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A METHOD FOR VISUALIZING  

WATER FLOW THROUGH MODIFIED ROOT ZONES 

Dallas M. Williams, M.S. 

University of Nebraska, 2021 

Advisor: Roch Gaussoin 

As the number of impervious surfaces in urban environments increases, the ability 

of modified root zones to infiltrate water is becoming more important. Current methods 

of tracing water flow through soil profiles include excavating large pits in situ or 

analyzing soil cores in the laboratory with computed tomography or magnetic resonance 

imaging. While useful, these methods may not be suitable for urban settings or practical 

in every laboratory. We propose a new method that is less invasive, does not require 

extensive technical equipment and can reliably trace water movement through the soil 

profile in order to calculate flow rate based on the advancement of the wetting front. It 

was also realized that recording soil resistance during sampling could provide a better 

understanding of soil conditions influencing water movement. In this study soil cores 30 

cm in length and 7.62 cm in diameter were obtained from golf course putting greens and 

green fluorescent water tracing dye was used in conjunction with UV light and time lapse 

photography to track movement of the wetting front. Images were processed with 

MATLAB and an algorithm was developed to quantify flow rates in mm sec-1. A soil 

sampler with a load cell sensor recorded the soil resistance during sampling. The flow 

patterns captured in this study illustrate the quick initial movement of water through 

 



ii 

 

preferential pathways and the slower absorption of micropores as infiltration progresses. 

This method has the potential to provide quality information on flow path development 

and evolution, changes in soil layering over time and flow rates during water infiltration. 
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INTRODUCTION 

Soil has been called the first filter of Earths water (Clothier et al. 2008). Soil 

filters water via infiltration, or the downward entry of water into the soil (Hillel, 2004).  

There has been significant research on water infiltration into agricultural soils (Feuki et 

al. 2012, Babaei et al. 2018, Skaalsveen et al 2019) because of intense soil management, 

high input of agro-chemicals and the importance of global food supply (Keestra et al. 

2016). However, as urban development and the amount of impervious surfaces continues 

to increase, proper water management in cities is becoming more important (Hamilton 

and Waddington 1999, Woltemade 2010, Armson et al. 2013, Ren et al. 2020). Urban 

soils are distinct from agricultural soils in that they often contain modified root zones 

either intentionally or because of topsoil removal during construction (Hamilton and 

Waddington 1999, Bigelow and Soldat 2013).   

Modified root zones are often constructed to minimize compaction risks and 

optimize water movement while supporting plant growth (Fisher, 2017). Modified root 

zones are typically used where highly trafficked native soils must support cultural 

activities and adequate plant growth. Popular examples of systems that rely on modified 

root zones include golf course putting greens, rain gardens, roof gardens and green roofs, 

street tree pits, and sports fields. The design of the root zone will depend on the expected 

levels of use (frequency and intensity), maintenance resources and management needs 

(DePew and Guise 2001). However, the designs considered most effective use tailored 

sand, silt, and clay particle sizes to ensure optimal water drainage and capillary retention 

important for plant growth (Wightman 1994).  
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Modified root zones that are sand based are known to withstand high intensity use 

and a wide range of weather conditions, making them ideal for sports fields and golf 

course putting greens (DePew and Guise 2001). The macropores created by sand particles 

result in high drainage and aeration capabilities but low water and nutrient holding 

capacities (Bigelow et al. 2001). Therefore, it is common for modified root zones to 

employ a hanging water column to increase water retention (Bigelow et al. 2001, 

Prettyman and McCoy 2003, McCarty et al. 2016). A hanging water column is created by 

textural discontinuities resulting from the presence of a fine-textured sand above a coarse 

gravel layer (Fisher 2017).  

Even when proper soil specifications are used to ensure high drainage and 

aeration, water infiltration into modified root zones can be affected by many factors. As 

turfgrass root zones age, organic matter accumulates, and water infiltration decreases 

(Lewis et al. 2010). The opposite has been found in home lawns, largely as a result of 

poorer soil physical properties post construction (Hamilton and Waddington 1999, 

Woltemade 2010). Infiltration and percolation can also be hindered by the formation of 

distinct soil layers, water repellant soils that are hydrophobic in nature and excessive 

thatch-mat accumulation.  

Over time, from natural settling and infiltrating water, fine soil particles like silt 

and clay can move deeper into the soil profile, deceasing macroporosity and creating 

distinct layers (Anderson et al. 2008, Lewis et al. 2010, McCarty et al. 2016). A decrease 

in root zone oxygen can lead to anaerobic conditions resulting in a hydrogen sulfide rich, 

toxic black layer (Woodham 2013, Berndt 2016). Iron layers form when iron oxidizes 
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where a saturated sand layer overlies a drier gravel layer often resulting in a cemented 

layer (Obear et al. 2014). The formation of these soil layers creates a barrier which 

impedes water movement.  

Water repellant soils, or hydrophobic soils, are characterized by the presence of 

organic, waxy materials that coat soil particles and resist surface infiltration until much of 

the soil becomes wetted (Bauters et al. 1998, Dekker et al. 2001, Nektarios et al. 2007). 

Water repellency is especially common in sandy soils because of its low surface areas, as 

well as turfgrass systems because of high organic matter production (McCarty et al. 

