
University of Nebraska - Lincoln University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Computer Science and Engineering: Theses,
Dissertations, and Student Research

Computer Science and Engineering, Department
of

11-2021

Information Extraction and Classification on Journal Papers Information Extraction and Classification on Journal Papers

Lei Yu
University of Nebraska-Lincoln, yuleinku@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

 Part of the Artificial Intelligence and Robotics Commons, Databases and Information Systems

Commons, and the Theory and Algorithms Commons

Yu, Lei, "Information Extraction and Classification on Journal Papers" (2021). Computer Science and
Engineering: Theses, Dissertations, and Student Research. 217.
https://digitalcommons.unl.edu/computerscidiss/217

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and
Engineering: Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscidiss
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscienceandengineering
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/217?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages

INFORMATION EXTRACTION AND CLASSIFICATION ON JOURNAL PAPERS

by

Lei Yu

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Professor Stephen D. Scott

Lincoln, Nebraska

November, 2021

INFORMATION EXTRACTION AND CLASSIFICATION ON JOURNAL PAPERS

Lei Yu, M.S.

University of Nebraska, 2021

Advisor: Stephen D. Scott

The importance of journals for diffusing the results of scientific research has

increased considerably. In the digital era, Portable Document Format (PDF)

became the established format of electronic journal articles. This structured form,

combined with a regular and wide dissemination, spread scientific advancements

easily and quickly. However, the rapidly increasing numbers of published scientific

articles requires more time and effort on systematic literature reviews, searches

and screens. The comprehension and extraction of useful information from the

digital documents is also a challenging task, due to the complex structure of PDF.

To help a soil science team from the United States Department of Agriculture

(USDA) build a queryable journal paper system, we used web crawler to download

articles on soil science from the digital library. We applied named entity recognition

and table analysis to extract useful information including authors, journal name

and type, publish date, abstract, DOI, experiment location in papers and highlight

the paper characteristics in a computer queryable format in the system. Text

classification is applied on to identify the parts of interest to the users and save their

search time. We used traditional machine learning techniques including logistic

regression, support vector machine, decision tree, naive bayes, k-nearest neighbors,

random forest, ensemble modeling, and neural networks in text classification and

compare the advantages of these approaches in the end.

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Prof. Stephen D. Scott, who guided me to

the world of machine learning and gave me many suggestions and help to complete

this thesis. My sincere thanks also goes to Prof. Vinodchandran Variyam and

Prof. Ashok Samal, who are my committee members, Candiss O. Williams, Susan

Andrews, Cynthia A. Cambardella, and Felipe Montes who discussed with me and

provided many useful suggestions. Last but not the least, I would like to thank

my family for supporting me spiritually throughout my study and completing my

degree.

Contents

Contents

1 Introduction 1

2 Background 4

2.1 Machine Learning . 4

2.1.1 Logistic Regression . 5

2.1.2 Support Vector Machine . 6

2.1.2.1 Linear SVM . 7

2.1.2.2 Kernel SVM . 9

2.1.3 Decision Tree . 10

2.1.4 Naive Bayes . 12

2.1.5 K-Nearest Neighbor . 14

2.1.6 Random Forest . 15

2.2 Ensemble Methods . 18

2.2.1 Majority Voting . 18

2.2.2 Bagging . 22

2.2.3 Boosting . 23

2.3 Deep Learning . 25

2.3.1 Embedding Layer . 25

2.3.2 1D-CNN . 26

2.3.3 Multi Channel CNN . 27

2.3.4 LSTM . 28

2.3.5 Character-Level CNNs . 29

2.4 Performance Evaluation Metrics . 29

2.4.1 Confusion Matrix . 30

2.4.2 True and False Positive Rates 30

2.4.3 Accuracy, Precision, Recall and F measure 31

2.4.4 Receiver Operator Characteristics (ROC) 32

2.5 Input Data Representation . 33

2.5.1 Bag-of-Words model . 34

2.5.2 Term Frequency-Inverse Document Frequency (TF-IDF) . . . 36

2.6 Train/Test Data Split and k-fold cross-validation 38

3 Related Work 40

3.1 Deep Learning-Based Methods . 40

3.2 Named Entity Recognition . 41

3.3 Table Analysis . 42

4 Methods 44

5 Data Statistical Description 46

6 Web Scraping 49

6.1 Procedure of Web Scraping . 49

6.2 Summary of Downloaded Papers . 51

7 Text Analysis via Machine/Deep Learning 52

7.1 Data Preprocessing . 54

7.1.1 Clean Data . 54

7.1.2 Tokenization . 55

7.1.2.1 Stop Words . 55

7.1.2.2 Lowercase . 55

7.1.2.3 Stemming and Lemmatization 55

7.1.2.4 N-Grams . 56

7.2 Fine Tuning Hyperparameters . 56

7.2.1 Logistic Regression . 57

7.2.2 SVM . 58

7.2.3 Decision Tree . 59

7.2.4 Naive Bayes . 59

7.2.5 K Nearest Neighbors . 60

7.2.6 Random Forest . 61

7.2.7 Adaptive Boosting . 62

7.3 Fitting Machine Learning Models . 63

7.4 Performance Evaluation . 64

7.5 Conclusion and Discussion . 68

7.6 Neural Networks . 70

8 Named Entity Recognition 74

8.1 Purpose . 75

8.2 Procedure . 76

8.3 Result . 76

9 Table Analysis 78

9.1 Program Output . 78

9.1.1 Well-Formed Table result . 79

9.1.2 NOT Well Formed Table result 80

9.1.3 Discussion . 81

10 Database System 83

10.1 Database Summary . 83

11 Conclusion 88

12 Future Work 89

12.1 Text Extraction . 89

12.2 Table Extraction . 90

12.3 Algorithm . 91

12.4 Software Engineering . 92

Bibliography 93

1

Chapter 1

Introduction

In an age of rapidly increasing numbers of published scientific articles, it is sur-

prising that most systematic literature reviews and extraction of information from

tables are still conducted by manually processing articles individually [1]. Sys-

tematic literature reviews aim to find and collect relevant information concerning

a specific research question and are an essential step in virtually every area of

research, e.g., for the preparation of review articles, project proposals, and experi-

mental designs. While machine learning tools are available for literature searches

and screens [2], they require a large number of manually evaluated articles for the

training of the tool. They are often restricted to filtering articles by study design

or choosing topics from a limited set of terms, and are generally limited to the

evaluation of article titles and abstracts.

To extract information from journals automatically and easily, a soil science

team from the United States Department of Agriculture (USDA) want to build a

queryable journal paper data system, where users can easily identify journal papers

of interest to them. To satisfy their requirements, the system needs information

including authors, journal, publish date, abstract, DOI, journal type, experiment

2

location and key words in papers to highlight the paper characteristics. This

information will help users to figure out if the paper is of interest to them and

locate it quickly if needed. The important initial factor is data, which is journal

papers in the system. We used web crawler with Python to download journal

papers on soil science from the digital library to provide users with papers which

is of interest to them. To extract useful information from journal papers and store

them in data system as indexing and abstract, we applied name entity recognition

to extract authors and location of experiments, table analysis to extract tables in

the paper and store the them in a computer queryable form.

To make system recommend journal papers to users automatically, we built

machine learning and deep learning models to identify users’ interests. Text

analysis is applied on the text data to figure out what parts of paper the user

are interested in, and stored them in the database to save users’ search time.

During this part, I fed the text data including sections, paragraphs to many types

of machine learning algorithms and used the trained models to classify unseen

data in order to help user distinguish if the new pieces of text in journal paper is

useful. I used traditional machine learning techniques including logistic regression,

support vector machine, decision tree, naive bayes, k-nearest neighbors, random

forest, ensemble modeling, and neural networks in text analysis and compare the

advantages of these approaches in the end.

My contributions consist of five parts: Web harvesting, Text Classification,

Table Analysis, Named Entity Recognition and Database System Building. Finally

all of them can populate a relational database with information automatically

extracted from journal papers collected from internet resources, and send users

proper recommendations. The reason we used a web crawler to download papers

is we need collect papers to build database and the papers are also the basis of

3

the following tasks. Text classification can help identify the section or paragraph

in a paper that may be of interest to users based on their own search interest.

Named Entity Recognition can extract author and experiment location from paper

to store them in data system, and database system will make the future query

more efficiently.

The contributions of this thesis are: 1. Web harvesting: We downloaded 38,444

papers with size of 29.53 GB from Digital Library at University of Nebraska Lincoln.

2. Text Classification: We built a machine learning-based system to identify the

sections or paragraphs in the papers that may be of interest to users based on their

own search interest. The model we built can catch all positives and 83% negatives.

This means there is 1 paper of interest to users for every 2.89 suggested papers.

3. Table Analysis: After manually creating different kinds of tables in the journal

papers, we used Seth et al.’s approach and found the program could process

about 90% of all tables, which are well-formed tables. For the other 10% not well-

formed tables, the program can not extract correct information. 4. Named Entity

Recognition: We used Stanford’s Named Entity Recognition to extract author and

experiment location from paper and store them in data system which will make

the future query more efficiently. The accuracy can reach about 83%. 5. Database

System Building: We stored the journal paper related information including Title,

Publication Date, Abstract, Journal, DOI and Type, authors, city and state extracted

from papers by Stanford NER, the count of the occurrences of terms of interest to

soil scientists, and infromation contained in the well-formed table converted by

the algorithm of Seth et al. [3] in the Microsoft Access Database.

4

Chapter 2

Background

Machine learning [4] is the scientific study of algorithms and statistical models that

computer systems use to perform a specific task without using explicit instructions,

relying on patterns and inference instead. Machine learning algorithms are used

in a wide variety of applications, such as email filtering and computer vision,

where it is difficult or infeasible to develop a conventional algorithm for effectively

performing the task.

2.1 Machine Learning

No one classifier model works best across all scenarios, since every model is based

on particular assumptions and has its own advantages and weaknesses. It is better

to compare the performances of different models on specific dataset and choose

the best one in order to reach the best performance.

We tried a lot of machine learning models including logistic regression, support

vector machine, decision tree, naive bayes, k-nearest neighbors, ensemble methods

5

and neural networks on our dataset in order to select the best one fitting our task.

2.1.1 Logistic Regression

Logistic regression is a binary classification model that is very easy to implement

and performs very well on linearly separable classes, which means the class of

data can be separated by using linear model. It uses the sigmoid function, which

is a mathematical function having a characteristic ”S”-shaped curve or sigmoid

curve, to compress the input features to output ranges from 0 to 1, and maps the

output to the class labels “0” or “1”.

Figure 2.1: Logistic Regression Model

Let x0, x1, · · · , xm in Figure 2.1 indicate sample features and w0, w1, · · · , wm

be weights representing the model. Z is the net input, the linear combination of

weights and sample features,

Z = w>x = w0x0 + w1x1 + · · ·+ wmxm.

In logistic regression, the activation function is the sigmoid function.

The output of the sigmoid function is then interpreted as the probability of a

particular sample belonging to class 1, φ(z) = p(y = 1|x; w), given its features x

6

parameterized by the weights w. The predicted probability can then simply be

converted into a binary outcome via a threshold function: ŷ = 1 if φ(z) ≥ 0.5, and

0 otherwise. Here p stands for the probability of the positive event. The term

positive event does not necessarily mean good, but refers to the event that we want

to predict, for example, the probability that a patient has a certain disease, we can

think of the positive event as class label y = 1.

The mechanism is that we define a logit function, which is simply the logarithm

of the odds ratio, where the odds ratio is written as p
1−p . Formally, logit(p) =

log p
1−p , where the log refers to the natural logarithm. The logit function takes

as input values in the range 0 to 1 and transforms them to values over the entire

real-number range, which we can use to express a linear relationship between

feature values and the log-odds:

logit(p(y = 1|x)) = w0x0 + w1x1 + · · ·+ wmxm =
m

∑
i=0

wixi = w>x

Here, p(y = 1|x) is the conditional probability that a particular sample belongs

to class 1 given its features x. By this way, we could get the linear relationship

between sample features and probability of event given these features.

Sine we are actually interested in predicting the probability that a certain sample

belongs to a particular class, we use the logistic sigmoid function, φ(z) = 1
1+e−z

2.1.2 Support Vector Machine

SVM is a classification method that tries to find the hyperplane which separates

classes with highest margin. The margin is defined as the minimum distance from

7

sample points to the hyperplane. The sample point(s) that form the margin are

called support vectors and define the SVM classifier.

2.1.2.1 Linear SVM

The rationale behind having decision boundaries with large margins is that they

tend to have a lower generalization error whereas models with small margins are

more prone to overfitting.

