used for comparison among different 

surface ligand. 

Another technique can also be used to prove the incorporation of a new ligand in the case of Y-

based NPs: NMR, and specifically 31P-NMR was envisaged as a valuable tool. 

II.1.3 Example of quantitative approach followed by NMR 

Thanks to a collaboration with Marvin Langlais, Mathias Destarac and Olivier Coutelier 

from P3R team at IMRCP laboratory, a PVCL (poly(vinyl caprolactam) model polymer 

functionalized by a phosphonic acid,“TL-PVCL”,48 was available (Figure 13).  Following the 
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ligand exchange process described previously (sections II.1.1 & II.1.2), nanohybrid 

UCNP@TL-PVCL was prepared. Since lanthanides such as gadolinium (spin 7/2) are 

paramagnetic they seem to be unfit for standard NMR analysis in solution. Therefore, we 

decided to use NaYF4 matrix in order to analyze the organic content at the surface of UCNP. 

 

Figure 13. Chemical structure of TL-PVCL 

Nanohybrid was built with Tm-doped NaYF4 nanohexagons of 20 nm (see chapter 1), purified 

by successive centrifugation followed by dialysis. After freeze-drying, they were dispersed in 

D2O. 

II.1.3.1 Comparison of 1H NMR spectra 

1H NMR of the nanohybrid was compared to the above described TL-PVCL (figure 14). 

Both spectra are similar, attesting the presence of the polymer with UCNP. 

Therefore, an analysis in conditions of quantitative NMR was proposed to have a precise 

determination of the amount of polymer at the NP surface, knowing that each polymer chain is 

bearing only one phosphonate. 
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Figure 14. 1H NMR of TL-PVCL (black) and the UCNP@TL-PVCL (red) in D2O. 

II.1.3.2 Towards quantitative 31P NMR 

Methodology 

Quantitative NMR49,50 relies on the use of another compound, with signal differing from 

the compound to be quantified. Such standard has to be introduced in a well-known 

concentration, in the same range of concentration than the tested substance. Therefore, 

quantification can be deduced by comparing the integrations of the peaks, if the signal-to-noise 

ratio is higher than 10. 

Usually, such a quantification is achieved by mixing directly the standard in the solution to 

analyze. However, in some special cases it can be isolated from the mixture by using a capillary 

insert, especially when the standard is not stable in the solvent or reacts with molecules in the 

solution. In our case, as phosphate and phosphonate have strong affinity to NP surface, it was 

decided to use a capillary insert to prevent any troubles. As a standard, we used NaH2PO4 
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compound which has a distinct 31P signal at 0.08 ppm than the TL-PVCL expected at around 

25 ppm. 

However, the use of a capillary insert, enforces an additional calibration to correct the signal 

discrepancy between molecules in insert and in solution.  

Calibration of the reference 

The response of a capillary insert of NaH2PO4 in D2O was calibrated by using a more 

usual standard for 31P: cyclophosphamide monohydrate placed in D2O solution of similar 

concentration, in an NMR tube. 31P analysis is shown in figure 15. Integrations were 

respectively 3.95 and 1 for cyclophosphamide monohydrate and NaH2PO4. 

 

Figure 15. 31P NMR in D2O solution of cyclophosphamide monohydrate with a capillary insert 

containing D2O solution of NaH2PO4 recorded with sequence “zgig” adapted to quantification. 

Signal-to-noise ratio (S/N) are indicated to assess the validity of the quantitative condition (S/N 

must be >10). 
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This benchmarking allowed us to determine a response factor α from the known concentration 

of standard (Table 3) and the integration of peaks (figure 15): 

! =
"(#$#%&')&*')+,-./0

"(1+2345607
8"9/:;+9-&"(#$#%&')&*')+,-./0

8"9/:;+9-&"(1+2345607
= <>?@AB 

Table 4. Summary of solutions prepared for NMR quantification. 

 NaH2PO4 
Cyclophosphamide 

monohydrate 
UCNP@TL-PVCL 

Concentration (mol/L) 2.124*10-3 1.838*10-3  (24.135 mg mL-1) 

Volume (mL) 0.5225 0.4712 0.443 

Number of moles mol) 1.11*10-6 8.66*10-7 (to determine) 

 

Quantification of TL-PVCL by 31P NMR 

Once the benchmarking validated for the capillary insert of NaH2PO4 in D2O solution, 

we could then analyze our nanohybrid. A solution of 24.135 mg mL-1 of nanohybrid in D2O 

was placed inside an NMR tube (table 4). A sufficient number of scans was accumulated in 

order to get enough signal to have a S/N>10 (ca. 8 h of experiment on 500 MHz Bruker 

Avance). Result is shown on figure 16. Integrations were respectively 0.65 and 1 for 

UCNP@TL-PVCL and NaH2PO4.  

Signals are globally in the same range for both samples. Thus, comparison is accurate. If the 

difference was more significant, we would have had to prepare a new solution of NaH2PO4 

standard (less concentrated), to obtain signals of similar intensity than the TL-PVCL analyzed. 

Therefore, we could determine the content of TL-PVCL (assuming that there is 1 phosphonate 

per polymer): 

"(CD E 4FGD0 = "(1+234560H> !H>
8"9/:;+9-&"(CD E 4FGD0
8"9/:;+9-&"(1+234560 = ?>IJ × ?<KL,&% 
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Figure 16. 31P NMR in D2O solution of UCNP@TL-PVCL recorded in quantitative conditions 

(with “zgig” sequence), with a capillary insert of NaH2PO4 as a standard. 

II.1.4 Conclusion on the strategies to make nanohybrid 

We demonstrated that a simple user-friendly method allows us to replace OA corona 

from the NPs surface and enables the storage for long time in DMF solution. Just as easily, the 

first ligand exchange with several ligands, only by a simple contact, was achieved. Preliminary 

results with more sophisticated process such as Flash Nano Precipitation (FNP)51,52 have been 

also initiated, but further study should complete this work. 

By two analytical approaches, FTIR and NMR, we have shown that we can monitor the 

presence of a new ligand. Furthermore, since phosphorus does not belong neither to the organic 

shell nor to the inorganic core, 31P-NMR in quantitative conditions allows the precise 

determination of ligand load as long as the latter carries suitable functional groups such as 

phosphate or phosphonate. However, such an NMR monitoring of the organic layer seems to 

be at the moment limited to NaYF4 matrix, a method development to extend to paramagnetic 

elements such as gadolinium would be of interest to generalize it to all the NaREF4 matrices. It 
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should be reminded however that NMR (albeit solid state NMR) can also be used to characterize 

the inorganic moiety.53 

Concerning our goal, we checked the feasibility and simplicity to set up new ligand at the UCNP 

surface. Attracted by the interest of phosphate or phosphonate due to their stronger affinity to 

lanthanides and their simple quantitative detection either by 31P NMR or ICP, we considered as 

a first choice the use of AEP (monodentate) and polycarboxylate (polydentate) ligand. The next 

point is the choice of the UCNP-dye couple. 

II.2 Choice of UCNP-dye couple 

Choice of UCNP adapted to SP dye 

At first, we had to choose between “green-emitting” Er-based UCNP or the “blue-

emitting” ones doped by Tm. As the photochromic shutter mentioned in the introduction of the 

chapter is rather limited to spiropyran, we compared the absorption spectra of such a dye, the 

water soluble (BIPS-SO3)34 with both kinds of UCNPs (figure 17) the absorption band of the 

MCH+, responsible for the negative photochromism and with its maximum at 420 nm, was 

found to overlap significantly with the visible emission of Tm-UCNPs.  No such overlap was 

observed with the erbium particles justifying the dopant choice.  

 

 

 

 

 

 

Figure 17. Overlap of UCNP emission spectra and dye absorption. 

 

Therefore, we decided to use this dye and Tm-doped UCNP for our blinking UCNP project. As 

UCNP emission is dependent on the size of the NP, only “highly emissive” large NP are used 

in the present chapter, in order to maximize the chances of success. When the proof of concept 
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and the standardization of the protocol will be established, we will turn then to the use of ultra-

small NP. As several experiments are required to evaluate the potential of such a nanohybrid, 

we focused on the use of the 20-nm nanohexagons (see chapter 2) as their large stock (3 g) 

ensures homogeneity of the comparison with an identical batch of NP used for all the 

experiments. 

The problem is now to connect the dye to the particle. Our strategy was to develop a 

modular architecture with a dye building block to be connected to a ligand building block 

(figure 18). The aim was to limit the organic chemistry and to offer a general protocol allowing 

for structural variations on the ligand part. 

 

Figure 18. General architecture of the BLINK nanohybrid; the click approach should limit the 

chemistry onto the dye 

Our bank of spiropyran 

From previous studies in the lab, several spiropyrans were available. The main difficulty 

is that small dyes are usually not soluble in water, and that MC (or MCH+) forms are 

solvatochromic. Therefore, predicting the perfect dye UCNP overlap would require specific 

syntheses to explore the behavior of the dye in water (H+ sensitivity, negative photochromism, 

spectral overlap).  

Tuning SP absorbance to overlap with the NP emission spectrum 

NitroBIPS is one of the commercially available spiropyrans. A reduction of the nitro- 

to amino- group using tin(II) chloride has been described by Zimmermann et al54 and was tested 

before this project started in the lab (figure 19). The intermediate amino-BIPS is rather fragile 

and therefore should be used immediately.   
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Figure 19. Nitro-BIPS to amino-BIPS  reduction  by Zimmermann et al.54 

This new functional group constitutes a convenient nucleophilic “handle” to graft this molecule. 

It is also accompanied by an umpolung of the electronic effect that should reinforce the negative 

photochromic property. This electron donating effect can be modulated by combining it with 

an electron-withdrawing one. Thus, from the tabulated Hammett parameters55, transformation 

of the aniline into an amide group would make the amido-SP to behave as the non-substituted 

compound.  

Choice of ligand 

We have explored several possibilities, such as a triethoxy-silane derivative of 

spiropyran, which is currently evaluated by our collaborators. Here, only two examples will be 

presented: the first connector tried was trichlorotriazine. Due to limited success, we later moved 

to an amide connection (figure 20). These two routes will be detailed in the up-coming sections. 

 

Figure 20.  Synthetic strategies to anchor the spiropyran dyes onto an UCNP. 
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II.3 Synthesis of SP-grafted ligands 

II.3.1 Triazine route 

Conjugation of amines to polymers via a triazine moiety is well known in textile industry 

as it has been developed since the mid XXth century for dyestuff. The aim was that covalent 

dye grafting onto cellulose (or wool) prevent the color from fading away upon washing. An 

important dye family was released by ICI in 1956 (Procion® dyes). As a consequence, most of 

the associated literature is made of patents. 

II.3.1.1 Use of SP-TCl2 

Preparation of BIPS-TCl2 

2,4,6-Trichloro-1,3,5-triazine (TCT) is a very electron deficient molecule able to 

undergo nucleophilic substitutions reactions leading to complete replacement of the chlorine 

atoms. Since a nucleophile is by definition an electron-rich reactant, each chlorine substitution 

is accompanied by an increase of the triazine ring’s electronic density, changing deeply the 

reactivity of the new compound. This translates into the possibility to define reaction conditions 

to introduce substituents sequentially on the triazine ring.56 Thus, dichloroaminotriazine 

derivatives are storable, stable for a short time in cold water, and grafting onto cellulose’s OH 

groups occurs above room temperature.57 Later, the first PEGylation reagents (non-specific!) 

were PEG-O substituted dichlorotriazine.58 

Crude material obtained by the SnCl2 reduction of commercial nitro-BIPS was thus reacted 

with trichlorotriazine in acetonitrile at 0°C. Upon addition of diethylether, an orange precipitate 

was collected. 13C-NMR confirmed the monosubstitution product. Remarkably, the 

hydrochloric acid released by the reaction is scavenged by the dye itself, leading to the 

hydrochlorate of the functionalized open isomer. The reaction is efficient, and the reactive dye 

BIPS-TCl2 was produced with a 53% yield over two steps (figure 21). 