2016). Water repellant soils can induce unstable wetting fronts leading to losses via 

preferential flow (Hendrickz et al. 1993, Bauters et al. 1998, Carrillo et al. 2000, Ritsema 

et al. 2004, Nimmo 2012). Preferential flow refers to the rapid transport of water and 

solutes through a small portion of the soil profile typically via cracks in soil structure, 

worm holes, root channels and/or large macropores (Merdun et al. 2008, Allaire et al. 

2009).  

When organic matter accumulates on the surface of turfgrass soils it is referred to 

as thatch. It is widely known that as thatch accumulates air-filled porosity and infiltration 

rates decrease (Gaussoin et al. 2007). Excess thatch seals the soil surface leading to turf 

stress and possible black layer formation (Cockerham et al. 2012). The afore mentioned 

factors that inhibit percolation can easily lead to anaerobic soil conditions that deprive 

plant roots of oxygen and give rise to poor turf growth, health, and development (DePew 

and Guise 2001, Fisher 2017).   
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 McCarty et al. (2016) has stated the key to success for commercial turfgrass 

facilities is proper water management. There are numerous economic and environmental 

implications linked to a soils ability to infiltrate and percolate water (ASTM 2003, 

Bevard 2009, Filipovic et al. 2015, McCarty et al. 2016, Hopmans et al. 2017).  Water 

infiltration and the subsequent transfer of water in soils, known as percolation, can be 

considered the interaction between matrix flow and preferential flow (Jarvis 2007, Legout 

et al. 2009, Zhang et al. 2016). Soil matrix flow describes water movement through the 

bulk soil body and is important for plant growth because it becomes plant available water 

(Zhang et al. 2017). Flow through preferential pathways is the quick vertical movement 

of water that has been shown to increase the risk of solute transport and groundwater 

contamination (Hendrickz et al. 1993, Flury et al. 1994, Ritsema et al. 2001) and create 

spatial variability of soil water affecting plant growth (Bauters et al. 1998, Schneider et 

al. 2018).   

Dyes have long been used to stain and analyze flow paths and soil structure (Flury 

et al. 1994, Noguchi et al. 1999, Anderson et al. 2008, Kodesova et al. 2011, Schneider et 

al. 2018). By excavating the soil to examine flow paths, dye tracing provides greater 

insight into the multi-dimensional flow domain (Wang et al. 2006). After excavation, 

photographs are typically taken of the dye paths and analyzed with image analysis 

software (Hendrickz et al. 1993, Bauters et al 1998). The main disadvantage to dye 

tracing in situ is that excavating the soil is labor intensive and highly disruptive, therefore 

repeated measurements are limited and difficult to obtain at the same site (Flury et al. 

1994, Anderson et al. 2008, Mossadeghi-Bjorklund et al. 2018). 
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Dye tracing can also be done in the laboratory with packed or undisturbed soil 

cores (Kohne and Mohanty 2005). In the lab, the wetting front can be tracked with time 

lapse photography or video recordings of flow paths into cores with transparent casings 

(Hill and Parlange 1972, Bauters et al. 1998, Allaire et al. 2009) or with more technical 

instruments like magnetic resonance imaging and x-ray computed tomography (Luo and 

Lin 2009, Kodesova et al. 2011, Sammartino et al. 2012). While computed tomography 

and other high-resolution scanners enable reconstruction and visualization of soil 

structure in an intact soil core (Kaestner et al. 2008, Luo et al. 2008), these machines can 

be quite expensive and may not be practical in every laboratory.   

 To date, the information gained from dye tracing has been limited to qualitative 

analysis, and some quantitative analysis, of soil structure, flow paths and/or pore 

characteristics (Allaire et al. 2009). Percolation or flow rate has been confined to solute 

transport and break through curves (Zhou and Selim 2001, Tonguc and Merdun 2009, 

Stumpp et al. 2012, Hassan et al. 2010, Hassanpour et al. 2019) and outflow rates (Kohne 

and Mohanty 2005, Filipovic et al. 2015). No other study has attempted to directly 

quantify rate of water flow through the soil profile. However, such information would be 

useful in understanding how water moves through the profile and soil layers. More 

specifically, deeper knowledge about how management techniques can affect water 

movement and soil layer formation could be gained.  

 We propose an improved laboratory method for tracing water movement through 

modified rootzones that is reliable, efficient, less invasive and does not require extensive 

technical equipment. Soil cores 30 cm x 7.62 cm were used in combination with a 
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fluorescent dye tracer and UV light to study water infiltration. Soil core length matches 

the depth of the primary root zone in a two tier putting green (USGA, 2018). Water 

movement was captured using time lapse photography and images analyzed with 

MATLAB software to derive percolation rate based on advancement of the wetting front 

highlighted by the fluorescent water tracing dye. 

 Measurement of water movement through different soil layers by quantifying 

percolation rate in mm sec-1 rather than cm hr-1 (Johnson 1963, ASTM 2003) will 

increase precision. We hope to better predict water movement in modified rootzones. The 

goal of this study was to develop a new method to quantify water percolation rates in mm 

sec-1 to distinguish different soil layers of a modified rootzone. The objectives of this 

research was to 1) develop a method to visualize the flow of water through modified root 

zones without extensive technical equipment, 2) develop an algorithm to accurately and 

reliably follow the movement of the wetting front and 3) based on the advancement of the 

wetting front, calculate percolation rate in mm sec -1. During the project a fourth 

objective was added to 4) simultaneously measure soil resistance when obtaining column 

samples.  
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MATERIALS AND METHODS 

Experimental Location 

 Soil cores were obtained from the practice putting greens of two City of Lincoln 

public golf courses, Mahoney Golf Course (Mahoney) and Holmes Park Golf Course 

(Holmes), and one experimental putting green on the East Campus of the University of 

Nebraska (East Campus) in Lincoln, NE. All putting greens sampled were constructed 

with an intermediate layer, however, they differed in green age, root zone composition, 

and management styles (Table 1). The putting green on East Campus is an experimental 

plot and the specific management practices change depending on the research conducted. 