Suppose the models have positive and negative hyperplanes that are parallel to

the decision boundary, which can be expressed as follows:

w0 + wTxpositive = 1

w0 + wTxnegative = −1

If we subtract these two equations from each other, we could get:

wT(xpositive − xnegative) = 2

Then we can normalize this equation by the length of the vector w, which is:

‖w‖ =

√√√√ m

∑
j=1

w2
j

So we could arrive at the following equation:

wT(xpositive − xnegative)

‖w‖ =
2
‖w‖ (2.1)

The left side of the equation 2.1 can then be interpreted as the distance between

the positive and negative hyperplanes, which is the so-called margin that we want

8

to maximize. By this transform, the objective function of the SVM becomes the

maximization of this margin by maximizing 2
‖w‖ under the constraint that the

samples are classified correctly, which can be written as:

w0 + wTx(i) ≥ 1 if y(i) = 1 (2.2)

w0 + wTx(i) ≤ −1 if y(i) = −1 for i = 1...N, (2.3)

where N is the number of samples in our dataset.

These two equations say that all negative samples should fall on one side of

the negative hyperplane, whereas all the positive samples should fall behind the

positive hyperplane. In practice, it is easier to minimize the reciprocal term 1
2‖w‖.

Another concept is called soft-margin classification, which uses a slack variable

ξ. The motivation for introducing the slack variable ξ is that the linear constraints

need to be relaxed for nonlinearly separable data to allow the convergence of the

optimization in the presence of misclassification under appropriate cost penal-

ization. After adding the positive value’s slack variable, equations 2.2 and 2.3

become:

w0 + wTx(i) ≥ 1− ξ(i) if y(i) = 1

w0 + wTx(i) ≤ −1 + ξ(i) if y(i) = −1 for i = 1...N

Here N is still the number of samples in our dataset. So the new objective

function to be minimized becomes:

1
2
‖w‖2 + C(∑

i
ξ(i))

9

We could control the penalty for misclassification via the variable C. A large

value of C corresponds to a large error penalty, whereas a small value of C indicates

less strictness about misclassification error. We can use the C parameter to control

the width of the margin and therefore tune the bias-variance trade-off. This is

the same as the regularization in logistic regression algorithm, and decreasing the

value of C increases the bias and lowers the variance of the model.

2.1.2.2 Kernel SVM

The term kernel describes a function that calculates the dot product of the images

of the samples x under the kernel function φ. Roughly speaking, a kernel can be

understood as a similarity measure in a higher-dimensional space.

Kernel methods are algorithms that map the sample vectors of a dataset onto a

higher-dimensional feature space via a kernel function φ(x). The goal is to identify

and simplify general relationships between data, which is especially useful for

linearly non-separable datasets.

An SVM can be easily kernelized to solve nonlinear classification problems.

The basic idea behind kernel methods to deal with linearly inseparable data is

to create nonlinear combinations of the original features to project them onto a

higher-dimensional space via a mapping function φ where it becomes linearly

separable.

To solve a nonlinear problem using an SVM, we could transform the training

data onto a higher-dimensional feature space via a mapping function φ and train a

linear SVM model to classify the data in this new feature space. Then we can use

the same mapping function φ to transform new, unseen data to classify it using

the linear SVM model.

However, one problem with this mapping approach is that the construction of

10

the new features is computationally very expensive, especially if we are dealing

with high-dimensional data. This is where the so-called kernel trick comes into

play. In practice all we need is to replace the dot product x(i)Tx(j) by φ(x(i))Tφ(x(j)).

In order to save the expensive step of calculating this dot product between two

points explicitly, we define a so-called kernel function:

κ(x(i), x(j)) = φ(x(i))Tφ(x(j))

The kernel we used in the project is the Radial Basis Function (RBF) kernel or

simply called the Gaussian kernel:

κ(x(i), x(j)) = exp(−‖ x(i) − x(j) ‖2

2δ2)

The term kernel can be interpreted as a similarity function between a pair of

samples. The minus sign inverts the distance measure into a similarity score. Due

to the exponential term, the resulting similarity score will fall into a range between

0 and 1, where 0 indicates very dissimilar samples, and 1 indicates exactly similar

samples.

2.1.3 Decision Tree

Decision tree classifiers are attractive models if we care about interpretability. As

the name decision tree suggests, we can think of this model as breaking down our

data by making decision based on asking a series of questions. Using the decision

algorithm, we start at the tree root and split the data on the feature that results

in the largest Information Gain. In an iterative process, we can then repeat this

splitting procedure at each child node until the leaves are pure, which means the

samples at each node all belong to the same class. We have to be careful that the

11

deeper the decision tree, the more complex the decision boundaries, which can

result in overfitting. Overfitting is a modeling error which occurs when a function

is too closely fit to a limited set of data points. Overfitting the model generally

takes the form of making an overly complex model to explain idiosyncrasies in the

data under study.

In order to prevent overfitting, we typically want to prune the tree by setting a

limit for the maximal depth of the tree.

The objective function we use to split the nodes at the most informative features

and maximize the information gain at each split is written as:

IG(Dp, f) = I(Dp) - ∑m
j=1

Nj

Np
I(Dj), where

f: feature to perform the split

Dp: dataset of the parent node

Dj: dataset of the jth child node

Np: total number of samples at the parent node

Nj: number of samples in the jth child node

I: impurity measure

The information gain is the difference between the impurity of the parent node

and the sum of the child node impurities. The lower the impurity of the child

nodes, the larger the information gain.

Algorithm 1: Decision Tree
1. Start at the root node as parent node

2. Split the parent node at the feature w to minimize the sum of the child

node impurities (maximize information gain)

3. Assign training samples to new child nodes

4. Stop if leave nodes are pure or early stopping criteria is satisfied, else

repeat steps 1 and 2 for each new child node

12

Three commonly used impurity measures are Entropy, Gini impurity, and the

classification error. In this project, we used Entropy as the impurity measure.

The entropy is defined as

IH(t) = −
C

∑
i=1

p(i | t) log2 p(i | t)

For all non-empty classes p(i | t 6= 0), p(i | t) is the probability of the samples

that belong to class i for a particular node t; C is the number of unique class labels.

The entropy is therefore zero if all samples at a node belong to the same class, and

the entropy is maximal if we have an uniform class distribution.

2.1.4 Naive Bayes

Naive Bayes classifiers, a family of classifiers that are based on the Bayes’ probabil-

ity theorem, are known for creating simple yet well performing models, especially

in the fields of document classification and disease prediction.

Naive Bayes classifiers are linear classifiers that are known for being simple yet

very efficient. The probabilistic model of naive Bayes classifiers is based on Bayes’

theorem, and the adjective naive comes from the assumption that the features in a

dataset are mutually independent. In practice, the independence assumption is

often violated, but naive Bayes classifiers still tend to perform very well under this

unrealistic assumption [5]. Especially for small sample sizes, naive Bayes classifiers

can outperform the more powerful alternatives [6].

Naive Bayes assumes that all attributes are conditionally independent given the

13

label, thereby, computing the likelihood is simplified to the product of the condi-

tional probabilities of observing individual attributes given a particular class label.

The abbreviation ”iid” stands for ”independent and identically distributed” and

describes random variables that are independent from one another and are drawn

from a similar probability distribution. Independence means that the probability

of one observation does not affect the probability of another variable. It uses Bayes

theorem to predict the probability that a given feature set belongs to a particular

label. The formula is:

P(label | f eatures) = P(label) · P(f eatures | label)
P(f eatures)

The following list describes the various parameters from the previous formula:

P(label): This is the prior probability of the label occurring, which is the likeli-

hood that a random feature set will have the label. This is based on the number of

training instances with the label compared to the total number of training instances.

For example, if 60/100 training instances have the label, the prior probability of

the label is 60%.

P(f eatures | label): This is the prior probability of a given feature set being

classified as that label. This is based on which features have occurred with each

label in the training data.

P(f eatures): This is the prior probability of a given feature set occurring. This

is the likelihood of a random feature set being the same as the given feature set,

and is based on the observed feature sets in the training data. For example, if the

14

given feature set occurs twice in 100 training instances, the prior probability is 2%.

P(label | f eatures): This tells us the probability that the given features should

have that label. If this value is high, then we can be reasonably confident that the

label is correct for the given features.

2.1.5 K-Nearest Neighbor

K-nearest neighbors algorithms find the k points that are closest to a point of

interest based on their attributes using a certain distance measure like Euclidean

distance. KNN does not learn a discriminative function from the training data, but

memorizes the training dataset instead.

The KNN algorithm is fairly straightforward and can be summarized by the

following steps:

1. Choose the number of k and a distance metric.

2. Find the k nearest neighbors of the sample that we want to classify.

3. Assign the class label by majority vote.

Based on the chosen distance metric, the KNN algorithm finds the k samples

in the training dataset that are closest to the point that we want to classify. The

class label of the new data point is then determined by a majority vote among its k

nearest neighbors.

Advantage of KNN is that the classifier immediately adapts as we collect new

training data. The disadvantages are as follows: First, the computational complex-

15

ity for classifying new samples grows linearly with the number of samples in the

training dataset, especially for the dataset in high dimension. Second, we can not

discard training samples since no training step is involved. So the storage space

would become a challenge in the face of large datasets.

The good choice of value k is crucial to find a good balance between overfitting

and underfitting. We also have to make sure that we choose a distance metric

that is appropriate for the features in the dataset. For example, if we are using a

Euclidean distance measure, it is important to standardize the data so that each

feature contributes equally to the distance. In our project, we used the Minkowski

distance, which is a generalization of the Euclidean and Manhattan distance and

can be written as follows:

d(x(i), x(j)) = p

√
∑
k
|x(i)k − x(j)

k |p.

It becomes the Euclidean distance if we set the parameter p=2 or the Manhattan

distance at p=1.

2.1.6 Random Forest

Random forest is an ensemble classifier where multiple decision tree classifiers are

combined via the bagging technique. In statistics and machine learning, ensemble

methods use multiple learning algorithms to obtain better predictive performance

than could be obtained from any of the constituent learning algorithms alone.

Bagging (Bootstrap Aggregation) is used to reduce the variance of a decision tree.

Suppose a set D of d tuples, at each iteration i, a training set Di of d tuples is

sampled with replacement from D (i.e., bootstrap). Then a classifier model Mi is

16

learned for each training set D < i. Each classifier Mi returns its class prediction.

Unseen/test objects are then classified by taking the majority of votes from indi-

vidual decision trees.

A Random Forest can be considered an ensemble of decision trees. The idea

behind a random forest is to average multiple deep decision trees that individually

suffer from high variance, to build a more robust model that has a better general-

ization performance and is less susceptible to overfitting.

The random forest algorithm can be summarized in the following steps:

1. Draw a random bootstrap sample of size n by randomly choosing n samples

from the training dataset with replacement.

2. Build a decision tree from the bootstrap sample. At each node:

a. Randomly select d features without replacement.

b. Split the node using the feature that provides the best split according to the

objective function, for instance, maximizing the information gain.

3. Repeat k times the step 1 and Step 2.

4. Aggregate the prediction by each tree to assign the class label by majority

vote.

Advantages to the random forest approach include:

1. We do not need to prune the random forest since the ensemble method is

quite robust to noise from the individual decision tree.

2. We do not need to worry so much about choosing good hyperparameters. The

only parameter that we need to care about is the number of trees in the random

forest. Typically, the larger the number of trees, the better the performance of the

17

random forest classifier at the expense of an increased computational cost.

Other hyperparameters of the random forest classifier that can be optimized

are:

1. The size n of the bootstrap sample.

2. The number of features d that is randomly chosen for each split.

The size n of the bootstrap sample is used to control the bias-variance tradeoff

of the random forest. Decreasing the size of the bootstrap sample increases the

diversity among the individual trees, since the probability that a particular training

sample is included in the bootstrap sample is lower. Thus, shrinking the size of

the bootstrap samples may increase the randomness of the random forest, and it

can help to reduce the effect of overfitting. However, smaller bootstrap samples

typically result in a lower overall performance of the random forest, a small gap

between training and testing performance, but a low test performance overall.

Conversely, increasing the size of the bootstrap sample may increase the degree

of overfitting. Because the bootstrap samples, and consequently the individual

decision trees, become more similar to each other, they learn to fit the original

training dataset more closely.

Usually, the size of the bootstrap sample is chosen to be equal to the number of

samples in the original training set, which usually provides a good bias-variance

tradeoff. For the number of features d at each split, a reasonable value is d =
√

m,

where m is the number of features in the training dataset.

In out project, we trained a random forest from 25 decision trees via the

n estimators parameter and used the entropy criterion as an impurity measure to

split the nodes.

18

2.2 Ensemble Methods

Ensemble methods combine multiple classifiers which may differ in algorithms,

input features, or input samples. Statistical analyses showed that ensemble meth-

ods yield better classification performances and are also less prone to overfitting

[7]. Different methods, e.g., bagging or boosting, are used to construct the final

classification decision based on weighted votes.