 

Figure 21. Preparation of the reactive dye BIPS-TCl2 
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Spectral overlap 

UV-visible spectrum of BIPS-TCl2 was recorded in EtOH and compared to the emission 

spectra of Tm-doped UCNP (figure 22). This perfect overlap with the two blue emission (450 

and 475 nm) was indeed promising. 

 

Figure 22. Overlay of the emission spectrum of Tm-doped UCNP (blue, normalized to 1 at 450 

nm) with the absorption spectrum of BIPS-TCl2 in ethanol. 

Photochromic of BIPS-TCl2 behavior in water  

Attempt to make BIPS-TCl2 soluble in water consisted in the monosubstitution of the 

triazine at room temperature with AEP. As previously shown AEP is a very good ligand for 

UCNP. Therefore, the aminoethylphosphate moiety was expected to bring water solubility as 

well as efficient binding ability. Difficulties came from the handling of reactive intermediates 

in water. Indeed, Both AEP and functionalized final products are soluble in water; their ionic 

character [and the chameleon-like character of the SP dye (able to change into MC, MCH+ 

forms] made the purifications very tricky and impaired all attempts to separate the reaction 

products. Furthermore, to increase AEP nucleophilic reactivity, pH has to be risen up to 10. 

Under these conditions SP-TCl2 was found to be very fragile, the chlorotriazine ring being 

prone to hydrolysis. Although pH-dependent, this reaction is expected to occur (much slowly) 

at other pH, including during crude material processing and purification. Thus, despite the 

isolation of the triazine monosubstitution products fraction, mass spectrum revealed that it was 

an intractable mixture of two products: some part was still bearing chloride, while the second 
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product consisted in hydrolysis product with hydroxy substitution instead of the chlorine 

substituent. Additionally, photoswitching attempt in water was unsuccessful. Therefore, this 

route was abandoned. 

II.3.2 The amide route 

As it has been mentioned in the general introduction, it is possible to use amphiphilic 

polymers or polyanionic polymers to make UCNP hydrophilic.42 These strategies are derived 

from what was developed for quantum dots, iron-oxide and other nanocrystals. One interesting 

route is the use of alternate copolymers of maleic anhydride and an alkene.59 Indeed, the final 

object contains one reactive group per monomer, and therefore can be used as a scaffold to host 

several components. This strategy to “coat” nanoparticle was made popular by the works of 

Mattoussi,60 Vancso,61,62 and Parak63 and others64,65 and was adapted to photochromic dyes by 

Branda3,6 and Jovin.16  

The advantages are mainly limited chemical manipulations once the chemical is bound to the 

polymer beside encapsulation of the nanoparticle. 

We therefore explored a route to graft the dye onto poly(isobutylene-alt-maleic anhydride) 

(PIMA) through an amide bond less prone to hydrolysis than an ester one. An important issue 

is the final colloidal stability. The final polymer will carry carboxylate groups, so part of the 

stability is ensured thanks to electrostatic repulsion. However, this is pH- and ionic strength- 

dependent. Further stabilization can be gained by anchoring neutral hydrophilic chains. Instead 

of classically used oligo-ethylene glycol, we have chosen a small sugar-derived polyalcohol 

amine, namely D-glucosamine.63 Because this solubilizing group is a small molecule, the 

elimination of unreacted material from the reaction mixture can be achieved by ultrafiltration. 

The general route we have developed is exposed figure 23. Beside the preparation of the 

polymer of interest, a model compound BIPS-GLT was prepared by reacting the amino-BIPS 

with glutaric anhydride. This compound was expected to be water soluble, so the photochromic 

properties of the isolated dye could be studied independently of the polymer. 
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Figure 23. Strategy developed (BIPS-GLT) is a model compound. Px(39-x) is a polymer 

incorporating x dyes per polymer molecule, starting from polymer chains comprising an 

average number of 39 monomers per chain. 

II.3.2.1 Syntheses 

Model compound BIPS-GLT  

BIPS-GLT was prepared by reacting crude freshly prepared amino-BIPS with glutaric 

anhydride. The product was isolated as a tetrafluoroborate salt in its COOH and open, MCH+ 

form. 

Polymer Px(39-x) with x=1, P1,38 

The commercially available poly(isobutylene-alt-maleic anhydride), PIMA, is declared 

to have a molecular weight of 6 kDa, representing 39 (maleic anhydride-isobutene) monomers 

per chain. Our target was to incorporate 1 dye per molecule, then react all remaining anhydrides 

with D-glucamine. This was realized in a two-step process: first reacting PIMA with amino-

BIPS in the presence of DIPEA in anhydrous DMF; then the crude intermediate was reacted 
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with an excess of D-glucamine in water. Final purification consisted in extensive washing by 

ultrafitration on a cellulose membrane with a cut-off of 3 kDa. These washings aimed at the 

elimination of the excess of reagents and organic solvents and replacements of counter-cations 

with sodium. P1,38 was isolated after freeze drying. 

II.3.2.2 BIPS-GLT characterization 

NMR spectrum of the open form 

The open form is characterized by a flat geometry and a strong push-pull effect. That is 

easily identified in the 1H NMR spectrum (figure 24). Thus, the very high chemical shift of the 

double bond hydrogens and the degeneracy of the two CH3 of the gem di-methyl group of the 

indolenine are in agreement with an open form:  the strong unshielding is caused by the 

conjugation to the ammonium moiety, while the CH3 are no longer diastereotopic: (only one 

singlet at δ=1.75 ppm). Furthermore, the trans double bond geometry is confirmed by the 

magnitude of the J3 coupling constant of the double bond hydrogens (signal at 8.45 ppm  

J=16 Hz). 

 

Figure 24. 1H NMR spectrum of the open BIPS-GLT form. 

UV-visible absorption spectra 

Absorption spectrum (figure 25) of the BIPS-GLT shows in water Amax(MCH+) in blue 

area with λmax≈428 nm. Even though we can notice strong overlap with 450 nm, a small overlap 
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is found at 475 nm, these two wavelengths corresponding to the two emission peaks of the “blue 

emission” of Tm-doped UCNP. 

 

 

Figure 25. UV-visible spectrum of BIPS-GLT in H2O at 2.8*10-5 mol L-1. 

 

As BIPS-GLT has proven to be highly hygroscopic, determination of epsilon was made as early 

as the compound was dried. Four solutions of well-known concentration were independently 

prepared. Their absorption spectra were then acquired. Therefore, for each measured 

wavelength, plotting Abs as a function of the concentration gives directly the molar extinction 

coefficient ε(λ) as the slope of a linear fit function. Figure 26 shows the method, while table 5 

gathers the result for some wavelength. The table clearly highlights that for energy transfer 

from UCNP, the 450 nm peak will more contribute due to better spectral overlap and dye 

absorption (ε). 

 

Figure 26. Determination of ε(λmax) of SP-GLT. 
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Table 5. Value of epsilon obtained for wavelength of interest: at λmax and at the average 

wavelength of the two blue emissions of Tm-doped UCNP 

λ (nm) ε(λ) (L mol-1 cm-1) 

427.5 nm (λmax) 22500 

450 nm (λ1(Tm)) 19000 

476 nm (λ2(Tm)) 9400 

 

These spectroscopic parameters were used to identify the dye once bound to the polymer 

II.3.2.3 Polymer P1,38 characterization.  

The extent of PIMA modification was controlled at each step. Thus, 1H-NMR in DMSO  

was used to confirm the attachment of the dye onto the intermediate polymer.66 Next, the 

glucamine grafting was proven by the same technique (1H-NMR in D2O or CD3OD). 

Eventually, SEC analyses (Size-Exclusion Chromatography) confirmed the presence of the dye 

and helped to propose an apparent molecular weight (13100 Da). 

II.3.2.3.1 Preparation of SP-grafted poly(anhydride) intermediate 

Dye loading determination 

1H NMR of starting commercial product revealed some aromatic impurity (figure 27). 

We suggest it is coming from polymer end chain probably due to the initiator used. No details 

about the polymerization conditions employed could be found on the supplier’s website (Sigma-

Aldrich). Interestingly no peaks are found in the 5-8 ppm zone where some of dye signals are 

expected.  
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Figure 27. 1H NMR of PIMA in DMSO-d6. Peaks were attributed according to De Nolft et al. 
67 and Li et al.66 

 

1H-NMR spectrum of the intermediate of P1,38 is shown figure 28. Signals attributed to the dye 

are clearly seen in the aromatic part and match rather clearly with the spectrum of the open 

form BIPS-GLT. Comparison of the integrations of SP content with the chain one allows the 

determination of the post-functionalization efficiency. Indeed, 1 H and 2 H signals of the 

aromatic signals of SP have respectively 0.02 integration, while it is 2 for the CH2 (1.6-2.4 ppm) 

and the two CH (3.1-3.4 ppm) of the isobutylene-maleic anhydride monomer. There is 1% 

loading of SP. Therefore, assuming that PIMA has 39 monomers, there is, on average, around 

0.39 dye per chain. 



 Chapter IV – Upconverting nanohybrid: towards super resolution 

 

-259- 
 
 

 

Figure 28. 1H NMR of the intermediate of P1,38 in DMSO. Offset: spectrum of the model 

compound BIPS-GLT. For the aliphatic part, broad signals from the polymer backbone were 

attributed according to.67 

UV-vis spectrum of the intermediate  

Absorption spectrum of the amido-BIPS-loaded PIMA (figure 29) shows similar spectra 

than the BIPS-GLT. The visible band tails down to 550 nm, thus offering a nice overlap in 

DMF. The absorption at 450 nm will be used to monitor the SEC analysis in the following. 

 

Figure 29. Absorption spectra of the intermediate of P1,38 in DMF eluant for SEC. Blue 

rectangle indicates the positions of the two blue emissions of Tm-doped UCNP. 
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Validation of the grafting onto polymer: SEC analysis 

The attachment of the dye onto the polymer can be assessed by SEC, by associating 

polymer elution properties and UV-visible detection of the dye absorption. The chromatograms 

are displayed in figure 30. 

By using monitoring the refractive index, chromatograms of PIMA and our intermediate 

polymer show similar features. In particular the large change in RI at the very same elution time 

(ca 11 min) shows that the amount of grafted dyes does not affect polymer size. However, when 

monitoring the chromatography at 450 nm, the intermediate polymer shows an absorption that 

was not present in the initial one, revealing the presence of the new chromophore. As a result, 

the presence of covalently grafted SP-moieties onto polymer was validated.  

 

Figure 30. Results of SEC analysis in DMF. Detection by light scattering (LS), refractive index 

(dRI) and absorption at 450 nm (UV). Two polymers were compared in similar conditions, at a 

flow rate of 1 mL min-1. A) PIMA. B) intermediate of P1,38. 
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II.3.2.3.2 Synthesis of P1,38 

Determination of D-Glucamine loading 

The efficiency of D-glucamine loading was again evaluated by 1H NMR (figure 31). 

Comparison of the integrations revealed that quantitative sugar incorporation onto polymer was 

achieved. However, it is no longer possible to quantify the dye content due to its low loading 

(0.39 dye per chain). Indeed, in polymer chemistry it is usually challenging to characterize end 

groups of the chain which generally represent 1 or 2 moiety per chain. 

 

 

Figure 31. 1H NMR of P1,38 in D2O. 