The managers at East Campus maintain the plots at putting green quality. Soil samples 

were collected at all locations in Fall 2020.  

 

 

  



8 

 

 



9 

 

 

Soil Probe Apparatus 

Multiple attempts were made to build a soil sampler that was as simple as possible 

to meet our original objectives. Initially, samples were taken by pounding a mylar 

cylinder protected in PVC casing with a sledgehammer. This method proved very 

difficult to reach the desired 30 cm depth, especially when the root zone was very dry. 

The sledgehammer method was quickly abandoned, and a soil probe was fashioned out of 

a standard cup cutter. Also, a stainless steel cylinder was built to replace the PVC casing 

(Figure 1). The steel cylinder was more durable and better protected the soil core from 

disturbance compared to the PVC casing. There were two holes near the top of the steel 

cylinder where a hook could be placed to remove the cylinder from the putting green. 

The cup cutter soil probe was able to reach the desired 30 cm depth and was used 

to take many samples. However, the quality of the soil cores varied depending on the 

person taking the sample. It was realized that people with longer and/or stronger arms 

needed fewer strikes with the cup cutter in order to drive the cylinder 30 cm which, in 

turn, produced lower variability among similar samples. This did not meet our criteria of 

a method that is reliable and efficient. Therefore, a soil probe was built using a truck jack 

and was powered with a handheld, cordless power drill (Figure 2).  
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The truck jack was turned upside down to drive the soil core into the root zone. 

The truck jack powered soil probe was anchored to the ground with four augers that were 

inserted into place with the handheld drill. This probe worked very well and produced 

consistent soil cores, regardless of who was taking the sample. After approximately 40 

samples were taken with this probe, the jack broke, and it could no longer be used. 

Another soil probe was built using a heavy-duty jack that could withstand more vigorous 

use. This probe was used with great success, but there were still ways to optimize the soil 

probe. One area for improvement was the actuation method, which could be made more 

consistent with a motor. Further, it was realized that if the force being applied to the soil 

core during sampling could be recorded, this information could be used to further 

examine soil profile layering and its effect on water movement.  

An automated soil probe was built by the Programming Instrumentation and 

Electronics (PIE) group within the Biological Systems Engineering (Programming 

Instrumentation and Electronics (PIE) | College of Engineering (unl.edu)) department at 

the University of Nebraska, Lincoln (Figure 3).  The probe is approximately 1.3 m tall 

and .5 m wide. It is equipped with a custom built controller box that features both touch 

screen display and physical switches to operate the soil probe and monitor the data during 

sampling (Figure 4). Just below the controller box is the main unit which houses the 

connectors for the controller box, batteries and motor driver (NovalithIC BTS 7960, 

Infineon Technologies, Neubiberg, Germany). On either side of the main unit there is a 

12V battery. This probe is mounted on wheels for easy transport and requires augers to 

anchor the probe while taking a soil sample. The soil sampler was programmed by the 
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PIE group of the Biological Systems Engineering Department at UNL and was based on 

an Arduino microcontroller.  

A significant improvement of this soil probe was the FA-HD-2200-24-H-15 linear 

actuator (Firgelli, Ferndale, WA) and a LC202-5K load cell sensor (Omega, Norwalk, 

CT). The linear actuator used a hall effect encoder to control speed and direction, as well 

as record its position within the profile. The max load of the actuator was 2,200 lbs. The 

load cell sensor was mounted to the tip of the actuator and recorded the applied force in 

compression (pushing the soil core into the ground) and tension (removing the soil 

sample from the ground). The steel cylinder that holds the mylar cylinder sits just below 

the load cell sensor. The data recorded from the load cell sensor during sampling was 

plotted in real-time and saved to an SD card for later analysis. An amplifier (HX711, 

Avia Semiconductor, Xiamen, P.R. China) was used to read the data from the load cell.  
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Soil Sample Collection 

 Soil samples were collected in transparent, mylar cylinders 30 cm in length and 

7.62 cm in diameter. Prior to sampling, the insides of the mylar cylinders were treated 

with a hydrophobic ceramic coating called Nano Bond (Nano Bond, USA). Each cylinder 

received two coats of the polymer. Two coats are better than one to ensure complete 

coverage and there was no difference between two and three coats. The hydrophobic 
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coating was used to resist water from adhering to the cylinder walls and promote uniform 

infiltration.  