Ensemble methods combine different classifiers into a meta-classifier that has

better generalization performance than each individual classifier alone. We will

implement three approaches for creating an ensemble of classifiers in this project,

including bagging and boosting. As shown in the Figure 2.2, the typical ensembling

techniques are bagging and boosting. Random forest is a kind of bagging and the

advantage of it is to handle overfitting and reduce variance by using independent

classifiers. Gradient boosting is a kind of boosting and it can reduce bias and

variance by using sequential classifiers, but the disadvantage of it is easily to

trigger overfitting.

2.2.1 Majority Voting

The Majority Voting Principle simply means that we select the class label that has

been predicted by the majority of classifiers, that is, received more than 50 percent

of the votes.

Our goal is to build a stronger meta-classifier that balances out the individual

classifiers’ weakness on a particular dataset.

In majority voting, we use the training dataset to train n different weak classi-

fiers C1, ... , Cn. The ensemble can be built from different classification algorithms,

for example, linear regression, logistic regression, decision tree, support vector

19

Figure 2.2: Ensemble Methods

machine, and so on. Alternatively, we could use the same base classification

algorithm to fit different subsets of the training data. The latter method is also

called bagging, and it is the second ensemble method we would implement.

The majority vote approach we implemented in this section is not to be confused

with stacking. The stacking algorithm can be understood as a two-layer ensemble,

where the first layer consists of individual classifiers that feed their predictions to

the second level, where another classifier (typically logistic regression) is fit to the

level-1 classifier predictions to make the final predictions. The stacking algorithm

has been described in more detail by David H. Wolpert in Stacked generalization

[8].

Our goal is to build a stronger meta-classifier that balances out the individual

classifiers’ weaknesses on a particular dataset. In more precise mathematical terms,

we can write the weighted majority vote as follows:

20

ŷ = arg max
i

m

∑
j=1

ωjχA(Cj(x) = i)

Here, ωj is a weight associated with a base classifier, Cj, ŷ is the predicted class

label of the ensemble, χA is the characteristic function [Cj(x) = i ∈ A], and A is

the set of unique class labels. For equal weights, we can simplify this equation and

write it as follows:

ŷ = mode{C1(x), C2(x), . . . , Cm(x)}.

To better understand the concept of weighting, we will now take a look at a

more concrete example. Let us assume that we have an ensemble of three base

classifiers, Cj, where j ∈ {0, 1}, and want to predict the class label of a given

sample instance, x. Two out of three base classifiers predict the class label 0, and

one, C3, predicts that the sample belongs to class 1. If we weight the predictions

of each base classifier equally, the majority vote would predict that the sample

belongs to class 0:

C1(x) : 0, C2(x) : 0, C3(x) : 1

ŷ = mode{0, 0, 1} = 0

Now, let us assign a weight of 0.6 to C3 and weight C1 and C2 by a coefficient

of 0.2:

ŷ = arg max
i

m

∑
j=1

ωjχA(Cj(x) = i) = arg max
i

[0.2× i0 + 0.2× i0 + 0.6× i1] = 1

21

More intuitively, since 3× 0.2 = 0.6, we can say that the prediction made by C3

has three times more weight than the predictions by C1 or C2, which we can write

as follows:

ŷ = mode{0, 0, 1, 1, 1} = 1

Using the predicted class probabilities instead of the class labels for majority

voting can be useful if the classifiers in our ensemble are well calibrated. The

modified version of the majority vote for predicting class labels from probabilities

can be written as follows:

ŷ = arg max
i

m

∑
j=1

ωj pij.

Here, pij is the predicted probability of the jth classifier for class label i.

To continue with our previous example, let’s assume that we have a binary clas-

sification problem with class labels i ∈ {0, 1} and an ensemble of three classifiers

Cj , where j ∈ {1, 2, 3}. Let’s assume that the classifiers Cj return the following

class membership probabilities for a particular sample x:

C1(x) : [0.9, 0, 1], C2(x) : [0.8, 0, 2], C3(x) : [0.4, 0, 6].

We can then calculate the individual class probabilities as follows:

p(i0|x) = 0.2× 0.9 + 0.2× 0.8 + 0.6× 0.4 = 0.58

p(i1|x) = 0.2× 0.1 + 0.2× 0.2 + 0.6× 0.6 = 0.42

22

ŷ = arg max
i

[p(i0|x), p(i1|x)] = 0.

2.2.2 Bagging

In contrast to cross-validation, bootstrapping is a random sampling with replace-

ment. Bootstrapping is typically used for statistical estimation of bias and standard

error, and a common application in machine learning is to estimate the generaliza-

tion error of a predictor.

Bagging is an ensemble method for classification or regression analysis in

which individual models are trained by random sampling of data in parallel, and

the final decision is made by voting among individual models with equal weights

or averaging for regression analysis.

Figure 2.3: The concept of bagging

Bagging as shown in Figure 2.3 is also known as bootstrap aggregating, since

23

in bagging, we draw random samples with replacement from the initial training

set, instead of using the same training set to fit the individual classifiers in the

ensemble. In random sampling with replacement, we always return the drawn

sample point to the urn so that the probabilities of drawing a particular sample

point at each turn does not change, and we could draw the same sample point

more than once. Each bootstrap sample is then used to fit a classifier. Once the

individual classifiers are fit to the bootstrap samples, the predictions are combined

using majority voting. The random forest model in section 3.1.6 we used in the

project is an application of bagging technique.

Figure 2.4: Comparison of Bagging and Boosting

2.2.3 Boosting

In boosting, the ensemble consists of weak classifiers. A weak classifier is simply

a classifier that performs poorly, but performs better than random guessing. A

simple example might be classifying a person as male or female based on their

height. The mechanism underlying boosting is to let the weak classifiers learn from

misclassified training samples in sequential order to improve the performance of

the ensemble. The difference between bagging and boosting is that weak learners

24

are in parallel in bagging and in sequential order in boosting as shown in Figure

2.4.

Figure 2.5: The concept of boosting

We use adaptive boosting (AdaBoost) [9], which is a popular variant of boosting.

As shown in Figure 2.5, in the step 1 adaptive boosting uses the complete training

set to train the weak classifiers. Then it learns from the misclassification of these

weak classifiers and reweights the training samples in each iteration (in the step 1,

2 and 3) to build a strong classifier. The mechanism behind AdaBoost is as follows:

25

Algorithm 2: AdaBoost
a. Set the weight vector w to uniform weights, where ∑i wi = 1.

b. For j in m boosting rounds, do the following:

1. Train a weighted weak classifier: Cj = train(X, y, w).

2. Predict class labels: ŷ = predict(Cj, X).

3. Compute weighted error rate: ε = w · (ŷ 6= y).

4. Compute coefficient: αj = 0.5 log 1−ε
ε .

5. Update weights: w = w× exp(−αj × ŷ× y).

6. Normalize weights to sum to 1: w = w/ ∑i wi.

c. Compute the final prediction: ŷ = (∑m
j=1(αj × predict(Cj, X)) > 0)

2.3 Deep Learning

2.3.1 Embedding Layer

The words have been replaced by integers that indicate the absolute popularity

of the word in the dataset. The sentences in each text are therefore composed

of a sequence of integers. Discrete words are mapped to vectors of continuous

numbers. This is useful when working with natural language problems with

neural networks and deep learning models where we require numbers as input.

Word embedding [10] is a technique where words are encoded as real-valued

vectors in a high-dimensional space, where the similarity between words in terms

of meaning translates to closeness in the vector space. Word embeddings are a

technique for representing text where different words with similar meaning have a

similar real-valued vector representation.

The layer takes arguments that define the mapping including the vocabulary

size (the largest integer value that will be seen as an integer). The layer also

26

allows you to specify the dimensionality for each word vector, called the output

dimension. Let’s say that we are only interested in the first 2,000 most used words

in the dataset. Therefore our vocabulary size will be 2,000. We can choose to

use a 32-dimension vector to represent each word. Finally, we may choose to

cap the maximum text length at 150 words, truncating text longer than that and

padding text shorter than that with 0 values. We would then use the Keras utility

to truncate or pad the dataset to a length of 150 for each observation using the

sequence.pad sequences() function. The output of this first layer would be a matrix

with the size 32×150 for a given review training or test pattern in integer format.

2.3.2 1D-CNN

Convolutional Neural Networks [11] apply a filter to an input to create a feature

map that summarizes the presence of detected features in the input. The filter

is smaller than the input data and the type of multiplication applied between a

filter-sized patch of the input and the filter is a dot product. A dot product is

the element-wise multiplication between the filter-sized patch of the input and

filter, which is then summed, always resulting in a single value. Using a filter

smaller than the input is intentional as it allows the same filter to be multiplied

by the input array multiple times at different points on the input. Specifically,

the filter is applied systematically to each overlapping part or filter-sized patch

of the input data, left to right, top to bottom. This systematic application of the

same filter across an input is a powerful idea. If the filter is designed to detect a

specific type of feature in the input, then the application of that filter systematically

across the entire input allows the filter an opportunity to discover that feature

anywhere. This capability is commonly referred to as translation invariance, e.g.

27

the general interest in whether the feature is present rather than where it was

present. Invariance to local translation can be a very useful property if we care

more about whether some feature is present than exactly where it is.

A standard model for document classification [12] is to use an Embedding layer

as input, followed by a one-dimensional convolutional neural network, pooling

layer, and then a prediction output layer. The kernel size in the convolutional

layer defines the number of words to consider as the convolution is passed across

the input transcript, providing a grouping parameter. After the Embedding input

layer, we insert a Conv1D layer. This convolutional layer has 32 feature maps

and reads embedded word representations of 100 vector elements of the word

embedding at a time. The convolutional layer is followed by a 1D max pooling

layer with a length and stride of 2 that halves the size of the feature maps from the

convolutional layer. The rest of the network is the same as the neural network. We

can see our convolutional layer preserves the dimensionality of our Embedding

input layer of 32-dimensional input with a maximum of 150 words. The pooling

layer compresses this representation by halving it.

2.3.3 Multi Channel CNN

A multi-channel convolutional neural network [13] for text classification involves

using multiple versions of the standard model with different sized kernels. This

allows the text to be processed at different resolutions or different n-grams (groups

of words) at a time, whilst the model learns how to best integrate these interpre-

tations. We defined a model with three input channels for processing 3-grams,

5-grams, and 7-grams of text. Each channel is comprised of the following elements:

1. Input layer that defines the length of input sequences.

28

2. Embedding layer set to the size of the vocabulary and 100-dimensional real-

valued representations.

3. One-dimensional convolutional layer with 32 filters and a kernel size set to the

number of words to read at once.

4. Max Pooling layer to consolidate the output from the convolutional layer.

5. Flatten layer to reduce the three-dimensional output to two dimensional for

concatenation.

6. The output from the three channels are concatenated into a single vector and

processed by a dense layer and an output layer.

2.3.4 LSTM

Convolutional neural networks excel at learning the spatial structure in input

data. The text data in our project does have a one-dimensional spatial structure

in the sequence of words. These learned spatial features may then be learned as

sequences by an LSTM layer. Sequence classification [14] is a predictive modeling

problem where we have some sequence of inputs over space or time and the task

is to predict a category for the sequence. What makes this problem difficult is

that the sequences can vary in length, consist of a very large vocabulary of input

symbols and may require the model to learn the long-term context or dependencies

between symbols in the input sequence.

In our LSTM model, the first layer is the embedded layer that uses 32 length

vectors to represent each word. The next layer is the LSTM layer with 100 memory

units. Finally, because this is a classification problem we use a dense output layer

with a single neuron and a sigmoid activation function to make 0 or 1 predictions

for the two classes in the problem. Because it is a binary classification problem,

29

log loss is used as the loss function (binary crossentropy in Keras). The efficient

ADAM optimization algorithm is used.

2.3.5 Character-Level CNNs

All of the models mentioned above were based on words. But there has also been

research in applying CNNs directly to characters.

The basic idea of using character-level CNN is to transform the data from a

sequence of letters into possible categories. The reason we use letters instead of

words since the text files are converted from PDF format and words are often

misspelled or written differently so looking at character level correlations might

work better. In english, all words are formed by 26 (or 52 if including both upper

and lower case character, or even more if including special characters). Having

the character embedding, every single word’s vector can be formed even it is

out-of-vocabulary words (optional). On the other hand, word embedding can

only handle those seen words. Another benefit is that it good fits for misspelling

words, emoticons, new words (e.g. in 2018, Oxford English Dictionary introduced

new word which is boba tea. Before that we do not have any pre-trained word

embedding for that). It handles infrequent words better than word2vec embedding

as later one suffers from lack of enough training opportunity for those rare words.

Third reason is that as there are only small amount of vector, it reduces model

complexity and improving the performance (in terms of speed).

2.4 Performance Evaluation Metrics

Performance metrics we used to evaluate the classification algorithm are based on

the following concepts and formula.

