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FDA has approved several cell-based therapeutics and hundreds of cell therapy 

clinical trials are ongoing. Cells will be a significant type of medicine after small molecule 

and protein drugs. However, several obstacles need to be addressed to achieve the 

widespread use of cellular therapeutics. The first challenge is the low efficacy of cell 

transplantation due to low retention, survival, integration, and function of cells in vivo. The 

second challenge is producing a massive number of cells for clinical treatment with cost-

effectively and reproducibly technologies.   

In this thesis, we proposed and investigated two approaches to address these 

challenges. To begin with, we engineered two novel biomaterials to deliver cells to enhance 

their in vivo retention and function. The first biomaterial is a recombinant fibrin matrix 

which significantly improved cell delivery efficiency and safety. The second biomaterial 

is a novel γγ’F1:pFN complex fibrin matrix, which enhanced cell culture and improved 

wound healing. In the second approach, we engineered injectable, microscale, 3D tissues 

to address the challenges. Brown adipose microtissues were prepared and injected to 

alleviate obesity and associated type 2 diabetes mellitus(T2DM). In addition, we showed a 

novel, scalable and cell-friendly cell culture technology (AlgTubes) for scalable 



microtissue manufacturing. Animal cells were used for preliminary study and can be used 

for food science to produce cultured meat. This technology has the potential to produce 

any cell therapy-related cell types in the future. Finally, we also systematically proposed 

engineering a physiologically relevant microenvironment for large-scale therapeutic cell 

and microtissue production. 
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CHAPTER 1. INTRODUCTION 

Overview 

FDA has approved several cell-based therapeutics and hundreds of cell therapy 

clinical trials are on-going1–4. The clinical outcome for treating many diseases are 

exciting5–8. There is no doubt that cells will be a significant type of medicine after small 

molecule and protein drugs9. However, several obstacles need to be addressed to achieve 

the widespread use of cellular therapeutics 4,10. The first challenge is the low retention, 

survival, integration, and function of cells in vivo following transplantation. For instance, 

only ~6% of transplanted dopaminergic (DA) neurons and ~1% of injected cardiomyocytes 

survived in rodent models several months after transplantation11,12. Only a portion of cells 

stays at the injection or lesion site. The lesion sites, which typically contain a high 

concentration of inflammatory cells and factors and a low concentration of O2, nutrients, 

and growth factors due to the absence of vascular structures, are very hostile to the 

transplanted cells. The disruption of cell signaling, cell-cell, and cell-matrix interactions 

during cell preparation13 before transplantation (termed anoikis) and acute cell apoptosis 

during the injection14 also contribute to the low survival rate.   

The second challenge is to produce a large number of cells15.  For example, ~105 

surviving DA neurons, ~109 cardiomyocytes, or ~109 β-cells are required to treat a patient 

with Parkinson’s disease (PD), myocardial infarction (MI), or type I diabetes, 

respectively15. Likewise, ~1010 hepatocytes or cardiomyocytes would be required for an 

artificial human liver or heart, respectively16; a similar number of cells are needed to screen 
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a library of a million compounds at once17,18.  Considering the low survival of transplanted 

cells in vivo, the large patient populations with degenerative diseases (over 1 million people 

with PD, 1-2.5 million with type I diabetes, and ~8 million with MI in the US alone19), a 

massive number of cells are needed. 

In this thesis, we proposed and investigated two approaches to address these 

challenges. The first approach used novel biomaterials to deliver cells to enhance their in 

vivo retention and function. Research has shown that a biomaterial scaffold can 

significantly improve the retention of cells, maintain high viability, keep cell phenotype 

and provide cells a 3D microenvironment to grow and interact10,20. In this thesis, we 

investigated two novel biomaterials for cell delivery and disease treatment. The first 

biomaterial is a recombinant fibrin matrix which significantly improved cell delivery 

efficiency and safety. The results are presented in chapter 2. The second biomaterial is a 

novel γγ’F1:pFN complex fibrin matrix, which enhanced cell culture and improved wound 

healing. The results are shown in chapter 3. 

The second approach to address the challenges is using injectable, microscale, 

3D tissues. Microtissues contain not only cells but also their native ECMs, cell-cell contacts, 

cell-matrix interactions, 3D and vascular structures that can prevent cells from anoikis and 

acute apoptosis during the transplantation21, promoting cell survival, integration, 

maturation, and function in vivo22,23.  Besides these advantages over stem cells, 

microtissues also have advantages over large tissues made via the conventional tissue 

engineering approaches. They are injectable, so open surgery is not required for the 

transplantation, which is extremely important for treating diseases in organs with 

sophisticated structures (e.g., the brain).  In addition, they can be produced on a large scale 
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via GMP compliant bioreactors, giving them the potential for treating large populations of 

patients. In chapter 4, we prepared and showed that brown adipose microtissues could 

alleviate obesity and its associated type 2 diabetes mellitus(T2DM). In chapter 5, a novel, 

scalable and cell-friendly technology (AlgTubes) anchored with RGD for microtissue 

manufacturing was developed. Animal cells were used for preliminary study and can be 

used for food science to produce cultured meat. This technology has the potential to 

produce any cell therapy-related cell types in the future. In the last chapter (chapter 6), we 

systematically proposed engineering a physiologically relevant microenvironment for 

large-scale therapeutic cell and microtissue production.   