Before sampling, the soil probe must be anchored down to withstand high 

resistance profile layers. A handheld drill is used to insert and remove the augers into 

anchor spots on the sampler. Cylinders were put inside the stainless steel sleeve in order 

to eliminate damage during sampling (Figure 5). The automated soil probe was used to 

take five samples per putting green (Figure 6) to a depth of 30 cm. Cores were taken to a 

depth of 30 cm because this is the depth of a USGA putting green at construction. The 

disturbance to the putting green was minimal. The area where the core was removed was 

backfilled with sand and the holes left by augers were easily repaired, similar to ball mark 

repair (Figure 7).  Soil cores were capped on both ends to minimize disturbance during 

transportation to the laboratory and subsequent storage. Soil cores were stored at 4° C 

until analysis. Soil cores should not be stored below 0° C, as freezing and thawing highly 

disrupts soil structure and produces flow pattern not indicative of the original root zone.  
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Tension Table Apparatus 

 Golf course putting greens employ a hanging water column to create uniform 

water content and retain moisture and nutrients (Bigelow et al. 2001, USGA 2002, 

McCoy and McCoy 2009). A hanging water column forms when a fine textured soil 

overlies a coarse textured soil and creates an interface that prevents the movement of 

water until much of the overlying soil has been wetted (Bigelow et al. 2001, McCarty et 

al. 2016). Consequently, at the interface, a small negative tension exists (Bigelow et al. 

2001). As such, the hanging water column technique was used in the laboratory to mimic 
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this tension. A tension table, able to hold only one soil core at a time, was constructed per 

Dane and Hopmans (2002) to apply suction to the bottom of the core (Figure 8). Tension 

should be set at -3.33 cm, which is the negative tension being applied to a putting green 

root zone at the perched water table interface (30 cm) as measured by Waltz Jr. et al. 

(2003). 

      



21 

 

Dye Tracing   

Soil samples were analyzed in a dark room at the University of Nebraska, Lincoln 

(UNL). The dark room is a small room with no windows. Inside this room is a tension 

table with time lapse photography cameras on either side, facing each other, in order to 

capture water movement on both sides of the soil core (Figure 9). A large UV light was 

situated above the table and cameras to minimize shadowing as much as possible. A 

mylar cylinder with a black cap that had a single hole drilled into the center was used to 

apply dye onto the soil surface. A ring stand with an adjustable clamp was used to hold 

the dye delivering cylinder above the soil core (Figure 10).  

 To visualize water flow through the transparent soil core, a UV fluorescent water 

tracing dye (Factory Direct Chemicals, USA) was used. The dye is commonly used in 

plumbing for leak detection, flow mapping, rate and volume analysis, and retention time 

studies, among other applications. The dye is diluted with water to a 1:10 ratio. A green 

dye was used for tracing water movement.  

Water movement was captured using time lapse photography. Two cameras were 

used to capture flow on the left and right side of the core. This was done to strengthen 

data analysis and in case one side of the core resisted wetting and could not be used for 

image analysis. Cameras should be placed as close to the tension table as possible while 

still maintaining the full soil core in the frame.  

Soil cores were saturated with tap water for 24 hours prior to the experiment. The 

bottom of the soil core was fitted with cheese cloth to retain soil during saturation. It is 
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important to saturate the cores from the bottom up to ensure all soil pores become filled 

with water and all air is expressed. While the soil cores are saturating, the tension table 

can be prepared per Dane and Hopmans (2002). The tension table should be set to -3.33 

cm (Waltz Jr. et al. 2003). A bentonite clay slurry was used to prevent rapid, preferential 

edge flow from occurring (Blanco-Canqui et al. 2002). The consistency of the slurry is 

highly dependent on the type of soil. A preliminary study was performed to determine the 

ratio that would resist preferential edge flow but not hinder water percolation. For this 

high input turfgrass system a ratio of 1:7 was used. 

Once the soil cores have saturated for 24 hours set the core in the center of the 

tension table, directly above the hole that applies tension. Next, quickly apply water to 

the top of the core. Allow this water to infiltrate while making sure the core is as straight 

as possible and is fully captured by the cameras. A straight soil core and quality image 

are crucial for image processing. When the water has infiltrated, but still saturating the 

surface, apply the bentonite clay slurry to the interface of the soil surface and cylinder 

wall.  

Immediately after applying the clay slurry, start recording with time lapse 

photography. For this experiment, the time lapse was set to take one picture every two 

seconds. Pour 5 cm head of green fluorescent dye into the applicator and allow dye 

solution to completely infiltrate into the soil core. When infiltration and percolation have 

ceased, stop recording. Once finished, the soil core may be cut open to visually examine 

internal flow paths.  
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Image Processing and Analysis 

 Images were processed and analyzed with MATLAB R2021a (MATLAB, Natik, 

MA). Important parameters such as number of frames, frame height and frame width 

were defined according to the video camera configuration. The video stream was read 

into MATLAB as a 4-D numeric array consisting of the red, green and blue (RGB) bands 

of each frame and the frame dimensions. The first image frame, with no fluorescent 

signal, was extracted and used as a reference to define the background. A loop was 
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created to read individual image frames that were compared to the first reference frame. 

This is how progression of the wetting front was tracked.  

The area of interest was defined by selecting the pixel positions of the top, left 

corner of the column and creating a rectangle that surrounds the soil core. The area of 

interest was treated as a binary image. Pixels outside the area of interest were set to zero, 

and pixels inside were set to one. A pixel threshold was determined that would 

appropriately follow the wetting front. For example, in this study a threshold of 0.40 was 

used to indicate that when 40% of a row was green pixels, that row should be defined as 

the wetting front. This threshold was empirically determined based on a visual analysis of 

the dye tracing videos where it appeared the wetting front made up 40% of the width of 

the soil core. This threshold was heuristic in nature and could change depending on the 

flow pattern of the wetting front for each soil core. The wetting front was associated with 

the most downward point of water movement (Bauters et al. 1998). 