30

2.4.1 Confusion Matrix

The confusion matrix as shown in Figure 2.6, is used as a way to represent the

performance of a classifier and is sometimes also called ”error matrix”. This square

matrix consists of columns and rows that list the number of instances as absolute

or relative ”actual class” vs. ”predicted class” ratios.

Figure 2.6: Confusion Matrix

True Negatives (TN) is that case was negative and predicted negative. True

Positives (TP) is that case was positive and predicted positive. False Negatives

(FN) is that case was positive but predicted negative. False Positives (FP) is that

case was negative but predicted positive.

2.4.2 True and False Positive Rates

As shown in Figure 2.6, the True Positive Rate (TPR) and False Positive Rate

(FPR) are performance metrics that are especially useful for imbalanced class

problems. For example, in spam classification we are of course primarily inter-

ested in the detection and filtering out of spam. However, it is also important to

31

decrease the number of messages that were incorrectly classified as spam (False

Positives), since missing an important message is worse than ending up with a few

spam messages in e-mail inbox. In contrast to the False Positive Rate (FPR), the

True Positive Rate (TPR) provides useful information about the fraction of positive

(or relevant) samples that were correctly identified out of the total pool of Positives.

True Positive Rate (TPR) =
TP
P

=
TP

FN+TP

False Positive Rate (FPR) =
FP
N

=
FP

FP+TN

2.4.3 Accuracy, Precision, Recall and F measure

As shown in Figure 2.6, accuracy is defined as the fraction of correct classifications

out of the total number of samples; it resembles one way to assess the performance

of a predictor and is often used synonymous to specificity/precision although it is

calculated differently. Accuracy is calculated as (TP+TN)/(P+N), where TP=True

Positives, TN=True Negatives, P=Positives, N=Negatives.

Precision (synonymous to specificity) and recall (synonymous to sensitivity)

are two measures to assess performance of a classifier if class label distributions

are skewed. Precision is defined as the ratio of number of relevant items out of

total retrieved items, whereas recall is the fraction of relevant items which are

retrieved.

Accuracy is the proportion of true results (both true positives and true nega-

32

tives) among the total number of cases examined:

Accuracy (ACC) =
TP+TN

TP+TN+FP+FN
.

Precision is the probability that a (randomly selected) retrieved document is

relevant:

Precision (PRE) =
TP

TP+FP
.

Recall is the probability that a (randomly selected) relevant document is re-

trieved in a search:

Recall (REC) = True Positive Rate (TPR) =
TP
P

=
TP

FN+TP
.

F measure is a measure that combines precision and recall is the harmonic

mean of precision and recall, the traditional F-measure or balanced F-score:

F measure (F1) = 2 · PRE · REC
PRE+REC

.

2.4.4 Receiver Operator Characteristics (ROC)

Receiver Operator Characteristics (ROC) curves as shown in Figure 2.7 are useful

tools to select classification models based on their performance with respect to

True Positive and the False Positive rates.

33

Figure 2.7: Example of a Receiver Operating Characteristic. This plot was created
using the Python scikit-learn machine learning library.

The diagonal of a ROC graph can be interpreted as random guessing and

classification models that fall below the diagonal are considered as worse than

random guessing. A perfect classifier would fall into the top left corner of the

graph with a True Positive Rate of 1 and a False Positive Rate of 0. Based on

the ROC curve, the so-called Area Under the Curve (AUC) can be calculated to

characterize the performance of a classification model. The bigger AUC value, the

better classification model.

2.5 Input Data Representation

Since we can’t feed text to machine learning algorithms directly, the text data need

to be represented in the form of numerical feature vectors. The bag of words

model would help us to complete this task.

34

2.5.1 Bag-of-Words model

Bag of words is a model that is used to construct sparse feature vectors for text

classification tasks. The bag of words is an unordered set of all words that occur

in all documents that are part of the training set. Every word is then associated

with a count of how often it occurs whereas the positional information is ignored.

Sometimes, the bag of words is also called ”dictionary” or ”vocabulary” based

on the training data. The mechanism of bag-of-words model is that the model

creates a vocabulary of unique words from the entire set of documents, and then

constructs a feature vector for each file. The feature vector contains the counts of

words appearing in the specific file. Usually we would get sparse feature vectors

since the unique words in each file is usually only a small subset of all words in

the whole vocabulary.

Suppose the original files contains the following words:

File1 = ’Statistical analysis of the data’

File2 = ’The exact distance from the edge of the plot varied slightly to avoid wheel

tracks’

File3 = ’These soil samples were used for obtaining aggregates and conducting

aggregate size analyses’

File4 = ’The duplicated cores were obtained for three depths mentioned above’

File5 = ’Aggregate size distribution and stability’

The vocabulary maps the unique words to integer indices of feature vectors.

vocabulary = [(’above’, 0), (’aggregate’, 1), (’aggregates’, 2), (’analyses’, 3), (’anal-

ysis’, 4), (’and’, 5), (’avoid’, 6), (’conducting’, 7), (’cores’, 8), (’data’, 9), (’depths’,

35

10), (’distance’, 11), (’distribution’, 12), (’duplicated’, 13), (’edge’, 14), (’exact’, 15),

(’for’, 16), (’from’, 17), (’mentioned’, 18), (’obtained’, 19), (’obtaining’, 20), (’of’, 21),

(’plot’, 22), (’samples’, 23), (’size’, 24), (’slightly’, 25), (’soil’, 26), (’stability’, 27),

(’statistical’, 28), (’the’, 29), (’these’, 30), (’three’, 31), (’to’, 32), (’tracks’, 33), (’used’,

34), (’varied’, 35), (’were’, 36), (’wheel’, 37)]

Then we could get sparse feature vectors for each file as follows:

File1 = [0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0]

File2 = [0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 0 3 0 0 1 1 0 1 0 1]

File3 = [0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0]

File4 = [1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0]

File5 = [0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0],

where each index position in the feature vectors corresponds to the integer values

in the vocabulary map.

The model above is a 1-gram or unigram model since each token in the vocabu-

lary is only a single word. However, for different tasks, we could choose the size

of n-gram model. Like if we choose n=2, then we could get the following 2-gram

vocabulary map via 2-gram or bigram model.

2-gram vocabulary = [(’aggregate size’, 0), (’aggregates and’, 1), (’analysis of’, 2),

(’and conducting’, 3), (’and stability’, 4), (’avoid wheel’, 5), (’conducting aggregate’,

6), (’cores were’, 7), (’depths mentioned’, 8), (’distance from’, 9), (’distribution and’,

10), (’duplicated cores’, 11), (’edge of’, 12), (’exact distance’, 13), (’for obtaining’,

14), (’for three’, 15), (’from the’, 16), (’mentioned above’, 17), (’obtained for’, 18),

(’obtaining aggregates’, 19), (’of the’, 20), (’plot varied’, 21), (’samples were’, 22),

(’size analyses’, 23), (’size distribution’, 24), (’slightly to’, 25), (’soil samples’, 26),

36

(’statistical analysis’, 27), (’the data’, 28), (’the duplicated’, 29), (’the edge’, 30),

(’the exact’, 31), (’the plot’, 32), (’these soil’, 33), (’three depths’, 34), (’to avoid’,

35), (’used for’, 36), (’varied slightly’, 37), (’were obtained’, 38), (’were used’, 39),

(’wheel tracks’, 40)]

2.5.2 Term Frequency-Inverse Document Frequency (TF-IDF)

A bag-of-words model which we used in traditional machine learning is a way of

extracting features from text so the text input can be used with machine learning

algorithms like logistic regression [15], support vector machine, random tree,

etc. Each text is converted into a vector representation. The number of items

in the vector representing a text corresponds to the number of words in the

vocabulary. The larger the vocabulary, the longer the vector representation. Words

in a text are scored and the scores are placed in the corresponding location in

the representation. However, the frequently appearing words typically do not

contain much useful information for text classification if these words occur across

multiple texts from both or all classes. This is why we need to use the term

frequency-inverse document frequency technique to downweight these types of

words in the feature vectors. The TF-IDF is defined as the product of the term

frequency and the inverse document frequency.

However, the frequently appearing words typically do not contain much useful

information for documents classification if these words occur across multiple

documents from both or all classes. This is why we need to use term frequency-

inverse document frequency technique to downweight these types of words in the

feature vectors. The TF-IDF is defined as the product of the term frequency and

the inverse document frequency:

37

TF-IDF(t, d) = TF (t,d)× {IDF(t, d) + 1},

where the TF(t, d) is the term frequency, and the inverse document frequency

IDF(t, d) is calculated as:

IDF(t, d) = log
1 + nd

1 + DF(d, t)
,

where nd is the total number of documents, and DF(d, t) is the number of doc-

uments d that contain the term t. Adding the constant 1 to the denominator is

optional and serves the purpose of assigning a non-zero value to terms that occur

in all training samples; the log function is used to ensure that low document

frequencies are not given too much weight.

After this TF-IDF transformation, we normalize the feature vectors by L2-Norm

formula:

vnorm =
v
|v| =

v√
v2

1 + v2
2 + · · ·+ v2

n

After TF-IDF transformation and L2 normalization, we could get the feature

vectors as shown in the following. Then we could see the ’the’ weights decrease

from 3 to 0.51 since it appears in File1, File2, and File4 and this indicates ’the’ does

not contain much information for document classification.

File1 = [0. 0. 0. 0. 0.49 0. 0. 0. 0. 0.49 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.4 0. 0. 0. 0. 0. 0.

0.49 0.33 0. 0. 0. 0. 0. 0. 0. 0.]

File2 = [0. 0. 0. 0. 0. 0. 0.25 0. 0. 0. 0. 0.25 0. 0. 0.25 0.25 0. 0.25 0. 0. 0. 0.2 0.25 0.

0. 0.25 0. 0. 0. 0.51 0. 0. 0.25 0.25 0. 0.25 0. 0.25]

File3 = [0. 0.24 0.3 0.3 0. 0.24 0. 0.3 0. 0. 0. 0. 0. 0. 0. 0. 0.24 0. 0. 0. 0.3 0. 0. 0.3

38

0.24 0. 0.3 0. 0. 0. 0.3 0. 0. 0. 0.3 0. 0.24 0.]

File4 = [0.34 0. 0. 0. 0. 0. 0. 0. 0.34 0. 0.34 0. 0. 0.34 0. 0. 0.27 0. 0.34 0.34 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.23 0. 0.34 0. 0. 0. 0. 0.27 0.]

File5 = [0. 0.41 0. 0. 0. 0.41 0. 0. 0. 0. 0. 0. 0.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.41 0. 0.

0.5 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]

2.6 Train/Test Data Split and k-fold cross-validation

K-fold cross-validation is a resampling technique without replacement, where each

sample only occur exactly once in the folds. This yields a lower variance estimate

of the model performance. In k-fold cross-validation the data is split into k subsets,

then a prediction/classification model is trained k times, each time holding one

subset as the test set, training the model parameters using the remaining k-1

subsets. Finally, cross-validation error is evaluated as the average error out of all k

training models.

Here we use 10-fold cross-validation, where we randomly split the training

data into 10 folds without replacement. Nine folds are used for the training, and 1

fold is used for performance evaluation. This procedure is repeated 10 times so

that we obtain 10 models and performance estimates and average the individual

model estimates. As shown in Figure 2.8, E1, E2, E3, . . . , E10 are performance

estimates via 10-fold cross-validation. E is the average of the individual model

estimates.

39

Figure 2.8: 10-fold cross-validation

40

Chapter 3

Related Work

3.1 Deep Learning-Based Methods

An interesting use case of CNNs in NLP can be found in [16] and [17], coming

out of Microsoft Research. These papers describe how to learn semantically

meaningful representations of sentences that can be used for Information Retrieval.

The example given in the papers includes recommending potentially interesting

documents to users based on what they are currently reading. The sentence

representations are trained based on search engine log data.

Santos and Zadrozny [18] learn character-level embeddings, joins them with pre-

trained word embeddings, and uses a CNN for Part of Speech tagging. Xiang and

LeCun [19] [20] explore the use of CNNs to learn directly from characters, without

the need for any pre-trained embeddings. Notably, the authors use a relatively

deep network with a total of 9 layers, and apply it to Sentiment Analysis and

Text Categorization tasks. Results show that learning directly from character-level

input works very well on large datasets (millions of examples), but underperforms

simpler models on smaller datasets (hundreds of thousands of examples). Kim

41

[21] explores to application of character-level convolutions to Language Modeling,

using the output of the character-level CNN as the input to an LSTM at each time

step. The same model is applied to various languages.

Xiang and Yann [22] introduced character CNN. They found that character

includes key signal to improve model performance. In the paper, a list of character

are defined 70 characters which including 26 English letters, 10 digits, 33 special

characters and new line character.