 

Validation of D-glucamine grafting 

The final polymer was analyzed by SEC in water. As for the intermediate, the final P1,38, 

a single peak in the chromatogram bearing the 450 nm absorption is obtained at an elution 

volume of 15 min (figure 32). Therefore, only one monomodal distribution of polymer has been 

obtained, the glucamine grafting seems to be homogeneous and quantitative. 
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Figure 32. SEC analysis of P1,38 in water buffer (sodium azide, lithium nitrate, triethanolamine). 

Detection by light scattering (LS), refractive index (dRI) and absorption at 450 nm (UV). 

Absorption spectra in water 

The P1,38 has absorption spectrum (figure 33) shifted back to lower wavelength. It is due 

to SP solvatochromism. However, there still remains some overlap with the Tm blue emissions 

(especially for the 450 nm emission band, but not as ideal as it was in DMF. 

 

Figure 33. Absorption spectrum of P1,38 in water.  
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III Photochemical behavior of amido-BIPS 

III.1 Parametrization of the dye: use of BIPS-GLT 

Negative photochromism 

When solutions of BIPS-GLT dye at ca 5*10-5 mol L-1 are prepared, the pH was found 

to spontaneously reach a value of about 5. Under such conditions, the photochromic behavior 

was investigated using monochromatic irradiation (LED 420 nm).  

Under monochromatic irradiation at 420 nm, bleaching of the large broad band was observed 

with a simultaneous rise of a UV transition (figure 34). Mauser plot of these two transitions 

showed a nice correlation. This fact and the presence of an isosbestic point led us to simplify 

the kinetic scheme to a two-species-and-H+ scheme such as MCH+ 
à SP + H+. 

 

 

Figure 34. A) Kinetic monitoring of the photoinduced dye decoloration (λirr=420 nm). B) 

Mauser plot of Abs(428 nm)=f(Abs(246 nm). [dye]0= 3.25*10-5 mol L-1 (pH0 = 5, unbuffered) 

Kinetic monitoring of a photoacid dye photochromism 

The H+ release was observed by the simultaneous monitoring of the pH of the dye 

solution and its visible absorption during the irradiation. During such a process, the pH of a dye 

solution at 5.2*10-5 mol L-1 was found to decrease from 4.4 down to 4.17 as shown in figure 35. 

The MCH+ form thus behaves as a photoacid, in a similar way to the sulfonate substituted one 

BIPS-SO3.12,34 
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Figure 35. Kinetic simultaneous monitoring of pH and absorbance in solution. A) Overlap of 

absorbance spectra. B) Evolution of the [MCH+] as a function of the [H+] calculated from the 

pH measurements. C) Kinetic evolution of Abs(428 nm) as a function of the irradiation time.  

[dye]0 = 5.2*10-5 mol L-1. 

Thermal back reaction 

Once the PSS was reached, irradiation was stopped and UV-vis absorption of the 

solution was monitored (figure 36). Recovery of the absorption band occurs over a period of 20 

minutes. The MCH+ vs [H+] plot and the kinetic trace (MCH+ vs time) show two distinct 

regimes: a first and fast recovery one with a quasi-linear evolution of MCH+ regarding to H+, 

then, the kinetic slows down. This second period where [H+] decreases not as fast as the [MCH+] 

rises is probably due to the speciation of the dye at these pH’s close to 4 where the COOH group 

can ionize:  the continued protonation of the SP form eventually leads to a deprotonation of the 

dye’s COOH group, resulting in the building up of a buffer.  

 In non-buffered conditions, rate constants determinations would require the use of 

numerical modeling. 
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Figure 36. Thermal back reaction with simultaneous monitoring of pH and absorbance in 

solution. A) Overlap of absorbance spectra. B) Evolution of the [MCH+] as a function of the 

[H+] calculated from the pH measurements. C) Kinetic evolution of Abs(428 nm) as a function 

of time in dark. Same dye concentration as figure 35. 

 To conclude, BIPS-GLT model compound was shown to present the desired property in 

water: negative photochromism. The thermal back reaction was found to be rather slow and 

made complex by the interference of the pending COOH group. Such a feature is also expected 

for polymer P1,38. 

Dye stability in water 

An important issue was the dye stability in water. Indeed, spiropyran are known to 

undergo a retro-Knoevenagel reaction,24 that slowly hydrolyses the dye in the dark. Therefore, 

dye solutions were always freshly prepared before measurements.  

 The other point was the dye photostability: to assess this feature, the cycle 

“irradiation/recovery in the dark” was repeated 4 times (figure 37). The maximum absorbance 

at 428 nm was found to decrease slightly. One can incriminate classic oxidative dye bleaching 
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(in particular due to the presence of oxygen). No attempts were made to identify the 

photobleaching processes.  

 

Figure 37. Photostability of the SP-GLT upon a sequence of bleaching (under 420 nm LED 

excitation) and thermal back reaction (in dark). The red horizontal line is for the initial 

absorbance. 

Halochromism: MC à SP 

As shown in the introduction, the MCH+ form is in equilibrium with its conjugate base 

MC. We thus explored the effect of a pH change. Introduction of a large amount of NaOH (12 

eq) caused a brutal color change from orange to purple, the latter color fading rather quickly. 

We monitored this transformation to retrieve some of the thermal back reaction parameters. 

 

The initial spectrum is completely modified: the 420 nm band being replaced by a lower energy 

one at 532 nm. This band was attributed to the MC form. The monitoring of the absorption 

spectrum with time showed the rise of a transition in the UV region with a maximum at 241 nm 

attributed to SP (figure 38 A).  
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Figure 38. Monitoring of the absorbance in solution. A) Overlap of absorbance spectra. B) 

Mauser plot of Abs(532 nm)=f(Abs(241 nm)). C) Kinetic evolution of the rescaled absorbance 

Abs(t)-Abs(t∞) at 532 nm as a function of time.  

 Remarkably the pink solution is no longer photochromic: this property is restored only 

when the pH is lowered again, thus is bound to the MCH+ form. Such a feature indicated that 

the photochromism occurs only over pH range where the MCH+ form is the major one, therefore 

restricting the “useful” window to the acidic region: below 7. Because the thermal back reaction 

involves [H+], the extent of the photoisomerization will be limited by the rate of this “dark” 

process; one has to remember the definition of the position of the PSS: the more acidic the 

reaction medium, the less efficient (in terms of PSS) the photoisomerization. 

Determination of k(MCàSP) 

The reaction inducing the color disappearance is a two-species one written as MC®SP, 

as justified by the presence of isosbestic points and the linear Mauser plot Abs(532 nm) vs 

Abs(241 nm) (figure 38 B). At infinite time we could notice that some color persisted indicating 

that an equilibrium mixture of SP and MC form was reached. To estimate the thermal back 

reactions MC→SP (k1) and SP→MC (k2) a requirement is to determine the absorption 

coefficient of the MC form. Considering that the deprotonation of the MCH+ is quantitative and 

much faster than any other chemical process, we estimated the extinction coefficient (23700 
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cm-1 M-1) from the absorbance extrapolated t=0 at 532 nm. The very simple initial slope 

approach was used to retrieve an estimation of the lifetime of the MC form (68 s). To extract 

the k1 and k2 rate constants we then exploited the PSS concentrations and definition.  

M = NO
NP =

[QR]S
[TU]S = VS

VWKVS = <>JX!and!!YZ = \Y ^ \3 = Y
_` H*KY 

Thus, values of 0.011 s-1 (or τ(MCàSP)=92 s) and 0.031 s-1 (or τ(SPàMC)=33 s) were respectively 

obtained for k1 (MC→SP) and k2 (SP→MC). 

III.2 Exploration of P1,38 polymer photochromism 

Dye bleaching upon blue light irradiation 

Acidified in aqueous solution, the polymer P1,38  absorption spectrum was characterized 

by two broad bands at 340 nm and 450 nm, the latter being comparable with the model dye 

BIPS-GLT (figure 38). Therefore, as expected, monochromatic 420-nm irradiation LED of such 

a solution induced the bleaching the visible part of the spectrum. Kinetic monitoring was made 

by reporting the absorbance at 450 nm and 474 nm (corresponding to the 2 blue emissions of 

UCNP) as a function of time (figure 39). Interestingly, as for the model compound, dye 

photoswitching is fast, with an estimated characteristic time τ≈13 s, indicating that a single 

MCH+ transition would be addressed by both Tm-emissions. 

 

 

Figure 39. Bleaching of P1,38 at 3.51 mg mL-1 under 420 nm LED excitation, at pH=5.6. A) 

Overlap of the absorption spectra. B) Kinetic evolution of Abs at wavelengths corresponding 

to the two blue emission bands of Tm-doped UCNP 
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Thermal back reaction 

As for BIPS-GLT, thermal back reaction in the dark was quite fast. Although not 

completed in 6 minutes, characteristic time τ can be approximated at around 3 minutes, even if 

the recovery was not achieved in the present case (figure 40).  

 

Figure 40. Thermal back reaction of P1,38 at 3.51 mg mL-1 monitored in dark, without any 

irradiation, at pH=5.6. A) Overlap of the absorption spectra. B) Kinetic evolution of Abs at 

wavelengths corresponding to the 2 blue emission bands of Tm-doped UCNP. 

Such a result can be compared to published data with related dyes. In particular in the 

work by M. Feeney et al.39 was described the negative photochromism of water soluble non 

ionic polymer carrying variously substituted spiropyran chromophore. In this study the 

characteristic recovery time of electron rich spiropyran (MeO-SP-PEGMA) can be estimated at 

about 15 minutes.  (figure 41)  

 

Figure 41. Reported kinetics of thermal recovery of various substituted spiropyran-loaded 

polymers by Feeney et al.39  
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In our case, the effect of the para-amido group is therefore consistent with these reported 

results.  

Photostability 

 

Figure 42. Photostability study on P1,38 via absorbance measurement upon repeated cycles of 

420 nm irradiation / dark. 

 

Upon repeated cycles discoloration/thermal recovery (figure 42), the photochromic 

polymer P1,38 shows slight decrease of the maximum of the absorbance: a loss of ca 10% is 

observed after 5 cycles. This behavior is in agreement with our previous results on the model 

dye BIPS-GLT. 

Conclusion about P1,38 photochemical behavior in water 

Altogether, it was proven that the T-negative-photochromic behavior of the model dye BIPS-

GLT persisted once incorporated into the polymer P1,38. Even though results are only qualitative 

as yet, we could evidence fast bleaching (characteristic time τ≈13 s) of the dye under LED 

irradiation, and rather fast thermal back reaction in less than 10 minutes (τ≈3 min) (figure 43).  
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Figure 43. Summary of P1,38 photochemical behavior 

One question remains unanswered: does the SP have similar behavior in higher steric hindrance 

condition, while the polymer is surrounding a NP surface?  

IV Towards UCNP@P1,38 nanohybrid for super-resolution 

IV.1 Nanohybrid formation 

Nanohybrid was prepared by using the simple procedure previously described (section 

II.1). To an aqueous solution of P1,38 was introduced dropwise over 10 minutes a DMF or water 

solution of uncoated UCNPs (UCNP@BF4). We have used the conditions that were successful 

in section II. The stoichiometry was arbitrarily fixed following the rule “1 mg of ligand for 1 

mg of UCNP”, assuming that it represents a large excess of ligands. After 30 min of vigorous 

magnetic stirring, the nanohybrid was purified by centrifugation. The purification procedure 

was voluntarily reduced to repeated centrifugations to avoid long exposure to large volume of 

water that might cause UCNP dissolution or dye hydrolysis. Such removal of free polymer in 

solution was achieved by 3 successive centrifugations in water (without the need for additional 

solvent of precipitation). Then, products were redispersed in water and immediately used for 

photochemistry experiments. Absorbance spectra revealed the presence of SP thus P1,38, and 

the presence of UCNP was confirmed visually by shining a 980-nm handheld laser on the 

sample. 