The first step of image analysis was to extract the Red (R), Green (G) and Blue 

(B) bands from the image. Next, an excessive greenness index (ExG, defined as (2 × G – 

R – B) / (R + G + B)) was calculated. ExG was widely used in image processing 

applications in agriculture to segment green fresh vegetation from a complex background 

(Ge et al., 2016, Yuan et al., 2019).  In this research, it was found that ExG was also 

effective in identifying the green, fluorescent pixels. An empirically-determined 

threshold on 1.0 was used to segment the ExG image into a binary image, with white 

pixels representing green, fluorescent pixels and black pixels as background. Similar to 

the wetting front threshold, the ExG threshold was also heuristic in nature and could 
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change depending on the intensity of the green, fluorescent dye for each soil core. The 

last step of image analysis was to use row summing to count the number of pixels in each 

row to determine if it met the threshold used to define the wetting front. A loop was 

created to read each image frame and tack the movement of the wetting front.  

The wetting front position as a function of frame number can be used to estimate 

the flow rate. The change in pixels from frame to frame represents the length of 

downward diffusion. The pixel-based metric can be converted to a length based metric 

using a calibration factor (Equation 1). Multiply the change in pixels by the calibration 

factor to obtain a length in mm. However, this is the length of downward diffusion for 

.033 (or 1/30) seconds, because the video rate is 30 frames per second. The length of 

downward diffusion must be multiplied by 30. This result is the length of downward 

diffusion in mm sec-1, or flow rate.  

Equation 1.  

𝐶𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
𝑇𝑟𝑢𝑒 ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒 (𝑚𝑚)

𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑓 𝑜𝑏𝑗𝑒𝑐𝑡 𝑖𝑛 𝑓𝑟𝑎𝑚𝑒
 

        

Soil Resistance Data 

Soil resistance data was collected in the field during sampling. A LC202-5K load 

cell sensor (Omega, Norwalk, CT) mounted to the tip of the actuator recorded the applied 

force in compression (pushing the soil core into the ground) and tension (removing the 

soil sample from the ground). Measurements were made in real time and were reported in 
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units of pounds of force. The measurements were converted from pound-force to mega 

pascals (MPa) for analysis. 

Statistical and Data Analysis 

Percolation rate data collected from the left and right side of the soil core were 

combined to form one data set. This was done because spatial variability of soil physical 

properties decreases as samples are taken in closer proximity to one another (Awal et al., 

2019), especially on golf course putting greens with uniform, sandy soil profiles.  

Measurements for percolation rate and force were taken in real-time. There was 

no set time or depth interval for which each measurement was taken. Therefore, to 

compare force and percolation rate measurements, each data set was transformed so that 

only observations with both percolation rate and force measurements were used for 

analysis. This transformation was performed in SAS 9.4 (SAS Institute, Cary, NC) with 

PROC SORT and PROC MEANS functions. First, working with two separate data sets, 

each depth measurement was rounded up to the nearest tenth and the mean was calculated 

for rate and force values. Next, the two datasets were merged for rate and force by 

combining them across location, replicate and rounded depth. Finally, a version of the 

combined dataset that removes all observations that do not have both rate and force 

measurements was created.  

Data was analyzed in SAS with PROC GLIMMIX. Regression analysis was 

conducted on percolation rate vs depth and force vs depth. Depth and location were 

treated as fixed effects and a random statement was included for variability among 
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replications. For both soil resistance and rate data, initial models were fit up to a third 

order polynomial of depth, with interactions included to evaluate if there were 

significantly different linear, quadratic, or cubic slopes across the locations. An 

individual location effect was included to test for significantly different intercept values. 

Terms were determined to be significant at p ≤ 0.05, and terms that were not significant 

were removed from the model.  

Final models for soil resistance and percolation rate had significant slopes up to 

cubic (𝑑𝑒𝑝𝑡ℎ3) term. The soil resistance model had significantly different slopes and 

intercepts across the linear, quadratic, and cubic terms. For the percolation rate models, 

only the intercept and linear slopes were significantly different across locations. 

Therefore, slopes for the quadratic (𝑑𝑒𝑝𝑡ℎ2) and cubic (𝑑𝑒𝑝𝑡ℎ3) terms were the same for 

the three percolation rate regression lines. The regression equations used for soil 

resistance are shown in Equation 2 and the equations used for percolation rate are shown 

in Equation 3.  

Equation 2. 

           𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑜𝑟𝑐𝑒̂
𝐸𝑎𝑠𝑡 𝐶𝑎𝑚𝑝𝑢𝑠 =  −275.50 + 182 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 + 0.7140 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 − 0.1279 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑜𝑟𝑐𝑒̂
𝐻𝑜𝑙𝑚𝑒𝑠 =  −176.58 + 181.31 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 − 3.5039 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 + 0.1113 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑜𝑟𝑐𝑒̂
𝑀𝑎ℎ𝑜𝑛𝑒𝑦 =  −87.6177 + 89.4375 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 + 5.3245 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 − 0.1595 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 

Equation 3.  