3.2 Named Entity Recognition

Stanford NER [23] is a Java implementation of a Named Entity Recognizer. Named

Entity Recognition (NER) labels sequences of words in a text which are the names

of things, such as person and company names, or gene and protein names. It

comes with well-engineered feature extractors for Named Entity Recognition, and

many options for defining feature extractors. Included with the download are

good named entity recognizers for English, particularly for the 3 classes (PERSON,

ORGANIZATION, LOCATION), and they also make available on various other

models for different languages and circumstances, including models trained on

just the CoNLL 2003 English training data.

Stanford NER is also known as CRFClassifier. The software provides a general

implementation of (arbitrary order) linear chain Conditional Random Field (CRF)

sequence models. That is, by training your own models on labeled data, you can

actually use this code to build sequence models for NER or any other task. The

original CRF code is by Jenny Finkel. The feature extractors are by Dan Klein,

Christopher Manning, and Jenny Finkel. Much of the documentation and usability

is due to Anna Rafferty. More recent code development has been done by various

42

Stanford NLP Group members.

Stanford NER is available for download, licensed under the GNU General

Public License (v2 or later). Source is included.

3.3 Table Analysis

The purpose of table analysis is to covert the content of human-readable tables to a

query-table store of machine-manipulable assertions. Tables provide a convenient

and succinct way to communicate data of interest to human readers. Tables are

not, however, inherently amenable to machine-based search and query. A source

table may be any file representation that allows rendering (printing or displaying)

the essential characteristics of a source table in a form suitable for a human

reader, where layout, rulings and typesetting are often used to reveal the intrinsic

relationship between headers and content cells.

In Seth et al.’s algorithm [3], critical cells (CC1, CC2, CC3, CC4) delineate

regions. In a WFT every critical cell must appear in the grid. As shown in Figure

3.1, CC1 and CC2 demarcate the StubHeader and CC3 and CC4 demarcate the

Data region. Furthermore, in combination with one another, these critical cells

also demarcate both the ColHeader and RowHeader regions. Letting row ri and

column ci be the coordinates of critical cell CCi, a WFT satisfies the following

constraints: r1 ≤ r2 < r3 ≤ r4 and c1 ≤ c2 < c3 ≤ c4. These constraints guarantee

that the ColHeader and RowHeader regions properly align with the Data region

and that the Data region is not degenerate. A single row or column of data is

acceptable, provided both row and column headers exist.

They do not deal here with concatenated (composite) tables, nested tables

(tables whose data cells may themselves be tables), tables containing graphic data,

43

or “egregious” tables (those not laid out on a grid with headers above and to the

left).

Figure 3.1: Visual WFT model: (a) with and (b) without blank rows and columns.
CC1 and CC2 demarcate the StubHeader and CC3 and CC4 demarcate the Data
region.

Their program could transform well-formed tables to a new canonical table

format via: segmenting table regions by algorithmic data cell indexing, factor-

ing header paths into categories by algorithmic header analysis, and generating

queryable canonical relational tables.

In a well-formed table (WFT), every data cell is uniquely indexed by its row

and column header paths, which are respectively left of and above the data region.

A hierarchical (row or column) header may index one or more categories. A

single-category header path consists of the root-to-leaf path of the corresponding

category tree. A multi-category header path consists of concatenated category

paths.

44

Chapter 4

Methods

The system overview shown in Figure 4.1 gives a outline of the contributions of

this thesis. My work consists of five parts: Web harvesting, Text Classification,

Table Analysis, Named Entity Recognition and Database System Build.

Figure 4.1: System Overview

First, we built a web crawler to download soil science journal papers which

are the basis to build entire machine learning based system. Then I used tools

45

to convert downloaded journal papers from PDF to TXT format, which is vital

for following stages. Second, text classification can help identify the section or

paragraph in a paper that may be of interest to users based on their own search

interest. Third, Named Entity Recognition can extract author and experiment

location from paper to store them in data system. In the forth step, another

important information which is of interest to users is table. I did not find any

good method to extract table from PDF format directly. It is also not valid for TXT

format since the table structure will lose after format conversion. I followed Prof.

Seth’s well formed table requirement and create tables in CSV format manually

and used his program to store the table in a queryable machine readable format.

Finally, I populate a relational database with information automatically extracted

from journal papers collected from internet resources. The users can query and

search key words or highlight some section or paragraph in the paper, then the

system will provide the relevant information or recommend a paper which is of

interest to users. This system will make future queries more efficient.

46

Chapter 5

Data Statistical Description

We have in total 207 papers and divide each paper into sections to apply text

classification on them. The total number of files is 1690. The total number of

journals is 207. And the average files per journal is 8.2. The labels in the table 5.1

and 5.2 indicate if users are interested in the content.

Table 5.1: Section text data statistical description

File Name N chs cleanText N words cleanText
count min max sum mean min max sum mean

Journal Label

001 no interest 5 304 17013 33326 6665 42 2648 5047 1009

interest 2 908 5252 6160 3080 116 810 926 463

002 no interest 3 1500 7808 12343 4114 212 1035 1677 559

interest 4 358 8843 15664 3916 49 1422 2471 617

003 no interest 4 269 6096 13492 3373 33 835 1901 475

interest 3 1026 13346 21576 7192 137 2052 3311 1103

004 no interest 4 1946 11662 27082 6770 279 1694 3912 978

interest 3 881 12224 18897 6299 130 1874 2876 958

005 no interest 6 445 11785 30407 5067 67 1767 4532 755

interest 3 1068 9210 17231 5743 144 1454 2754 918

47

Table 5.2: Paragraph text data statistical description

File Name N chs cleanText N words cleanText
count min max sum mean min max sum mean

Journal Label

001 no interest 24 257 8532 33948 1414 39 1262 5152 214

interest 7 107 1345 5478 782 17 206 821 117

002 no interest 23 263 7810 22388 973 39 1035 3292 143

interest 7 337 1709 5562 794 49 250 856 122

003 no interest 23 271 6098 29950 1302 33 835 4450 193

interest 5 487 1733 5067 1013 71 275 762 152

004 no interest 32 136 9099 35797 1118 20 1318 5241 163

interest 10 572 1735 10089 1008 87 283 1547 154

005 no interest 19 298 8025 33275 1751 40 1161 4982 262

interest 14 380 1797 14307 1021 58 294 2304 164

To test if I can use text classification on less information, I divide each paper

into paragraphs which contain less information than sections. The total number of

files is 7543. The total number of journals is 207. And the average files per journal

is 36.4. The labels in the table 5.2 indicate if users are interested in the content,

where 0 means not interest and 1 means interest.

Table 5.1 and Table 5.2 show the text description in our raw data, and they

only show the top 5 files in section and paragraph text, due to limit space. Journal

column indicates the journal index whose range is from 001 to 207. Label denotes

if the content is relevant with researchers’ interest, where 0 means no interest,

while 1 means interest. File Name count column shows how many files in each

label, for example, 5 means there are 5 files in Journal 001 which the researchers

are interested in. Let still use the first row in Table 5.1 as an example. Number of

characters in the clean text is 304 in minimum, 17013 in maximum, sum is 33326,

and 6665 on average. Number of words in the clean text is 42 in minimum, 2648 in

maximum, sum is 5047, and 1009 on average. Figure 5.1 and Figure 5.2 indicates

48

Figure 5.1: Distribution of Sec-
tion Data

Figure 5.2: Distribution of Para-
graph Data

the distribution of labels, distribution of number of words, and distribution of

number of characters in section and paragraph data.

These two tables and distribution Figure 5.1 and Figure 5.2 provide a outline to

show us what the data looks like.

49

Chapter 6

Web Scraping

In the first pass of paper downloading, we downloaded 3,657 papers with a

combined size of 4.15 GB. These papers were collected from on-line sources

of journals using the following query terms: “soil quality” and “conservation

management”. In the second pass of paper downloading, we downloaded 34,787

with a combined size of 25.38 GB. These papers were collected from on-line sources

of journals using the following query terms: “Soil Quality”, “Soil Management”,

“Dynamic Soil Properties” and “Soil Health”. In both searches, we filtered out

items that were not journal articles. The total papers I downloaded numbered

38,444 and the total size was 29.53 GB. The details about numbers of papers and

related sources are listed in the Table 6.1.

6.1 Procedure of Web Scraping

The first time, the library I chose to download papers is ACSEE Digital Library

through UNL library. I filtered out Meeting Session, Book Chapter, and other

resources, and keep files from Journal Article. The second time, I download

50

papers from more resources by filtering words like Soil Quality, Soil Management,

Dynamic Soil Properties and Soil Health as shown in Figure 6.1 and Figure 6.2.

Figure 6.1: Restrict to some terms: soil quality, conservation management.

Figure 6.2: Search results with filter words.

During web scraping, the code scanned and extracted link to papers in each

51

web page, and went to next page automatically until no more page. Then it stored

all papers links and finally downloaded them all.

6.2 Summary of Downloaded Papers

Table 6.1: Downloaded Journal Papers and associated recourse

No. papers Journal Name Resource

9919 Soil Science of America https://dl.sciencesocieties.org/publications/sssaj

5425 Journal of Environmental Quality https://dl.sciencesocieties.org/publications/jeq

8788 Agronomy https://dl.sciencesocieties.org/publications/aj

4188 Crop Science https://dl.sciencesocieties.org/publications/cs

43 Soil and Tillage Research http://www.journals.elsevier.com/soil-and-tillage-research

25 Agricultural Water Management http://www.journals.elsevier.com/agricultural-water-management

101 Agriculture Ecosystems & Management http://www.journals.elsevier.com/agriculture-ecosystems-and-environment

112 Journal of Environmental Management http://www.journals.elsevier.com/journal-of-environmental-management

42 Applied Soil Ecology http://www.journals.elsevier.com/applied-soil-ecology

107 Forest Ecology and Management http://www.journals.elsevier.com/forest-ecology-and-management

47 Soil Biology and Biochemistry http://www.journals.elsevier.com/soil-biology-and-biochemistry

23 Catena http://www.journals.elsevier.com/catena

74 Ecological Indicators http://www.journals.elsevier.com/ecological-indicators/

74 Geoderma http://www.journals.elsevier.com/geoderma

34 Soil Use and Management http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-2743

34 Ecological Applications http://esajournals.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1939-5582/

36 Plant and soil http://link.springer.com/journal/11104

196 Environmental Monitoring & Assessment http://link.springer.com/journal/10661

3205 Journal of Soil and Water Conservation http://www.jswconline.org/

2314 Soil Research http://www.publish.csiro.au/nid/84.htm

https://dl.sciencesocieties.org/publications/sssaj
https://dl.sciencesocieties.org/publications/jeq
https://dl.sciencesocieties.org/publications/aj
https://dl.sciencesocieties.org/publications/cs
http://www.journals.elsevier.com/soil-and-tillage-research
http://www.journals.elsevier.com/agricultural-water-management
http://www.journals.elsevier.com/agriculture-ecosystems-and-environment
http://www.journals.elsevier.com/journal-of-environmental-management
http://www.journals.elsevier.com/applied-soil-ecology
http://www.journals.elsevier.com/forest-ecology-and-management
http://www.journals.elsevier.com/soil-biology-and-biochemistry
http://www.journals.elsevier.com/catena
http://www.journals.elsevier.com/ecological-indicators/
http://www.journals.elsevier.com/geoderma
http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1475-2743
http://esajournals.onlinelibrary.wiley.com/hub/journal/10.1002/(ISSN)1939-5582/
http://link.springer.com/journal/11104
http://link.springer.com/journal/10661
http://www.jswconline.org/
http://www.publish.csiro.au/nid/84.htm

52

Chapter 7

Text Analysis via Machine/Deep

Learning

Text classification is a way to categorize documents or pieces of text. By examining

the word usage in a piece of text, classifiers can decide what class label to assign

to it. A binary classifier decides between two labels, such as positive review or

negative review, desirable or not desirable information. The text can either be one

label or another, but not both. The purpose of text classification in this project is to

classify the unknown journal paper or pieces of text in it as desirable information

or not by training on already highlighted desirable documents, in order to save

the users’ new paper seeking time and save the desirable information in queryable

database.

We need to first convert PDF to text format, since the text can not be read

directly from PDF format. There are many conversion tools and a lot of variance

in output quality. Converting PDF to text is one of the most common features for

standard PDF converting tool. However, there could be great difference in output

53

quality. In our daily documents processing, PDF that with multi-column text

is somehow inevitable. Unfortunately, many PDF Text converters handle single

column text well but fail miserably when presented with a typical multiple-column

layout by interlacing the multiple columns. For these journal papers, we need to

clean the text, since after conversion from PDF format the text would get scrambled,

with pieces of left column being mixed with the right one. Some papers have three

columns, making the problem more serious. Another common problem is that

the position of splitting is not fixed. Part of content in the first paragraph may be

split to the second, or even third paragraph. These would make cleaning text tough.