Due to the lack of time, we have not been able to go further in the analysis, it will be more 

discussed in the perspectives. However, it will be called as « nanohybrid » in the following  
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IV.2 Impact of the Nanohybrid architecture on P1,38 photochemistry 

Compared to the polymer alone (figure 38), only the band at 340 nm can be clearly 

distinguished, the one of interest at 450 nm is noisy. Additionally, the shape of the curves 

suggests diffusion phenomenon in solution. This can be due to an unoptimized stability of the 

assembly UCNP@P1,38 in water.  

Dye bleaching upon blue light irradiation 

Figure 44 shows an attempt of dye bleaching on the nanohybrid. 

Similar to P1,38, photochemical experiments were reproduced with the « nanohybrid », 

at neutral pH, by using the blue LED (figure 43). Kinetic monitoring was made by reporting 

the absorbance at 450 nm and 474 nm (corresponding to the 2 blue emissions of UCNP) as a 

function of time. The kinetic monitoring show fast characteristic time. However, in the case of 

the nanohybrid, it is slightly longer (ca. 20 s vs. 13 s) compared to the polymer alone P1,38.  

 

 

Figure 44. Bleaching of UCNP@P1,38 at [P1,38]=0.718 mg mL-1 under 420 nm LED excitation 

at pH=7.2. A) Overlap of the absorption spectra. B) Kinetic evolution of Abs at wavelengths 

corresponding to the two blue emission bands of Tm-doped UCNP. 
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Thermal back reaction 

Similarly, to the polymer alone, thermal back reaction (figure 45) is still fast with a 

comparative characteristic time of around 3 min. Despite the noise, kinetic traces taken over 

the MCH+ envelope are consistent, giving a single relaxation time of ca 3 min. 

 

Figure 45. Thermal back reaction of UCNP@P1,38 at [P1,38]=0.718 mg mL-1 monitored in dark, 

without any irradiation. A) Overlap of the absorption spectra. B) Kinetic evolution of Abs at 

wavelengths corresponding to the 2 blue emission bands of Tm-doped UCNP. 

 

IV.3 UCNP-induced Photoswitching of the P1,38 

Based on the demonstration of the conservation of dye photochromic behavior even after the 

nanohybrid assembly, next was the investigation of the feasibility of such photoswitching 

induced by the proper emission of UCNP. Thus, blue LED was replaced by 976 nm CW laser 

at 39.29 W cm-2. 

However, when applying the 980 nm excitation, no significant variation could be detected on 

the UV-visible spectrophotometer. 

Two hypotheses can explain these observations: 

-either UCNP emission in water is too weak to induce dye photoswitching (blue emission 

quantum yield too low, irradiated volume too small or back-isomerization rate increased due to 

local water overheating) 
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-or light fluctuation is occurring as expected at the single nanoparticle level but it is not 

detectable at the macroscopic one. 

At this level, the proof of concept should come from a super resolution experiment, oberving 

the actual luminescence of a single NP. To maximize the contrast between the “ON state” and 

the brightest state, ultrasmall UCNPs should be used.  

Indeed, one can discuss two extreme cases. First, the unfavorable luminescence extinction via 

a “trivial quenching” or photon reabsorption mechanism. If we apply the hypotheses defining 

an absorption cross-section for the Beer lambert law (i.e all photons falling with the cross-

section σ of the dye are absorbed), then one can estimate the number of dyes n* that would be 

required to completely quench the NP luminescence:H"a = 6bcdeP
f  . 

From a NP geometrical parameters (i.e the smallest NP of chapter III BA1 diameter=2.5nm) 

and the dye molar extinction coefficient ε≈22450 L mol-1 cm-1 or σ≈3.7*10-17 cm2 one can get 

the following number n*≈5300 dyes giving the unrealistic surface concentration of  250  

dye.nm-2! If one considers a dye whose size would be comparable to an alkyl chain (diameter 

0.2 nm) then the maximum surface concentration would be 8 molecules.nm-2, close packed. 

With such a concentration, all dyes being switched off, the maximum extinction would be of 

3% of the bare nanoparticle. Thus, trivial quenching can be considered as irrelevant for our 

purpose. 

The second extreme case is a Förster quenching model. Förster radii commonly reported in the 

literature on UCNP are about 1 nm. Considering that dyes are bound to the surface of the 

particle we can calculate the volume of the sphere at the center of the NP that will be “out of 

reach” of any RET quenching. For an ultrasmall UCNP (ex BA1, diameter 2.5 nm) the diameter 

of this unquenched area is about 0.5 nm. Ratio of the total volume of the NP to this zone gives 

a factor of ca 100. That is, NP emission intensity would then vary over a significant range if 

dyes switch from the OFF, quenching state to the ON, unquenching state. One can also note 

that Förster spheres will start to overlap when the dye concentration is higher than about 10 

dyes per particle. This approach is however very favorable as the centers of the dye molecules 

are not lying flat on the surface. Yet, this justifies the use of ultrasmall nanoparticles in order 

to maximize the amplitude of photoswitching. The main question is then the number of dyes 

per nanoparticle or the polymer loading per particle. 
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This implies to prove the architecture core UCNP@shell P1,38 resulting from the interaction of 

the polymer and the bare nanoparticle in water. In particular several points have to be addressed: 

Are we in the presence of a nanohybrid made of a single nanoparticle embedded within a corona 

of organic material or do we have larger aggregates. One suitable technique to efficiently 

address this issue is Field Flow Fractionation. In short, colloids to be analyzed are submitted to 

two perpendicular hydrodynamic fields, separating objects according to the magnitude of the 

interaction of the objects with the external perpendicular field.  These techniques act like SEC 

chromatography for polymer. One particularly attractive mode is when the transverse field 

imposes sedimentation of the colloids: it is particularly adapted to nanohybrids with a dense 

inorganic core. Thanks to the coupling of DLS, RI and UV-Vis detectors, one could monitor 

the co-elution of UCNP and P1,38, free polymer (the latter having a shorter elution time than a 

nanohybrid). We could not do it by lack of time. Moreover, it requires a long time of 

optimization of the parameters of acquisition and the method of analysis. Another interesting 

possibility is the preparative separation procedure poropsed by the Regensburg team and 

involving electrophoresis. Beside the sorting out of crude nanohybrids, the agarose gel can be 

extracted to isolate the structures of interest.68 

Additionally, TGA should be required to determine the polymer content. A final 

characterization would be the determination of the number of UCNP encapsulated by 

nanohybrid. 

V Conclusion 

Compared to the initial technical specifications, we chose to work with the couple Tm-

doped “blue-emitting” UCNP and orange-colored T-negative spiropyran absorbing blue light.  

Dye structure was tuned in order to have a substituent in para of the phenol with a Hammet 

sigma value close to that of hydrogen to maximize the overlap. Thus, it relies on the use of 

poorly donating amino group. This lowering of the “electron-donor” behavior was achieved 

either by grafting triazine (by nucleophilic substitution) or carboxylic acid (through amide 

bond). Effectively, absorption spectra were shifted to the area of interest, in native solvent 

(EtOH for BIPS-TCl2, DMF for BIPS-P1,38 intermediate). However, in both cases, when the 

dye is placed into water, the absorption is shifted back to lower wavelength due to 
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solvatochromism. As a result, the overlap occurs mainly with the 450 nm emission band of Tm, 

while the 475 nm one appears poorly usable. Issues with purification and lack of effective 

photochromic behavior for BIPS-TCl2 forced us to abandon this route, despite the attractiveness 

of the selective post-functionalization of the triazine. 

Concerning the amide route, we first designed a short ligand by coupling amino-BIPS 

to glutaric anhydride. This model compound was crucial as is allows us to determine the molar 

absorption coefficient of such a new kind of dye. Then, we could validate and explore its 

photochromism. Based on this first parametrization, we could then upgrade the method to form 

reactive polymer bearing SP via amide bond and explore the photochemistry. We decided at 

first to work with a low content of dye to prevent any stacking issue within the polymer. In 

order to enhance the hydrophilic behavior, this reactive polymer-based platform was fully 

functionalized by short hydrophilic molecules, D-glucamine. 

Noticeably, such low dye-loaded polymer, P1,38, conserved the same behavior than the 

model compound BIPS-GLT. 

Then nanohybrid was built by the simplest approach, a direct mixing of P1,38 with bare 

UCNP. However, actual formation of such a nanohybrid architecture was not fully 

demonstrated by analytic method.  

Despite the risks of modifications of the photochemical behavior of the dye due to the enhanced 

steric hinderance once the polymer anchored at the NP surface, the observations were again 

identical. 

The dye chosen displays the desired negative photochromism when the MCH+ form is present. 

This implies that the blinking of the nanohybrid should occur over a defined pH window 

compatible with the dye speciation. That is, acidic but close to neutrality (from 5 to 7). While 

seemingly restrictive, this constraint will enable to introduce another discrimination parameter 

by combining sensing and super resolution properties. As an example, more fluctuations will 

be expected in acidic compartments such as tumors cells, or lysosomes.  

Therefore, knowing that the dye is still photoswitchable, we turned our attention to the 

feasibility of such dye photoisomerization induced by UCNP emission under NIR excitation. 
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Unfortunatly, by simple kinetics in solution with a standard UV-visible spectrophotomer, no 

change was detected. This phenomenon can have two origins:  

-UCNP emission is too low in water to be able to switch efficiently the dye 

-the photoswitching induced by UCNP emission is working, but it is happening as expected for 

the BLINK application: at the macroscopic level no light fluctuation is occurring, but at the 

single-NP scale there are fluctuation of intensity due to local variation of the dye 

izomerizations. 

Further study such as single-NP observation with the confocal microscope established at LASIR 

should explore this way. 

At this point, we are still far from success. Nevertheless, we have designed a strategy to prepare 

a nanohybrid architecture based on the electrostatic interaction of an anionic water-soluble 

polymer and a “naked” nanoparticle. Use of a commercially available polyanhydride leads to a 

simultaneous introduction of a functional group and a charged one. Thus, a multifunctional 

nanohybrid can be designed in a very straightforward way. We have also shown that it was 

possible to graft water-compatible, negative T-photochromic units onto such a polymer. Upon 

mixing with naked UCNPs, a mixed material was isolated in which the photochromic dye 

remained functional. However, we have not yet been able to characterize the actual nanohydrid 

architecture of the objects, and more importantly, to demonstrate unambiguously that the 

photon flux re-emitted by the UCNPs was sufficient to induce detectable dye photoswitching. 

However, even if the UCNP is not able to induce the dye isomerization, it can be achieved 

thanks to the use of a second, external excitation (figure 1 case A).  
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VI Experimental section 

VI.1 Material and methods 

Reagents were all of commercial source and used as received. Anhydrous DMF and THF were 

obtained by column drying using a M-Braun solvent purification system (courtesy of UMR5247 

SPCMIB Toulouse).  

NMR spectra were recorded on Bruker Avance 300 or 500 spectrometers using residual non-

deuterated solvent as reference for the chemical shifts in ppm. Ultra-filtrations were performed 

using membranes with a 3 kDa cut-off. 

UV-vis absorption spectra were recorded on a HP8451 or Analytik Jena Specord S 600 diode 

array spectrophotometers and photokinetics experiments on the HP8451 diode array 

spectrophotometer. 

VI.2 The photoisomerization experiments 

The solution to be photolyzed (2.5 mL) was stirred with a magnetic stirring bar in a 1 cm x 1 

cm quartz cell placed in a thermostated sample holder (25°C). The light was introduced via an 

optical fiber from the top part (irradiation path of 2.5 cm). The irradiation light was obtained 

from a fibered 420 nm LED source (Mightex). If required, the pH was recorded in-situ using a 

microelectrode (H1083B Hanna Instruments). 