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑒̂
𝐸𝑎𝑠𝑡 𝐶𝑎𝑚𝑝𝑢𝑠 = 41.4426 + 8.3821 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 − 0.7861 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 + 0.01644 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑒̂
𝐻𝑜𝑙𝑚𝑒𝑠 = 10.5060 + 10.3241 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 − 0.7861 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 + 0.01644 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 
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𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑅𝑎𝑡𝑒̂

𝑀𝑎ℎ𝑜𝑛𝑒𝑦 = 17.5632 + 9.3883 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑 − 0.7861 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑2 + 0.01644 ∗ 𝐷𝑒𝑝𝑡ℎ𝑅𝑜𝑢𝑛𝑑3 

The R2 value for each data set was calculated in SAS with PROC IML. The 

adjusted R2 value was used for analysis because there are additional polynomial terms 

that fit beyond linear. The adjusted R2 values were calculated using Equation 4. 

Differences between locations were examined by testing significance in 2.5 cm 

increments. 

Equation 4.  

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛 − 1

𝑛 − 𝑝 − 1
 

Where n = number of observations, and p = number of coefficients in regression 

models. 

RESULTS AND DISCUSSION 

 

Visualizing Water Movement in Modified Root Zones 

Figures 11-13 show screen captures documenting the progression of the wetting 

front for all 5 replications (reps) at each location. The dye patterns in the images illustrate 

the variability of water movement in golf course putting greens, as no two reps displayed 

the same flow patterns, even within the same location. The flow patterns of the left and 

right sides of the soil core for each replication were similar to one another in the depths 

reached by the dye and in the areas that resisted wetting. Flow paths visualized were 

continuous down the length of the soil core. This is in agreement with Shein et al. (2009) 

who noted similar uninterrupted flow paths in sandy soils. 
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 Similar to previous dye tracing experiments in sand dominated soils, dye 

coverage decreased with depth in all soil cores, at all locations (Nektarios et al. 2007, 

Zhang et al. 2021). The depth reached by the dye at the end of the experiment was similar 

for all locations. The depth of dye reached in this study ranged from 20-27 cm. This 

matches the depth reached in dye tracing experiments (22-27 cm) reported by Nektarios 

et al. (2007) under various aeration treatments in golf course putting greens. 

Preferential flow was visible at all locations and finger flow formation was visible 

in the top 15 cm. There were two or three distinct finger paths that developed in the soil 

cores at each location. In soils with high sand content and poor structure, the wetting 

front may become unstable and thin finger flow paths start to form (Flury and Fluhler 

1994). Typically, greater initial water content, especially in sandy soils, creates a more 

stable wetting front (Geiger and Dunford 2000, Merdun et al. 2008, Gerke et al. 2015). 

Using saturated soil cores could explain the formation of only a few finger flow paths in 

each replication.  
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Figure 11. Screen shots of the progression of the wetting front for the left and right sides of 

replication (rep) 1-5 at East Campus research plots at the University of Nebraska in Lincoln, 

Ne. Scale is in centimeters.  
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Figure 12. Screen shots of the progression of the wetting front for the left and right sides of 

replication (rep) 1-5 at Holmes golf course in Lincoln, Ne. Scale is in centimeters.  
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Figure 13. Screen shots of the progression of the wetting front for the left and right sides of 

replication (rep) 1-5 at Mahoney golf course in Lincoln, Ne. Scale is in centimeters.  
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Rapid, finger flow has been widely reported in golf course putting greens 

(Nektarios et al. 2002, Nektarios et al. 2007, Larsbo et al. 2008, Song et al. 2014,). In turf 

systems preferential flow paths can develop from water repellant sands, soil layer 

formation, and/or macropores created after aeration events that expose soil to the surface 

creating rapid points of entry for infiltrating water (Hill and Parlange 1972, Nektarios et 

al. 2002, Nektarios et al. 2007, Allaire et al. 2009). Nektarios et al. (2002) stated finger-

flow was in fact the primary mechanism for water movement in USGA putting green 

profiles. Similarly, Flury et al. (1994) suggested that in poorly structured, sandy soils the 

presence of preferential flow paths is often seen as the rule rather than the exception.  

As infiltration progressed, finger paths that started very thin widened out and 

became less pronounced. At the end of the dye tracing experiment some preferential 

finger paths were no longer visible. Furthermore, some areas that resisted wetting during 

initial infiltration, became wetted as infiltration progressed and were no longer visible at 

the end of the dye tracing experiment. Yet, the deepest depths reached by the dye was 

still from quick moving preferential flow paths. 

Rapid water movement through large macropores dominated the beginning of 

water infiltration into the putting greens. As infiltration continues, horizontal movement 

of water starts to enlarge finger size (Kawamoto et al. 2004) and smaller pores in the bulk 

of the soil matrix start to absorb water (Schneider et al. 2018), especially in the top soil. 

This masks the finger flow paths that were visible early during infiltration, resulting in 

the appearance of a uniformly saturated soil profile at the end of the dye tracing 

experiment, especially in the 0-15 cm depths. Similar to this study, Zhang et al. (2021) 
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also found that soil matrix flow contributed to more dye staining towards the surface 

compared to preferential flow paths.  Water movement in soils has been said to be a 

combination of soil matrix flow and preferential flow (Legout et al. 2009, Zhang et al. 

2016). 

The dye patterns visualized in this study are similar to those reported in other 

studies for sand based soils (Morris and Mooney 2003, Nektarios et al. 2007, Kodesova 

et al. 2011, Lichner et al. 2011). The dye patterns visualized in this study are contrasting 

with those reported by Mossadeghi-Bjorkland et al. (2018) for a clay soil that displayed 

predominantly preferential flow and very little soil matrix infiltration. Such stark 

differences would be expected due to differences in soil texture between the two studies.    