In this section, we delve into text analysis and use machine learning algorithms

to classify documents or pieces of text (sentence, paragraph, section) based on the

attitude or emotions of the end user, like interested in them or not. The details of

machine learning algorithms and performance evaluation metrics we used here

are in section 3. For the section classification problem, it consists of 1690 files

that are labeled as 1177 positive and 513 negative, where positive means that the

user is interested in that text and negative means that the user is not interested in

that text. And for the paragraph classification task, it consists of 7543 files (6045

positives and 1498 negatives). I spent a lot of time on the labeling process since

the documents are labeled manually. The positves and negatives are placed on

different folders. After we got these files, we preprocess them into a useable format

for machine learning algorithms, and extract meaningful information from them to

feed to models. Then we use these models to predict whether the user is interested

in the text or not.

54

Figure 7.1: Machine Learning System Design

7.1 Data Preprocessing

To handle text data easier, we read the text data into a pandas DataFrame object

and it gives more structured data and better visualization.

7.1.1 Clean Data

We first clean numbers, punctuation marks, and other non letter characters in

the text data, since they do not contain much useful semantic information in our

project.

55

7.1.2 Tokenization

Tokenization is the process of breaking down a text corpus into individual elements

that serve as input for various natural language processing algorithms. Usually,

tokenization is accompanied by other optional processing steps, such as the

removal of stop words and punctuation characters, stemming or lemmatizing,

and the construction of n-grams.

7.1.2.1 Stop Words

We remove the stop words, since they are pretty common in all kinds of texts and

do not contain much useful information for document classification. NLTK library

[24] has a set of 127 English stop words. And we could use it to remove stop words

in the text.

7.1.2.2 Lowercase

Then we convert the text into lowercase characters, since the semantic information

does not depend on whether the word is at the start of the sentence or not. Another

reason is our model does not distinguish the letter case difference, since unigram

bag-of-words model does not concern the order of the words.

7.1.2.3 Stemming and Lemmatization

Stemming describes the process of transforming a word into its root form. The

original stemming algorithm was developed my Martin F. Porter in 1979 and is

hence known as Porter stemmer [25]. Stemming can create non-real words, such as

“thu” in the example above. In contrast to stemming, lemmatization aims to obtain

56

the canonical (grammatically correct) forms of the words, the so-called lemmas.

Lemmatization is computationally more difficult and expensive than stemming.

7.1.2.4 N-Grams

In the n-gram model [26], a token can be defined as a sequence of n items. The

simplest case is the so-called unigram (1-gram) where each token consists of

exactly one word, letter, or symbol. Choosing the optimal number n depends on

the language as well as the particular application. For example, Andelka Zecevic

found in his study that n-grams with 3 ≤ n ≤ 7 were the best choice to determine

authorship of Serbian text documents [27]. In a different study, the n-grams of size

4 ≤ n ≤ 8 yielded the highest accuracy in authorship determination of English text

books [28] and Kanaris and others report that n-grams of size 3 and 4 yield good

performances in anti-spam filtering of e-mail messages [29]. In our work, we chose

range 1 to 3 as n-gram grid search search to balance train time and performance

due to compute resource limit.

7.2 Fine Tuning Hyperparameters

In machine learning, we have two types of parameters: One are the parameters

that the machine learning algorithm learned from the training data like the weights

in the logistic regression, neural network, which we would get in the training

step. The other are tuning parameters, which are called hyperparameters, like

the regularization parameter in the logistic regression, the maximum depth of a

decision tree and number of estimators in the random forest.

Now we need to tune the hyperparameters in our machine learning models.

57

We use a grid search to find the optimal set of parameters by finding the optimal

combination of hyperparameters values for model using stratified 10-fold cross-

validation. The reason why we use stratified 10-fold cross-validation instead of the

standard 10-fold cross-validation is that our dataset has unequal class proportions.

In the stratified 10-fold cross-validation, the class proportions are preserved in

each fold to ensure that each fold is representative of the class proportions in the

training dataset, and this would yield better bias and variance estimates on this

type of dataset.

The approach of grid search is a brute force exhaustive search paradigm

where we specify a list of values for different hyperparameters, and the computer

evaluates the model performance for each combination of those to obtain the

optimal combination of values. Here, we use 10-fold cross-validation for tuning

hyperparameters, since it would help to find the optimal hyperparameter values

that yields a satisfying generalization performance.

7.2.1 Logistic Regression

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• penalty: Used to specify the norm used in the penalization.

• C: Inverse of regularization strength; must be a positive float. Like in support

vector machines, smaller values specify stronger regularization.

58

param_grid = [{'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

'clf__penalty': ['l1', 'l2'],

'clf__C': [0.1, 1.0, 10.0, 100.0]},

{'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

'vect__use_idf':[False],

'vect__norm':[None],

'clf__penalty': ['l1', 'l2'],

'clf__C': [0.1, 1.0, 10.0, 100.0]}]

Figure 7.2: Logistic Regression Parameters Grid Search Code

7.2.2 SVM

param_grid = [{'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

'clf__kernel': ['linear', 'rbf'],

'clf__C': param_range}

]

Figure 7.3: Support Vector Machine Parameters Grid Search Code

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• kernel: Specifies the kernel type to be used in the algorithm. It must be one

of ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’ or a callable. If none is

given, ‘rbf’ will be used.

59

• C: Penalty parameter C of the error term.

7.2.3 Decision Tree

param_grid = {'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

'clf__max_depth': np.arange(1, 30, 2)

}

Figure 7.4: Decision Tree Parameters Grid Search Code

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• maximum depth: The maximum depth of the tree.

7.2.4 Naive Bayes

param_grid = {'vect__ngram_range': [(1, 3)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

"clf__alpha": np.arange(0.1, 3, 0.1),

"clf__fit_prior": [True, False],

}

Figure 7.5: Naive Bayes Parameters Grid Search Code

60

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• alpha: Additive (Laplace/Lidstone) smoothing parameter (0 for no smooth-

ing).

• fit prior: Whether to learn class prior probabilities or not. If false, a uniform

prior will be used.

7.2.5 K Nearest Neighbors

param_grid = {'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

"clf__leaf_size": np.arange(10, 20, 5),

"clf__p": [1, 2],

"clf__metric": ['minkowski']}

Figure 7.6: K Nearest Neighbors Parameters Grid Search Code

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• leaf size: Leaf size passed to BallTree or KDTree. This can affect the speed of

the construction and query, as well as the memory required to store the tree.

The optimal value depends on the nature of the problem.

61

• p: Power parameter for the Minkowski metric. When p = 1, this is equivalent

to using manhattan distance (l1), and euclidean distance (l2) for p = 2. For

arbitrary p, minkowski distance (l p) is used.

• metric: the distance metric to use for the tree. The default metric is

minkowski, and with p=2 is equivalent to the standard Euclidean metric. See

the documentation of the DistanceMetric class for a list of available metrics.

7.2.6 Random Forest

param_grid = {'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

"clf__n_estimators": np.arange(10, 150, 50),

"clf__max_depth": np.arange(1, 20, 8),

"clf__min_samples_split": np.arange(10,100,50),

"clf__min_samples_leaf": np.arange(10,100,50),

"clf__max_leaf_nodes": np.arange(10,30,10),

'clf__class_weight': [{0:1, 1:1}, {0:1, 1:2}, {0:1, 1:3}],

"clf__bootstrap": [True, False],

"clf__criterion": ["gini", "entropy"]}

Figure 7.7: Random Forest Parameters Grid Search Code

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• n estimators: The number of trees in the forest.

• maximum depth: The maximum depth of the tree.

62

• minimum samples split: The minimum number of samples required to split

an internal node.

• minimum samples leaf: The minimum number of samples required to be at

a leaf node.

• maximum leaf nodes: Grow trees with max leaf nodes in best-first fashion.

Best nodes are defined as relative reduction in impurity.

• class weight: Weights associated with classes in the form class label: weight.

• bootstrap: Whether bootstrap samples are used when building trees.

• criterion: The function to measure the quality of a split. Supported criteria

are “gini” for the Gini impurity and “entropy” for the information gain.

7.2.7 Adaptive Boosting

param_grid = {'vect__ngram_range': [(1, 2)],

'vect__stop_words': [stop, None],

'vect__tokenizer': [tokenizer, tokenizer_porter],

"clf__n_estimators": np.arange(10, 150, 20),

"clf__learning_rate": np.arange(0.1, 2, 0.1)}

Figure 7.8: Adaptive Boosting Parameters Grid Search Code

• ngram range: The lower and upper boundary of the range of n-values for

different n-grams to be extracted. All values of n such that min n <= n <=

max n will be used.

• stop words: A list of words which will be removed from the resulting tokens.

• n estimators: The number of trees in the forest.

63

• learning rate: Learning rate shrinks the contribution of each tree by learn-

ing rate. There is a trade-off between learning rate and n estimators.

7.3 Fitting Machine Learning Models

After we have found satisfactory hyper parameter values, we could retrain the

model on the complete training set and obtain a final performance estimate by

using an independent testing set, since fitting a model to the complete training

dataset after 10-fold cross-validation would usually result in a more accurate and

robust model.

Table 7.1: Section text data (F is F-Measure and Time is Train Time)

TPR TNR Accuracy Precision Recall F Time(min)

LR 73.4 99.3 91.5 97.9 73.4 83.9 30.2
LR FT 76.6 97.3 91.0 92.5 76.6 83.8 -
SVM 0.0 100.0 69.7 0.0 0.0 0.0 51.5
SVM FT 76.6 96.9 90.8 91.6 76.6 83.4 -
DT 82.8 91.2 88.7 80.3 82.8 81.5 20.1
DT FT 71.9 98.3 90.3 94.8 71.9 81.8 -
NB 29.7 99.7 78.5 97.4 29.7 45.5 123.3
NB FT 70.3 98.0 89.6 93.8 70.3 80.4 -
KNN 75.0 94.2 88.4 85.0 75.0 79.7 85

KNN FT 71.9 95.3 88.2 86.8 71.9 78.6 -
RF 74.2 96.9 90.1 91.3 74.2 81.9 1456.4
RF FT 65.6 99.7 89.4 98.8 65.6 78.9 -
AdaBoost 78.9 94.6 89.8 86.3 78.9 82.4 290.5
AdaBoost FT 72.7 98.6 90.8 95.9 72.7 82.7 -
Majority Voting 75.0 99.0 91.7 97.0 75.0 84.6 -

64

Table 7.2: Paragraph text data (F is F-Measure and Time is Train Time)

TPR TNR Accuracy Precision Recall F Time (min)

LR 59.5 96.7 89.3 81.7 59.5 68.8 28.6
LR FT 66.7 95.6 89.9 79.1 66.7 72.4 -
SVM 0.0 100.0 80.1 0.0 0.0 0.0 104.7
SVM FT 69.9 95.8 90.6 80.4 69.9 74.8 -
DT 59.7 90.0 84.0 59.7 59.7 59.7 27.5
DT FT 55.5 95.4 87.5 75.1 55.5 63.8 -
NB 14.7 99.3 82.4 83.3 14.7 24.9 111

NB FT 47.2 97.2 87.2 80.5 47.2 59.5 -
KNN 60.5 95.2 88.3 75.9 60.5 67.4 1556.6
KNN FT 67.7 95.4 89.9 78.6 67.7 72.8 -
RF 44.5 96.8 86.4 77.3 44.5 56.5 1527.4
RF FT 53.3 97.1 88.4 82.0 53.3 64.6 -
AdaBoost 56.3 94.3 86.7 71.0 56.3 62.8 332.4
AdaBoost FT 53.9 97.4 88.7 83.5 53.9 65.5 -
Majority Voting 63.5 96.8 90.1 82.9 63.5 71.9 -

7.4 Performance Evaluation

Table 7.1 and Table 7.2 denote the TPR (True Positive Rate), TNR (True Negative

Rate), Accuracy, Precision, Recall, F-Measure and tuning hyper parameter time

for LR (Logistic Regression), SVM (Support Vector Machine), DT (Decision Tree),

Naive Bayes (NB), K Nearest Neighbors (KNN), Random Forest (RF), Adaboosting

(AdaBoost) and Majority Voting models in Section and Paragraph Text Data

respectively, where FT stands for fine tunning. The chapter 7 is a task to identify

if the users are interested in a particular section in journal papers, while the

Paragraph Text Classification is a task to see if the users are interested in a

particular paragraph in papers. All except time are measured by percentage. We

can see the Majority Voting could take the advantages of the other models and

give us the relative best results in all metrics. Since Majority Voting combines all

other fine tuning models, we do not need to tune hyper parameters again.