Summaries of Chapters 

Chapter 2: A recombinant fibrin matrix made with recombinant human fibrinogen, 

recombinant human thrombin, and recombinant human factor XIII was used to culture and 

deliver mesenchymal stem cells (MSCs). The fibrin matrix could significantly enhance the 

retention of the delivered hMSCs. These recombinant proteins considerably reduce the cost 

and risk of human pathogen transmission compared to the current plasma-derived fibrin 

matrix.  

Chapter 3: We synthesized a novel fibrin matrix exclusively from a 1:1 (molar ratio) 

complex of γγ’F1 and pFN in the presence of highly active thrombin and recombinant 

Factor XIII (rFXIIIa). In this matrix, the fibrin nanofibers were decorated with pFN 

nanoclusters (termed γγ’F1:pFN fibrin).  The γγ’F1:pFN fibrin enhanced the adhesion and 

proliferation of primary human umbilical vein endothelium cells (HUVECs). HUVECs in 



4 

the 3D γγ’F1:pFN fibrin exhibited a starkly enhanced vascular morphogenesis. Mouse 

dermal wounds sealed by γγ’F1:pFN fibrin showed accelerated and improved healing, 

suggesting that a 3D pFN presentation on a fibrin matrix promotes wound healing. 

Chapter 4: We Engineered 3D brown adipose microtissues as anti-obesity 

(OB)/type 2 diabetes (T2DM) therapeutics. They have considerable advantages over 

dissociated brown adipocytes (BAs) for future clinical applications in product scalability, 

storage, purity, quality, and in vivo safety, dosage, survival, integration, and efficacy. 3D 

BA microtissues could be fabricated at large scales, cryopreserved for the long term, and 

delivered via injection. BAs in the microtissues had higher purity and higher UCP-1 protein 

expression than BAs prepared via 2D culture. In addition, 3D BA microtissues had good 

in vivo survival and tissue integration and had no uncontrolled tissue overgrowth. 

Furthermore, they showed good efficacy in preventing OB and T2DM with a very low 

dosage compared to literature studies.  

Chapter 5: We engineered an alginate hydrogel tube cell culture system to provide 

adhesion for large-scale microtissue fabrication. We showed both mouse and quail 

myoblasts could be efficiently expanded and differentiated in the system. The yields were 

between 1x to 2x108 cells/mL hydrogel tubes. Myotubes were aligned along the hydrogel 

tubes. When the hydrogel shell is dissolved with EDTA, these cell micro-fibers could be 

used as building blocks to fabricate large volume meat. 

Chapter 6: Cells will be a significant type of medicine. To achieve the full potential 

of cellular therapeutics, we must be able to cost-effectively and reproducibly manufacture 
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cells at large scales and with high quality. Currently, the robust and cost-effective culture 

of high-quality allogeneic or autologous cells on large scales is still very challenging. 

Academia and industry focus on developing modular, disposable, and closed bioreactors, 

automating the cell culture, integrating process analysis and control, and artificial 

intelligence. We propose that the cell culture microenvironment impacts the cell culture 

outcome and the critical need of creating a cell-friendly microenvironment during cell 

manufacturing. 

Future Research: 

Based on the technologies and results from this dissertation, the following research 

questions/topics can be conducted in the future: 

1) The long-term effect of the recombinant fibrin matrix on cell survival, integration, and 

function should be investigated. It will also be valuable to use clinic-relevant disease 

models such as myocardial infarction and stroke to test the capability of the matrix to 

retain the cells at the injection sites. The system should also be tested on other 

therapeutic cell types such as stem cell-derived cardiomyocytes and neurons.   

2) Novel γγ’F1:pFN complex should be tested to deliver cells and proteins. Can it improve 

cell retention and survival in vivo? And is it better than the recombinant fibrin matrix 

considering its sophistic nanostructure?  

3) Can we incorporate endothelial cells to make vascularized BA microtissues? Can we 

use human pluripotent stem cells as the source to make BA microtissue?   
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4) Can we produce the BA microtissue at a large scale using the AlgTube cell culture 

system?  
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CHAPTER 2. A TOTALLY RECOMBINANT FIBRIN MATRIX FOR 

MESENCHYMAL STEM CELL CULTURE AND DELIVERY 

Introduction 

Human mesenchymal stem cells (MSCs) can be differentiated into a variety of 

cells1–3 such as myoblasts4, osteoblasts5,6, chondroblasts7, and adipocytes8. They also 

secrete a panel of factors that can modulate many biological processes including 

inflammation and angiogenesis9. Consequently, they have been widely studied for 

engineering tissues10,11 and treating diseases both in laboratories12,13, clinical trials14,15, and 

clinics16,17 with encouraging results. For instance, transplanting MSCs enhanced bone 

tissue repair18,19, promoted angiogenesis in the myocardial ischemic area20,21, improved 

cardiac performance after myocardial infarction16,20,22, and reduced inflammation and 

improved brain functions in a variety of neurological diseases23–25.  