East Campus displayed the most uniform wetting front among all three locations 

(Figure 11). The more uniform wetting front at East Campus is likely a result of frequent 

aeration and topdressing events that have increased soil macroporosity. It is known that 

frequent aeration and topdressing events can improve water movement in golf course 

putting greens (Sorokovsky et al. 2006, Nektarios et al. 2007, Schmid et al. 2014, Craft et 

al. 2016). 

In all East Campus reps, infiltration in the top 0-2.5 cm was very uniform. 

However, at Holmes and Mahoney finger flow was visible starting from initial infiltration 

(0-2.5 cm). Preferential flow paths forming near the surface is a result of water flowing 

through macropores in a hydrophobic organic layer (Schneider et al. 2018). This refers to 

the thatch mat layer in turfgrass systems which has been shown to inhibit water 

infiltration and initial percolation (Gaussoin et al. 2013, Schmid et al. 2014). 
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Hydrophobic soil surfaces often produce unstable wetting fronts leading to water 

movement via preferential flow paths (Bauters et al. 1998, Kim et al. 2005, Nektarios et 

al. 2007) 

 In all replications at Holmes there was an area that resisted wetting at 17-20 cm. It 

is possible a hardened layer formed from repetitive aeration events at a consistent depth. 

Over time, this hardened layer may become too compact and resist water infiltration 

(Brye et al. 2005). Mossadeghi-Bjorkland et al. (2018) also reported an area in the subsoil 

(20-30 cm) that resisted infiltration that they attributed to a compaction layer. Lateral 

flow was visible in reps 1,2, and 3 (Figure 12). Lateral flow was characterized by flow 

patterns that appeared to sweep across the soil core and move more horizontally than 

vertically. These were the only soil cores that displayed this type of flow pattern.   

All soil cores were cut open after dye tracing experiment to examine internal flow 

paths and assess if preferential edge flow had occurred (Figure 14). Preferential edge 

flow is an artifact of poor soil sampling when the soil sample and cylinder wall are not in 

close contact. Flow patterns indicative of preferential edge flow are deep flow paths 

concentrated near the cylinder walls with very little dye infiltration in the center of the 

core. A visual assessment showed that no preferential edge flow occurred in the soil cores 

(Figure 14).  

Some flow paths were visible on the inside of the soil core that were not visible 

on the outside wall. Further discrediting the possibility of preferential edge flow. Similar 

flow paths that resisted contact with the cylinder wall were reported by Hill and Parlange 

(1972). Many of the soil cores displayed internal finger flow paths, a few centimeters 
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wide, indicating preferential flow via holes made by aeration tines. This was especially 

evident in Holmes rep 4 (Figure 12). Nektarios et al. (2007) also noted similar stained 

finger flow paths caused by aeration holes after dye tracing experiments.  

Calculate a Rate Based on the Movement of the Wetting Front 

A flow rate was able to be calculated in mm sec-1 based on the advancement of 

the wetting front. Table 2 shows predicted rates based on the regression analysis 

equations for each location. The flow rates calculated at 2.5 cm increments for 30 cm 

depth, ranged from 20.06 to 67.23 mm sec-1 (Table 2). There were statistical differences 

among locations in the top 0-20 cm only. East Campus had significantly higher flow rates 

compared to Holmes. Mahoney was not statistically different from Holmes or East 

Campus.  

Regression analysis showed flow rate was not correlated with depth (R2
adj.

 = 

0.152). Factors such as soil structure, texture (root zone composition), and organic matter 

content influence particle size distribution and pore characteristics and play a greater role 

in water movement throughout the profile compared to depth sampled (Bigelow and 

Soldat 2013).  

 At each depth calculated, East Campus always had the highest flow rates (Figure 

15). For all locations, the lowest flow rate was in the 0-2.5 cm depth (Table 2). Organic 

matter in the thatch layer has been shown to inhibit water infiltration and initial 

percolation (Schmid et al. 2014, Gaussoin et al. 2013).  For all locations, the 
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Figure 14. After the dye tracing experiment soil cores were cut open to examine 

internal flow paths for all locations- East Campus, Holmes, and Mahoney, and 

for all replications 1-5 (indicated in the corner of each picture). 
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highest rate was between 18-23 cm (Table 2). This depth corresponds to the area just 

below depth of aeration, where a hardpan layer is likely to form. The quick water 

movement at this depth represents the breakthrough of water past the hardened layer. 

There was a greater increase in flow rate from 0-15 cm compared to the decrease 

in rate from 15-30 cm. The large increases in flow from centimeter to centimeter 

indicates an area of quick water movement that is a direct result from aerification of the 

upper 15 cm. The process of physically opening the soil surface with aeration, combined 

with frequent topdressing applications, reduces bulk density and increases porosity which 

improves water movement (Rowland et al. 2009, Gaussoin et al. 2013).  

This method may prove useful in quantifying preferential flow rates, which is a 

measurement that has classically been inferred (Allaire et al. 2009). No other study has 

been found that has attempted to calculate a percolation rate based on the real-time 

advancement of the wetting front. Therefore, no previous rates exist to compare with the 

rates calculated in this study. Future research should be done using an established method 

of calculating infiltration rates (i.e., saturated hydraulic conductivity) with the same 30 

cm soil cores used in this study to correlate measured rates to determine validity of this 

method.  
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Soil Resistance 

Results for soil resistance measurements are in Table 3. There was an increase in 

cumulative force with depth at all locations (Figure 16). Location was highly significant 

for all interactions. Regression analysis showed resistance was highly correlated with 

depth (R2
adj.