VI.3 Protocol for UCNP ligand exchange 

Preparation of bare UCNP 

OA removal was achieved following the protocol established by Dong et al.43 Typically 200 

mg of UCNP@OA were dispersed in 4 mL of cyclohexane. To this solution was added 4mL of 

NOBF4 dispersed in dried DMF (50 mg mL-1). After at least 30 min of vigorous magnetic 

stirring, the solution was left to rest. Fast decantation reveals the presence of 2 phases, the 

upper-colored one containing organic compound is discarded. DMF fraction is purified by 3 

successive centrifugations in DMF coupled to chloroform as precipitation solvent. Eventually 

last centrifugation in chloroform, followed by drying under vacuum leads to dry bare UCNP 

which were used for FTIR experiments. For storage they were dissolved in DMF. 
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Capping with new stabilizer 

200 mg of bare UCNP are dissolved in DMF or water (at 50 mg mL-1), depending on 

the new stabilizer solubility. Stabilizer were introduced in aqueous solution at 50 mg mL-1, 

assuming that it represents a large excess. 

Purification was achieved by successive centrifugation with acetone as solvent of precipitation, 

then dissolved in water. Most of the nanohybrid were then purified by dialysis to remove free 

ligand. Then, nanoobjects were lyophilized and dispersed at a known concentration 

For PIMA-derivative ligands used in the chapter, dialysis step was removed due to the risk of 

dye hydrolysis while exposed to water during such a long time.  

VI.4 Reactive dye BIPS-TCl2 

 

A solution of NitroBIPS (0.4 g, 1.2 mmol) and SnCl2.2H2O (1.6 g, 7 mmol) in ethanol 

(8 mL) was heated to reflux under argon for one hour. The orange reaction mixture was poured 

into 16 mL of 5 % sodium hydroxide and extracted three times with diethylether. The pale 

yellow organic phase was dried over MgSO4 then evaporated to dryness leaving 0.367 g of a 

viscous green oily residue. Crude amino-BIPS was redissolved in 2 mL acetonitrile and a cold 

solution of TCT (tricholotriazine) (0.3 g, 1.6 mmol) was added dropwise at -5°C. The dark 

orange turbid mixture was left overnight in the freezer. Diethylether was added to achieve 

precipitation. The orange precipitate was filtered then dried in vacuo. Recrystallization from 

1:2 mixture acetonitrile: acetic acid gave 0.160 mg of a bright orange powder (53%). 

1H NMR (500 MHz, DMSO-d6) δ 11.24 (s, 1H), 10.74 (s, 1H), 8.47 (d, J = 16.4 Hz, 1H), 8.08 

(d, J = 2.6 Hz, 1H), 7.89 (d, J = 24.0 Hz, 2H), 7.69 (d, J = 16.4 Hz, 1H), 7.64 (ddd, J = 6.5, 

4.6, 1.5 Hz, 2H), 7.53 (dd, J = 8.8, 2.6 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 4.10 (s, 3H), 1.77 (s, 

6H). 13C NMR (126 MHz, DMSO) δ 182.24, 157.28, 148.24, 143.74, 142.35, 132.16, 129.70, 

129.48, 125.52, 123.32, 121.59, 117.50, 115.56, 113.09, 52.39, 34.76, 26.33. 
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VI.5 Model compound BIPS-GLT  

 

A solution of nitro-BIPS (0.4 g, 1.2 mmol) and SnCl2.2H2O (1.6 g, 7 mmol) in ethanol 

(10 mL) was heated to reflux under argon for one hour. The orange reaction mixture was poured 

into 16 mL of 5 % sodium hydroxide and extracted by diethylether (3x30 mL). The pale yellow 

organic phase was dried over MgSO4 then evaporated to dryness leaving a viscous green oily 

residue. Crude amino-BIPS was redissolved in 2 mL of dichloromethane, then 0.2 g of glutaric 

anhydride and 0.2 mL of DIPEA were added. The reaction mixture was stirred overnight, then 

0.1 mL concentrated HBF4 ((56 %), was added dropwise before partition with acidified (HBF4) 

water. Aqueous phase was extracted with dichloromethane, and organic phases dried over 

MgSO4 After evaporation to dryness the residue was purified by crystallization from CHCl3-

Et2O. Yield: 0.5g (84%) of a dark orange hygroscopic powder. 

1H NMR (300 MHz, DMSO-d6) δ 10.93 (s, 1H), 9.86 (s, 1H), 8.45 (d, J = 16.4 Hz, 1H), 8.17 

(d, J = 2.5 Hz, 1H), 8.03 – 7.78 (m, 2H), 7.69 – 7.59 (m, 2H), 7.58 – 7.45 (m, 2H), 7.00 (d, J = 

8.9 Hz, 1H), 4.07 (s, 3H), 2.38 – 2.23 (m, 4H), 1.83 (q, J = 7.4 Hz, 2H), 1.76 (s, 6H). 

HRMS ES+: m/z : 407.1965 [M-BF4] 

 

Figure 46. HR MS ES+ of the BIPS-GLT 
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VI.6 Polymer Px(39-x) x=1 

VI.6.1 Step 1  

A solution of nitro-BIPS (0.2 g 0.62 mmol) and SnCl2.2H2O (0.8 g, 3.5 mmol) in ethanol 

(4 mL) was heated to reflux under argon for one hour. The orange reaction mixture was poured 

into 10 mL of 5% sodium hydroxide and extracted by diethylether (3 x 30 mL). The pale-yellow 

organic phase was dried over MgSO4 then evaporated to dryness leaving 0.160 g (ca 0.55 

mmol) of a viscous green oily residue. 

To a solution of PIMA (3 g, 19.5 mmol, 35.4 eq. vs intermediate amino-BIPS) in 20 mL of 

anhydrous DMF was then added the crude amino-BIPS dissolved in 4 mL DMF and DIPEA 

(0.1 mL, 0.55 mmol). The reaction was stirred overnight then was poured into a large excess of 

THF:diethylether66 (4:60) to precipitate the polymer. After centrifugation, the pellet was 

redissolved in DMF and the precipitation procedure was repeated. Polymer was then vacuum-

dried. 

VI.6.2 Step 2 

Crude intermediate polymer (0.2 g) was redissolved in DMF (3.5 mL) and a solution of 

D-glucamine (0.45 g, 0.25 mmol) in water (5.5 mL) was added. The homogeneous mixture was 

stirred overnight. After dilution with deionized water, the reaction mixture was ultra-filtrated, 

and washed 4 times with 10 mL water, then twice with brine (10 mL, 40 g L-1). Then the 

chamber was filled with deionized water and washing were repeated at last 3 times, controlling 

the chloride content with silver nitrate test. The aqueous solution was then freeze-dried, giving 

0.43 g of a fluffy pale-yellow powder. 
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VI.7 Calculations of k(MC→SP) 

Initial slope method: g = Eh> ijklHm ^ n> kkop 

q = <>A<rA
<><?<I = BrHs 

$a = tu E tv = <><?I a ?X ^ <>A<rA = <>rBIA  

tu = <>rBIA ^ <>J<A 

wu =
tu
#u H=

?>?A
I>@I a ?<Kx = yJA<<HDH,&%KY#,KY 

FYv = \Y> [z4]v 

F3v = \3> [{G]v 

\Y> [z4]v = \3> [{G]v 

M = \Y
\3 =

[{G]v
[z4]v = tv

tu E tv = <>JX 

\Y ^ \3 =
?
| =

?
BrHH*

KY 

Thus, it can be deduced the two rate constants: 

\Y = <><??H*KY HH} H |Y ~ @yH* 

\3 = <><J?H*KY HH} H |Y ~ JyH* 
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“Of our elaborate plans, the end 

Of everything that stands, the end 

No safety or surprise, the end 

I’ll never look into your eyes… again”  

(The Doors, « The end ») 
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L’objectif annoncé de ce travail de thèse était de mettre au point des nanoparticules 

luminescentes à clignotement contrôlé comme nouvelles sondes pour l’imagerie en super-

résolution. 

La mise au point bibliographique a permis de mettre en évidence l’intérêt de s’orienter 

vers des traceurs pouvant fonctionner dans l’infrarouge. Ceci permet de s’affranchir du 

problème majeur d’autofluorescence du matériel biologique dans les conditions standards 

d’observation. De plus, le rayonnement infrarouge présente un intérêt tant du point de vue 

optique avec une diminution des phénomènes de diffusion et une imagerie plus en profondeur 

dans les tissus, que du point de vue de la toxicité en passant outre les problèmes de 

photodégradations pouvant être occasionnés par des sources plus énergétiques (UV). De ce fait, 

le projet s’est naturellement focalisé sur l’utilisation de nanoparticules upconverting à base de 

lanthanides.  

 

 La séquence de précipitation des différents allotropes de NaREF4, en apparence ne  conduisant 

qu’à des particules exploitables de grande taille a été mise à profit pour réduire la taille des 

particules.   

 

Dans un premier temps nous avons appris à reproduire des nanoparticules standard. 

Puis, Nous nous sommes très rapidement orientés vers une composition originale de matrice 

hybride quasi-équimolaire Na(Yb-Gd)F4 pour augmenter l’efficacité de nos objets par 

l’amplification de l’absorption. Nous avons alors mis en place une démarche raisonnée 

permettant la réduction en taille successive de 15 nm vers 2 nm en améliorant le contrôle de la 

séquence d’Ostwald α→β. L’implémentation d’une méthode originale de cyclage de 

température à haute température grâce à l’utilisation d’un réacteur micro-onde s’est avérée 

fondamentale dans ce succès et ouvre désormais de nouvelles portes dans le domaine de la 

synthèse d’autres types de nanomatériaux, en particulier lorsqu’il s’agit de gérer deux 

allotropes. Une étude future de l’optimisation des paramètres du cyclage de température (durée 

des plateaux à Tmax et Tmin par exemple) pourrait sans doute permettre d’affiner encore plus 

le contrôle du « Ostwald focusing » et d’obtenir des distributions en taille encore plus étroite.  

Cependant dans le cadre d’objets de type NaREF4, nous avons pu uniquement démontrer 

l’extrême reproductibilité sur des matrices de lanthanides de groupe II, ou des matrices hybrides 

groupe II- groupe III quasi-équimolaires. Des études supplémentaires seraient requises pour 

généraliser le procédé à des matrices composées uniquement de terres rares de groupe III 

comme NaYbF4, NaYF4 ou NaLuF4. Une piste intéressante serait de reprendre les travaux de 
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Markus Haase pour le choix de la stoechiométrie, notamment le ratio Na/RE. En effet le groupe 

de Markus Haase propose une stoechiométrie spécifique pour les lanthanides de groupe II, et 

une seconde pour manipuler des éléments du groupe III.  

De plus la forme de notre cyclage de température s’avère particulièrement adapté pour des 

mesures in situ lors du plateau à plus "basse température" (280°C). En effet il serait 

particulièrement intéressant d’avoir une mesure de taille, et/ou de luminescence en cours de 

chauffage. Des premières expériences dans ce sens ont pu être mises en place, avec notre 

partenaire Cordouan Technologies, avec l’adaption d’une sonde DLS au cœur même du four 

micro-onde, mais l’optimisation de la méthode reste en cours. 