65

Figure 7.9: Radar Chart A of Models for Section text data

Figure 7.9 to Figure 7.12 show Radar Charts (the charts look like radar signal)

for comparing default parameters and fine tuning hyper parameters of LR (Logistic

Regression), SVM (Support Vector Machine), DT (Decision Tree), Naive Bayes (NB),

K Nearest Neighbors (KNN), Random Forest (RF), Adaboosting (AdaBoost) and

Majority Voting models in Section and Paragraph Text Data respectively, where

66

Figure 7.10: Radar Chart B of Models for Section text data

FT stands for fine tunning, the Blue color indicates the default hyper parameters,

and the Red color indicates the fine tunning of hyper parameters. Here we choose

TNR (True Negative Rate), Accuracy, Precision, Recall, and F-Measure, since TPR

(True Positive Rate) is equal to Recall. We could see from these figures that the

performance of the model after fine tunning is much better than just using default

67

Figure 7.11: Radar Chart A of Models for Paragraph text data

hyper parameters, and the Majority Voting could combine and take the advantages

of the other models and give us the relative best results in all metrics. The Radar

Charts in Figure 7.9 to Figure 7.12 give a good and clear comparison between the

default and fine tuned parameters.

68

Figure 7.12: Radar Chart B of Models for Paragraph text data

7.5 Conclusion and Discussion

The purpose of Text Classification is that we feed model with an unseen journal

paper, and this classifier model could identify if the new paper or part of it is

what users are interested in and store the content in the database if needed. We do

two experiments there, one for section text classification, and the other paragraph

69

text classification. Section text classification indicates the classifier models would

consider each section in the journal paper as a block and classify it as desirable or

not. There are 1690 files in section text classification. Paragraph text classification

denotes that the classifier models would consider each paragraph in the journal

paper as a block and classify it as desirable or not. There are 7543 files in paragraph

text classification.

For section text classification, we have total 1690 files, and 513 of them are

content of interest, and the other 1177 are not needed. 30% of them are what users

are interested in. By our classifier model, we could classify about 92% of them

correctly. For paragraph text classification, we have total 7543 files, and 1498 of

them are desired, and the other 6045 are not needed. 20% of them are what users

are interested in. By our classifier model, we could classify almost 90% of them

correctly. According to our experiment results like F-measure in Table 7.1 and

Table 7.2, the less content, the more difficulty to classify correctly. This makes

sense since the less information we have, the more difficulty for us to make correct

decision.

Table 7.3: Neural Networks Performance Comparison

TPR FNP TP FP TP/A M Size T Size

Text 1D-CNN 100 94.5 103 222 3.15 36.3 MB 1.2 MB
Text Multi-CNN 100 94.5 103 222 3.15 109.0 MB 1.2 MB
Text LSTM 100 83 103 195 2.89 40.0 MB 1.2 MB
Text Character-D-CNN 100 97 103 228 3.21 1.0 MB 0.0 MB

70

7.6 Neural Networks

In the Table 7.3, TPR is True Positives Percentage. FNP is False Negatives Percent-

age. TP is True Positives. FP is False Positives. TP/A is True Positives out of all

predicted Positives Percentage. M Size is Model Size. T Size is Tokenizer Size. We

can see LSTM achieved the best performance and it shows us that users will get 1

paper which they are interested in given every 2.89 recommendations.

Figure 7.13 shows the accuracy and loss during training and testing and we can

see the gap between train and test makes sense and does not trigger overfitting. To

build robust model, we need to catch all true positives and reduce false positives.

Figure 7.14 shows how we search the optimum cutoff to achieve this goal. The

top two plots are for Percentage, while the bottom two are for Counts. They give

us a clear tracking during the search. We search twice, the first search window

is 0 to 1 which are probabilities of class 1 (interest). Then we narrow the search

window and get a preciser cutoff, since a tiny cutoff change can change the model

performance a lot as shown in the Figure 7.14.

Figure 7.15 shows we catch all positives and 195 (83%) negatives. This means

every 2.89 suggested papers, users can get 1 which they are interested. 2.89 is

calculated on (103+195)/103. Because the data is imbalanced, accuracy is not a

good metric for model evaluation. Our goal is to make sure all true positives can

be identified since we hope the model does not miss any section or paragraph

of interest to users, while reduce the false positives since they are sections or

paragraphs users are not interested in. To achieve this purpose, we built a custom

metric which can catch all true positives and reduce false positives as many as it

could.

71

Figure 7.13: LSTM Train/Test Accuracy and Loss

72

Figure 7.14: Cutoff Search

73

Figure 7.15: LSTM Confusion Matrix

74

Chapter 8

Named Entity Recognition

Named entities are definite noun phrases that refer to specific types of individuals,

such as organizations, persons, locations, geo-political entities, date, percent etc.

As shown in Figure 8.1, the purpose of NER is to identify all named entities.

We used Stanford NER [23], which is a Java implementation of a Named Entity

Recognizer, to identify persons and locations contained in the journal.

Figure 8.1: Named Entities in journal paper

75

8.1 Purpose

The reason why we want to extract named entities from journal papers is that

we want to select papers by the locations contained in the paper. For example,

to be able to query studies that were performed in Lancaster County, Nebraska,

so one could view journal papers and results associated with that location as

shown in Figure 8.2. Named Entity Recognition can help us make it a reality.

It would extract information about references to PERSONs, ORGANIZATIONs,

and LOCATIONs from journal papers. The LOCATION will include all locations

mentioned in the paper. We also want to extract information about the authors and

organizations, and this information is contained in PERSONs, ORGANIZATIONs.

As shown in the Figure 8.2, user can select Lincoln as Location and the system will

list all papers whose experiments take place at Lincoln, Nebraska.

Figure 8.2: Location of Interest and related list of journal papers

76

8.2 Procedure

While PDFs provide an easily readable presentation of data, they are extremely

difficult to work with in data analysis. We used a Pdfminer called “pdf2txt.py” that

extracts text contents from a PDF file, and NLTK (the Natural Language Tool Kit)

[24] serves as one of Python’s leading platforms to analyze natural language data.

In Named Entity Recognition, we ignore the references section since it contains too

many persons and organizations which are not related to the desired information.

We also used Stanford’s Named Entity Recognizer [23], often called Stanford NER,

to extract PERSONs, LOCATIONs, and ORGANIZAIONs from journal papers and

store them in JSON format. NLTK contains an interface to Stanford NER, so all

codes are written in Python.

8.3 Result

Figure 8.3: Comparison between ground truth and Stanford NER output

On the left side of the Figure 8.3, the column is from hand labeled location file.

Data on the right side is the output of the Stanford’s Named Entity Recognizer.

Among location list on the left side of the Figure 8.3, Stanford’s Named Entity

77

Recognizer can identify 10 items including Multan, USA, Miami, Islamabad, Ohio,

Pakistan, Columbus, Germany, Coffey Road and Hanau. The missed items are

OH and south Brazil, where OH is abbreviation of Ohio. Stanford’s Named Entity

Recognizer can identify 10 out of 12, which is about 83%. Based on the precision,

recall and F-score formulas, we can get that precision is 1, recall is 0.83 and F-score

is about 0.91. In Manning et al.’s paper [23], they claim that F-scores are 0.87 and

0.92 for the CoNLL and CMU Seminar Announcements respectively, where the

CoNLL is named entity recognition task and the CMU Seminar Announcements is

information extraction task for NER approach evaluation. The NER performance

is in between these two scores for our project and it makes sense. It is better if

we could use more samples to test the performance of Stanford’s Named Entity

Recognizer and verify the approach works well in our project. However, it will

cost a lot of labeling time and effort and we do not have enough time or labor to

do that.

78

Chapter 9

Table Analysis

Tables contain data of interest of readers. The purpose of table analysis is to

convert the content of human-readable tables in the journal paper to query-table

in database. We created 1006 tables for 207 journal papers in Comma-Separated

Values (CSV) format manually. Then we ran the algorithm of Seth et al. [3] to

extract data from CSV and store them in a machine-readable format. There are

1006 tables in the 207 papers. Each table would cost 20-30 minutes, we test 50% of

them, so the total time spent on preparing and checking these 500 tables is about

280 hours.

9.1 Program Output

The program can output two kinds of tables. One is a classification table. This

table is in a five-column format, with a row entry (after the header row) for each

cell of its source table. The first column is a unique cell identifier with the file

name of the CSV table and the cell coordinates. The second and third rows give

the numerical cell coordinates separately for ease of handling. The fourth column

79

is the content of the cell in the original table, and the last column is its assigned

class.

The other table is a category table which is a relational table where each row

comprises the indexing header paths and the corresponding indexed data value.

Therefore the number of rows in the category table equals the number of data cells

in the original table (plus one for the relational table’s field names in a header

row). The number of columns is one for the Cell ID, plus one for DATA, plus the

sum of the heights of the category trees (which, usually, equals the sum of the

column width of the row header and row height of the column header). In the

category table, Cell ID is a key field and each cell label in the original header paths

becomes a key field value in the composite key comprising all the category fields.

9.1.1 Well-Formed Table result

Figure 9.1: Table 3 in journal paper No.105

80

Figure 9.2: Category Table (already imported to Microsoft Access Database) for
Table 3 in Journal Paper No. 105

As shown in Figure 9.2, we could see the program could extract the information

from Well-Formed Table in Figure 9.1 and store it in relational database (Microsoft

Access). Then users could use SQL to query the information they are interested in.

And the classification table also make sense.

9.1.2 NOT Well Formed Table result

There are also some NOT Well Formed Tables as shown in Figure 9.3 where the

program does not work well.

We could see in the classification table as shown in Figure 9.4, the program

fails to classify the data at the bottom half table correctly, and classify the data

as note. So the category table only contains the data from top half of the original

table, but miss the data in bottom half.

81

Figure 9.3: Table 2 in Journal Paper No. 001

9.1.3 Discussion

We have a total of 500 tables in 122 journal papers. 99 of them are not well-formed

tables, which means we could not or maybe just could partly extract data from

the table and store them in relational database. After manually creating different

kinds of tables in the journal papers, we found the program could process about

90% of all tables, which are well-formed tables. For the other 10% not well-formed

tables, the program can not extract correct information.

82

Figure 9.4: Classification Table for Table 2 in Journal Paper No. 001

83

Chapter 10

Database System

We used Stanford NER to extract first five authors, city and state from papers,

wrote code to extract Title, Publication Date, Abstract, Journal, DOI and Type from

papers, and count if keywords defined by soil scientist appear in the paper. Then

we used the algorithm of Seth et al. [3] to convert the well-formed table (manually

created by myself) to tables. Finally, we inserted all information mentioned above

into Microsoft Access Database.

10.1 Database Summary

We stored the journal paper information in the Microsoft Access Database instead

of personal designed database system. The details of the system is shown in the

Figures 10.1 to 10.3. Table 10.1 indicates and describes columns stored in database

shown in Figure 10.1. And Table 10.2 indicates and describes columns stored

in database shown in Figures 10.2 and 10.3, where keywords are defined by soil

scientist and they are used to count the occurrences of terms that soil scientists

are interested in, including Conservation, No Tillage, Ridge Tillage, Mulch Tillage,

84

Strip Tillage, Reduced Till etc. in Keyword 1 list and Germanium, Gold, Hafnium,

Hassium etc. in Keyword 2 list.

Figure 10.1: Journal in Database

85

Figure 10.2: Keyword 1 in Database

86

Figure 10.3: Keyword 2 in Database

87

Table 10.1: Journal in Database

Field Name Description

ID Unique identifier assigned to each journal paper
Title Title of journal paper
Journal Journal Name
Year Publication Year
Author1 First author of the journal paper
Author2 Second author of the journal paper
Author3 Third author of the journal paper
Author4 Forth author of the journal paper
Author5 Fifth author of the journal paper
State Experiment State in U.S.
City Experiment City in U.S.
Abstract Abstract of the journal paper
DOI
Type Journal or Book

Table 10.2: Keyword 1 and Keyword 2 in Database

Field Name Description

ID Unique identifier assigned to each journal paper
Title Title of journal paper
Variable Name Variables count, where 1 indicates variable contained in the

journal paper, and 0 indicates variable not contained
in the journal paper

88

Chapter 11

Conclusion

My work consists of five parts: Web harvesting, Text Classification, Table Analysis,

Named Entity Recognition and Database System Build. We built a web crawler

to download soil science journal papers and machine learning based system.

After converting downloaded journal papers from PDF to TXT format, I used

text classification to identify the section or paragraph in a paper that may be of

interest to users based on their own search interest. Then I used Named Entity

Recognition to extract author and experiment location from paper to store them

in data system. I followed Seth et al.’s well formed table requirement and create

tables in CSV format manually and used his program to store the table in a

queryable machine readable format. Finally, I populated a relational database with

information automatically extracted from journal papers collected from internet

resources. The users can query and search key words or highlight some section or

paragraph in the paper, then the system will provide the relevant information or

recommend a paper which is of interest to users. This system will make future

queries more efficient.

89

Chapter 12

Future Work

The future work is designed to perform comprehensive literature reviews for

scientists at any stage in a user-friendly way [1]. It will permit the user to filter

and search thousands of scientific articles using a simple user interface. In the

interface, the user can then quickly browse the sentences or paragraphs with

detected keywords or search history, open the full-text article, when required,

and convert tables conveniently from PDF files to Excel sheets, and store in the

queryable database. The potential work we can do to allow the user-friendly,

efficient, and automated extraction of meta-data from full-text articles, which can

aid in summarizing the existing literature on any topic of interest are as follows.