 = 0.976). This agrees with previous research that shows as profile depth 

increases, so does the force required to penetrate the soil (Carter 1988, Mossadeghi-

Bjorklund et al. 2018, Fashi et al. 2019).    

Across all locations, soil resistance remained below 0.30 MPa in the top 0-5 cm 

(Table 3). These measurements are similar to those recorded by de Koff et al. 2010 for 

compost mixed with waste foundry sand. Similarities indicate a layer of high organic 

content. In turf systems this is referred to as the thatch mat layer and it is characterized by 

its high organic matter content (Gaussoin et al. 2013). Organic matter is also known to 

decrease soil bulk density (Raturi et al. 2005, Stock and Downes 2008), which is often an 

indicator of the soils resistance to penetration (Hernanz et al. 2000).   

There were no differences among location from 0-15 cm (Table 3). The putting 

greens at all locations are aerated several times a year and this common management 

practice may have created similar conditions in the top 0-15 cm resulting in very similar 

resistance measurements for all locations.  
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There were significant differences among locations from 15-30 cm (Table 3). This 

is comparable to Alaoui and Diserens (2011), who reported no significance from 0-10 

cm, but found differences from the 10-30 cm depth. Mahoney golf course had 

significantly lower force in the bottom half of the soil profile compared to East Campus 

and Holmes. There were no significant differences between East Campus and Holmes. It 

is possible that a hard pan has formed on the greens at East Campus and Holmes which is 

causing the higher force needed to penetrate the soil at 15 cm. Hard pans form from 

repetitive soil disturbance to a consistent depth and have been shown to hinder water 

movement through the profile resulting in poor plant growth (Tekeste et al. 2008). 

Increased aeration events at East Campus could have caused greater soil compaction.  

Mahoney had 25% lower soil resistance at 15 cm compared to East Campus and 

Holmes. While at 30 cm Mahoney had only 15% lower resistance compared to East 

Campus and Holmes. The decrease in percent difference as you move from 15 cm to 30 

cm further supports the theory of a hard pan layer formation at East Campus and Holmes. 

As depth increases past the hardened layer, the effects begin to dissipate and soil physical 

properties become more homogeneous.   

The resistance measurements collected in this study agree with previous studies. 

At 15 cm, the measured resistance is similar to that measured by Glab and Szewczyk 

(2014) for the nontrafficked mean of various golf course turfgrass species. Resistance 

measured in the putting greens are lower than those measured by Mossadeghi-Bjorkland 

et al. (2018) for compacted agricultural soils. Resistance into sandy, uniform putting 
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green profiles would be expected to be lower due to the greater resistance of sand 

particles to compaction.  

The advantages and weaknesses of this method compared to previous methods 

will now be discussed. This method could prove useful for such applications as 

identifying soil layer formation, understanding how water movement changes over time, 

and quantifying preferential water flow. The main advantage of this method is the ability 

to visualize water movement in soils that cannot be excavated, such as modified root 

zones or soils in urban environments. This method also allows a real-time visualization of 

water infiltration and percolation which allows a more precise evaluation of flow path 

formation and evolution during water infiltration. Information of this nature would 

provide a better understanding of water exchange between preferential flow paths and the 

soil matrix.  

A weakness of this method is the inability to visualize internal flow paths. If these 

flow paths cannot be captured with time lapse photography, then a flow rate cannot be 

calculated. Flow rates calculated are only for the part of the soil core that is visible 

through the transparent cylinder wall. Also, this method has not been tested in soils with 

clay and silt contents typical of native soils. It is not known how this method would work 

for these types of soils. Further work should be done to assess the suitability of this 

method for a variety of soil types. Future research should also be done to calibrate flow 

rates with those calculated with a known infiltration method (i.e. saturated hydraulic 

conductivity). Lastly, the soil sampler could be further improved to include soil moisture 

sensors, providing a more in depth analysis into soil resistance and water movement.  



47 

 

CONCLUSION 

The method described here is a useful method for visualizing water movement 

through modified, sand based root zones. Using undisturbed soil cores 30 cm in length 

flow paths were illuminated with green, fluorescent dye and UV light and captured with 

time lapse photography. The flow patterns captured in this study illustrate the quick 

initial movement of water through preferential pathways and the slower absorption of 

micropores as infiltration progresses.  

Using MATLAB software, the movement of the wetting front was tracked. A 

flow rate was calculated based on the change in dye pixels from frame to frame. Rates 

calculated were very high and are likely characteristic of preferential flow and not flow 

through the soil matrix. Further research should be done to validate flow rates calculated 

with this method. The ability to measure soil resistance while simultaneously removing a 

soil sample proved a useful tool in understanding water movement in golf course putting 

greens. Soil resistance measured in this study corresponded well with those of previous 

studies.  

This method has the potential to provide quality information on water movement 

in modified root zones including flow path development and evolution over time, monitor 

changes in soil layering, and quantifying flow rates. This method could be used to better 

the understanding of how management practices such as aeration techniques, topdressing 

applications, and surfactant use influence water movement and flow path development in 

golf course putting greens.  
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