Une autre optimisation future de ces nanoparticules, au moins aussi petites que des 

Quantum Dots standards, serait l’optimisation de croissance épitaxiale de coquille. En effet, 

bien que nos résultats soient suffisamment satisfaisant à ce stade quant au gain en efficacité 

d’upconversion sur nos coeur@coquille, les tailles obtenues nous suggèrent une absence de 

contrôle. Une campagne de mesure en synchrotron serait particulièrement intéressante pour 

confirmer la composition de la coquille que ce soit sur des objets déjà préparés ou suivi en cours 

de synthèse.1 Plusieurs alternatives se présentent pour optimiser cette étape : un screening de 

conditions en suivant une démarche de plan d’expériences pour arriver rapidement à affiner nos 

paramètre actuels de synthèse, ou reprendre la stratégie de Markus Haase. Profitant d’une plus 

grande gamme de compositions compatibles avec la phase cubique que la phase hexagonale, 

cette approche repose sur la préparation de nanoparticules de phases cubiques ne pouvant pas 

donner de phase hexagonale. Ainsi une fois introduites avec les particules de cœur, ces graines 

sacrificielles cubique seront en théorie uniquement destinées à nourrir les particules de cœur 

pour former la coquille. Néanmoins dans le cadre de nos particules ultrapetites vient se poser 

la question de la taille : en effet l’écart de taille entre des cœurs de 2.5-3.3 nm et des graines 

sacrificielles (autour de 2 nm) étant particulièrement faible, la vitesse de dissolution des graines 

alfa sera-t-elle suffisamment plus rapide à haute température que celle des cœurs ? Dans le cas 

contraire cette approche ne fonctionnerait pas et on obtiendrait à nouveau des cœurs recouverts 

d’un mélange de précurseur de coquille et de matériau du cœur.  

 

Dans le cadre du chapitre sur les nanolampes upconverting, nous avons pu étudier plus 

en détail le phénomène d’upconversion. Les propriétés photophysiques et la variété des 

réponses obtenues montre la difficulté de standardiser ce type de nanophosphores.  Nous avons 

essayé de mettre en place une démarche analytique quantitative. Il nous est rapidement apparu 

important l’idée de mettre en place un standard de calibration pour la comparaison des mesures. 
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En effet l’absence d’un tel standard nous a amené sur le site des IMRCP à multiplier les 

expériences dans des conditions d’acquisition non comparables, mais adaptées à la 

caractérisation d’un lot à la fois. Le résultat étant à l’image de la partie stationnaire du chapitre 

3, un foisonnement d’analyses sans possibilité de comparaison quantitative de lot à lot. 

Cependant nous avons pu montrer que de simples améliorations comme l’intégration d’un 

puissance-mètre pour la mesure in situ de l’absorption pendant l’acquisition de spectres 

d’émission étaient particulièrement intéressante pour cette démarche de rationalisation, 

permettant à la fois la caractérisation de l’absorption, difficile à observer sur des 

spectrophotomètres standards, la détermination de la teneur en sensibilisateur et donc la 

calibration par le nombre de sensibilisateur ou le nombre de nano-objets en solutions. Des 

informations sur la stabilité colloïdale comme la décantation peuvent également être obtenues 

de cette façon. 

Les mesures temporelles menées au LASIR et au BAM ont permis d’apporter des 

premières données cinétiques comparables en mettant en place une méthode d’acquisition 

originale à temps constant. Néanmoins, ce mode de mesure est encore limité par le manque de 

signal obtenu pour nos particules de taille ultrapetite en particulier pour les émissions à haute 

énergie. Une nouvelle campagne de mesures avec un temps plus long (ex: 1h) pourrait permettre 

d’améliorer les choses. Une autre source d’amélioration majeure est le traitement du signal. En 

effet, malgré l’apparente forme de déclins de types biexponentiels, il a été particulièrement 

compliqué trouver un modèle de fit adéquat. Plusieurs méthodes ont été envisagées : la méthode 

multiexponentielle, non optimale, permet la comparaison de données cinétiques, alors qu’une 

méthode en intensité moyenne comme celle développée au LASIR permet de déterminer un 

temps de vie apparent mais n’a pas plus de sens du point de vue de la cinétique. L’ensemble 

des données collectées a pour but de mettre en place un modèle cinétique pour expliquer la 

dynamique complexe de redistribution de l’énergie au sein d’un UCNP. Il a été notamment 

présenté dans ce chapitre les prémices de ce modèle construit à partir de constantes de vitesses 

obtenues par l’analyse exhaustive de données publiées, mais par forcément adaptées au cas de 

nanoparticules. Une fois que ce modèle sera établi, il pourra permettre de fitter et simuler les 

experiences de temps de vie, mais aussi les diagrammes  de type log-log plot UCNPs résultants 

d’études en régime stationnaire et communément présentées pour justifier du  « nombre de 

photons » utiles au processus d’upconversion.  

 

Enfin, le dernier chapitre traitait de l’application cible du projet BLINK: la mise au point 

de nanoparticules clignotantes pour la super-résolution. 
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L’idée ambitieuse était de coupler une particule UCNP avec des colorant photochromes 

réversibles présents à la surface. Ces derniers servant de “volet” sont sensés nous aider à 

reproduire nos « cinquante nuances de bleu ». Notre approche s’est déroulée en plusieurs étapes 

successives.  

Nous avons tout d’abord démontré qu’il nous était très facile de « déshabiller » les 

UCNP de leur couche organique native, et de les recouvrir à façon, notamment pour des ligands 

présentant des phosphonates, phosphates, ou carboxylates. Nous avons utilisé deux méthodes 

analytiques pour suivre cet échange de ligand, l’infrarouge et la RMN quantitative. 

Dans un second temps, nous avons explicité le choix du colorant photochrome T négatif utilisé: 

le spiropyrane. La sélection de substituants électroniquement « innocents » en s’appuyant sur 

un sigma de Hamett voisin de celui de l’hydrogène nous a conduits à nous focaliser sur des 

dérivés amino avec un faible caractère donneur de l’amine. De ce fait le comportement 

photochome négatif du spiropyrane a été renforcé tout mettant en place un type de post-

fonctionnalisation utilisable pour le projet.  

En effet, en commençant par élaborer un composé modèle « BIPS-GLT » grâce à l’utilisation 

d’un anhydride court (anhydride glutarique) nous avons pu paramétrer la photochimie de ce 

nouveau colorant. Dans un second temps la même stratégie a été utilisée sur un poly(anhydride 

d’acide), permettant ainsi l’obtention d’une plateforme réactive, post-fonctionnalisable à façon. 

Afin d’augmenter l’hydrophilie du polymère et d’attester de la versatilité de la post-

fonctionnalisation, nous avons créer un polymère entièrement fonctionnalisé par un faible taux 

de colorant (0,39 colorant par chaine) et des D-glucamine. Ce dérivé de sucre a été choisi pour 

donner un caractère hydrophile important tout en limitant l’augmentation en taille du polymère, 

en gardant en tête l’idée que le nanohybride final UCNP@polymère doit rester suffisamment 

petit pour ne pas affecter la dynamique des éléments d’intérêt à sonder en microscopie super-

résolution. 

Une fois la validation de la méthode de synthèse et de la mise en place des protocoles de 

purification et d’analyse de cette plateforme polymère photochrome, nous avons pu vérifier que 

le polymère conservait le même comportement que le colorant de référence BIPS-GLT. 

Nous avons alors enfin pu nous intéresser à la construction du nanohybride "clignotant" en 

assemblant ce polymère et des UCNP. Pour ce faire, nous avons sélectionné des particules de 

grande taille, plus émissive pour maximiser les chances de succès, préalablement décapées, sur 

lesquelles nous avons mis en présence le polymère photochrome. Ce protocole d’une simplicité 

extrême par simple mélange a ensuite été évalué en photochimie. Nous avons pu vérifier avec 

succès que même lorsque le colorant est ancré à la surface de nanoparticules il conservait un 
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caractère photochrome similaire au polymère libre. Cependant les premiers essais de 

photochimie non piloté par une source bleue externe mais par l’émission bleus des UCNP sous 

irradiation proche infrarouge se sont montrés infructueux. A ce stade, deux hypothèses 

s’opposent : 

-soit il ne se passe rien parce que les UCNPs sont trop peu émissives, notamment dans l’eau ; 

-soit, comme espéré, le colorant est bien photocommuté par la particule, mais au PSS (état 

photostationnaire) on ne voit rien à l’échelle macroscopique, il se produit uniquement des 

fluctuations à l’échelle de la particule unique, liées à la dynamique du colorant. 

Les perspectives futures reposent sur l’observation en particule unique de ces nanohybrides au 

LASIR, où le setup dédié pour l’observation en particule unique dans des conditions 

d’upconversion a déjà été mis en place. Enfin de nouveaux polymères devraient être préparés, 

à des taux de chargement en colorant croissant, afin d’évaluer le potentiel de ces différents 

polymères pour faire fluctuer plus ou moins efficacement la lumière émise par les UCNP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Liu, Q. et al. Quantifying the nucleation and growth kinetics of microwave 
nanochemistry enabled by in situ high-energy X-ray scattering. Nano letters 16, 715-
720 (2015). 
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I Résumé du chapitre I 

 

Mon sujet de thèse fait partie d'un projet financé par un projet ANR intitulé 

BLINK: nanoparticules luminescentes à clignotement contrôlé pour une 

application en microscopie de luminescence en super-résolution. Dès lors, mes 

travaux visaient au départ à concevoir des nanoparticules upconverting petites et 

lumineuses, adaptées à la microscopie en super-résolution, qui n’avaient pas été 

démontrées au début du projet (2016). Nous nous sommes concentrés sur 

l'imagerie stochastique, en particulier SOFI. En conséquence, le grand défi 

consiste à faire clignoter l’inclignotable UCNP. 

L'idée était de coupler des UCNP ultrapetites à base de Thulium à un volet 

photochromique afin de construire un nanohybride pseudo-clignotant. L'émetteur 

Tm est choisi parce que l'émission bleue est plus adaptée à la commutation photo 

réversible du volet clignotant. De plus, cette sonde peut également être suivie 

grâce à son émission NIR. 

Le présent manuscrit décrira comment mon travail a été mis en place afin d’aller 

vers cette application. 

- Le chapitre 2 traite de la synthèse à partir de rien des nanoparticules UCNP, en 

portant une attention particulière à la réduction de la taille. Par rapport aux 

stratégies existantes, une matrice hybride originale de Na(Gd42%-Yb57%)F4, dopée 

à 1% de Tm, a été développée pour fournir des objets plus émissifs grâce à une 

absorption accrue. 

-Le chapitre 3 présente les propriétés photophysiques des UCNP et une approche 

analytique originale pour proposer un nouveau modèle cinétique adapté à la 

migration du flux d'énergie entre les niveaux d'énergie des dopants. 

-Au chapitre 4 seront développées des applications de l’UCNP en tant que 

nanolampes. 



Annexes  
 

-298- 
 

Dans un premier temps, les tentatives de caractérisation des nanolampes par une 

approche actinométrique chimique seront exposées. 

Ensuite, une application vers une application de microscopie en super-résolution 

basée sur SOFI sera introduite: du choix et de la synthèse du volet 

photochromique à la conception du nanohybride hydrosoluble. Les premiers 

résultats concernant la faisabilité de cette application seront discutés. 
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II Résumé du chapitre II : Synthèse d’UCNP ultrasmall 

 

Dans le présent chapitre, nous avons souligné l’importance de la composition, 

de la stratégie de mélange pour l’introduction de précurseurs et de l’appareil de 

chauffage afin d’atteindre une taille ultra-mince de phase hexagonale appropriée. 

En ce qui concerne ce nouveau sujet mis en œuvre en laboratoire, nous avons 

finalement acquis une bonne compréhension d'un mélange polymorphe complexe. 

La stratégie de réduction de la taille reposait sur l'optimisation couplée de la 

primo-précipitation et du chauffage à haute température. Le présent travail détaille 

la première synthèse micro-ondes, sans utilisation de trifluoroacétate, d'UCNP de 

cœur de phase bêta d’une taille inférieure à 5 nm dans un mélange de solvants 

couramment utilisé d'acide oléique et d'octadécène. La première description de 

l'approche de cyclage de températures assistée par un réacteur à micro-ondes et la 

validation empirique de la loi d'Arrhenius sur la synthèse de l'UCNP ouvrent de 

nouvelles perspectives pour la synthèse d'autres nanomatériaux. De plus, notre 

cyclage de températures assistée par micro-ondes est le premier protocole 

permettant une telle reproductibilité de la taille malgré la variation du contenu 

dopant (si la teneur en Yb est inférieure à 57%). 