12.1 Text Extraction

PDF (Portable Document Format) files are a type of files developed by Adobe in

order to enable the creation of various forms of content. Particularly, it allows a

consistent safety regarding the change in its content. A PDF file can host different

types of data: text, images, media, etc. It is a tag-structured file which makes it

90

easy to parse it just like an HTML page. However, working with PDFs is difficult

due to the extreme flexibility given by the PDF format. The main problem is that

PDF was never really designed as a data input format, but rather, it was designed

as an output format giving fine grained control over the resulting document. At its

core, the PDF format consists of a stream of instructions describing how to draw

on a page. In particular, text data isn’t stored as paragraphs, or even words, but as

characters which are painted at certain locations on the page. As a result, most

of the content semantics are lost when a text or word document is converted to

PDF - all the implied text structure is converted into an almost amorphous soup of

characters floating on pages. Our mission was particularly difficult as we had to

process PDF documents coming from a variety of sources, with wildly different

styling, typesetting and presentation choices. Sometimes PDFs include extra spaces

between letters in a word. Reconstructing the original text is a difficult problem

to solve generally. In the future work, we could try to apply OCR techniques

and grouping or clustering algorithm which compares letter sizes, positions and

alignments in order to determine what is a word/paragraph [30].

12.2 Table Extraction

Table extraction from PDF and image documents is a ubiquitous task in the

real-world. Perfect extraction quality is difficult to achieve with one single out-of-

box model due to the wide variety of table styles, and the lack of training data

representing this variety. Meanwhile, building customized models from scratch

can be difficult due to the expensive nature of annotating table data.

In addition to the high-througput evaluation and categorization of scientific

articles, the conversion of tables from PDF files into processable file formats such

91

as comma- or tab-separated values files, i.e., *.csv or *.tsv, is often a tedious but in-

tegral part of literature reviews. While many tools allow the fast and fairly accurate

conversion of PDF files into Excel files, they often require a paid subscription for the

processing of more than a few files (e.g., https://smallpdf.com/, https://www.

adobe.com/acrobat/online/pdf-to-excel.html, and https://pdftables.com/),

are limited in input file numbers and therefore do not allow high-throughput ta-

ble extraction (e.g., https://pdftoxls.com/, https://docs.zone/pdf-to-excel,

and https://www.pdftoexcel.com/), lose table headings and footnotes (e.g., tab-

ulizer R package, and https://pdftoxls.com/) or require manual selection of

tables in a file and adjustment of the table format information (e.g., pdf text and

pdf data from pdftools R package which only extract the PDF file text or positional

information of words (e.g., Microsoft Excel).

For our project, we can try to use computer vision and machine learning

techniques to locate tables in PDF’s with a better recall than existing approach.

The potentail approach consisted of three main steps: 1. Use OCR contour analysis

to identify the characters in the image. 2. Run k-means on the locations of the

characters to generate bounding boxes that might contain a table. 3.Identify the

bounding boxes that contain tables using a CNN.

12.3 Algorithm

Deep learning neural networks are nonlinear methods. They offer increased

flexibility and can scale in proportion to the amount of training data available. A

downside of this flexibility is that they learn via a stochastic training algorithm

which means that they are sensitive to the specifics of the training data and may

find a different set of weights each time they are trained, which in turn produce

https://smallpdf.com/
https://www.adobe.com/acrobat/online/pdf-to-excel.html
https://www.adobe.com/acrobat/online/pdf-to-excel.html
https://pdftables.com/
https://pdftoxls.com/
https://docs.zone/pdf-to-excel
https://www.pdftoexcel.com/
https://pdftoxls.com/

92

different predictions. Generally, this is referred to as neural networks having a

high variance and it can be frustrating when trying to develop a final model to

use for making predictions. A successful approach to reducing the variance of

neural network models is to train multiple models instead of a single model and

to combine the predictions from these models. This is called ensemble learning

and not only reduces the variance of predictions but also can improve prediction

performance that are better than any single model. Techniques for ensemble

learning can be grouped by the element that is varied, such as training data, the

model, and how predictions are combined.

12.4 Software Engineering

We also plan to build a simple user interface and set up a process allowing the

extraction of tables and text easier instead of automating PDF data extraction,

fetching data, building model, recommendation and search, and creating machine-

readable data separately. That will also enhance user experience even without any

technical background.

93

Bibliography

[1] Erik Stricker and Michael Scheurer. “PDF Data Extractor (PDE) - A Free Web

Application and R Package Allowing the Extraction of Tables from Portable

Document Format (PDF) Files and High-Throughput Keyword Searches of

Full-Text Articles”. bioRxiv, 2021. 1, 12

[2] EMarshall IJ and Wallace BC. “Toward systematic review automation: a

practical guide to using machine learning tools in research synthesis”. Syst

Rev., 2019. 1

[3] George Nagy, David W. Embley, Mukkai Krishnamoorthy, and Sharad Seth.

“Clustering header categories extracted from web tables”. Proceedings of SPIE -

The International Society for Optical Engineering, 2015. 1, 3.3, 9, 10

[4] Tom Mitchell. “Machine Learning”. McGraw Hill, 1997. 2

[5] Rish. “An empirical study of the naive bayes classifier”. In IJCAI 2001 workshop

on empirical methods in artificial intelligence, pages 41–46, 2001. 2.1.4

[6] P. Domingos and M. Pazzani. “On the optimality of the simple bayesian

classifier under zero-one loss”. Machine learning, 29(2–3):103–130, 1997. 2.1.4

94

[7] Zainab Ghadiri Modarres, Mahmood Shabankhah, and Ali Kamandi. “Making

AdaBoost Less Prone to Overfitting On Noisy Datasets”. EasyChair Preprint

no. 2742, 2020. 2.2

[8] David H. Wolpert. “Stacked Generalization”. Neural Networks, 5(2):241–259,

1992. 2.2.1

[9] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization

of on-line learning and an application to boosting”. Journal of Computer and

System Sciences, 55:119–139, 1997. 2.2.3

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word

Representations in Vector Space”. ICLR (Workshop Poster), 2013. 2.3.1

[11] Jason Brownlee. How Do Convolutional Layers Work in Deep

Learning Neural Networks? https://machinelearningmastery.com/

convolutional-layers-for-deep-learning-neural-networks/, 2019. [On-

line]. 2.3.2

[12] Jason Brownlee. Deep Convolutional Neural Network for Sentiment

Analysis (Text Classification). https://machinelearningmastery.com/

develop-word-embedding-model-predicting-movie-review-sentiment/,

2017. [Online]. 2.3.2

[13] Jason Brownlee. How to Develop a Multichannel CNN Model

for Text Classification. https://machinelearningmastery.com/

develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/,

2018. [Online]. 2.3.3

https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://machinelearningmastery.com/convolutional-layers-for-deep-learning-neural-networks/
https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-review-sentiment/
https://machinelearningmastery.com/develop-word-embedding-model-predicting-movie-review-sentiment/
https://machinelearningmastery.com/develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/
https://machinelearningmastery.com/develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/

95

[14] Jason Brownlee. Sequence Classification with LSTM Recurrent Neural

Networks in Python with Keras. https://machinelearningmastery.com/

sequence-classification-lstm-recurrent-neural-networks-python-keras/,

2016. [Online]. 2.3.4

[15] Scikit-Learn. Working With Text Data. https://scikit-learn.org/stable/

tutorial/text_analytics/working_with_text_data.html. [Online]. 2.5.2

[16] Gao J., Pantel P., and Deng L. “Modeling Interestingness with Deep Neu-

ral Networks”. Proceedings of the 43nd Annual Meeting of the Association for

Computational Linguistics, 2014. 3.1

[17] Shen Y., He X., and Mesnil G. “A Latent Semantic Model with Convolutional-

Pooling Structure for Information Retrieval”. Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge Management

– CIKM ’14, page 101–110, 2014. 3.1

[18] Santos C. and Zadrozny B. “Learning Character-level Representations for

Part-of-Speech Tagging”. Proceedings of the 31st International Conference on

Machine Learning, ICML-14, page 1818–1826, 2014. 3.1

[19] Zhang X., Zhao J., and LeCun Y. “Character-level Convolutional Networks

for Text Classification”. Advances in Neural Information Processing Systems 28

(NIPS 2015), page 1–9, 2015. 3.1

[20] Zhang X. and LeCun Y. “Text Understanding from Scratch”. arXiv E-Prints,

2015. 3.1

https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://machinelearningmastery.com/sequence-classification-lstm-recurrent-neural-networks-python-keras/
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html

96

[21] Kim Y., Jernite Y., and Rush A. M. “Character-Aware Neural Language

Models”. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,

2016. 3.1

[22] Xiang Zhang, Junbo Zhao, and Yann LeCun. “Character-level Convolutional

Networks for Text Classification”. Proceedings of the 28th International Conference

on Neural Information Processing Systems, 2015. 3.1

[23] Jenny Finkel, Trond Grenager, and Christopher Manning. “Incorporating Non-

local Information into Information Extraction Systems by Gibbs Sampling”.

Proceedings of the 43nd Annual Meeting of the Association for Computational

Linguistics, pages 363–370, 2005. 3.2, 8, 8.2, 8.3

[24] Edward Loper, Ewan Klein, and Steven Bird. “Natural Language Processing

with Python”. O’Reilly Media Inc, 2009. 7.1.2.1, 8.2

[25] M. F. Porter. “An algorithm for suffix stripping”. Program: electronic library

and information systems, 14(3):130–137, 1980. 7.1.2.3

[26] Sebastian Raschka. “Naive Bayes and Text Classification: Introduction

and Theory”. http://sebastianraschka.com/Articles/2014_naive_bayes_

1.html, October 2014. 7.1.2.4

[27] A. Zevcevic. “N-gram based text classification according to authorship”. In

Student Research Workshop, pages 145–149, 2011. 7.1.2.4

[28] V. Keˇselj, F. Peng, N. Cercone, and C. Thomas. “N-gram-based author

profiles for authorship attribution”. In Proceedings of the conference pacific

association for computational linguistics, volume 3, pages 255–264. PACLING,

2003. 7.1.2.4

http://sebastianraschka.com/Articles/2014_naive_bayes_1.html
http://sebastianraschka.com/Articles/2014_naive_bayes_1.html

97

[29] I. Kanaris, K. Kanaris, I. Houvardas, and E. Stamatatos. “Words versus

character n-grams for anti-spam filtering”. International Journal on Artificial

Intelligence Tools, 16(06):1047–1067, 2013. 7.1.2.4

[30] Bogdan. What’s so hard about PDF text extraction? https://https://

filingdb.com/b/pdf-text-extraction, 2020. [Online]. 12.1

https://https://filingdb.com/b/pdf-text-extraction
https://https://filingdb.com/b/pdf-text-extraction

	Information Extraction and Classification on Journal Papers
	

	Contents
	Introduction
	Background
	Machine Learning
	Logistic Regression
	Support Vector Machine
	Linear SVM
	Kernel SVM

	Decision Tree
	Naive Bayes
	K-Nearest Neighbor
	Random Forest

	Ensemble Methods
	Majority Voting
	Bagging
	Boosting

	Deep Learning
	Embedding Layer
	1D-CNN
	Multi Channel CNN
	LSTM
	Character-Level CNNs

	Performance Evaluation Metrics
	Confusion Matrix
	True and False Positive Rates
	Accuracy, Precision, Recall and F measure
	Receiver Operator Characteristics (ROC)

	Input Data Representation
	Bag-of-Words model
	Term Frequency-Inverse Document Frequency (TF-IDF)

	Train/Test Data Split and k-fold cross-validation

	Related Work
	Deep Learning-Based Methods
	Named Entity Recognition
	Table Analysis

	Methods
	Data Statistical Description
	Web Scraping
	Procedure of Web Scraping
	Summary of Downloaded Papers

	Text Analysis via Machine/Deep Learning
	Data Preprocessing
	Clean Data
	Tokenization
	Stop Words
	Lowercase
	Stemming and Lemmatization
	N-Grams

	Fine Tuning Hyperparameters
	Logistic Regression
	SVM
	Decision Tree
	Naive Bayes
	K Nearest Neighbors
	Random Forest
	Adaptive Boosting

	Fitting Machine Learning Models
	Performance Evaluation
	Conclusion and Discussion
	Neural Networks

	Named Entity Recognition
	Purpose
	Procedure
	Result

	Table Analysis
	Program Output
	Well-Formed Table result
	NOT Well Formed Table result
	Discussion

	Database System
	Database Summary

	Conclusion
	Future Work
	Text Extraction
	Table Extraction
	Algorithm
	Software Engineering

	Bibliography