Cependant, certains autres paramètres critiques restent à explorer: 

- l'utilisation de l'eau: les précurseurs des Terres Rare étant des chlorures, ils sont 

introduits dans l'eau. Une faible quantité d’eau associée à une vitesse de chauffage 

lente est nécessaire pour éviter, lors de l’échange du ligand RE(OA)3, tout risque 

de projection de gouttes d’eau "piégées" dans le mélange huileux acide 

oléique/octadéc-1-ène. De plus, il peut éventuellement constituer une source de 

défaut dans la maille cristalline en amenant dans le cristal des atomes d’oxygène, 

dû par exemple à la formation évantuelle d’oxolanthanides pontés. Une alternative 

devrait être l’utilisation de précurseurs d’acétate directement solubles dans le 

« mélange huileux », sans nécessitant l’introduction d’eau dans le milieu 



Annexes  
 

-300- 
 

réactionnel. De plus, cette eau doit ensuite être éliminée, ceci est fait à 100 ° C 

sous flux d'argon. Cette «distillation» entraîne une baisse de la quantité du 

mélange acide oléique/octadec-1-ène, due à un azéotrope entre l'eau et l'acide 

oléique. En conséquence, la composition du solvant diffère de la composition 

initiale. 

- l'utilisation de méthanol: une grande quantité de méthanol est utilisée pour 

l'introduction de sodium et de fluorure. Cette grande quantité de solvant volatile 

doit ensuite être évaporée. Ainsi, au début, les propriétés physicochimiques 

changent, en considérant le volume ajouté, à mesure que la composition  

OA:ODE /MeOH 1/1 soit atteinte après addition complète, et nous n'avons aucune 

idée de l'impact que cela aura sur la nucléation. D'un point de vue technique, ce 

méthanol est éliminé sous flux d'argon, ce qui est particulièrement long surtout 

dans l'approche à grande échelle et assez coûteux en ce qui concerne le volume 

de gaz inerte utilisé par synthèse. Une alternative devrait être l'utilisation d'oléate 

de sodium en tant que précurseur de sodium, ce qui permettrait de réduire de 

moitié le volume de MeOH, et/ou l'utilisation d'un évaporateur rotatif ou d'un 

appareil de distillation pour l'élimination du composé volatile sans perte de OA: 

ODE. 

Cependant, la formation d’UCNP étant sous contrôle cinétique, chaque 

modification du protocole aura un impact sur la taille. Ainsi, les alternatives 

décrites ci-dessus vont générer une nouvelle analyse complète de la synthèse. 

Néanmoins, les applications à grande échelle sont encore limitées pour le 

moment. Malgré une première tentative de chauffage conventionnel pour former 

des nanohexagones, cette approche est extrêmement délicate pour les UCNP 

ultrapetites: notre réacteur à micro-ondes a une capacité maximale de 20 mL. La 

montée en échelle avec notre appareil monomode ne peut être envisagée que par 

synthèse parallèle à partir d'un même lot de départ. Mais un tel processus soulève 

des questions sur le temps de réaction global et principalement sur le 
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vieillissement du lot initial. La principale limite de temps est la préparation 

fastidieuse de tubes de réacteur avec une étape de dégazage fastidieuse (environ 

1h par tube). 

Une application à grande échelle nécessiterait soit un réacteur monomode 

à flux continu, soit un réacteur multimode à grande échelle. 

Ce dernier système existe déjà à l'échelle du litre. Cependant, les réacteurs pour 

lots de grande capacité ne sont pas une solution, car le refroidissement rapide était 

un facteur clé pour le cyclage de températures. Le fait de se tourner vers 

d’énormes conteneurs pose le problème de l’inertie thermique à l’intérieur du 

réacteur en fonctionnement. En conséquence, la seule alternative viable pour les 

synthèses à grande échelle devrait être basée sur un réacteur à flux continu 

microfluidique. Une telle configuration doit être conçue pour présenter un nombre 

de boucles à l'intérieur de la cavité monomode qui coïncide avec le nombre 

d'impulsions souhaitées à haute température. 

Une grande variété de nanoparticules a été synthétisée au cours de ce projet 

de thèse: 2 gammes de taille d'UCNP en forme d'hexagone et diverses sphères de 

taille comprise entre 2,5 et 15 nm. Une fois cette bibliothèque d’UCNP 

synthétisée et entièrement caractérisée chimiquement, des recherches sur les 

propriétés photophysiques doivent être effectuées, en particulier sur celles 

ultrapetites. Ces détails seront traités dans le prochain chapitre. 
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Table 9. Résumé de la synthèse ou de la bibliothèque UCNP. Les synthèses 

réalisées avec un chauffe-ballon de puissance sont marquées en bleu, tandis que 

les roses ont été préparées avec un four micro-ondes monomode. 

Composition 
Diamètre 

(nm) 

Quantité 

(g) 

Temps de 

préparation 

NaYF4:Tm 35 0.6 1 jour 

NaYF4:Er 35 0.6 1 jour 

NaYF4:Tm 20 3 1.5 jours 

NaYF4:Er 20 3 1.5 jours 

Na(Gd42%-Yb57%)F4:Tm 10 0.3 1 jour 

Na(Gd42%-Yb57%)F4:Tm@NaYF4 15 0.6 2 jours 

Na(Gd79%-Yb20%)F4:Tm 7.5 0.3 1 jour 

Na(Gd42%-Yb57%)F4:Tm 15 0.3 1 jour 

Na(Gd42%-Yb57%)F4:Tm 4.5 0.7 2 jours 

Na(Gd79%-Yb20%)F4:Tm 2.5-3.5 0.7 2 jours 

Na(Gd79%-Yb20%)F4:Tm@NaGdF4 5.5 1.4 1 semaine 

Na(Gd42%-Yb57%)F4:Tm 2.5-3.5 0.7 2 jours 

Na(Gd42%-Yb57%)F4:Tm@NaGdF4 5.5 1.4 1 semaine 

Na(Gd42%-Yb57%)F4:Tm 3 3 1.5 semaines 
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III Résumé du chapitre III: Nanolampes Upconverting 

 

Dans le présent chapitre, seront abordés différents points critiques: 

• Rassembler la mesure des exposants de graphes log-log parmi les différents  

échantillons nous a permis de distinguer certains comportements. En effet, 3 

groupes principaux de bandes d’émission se dégagent, avec un comportement 

d'exposant similaire (facteur de forme et de pente): 

- 450 nm et 361 nm (et 344 nm) 

- 474 nm et 645 nm 

- 800 nm et 694 nm 

En se référant au diagramme de Dieke, on peut voir que les bandes d’émission 

d’exposants similaires proviennent du même état excité (figure 22). 

 

 

Figure 22. A: Comparaison des exposants moyens pour les échantillons ci-dessus 

décrits dans le chapitre. B: Corrélation entre la valeur de l'exposant et l’énergie 

de l'état excité initial. 

Finalement, les échantillons pourraient être classés comme décrit ci-dessous 

(tableau 10): 
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Table 10. Classification des exposants de lots UCNP, en fonction de leur 

composition 

 %Yb %Tm 
Matrice du 

coeur 
coquille 

800 nm 
exposant 

475 nm 
exposant 

BA11 57.38 1.02 Gd - 2.25 2.30 
BA15 57.35 0.99 Gd - 2.25 2.30 
BA12 57.38 1.02 Gd 100%Y 2.3 3.15 
BA14 57.28 1.18 Gd 100%Y 2.3 3.15 
BA6 57 1 Gd 100%Gd 2.32 2.80 
BA17 57 1 Gd 100%Gd 2.32 2.80 
BA16 57.35 0.99 Gd 100%Gd 2.40 2.70 
BA7 20 1 Gd 100%Gd 2.85  

 

· Explorer le comportement photophysique des UCNP: 

La caractérisation complète de la luminescence a été réalisée avec une approche 

de normalisation: de l'absorption à l'intensité d’émission et aux durées de vie. 

Même l'estimation de «l'efficacité» a été obtenue en mesurant le rendement 

quantique. Toutefois, il convient de rappeler au lecteur que le rendement 

quantique et la durée de vie mesurés ne sont pas des valeurs absolues mais des 

constantes apparentes. 

De plus, une modification facile et peu coûteuse d'un fluoromètre standard peut 

permettre la mesure simultanée de l'absorption. En plus de son importance pour 

l’étalonnage des solutions, cette dernière fournit également des données 

supplémentaires sur les problèmes de stabilité colloïdale. 

Comme les UCNP sont des luminophores extrêmement non linéaires, les 

quantificateurs standard sont probablement inexacts et mal adaptés pour décrire 

ces particules. Ainsi, les "exposants", "rendements quantiques" (ou "durées de 

vie" apparents ont été mesurés dans diverses conditions: il a été constaté que ces 

paramètres (exposant, durée de vie) correspondaient aux prévisions tirées du 

diagramme de Dieke du thulium et que les transitions partant du même 

diagramme. les niveaux partagent des caractéristiques communes. Cependant, la 
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compréhension de la redistribution de l'énergie à l’intérieur d’une nanoparticule 

reste à élucider. Les expériences enregistrées au BAM peuvent être considérées 

comme préliminaires, et le choix des conditions expérimentales n'a pas pu être 

optimisé davantage par manque de temps: mon stage y était limité à deux mois. 

Une autre solution consisterait à utiliser des impulsions laser carrées (top-hat) plus 

intenses afin d’obtenir plus de signal, même pour les transitions les moins 

efficaces. Cela pourrait être réalisé au LASIR en regroupant les impulsions ns 

dans des trains de différentes durées. 

 

• Cas d'UCNP ultrapetites: 

Un paramètre chimique qui n’a pas été pris en compte au début est apparu 

important pour la comparaison de différents lots: le nombre d’atomes émetteurs 

dans une nanoparticule d’ultrasmall. En effet pour la gamme de taille que nous 

avons explorée, en effet, selon les calculs de leurs paramètres chimiques (tableau 

3), une UCNP de 2,5 nm telle que BA2 devrait avoir, en moyenne, un seul 

émetteur par NP. Un tel contenu rend ces objets comparables aux complexes 

moléculaires upconverting décrits dans la référence 30, comblant le fossé qui 

sépare ces deux domaines (complexes moléculaires et nanoparticules 

inorganiques). 

Cela pourrait avoir un impact sur la photophysique pour notre objectif de super-

résolution. Si les NP sont réellement constituées d’un seul émetteur, elles 

pourraient probablement clignoter sans couplage avec un obturateur externe. 

D'autre part, l'imagerie d'une seule NP deviendra alors difficile, car pour un 

émetteur ayant une longue durée de vie, des expériences de longue durée seront 

nécessaires pour obtenir suffisamment de photons pour une analyse précise. 
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• Commencer à élaborer un modèle cinétique: 

Sur la base de données provenant du recoupement de constantes de vitesse 

provenant de la littérature, nous avons pu construire les premières étapes d’un 

modèle cinétique à 9 niveaux afin d’expliquer la redistribution de l’énergie au sein 

d’un UCNP. Les données accumulées sur la durée de vie seront mises en œuvre 

pour intégrer des constantes plus réalistes de nos objets. Même si des simulations 

préliminaires montrent que le déclin de luminescence peut être reproduit en 

termes de forme, elles ne sont pas précises pour le moment. Une fois que le 

modèle final sera établi, il pourrait également être utilisé pour simuler le 

comportement non linéaire (graphes log-log). 
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IV Résumé du chapitre IV: Nanohybride upconverting vers 
l’imagerie super-résolue 

Par rapport aux spécifications techniques initiales, nous avons choisi de 

travailler avec le couple UCNP «émetteur bleu» dopé au Tm et le spiropyrane  

T-négatif de couleur orange absorbant la lumière bleue. 

La structure du colorant a été ajustée afin d’avoir un substituant en para du phénol 

avec une valeur sigma de Hammet proche de celle de l’hydrogène afin de 

maximiser le recouvrement spectral. Ainsi, il repose sur l'utilisation de groupes 

aminés faiblement donneurs. Cet abaissement du comportement «donneur 

d'électrons» a été obtenu soit par greffage de triazine (par substitution 

nucléophile), soit d'acide carboxylique (par liaison amide). Effectivement, les 

spectres d'absorption ont été décalés vers la zone d'intérêt, dans un solvant natif 

(EtOH pour BIPS-TC12, DMF pour BIPS-Pl1, intermédiaire). Cependant, dans les 

deux cas, lorsque le colorant est placé dans l'eau, l'absorption est renvoyée à la 

longueur d'onde inférieure en raison du solvatochromisme. En conséquence, le 

chevauchement se produit principalement avec la bande d’émission Tm à 450 nm, 

tandis que celle à 475 nm semble mal utilisable dû au faible recouvrement. Des 

problèmes de purification et de manque de comportement photochromique 

effectif pour BIPS-TCl2 nous ont obligés à abandonner cette voie, malgré l'attrait 

de la post-fonctionnalisation sélective de la triazine. 

Concernant la voie amide, nous avons d’abord conçu un ligand court en 

couplant l’amino-BIPS à l’anhydride glutarique. Ce composé modèle était crucial 

car il nous permet de déterminer le coefficient d'absorption molaire d'un nouveau 

type de colorant. Ensuite, nous pourrions explorer et valider son comportement 

photochrome. Sur la base de cette première paramétrisation, nous pourrions 

ensuite améliorer le procédé pour former un polymère réactif portant SP via une 

liaison amide et explorer la photochimie. Nous avons d'abord décidé de travailler 

avec une faible teneur en colorant afin d'éviter tout problème de π-stacking dans 
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le polymère. Afin d'améliorer le comportement hydrophile, cette plate-forme à 

base de polymère réactif a été entièrement fonctionnalisée par de courtes 

molécules hydrophiles, la D-glucamine. 

Ce polymère à faible teneur en colorant, P1,38, a conservé remarquablement 

le même comportement que le composé modèle BIPS-GLT. 

Ensuite, le nanohybride a été construit selon la méthode la plus simple, un 

mélange direct de P1,38 et d’UCNP nu. Cependant, la formation réelle d'une telle 

architecture nanohybride n'a pas été complètement démontrée par la méthode 

analytique. 

Malgré les risques de modifications du comportement photochimique du 

colorant en raison de l’encombrement stérique accru une fois le polymère ancré à 

la surface du NP, les observations étaient à nouveau identiques. 

Le colorant choisi affiche le photochromisme négatif souhaité lorsque la 

forme MCH+ est présente. Cela implique que le nanohybride clignote pendant 

une fenêtre de pH définie compatible avec la spéciation du colorant. C'est-à-dire 

dans un milieu acide mais proche de la neutralité (valeur de pH de 5 à 7). Bien 

qu'apparemment restrictive, cette contrainte permettra d'introduire un autre 

paramètre de discrimination en combinant les propriétés de détection et de super-

résolution. Par exemple, on s'attend à davantage de fluctuations dans les 

compartiments acides tels que les cellules tumorales ou les lysosomes. 

Par conséquent, sachant que le colorant est toujours photochrome, nous 

avons porté notre attention sur la faisabilité d’une telle photoisomérisation du 

colorant induite par l’émission bleu d’UCNP sous excitation proche infrarouge 

(976 nm). Malheureusement, par simple suivi cinétique en solution avec un 

spectrophotomère UV-visible standard, aucun changement n'a été détecté. Ce 

phénomène peut avoir deux origines: 
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- L'émission d'UCNP est trop faible dans l'eau pour pouvoir induire 

efficacement l’isomérisation du colorant ; 

- La photo-commutation induite par l'émission UCNP fonctionne, mais elle 

se déroule comme prévu pour l'application BLINK: au niveau macroscopique, 

aucune fluctuation de la lumière n’est observable, mais à l'échelle d’une 

nanoparticule unique, il existe une fluctuation d'intensité due à la variation locale 

d’état d’isomérisation de colorant(s) à la surface d’une nanoparticule. 

Des études complémentaires telles que l'observation en particule unique 

avec le microscope confocal mis en place au LASIR devraient explorer cette voie. 

À ce stade, nous sommes encore loin du succès. Néanmoins, nous avons 

mis au point une stratégie pour préparer une architecture nanohybride basée sur 

l'interaction électrostatique d'un polymère anionique soluble dans l'eau et d'une 

nanoparticule "nue". L'utilisation d'un polyanhydride disponible dans le 

commerce conduit à l'introduction simultanée d'un groupe fonctionnel et d'un 

groupe chargé. Ainsi, un nanohybride multifonctionnel peut être conçu de 

manière très simple. Nous avons également montré qu'il était possible de greffer 

des unités T-photochromes négatives compatibles avec l'eau sur un tel polymère. 

Après mélange du polymère photochrome avec des UCNP nues, un matériau 

hybride a été isolé dans lequel le colorant conserve son comportement 

photochrome. Cependant, nous n’avons pas encore été en mesure de caractériser 

l’architecture nanohydride des objets et, plus important encore, de démontrer sans 

ambiguïté que le flux de photons réémis par les UCNP était suffisant pour induire 

une photo-commutation de colorant détectable. Cependant, même si l’UCNP 

n’est pas capable d’induire l’isomérisation du colorant, cela peut être réalisé grâce 

à l’utilisation d’une seconde excitation externe. 
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V Guide de lecture pour le suivi du chapitre 3 

Summary of samples presented in chapter 3 (table 1).  

(BA1 & BA4), (BA2 & BA5), (BA3 & BA7), (BA 11 & BA12), (BA13 & BA14), (BA15 & 
BA16) are respective pairs of core and core@shell originating from the same core. 

 

S
h

ap
e 

Batch code 
Core Na(Gd-Yb)F4:Tm 

shell 
Size  

(diameter) 
%Gd %Yb %Tm 

U
lt

ra
sm

al
l 

sp
h

er
es

 

U
C

N
P

s 

BA1 79 20 1 - 2.5 nm 

BA2 42 57 1 - 2.8 nm 

BA3 42 57 1 - 3.2 nm 

BA4 79 20 1 NaGdF4 5.5 nm 

BA5 42 57 1 NaGdF4 5.5 nm 

BA6 79 20 1 NaGdF4 5.7 nm 

BA7 42 57 1 NaGdF4 5.7 nm 

BA17 42 57 1 NaGdF4 5.5 nm 

S
m

al
l 

sp
h

er
es

 

BA8 79 20 1 - 7.5 nm 

BA9 79 20 1 - 7.5 nm 

BA10 42 57 1 - 15 nm 

BA11 42 57 1 - 10 nm 

BA12 42 57 1 NaYF4 15 nm 

BA13 42 57 1 - 10 nm 

BA14 42 57 1 NaYF4 15 nm 

BA15 42 57 1 - 9.3 nm 

BA16 42 57 1 NaYF4 10.2 nm 
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Lanthanide-based Upconverting nanoparticles (UCNPs) show the fascinating property 

of converting low energy NIR photons into higher energy ones without requiring high laser 

fluences. This unique large anti-Stokes shift affords a higher signal-to-noise ratio than standard 

luminescent compounds. Associated to their photostability (non-blinking, non-bleaching), their 

size-independent emission spectrum and a limited toxicity, these inorganic materials have 

become an interesting tool in Biology besides Quantum Dots, especially for Bioimaging. 

However, the overall emission plummets sharply when the size is reduced. Therefore, efficient 

ultrasmall UCNPs are still challenging to obtain.  

The present work is dedicated to the design of innovative nanohybrid structures based 

on NaREF4 with ultrasmall sizes, in order to go towards super-resolution microscopy. 

Investigations were focused on three main issues. 

 At first, we will describe how a size reduction from 10-20 nm to sub-5 nm UCNP can 

be envisioned. An appropriate composition choice, coupled to an improvement of the common 

thermal coprecipitation pathway was setup. Especially, we have shown the importance of the 

conjunction of a mixing strategy for the primo-precipitation and accurate monitoring of the high 

temperature step. Here, the use of microwave-assisted synthesis was found to be crucial for a 

precise control of the Ostwald ripening through an original cycling heating. 

 Then, the photophysics of a library of different UCNPs were assessed in order to 

understand the complex energy redistribution within an NP, using different setups, home-made 

or thanks to collaborative work in specialized laboratories in Berlin or Lille. From these 

observations, the use of classic emission quantifiers was found to be inefficient and a first step 

towards a relevant kinetic model was initiated. 

 Eventually, nanohybrids based on a photochromic hydrophilic polymer have been 

elaborated. Selection of the appropriate dye, and preliminary exploration of the photokinetic 

properties of the polymer have been undertaken. This approach, coupling our ultrastable 

nanolamp to a photochromic shutter, is aimed at developing an innovative stochastic method to 

compete with the recent successes of the use of UCNPs for super-resolution via a STED 

approach. 

 

  



 

 
 

Les nanoparticules Upconverting (UCNP) à base de lanthanides possèdent la propriété 

fascinante d’être capables de convertir des photons infrarouges en photons de plus haute énergie 

sans recourir à des fluences de laser élevées. Ce décalage Anti-Stokes conduit à rapport signal 

sur bruit meilleur que pour la luminescence classique. Associé à leur photostabilité (non 

clignotantes, non photolysables), un spectre d’émission indépendant de leur taille, une faible 

toxicité, ces matériaux inorganiques sont devenus un outil de choix en biologie, en particulier 

en imagerie biologique, à côté des Quantum Dots. Cependant, l’émission globale s’effondre 

rapidement quand la taille des UCNP est réduite. En conséquence la réalisation de particules 

ultra petites et efficaces reste un défi. 

Le présent mémoire s’intéresse au design de structures nanohybrides fondées sur des 

particules ultra petites de NaREF4, avec pour objectif la microscopie super-résolue. Le travail 

s’est organisé en trois phases. 

 Tout d’abord nous avons étudié la réduction en taille des UCNP de 10-20 nm à moins 

de 5 nm, en se focalisant sur leur composition et l’amélioration du procédé de synthèse. En 

particulier nous avons montré l’importance de la conjonction du processus de mélange avec la 

conduite de l’étape à haute température. Pour cette dernière l’emploi du chauffage micro-onde, 

avec un cyclage en température original a permis de contrôler efficacement le mûrissement 

d’Ostwald.  

La librairie de particules ainsi construite a permis d’étudier la photophysique des 

processus de redistribution de l’énergie au sein des particules sur des montages « maison » ou 

des équipements dédiés grâce à des collaborations avec des équipes de Berlin ou Lille. Il en 

ressort que les quantificateurs usuels de luminescence sont inadéquats pour décrire le 

phénomène d’upconversion. Aussi avons-nous débuté l’élaboration d’un modèle cinétique 

approprié.  

Enfin, la construction de nanohybrides impliquant un polymère photochrome 

hydrophile a été explorée. La sélection du colorant approprié et les premières études 

photocinétiques ont été menées. Cette approche couplant nos « nanolampes » avec un « volet 

photochrome » a pour but de proposer une alternative innovante au développement de la super-

résolution par STED. 
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