A significant challenge with using MSCs to treat diseases is that only a small 

numbers  of the systematically injected cells can home to the diseased sites21,26,27. A 

solution to this challenge is to locally inject cells to the diseased sites. However, the 

percentage of the injected cells that can stay at the injection site is still low. Researches 

have shown injecting the cells with a biomaterial matrix can significantly enhance the 

retention of cells at the injection site28–31. Both natural and synthetic biomaterial such as 

collagen, hyaluronic acid, and polyethylene glycol hydrogels have been investigated for 

this purpose28–31. Among the many biomaterials, fibrin is of particular interest due to its 

biocompatibility and biodegradation32–34. In addition, it has been used in the clinic as a 
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hemostatic material for a long time35. Fibrinogen (FI) is a linear, hexameric, 340 kDa 

glycoprotein having 2 alpha, 2 beta and 2 gamma chains. Activated thrombin (FIIa) rapidly 

polymerizes fibrinogen to form an insoluble hydrogel that is held together by electrostatic 

and other noncovalent forces. Activated factor XIII (FXIIIa) can further crosslink this 

hydrogel matrix using covalent bonds to make it more stable36. Fibrin matrices have been 

widely used for culturing37,38 and delivering MSCs34,39. 

The currently used fibrinogen is purified from human plasma. The shortcomings of 

plasma derived fibrinogen include the high cost and potential of human pathogen 

transmission40,41. To address the problem, we previously made transgenic cows to produce 

recombinant human fibrinogen (rFI) in milk42. We have shown recombinant human 

fibrinogen and plasma fibrinogen have comparable clotting speed, strength and function in 

a swine liver trauma model43. In these studies, we also used activated recombinant human 

factor XIII (rFXIIIa) and recombinant human thrombin (rFII) to polymerize the fibrinogen, 

resulting in fibrin matrices made with entirely recombinant proteins43. These recombinant 

proteins significantly reduce the cost and risk of human pathogen transmission. In this 

study, we aim to explore if these totally recombinant fibrin matrices can be used to culture 

and deliver MSCs. We first systematically studied the relationship between the matrix 

formulation, the nanostructure and the behaviors of cells in the matrix. We then used an 

optimized matrix to deliver MSCs to NOD-SCID mice. We found the matrix could 

significantly enhance the retention of the delivered hMSCs. 
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Materials and methods  

Materials 

Recombinant fibrinogen (rFI) was produced, characterized and purified as 

previously described42,43. Briefly, the DNA sequences of human α, β, γ chains of fibrinogen 

were inserted into the cow genome by the method of nuclear transfer. The fibrinogen was 

produced in the milk of transgenic cows and purified through multiple precipitations and 

chromatography42,43. Activated recombinant human factor XIII (rFXIIIa) was produced in 

Pichia pastoris using published protocols42,44. Recombinant human thrombin (rFIIa) was 

purchased from ZymoGenetics (Seattle, WA).  

Cell culture 

Mouse bone marrow mesenchymal stem cells (D1 cells, CRL12424) were 

purchased from ATCC and cultured in DMEM supplemented with 10% fetal bovine serum 

and 1% penicillin/streptomycin at 37 °C and 5% CO2. Primary human bone marrow 

mesenchymal stem cells were purchased from Lonza and culture in MesenCult™ MSC 

Basal Medium (Human) supplemented with MesenCult™ MSC Stimulatory Supplement 

(Human) and 1% penicillin/streptomycin. Cells were passaged every 5 days with 0.25% 

trypsin. 

Fibrin matrix preparation 

Recombinant fibrin matrices were prepared in Ringer’s solution (155 mM NaCl, 5 

mM KCl, 2 mM CaCl2 and 1 mM MgCl2, pH=7.4) with different final concentrations of 
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rFI, rFXIIIa, and rFII as described in the text. The protein mixtures were incubated at 37 °C 

for 15 minutes in a cell culture incubator to form the fibrin matrices.  

3D cell culture 

100 µl fibrin matrix with 3 x 104 cells was made in one well of the 96-well plate. 

200 µl cell culture medium was added on the top of the fibrin matrix in each well. At 

various time points, cell morphologies were imaged with the phase-contrast microscope. 

On day 2 and 4, the medium was removed and 100 µl fresh medium and 10 µl Alamar blue 

reagent were added and incubated for 3 hours. 100 µl medium from each well was collected 

to measure the fluorescence, which was calibrated to a standard curve to calculate the 

numbers of live cells within each well. The viability of cells within the gel was assessed 

with Live/Dead cell assay kit (Invitrogen) according to the Manufacturer’s instruction. 

Scanning Electron Microscopy (SEM) 

Fibrin matrices were fixed with 2.5% glutaraldehyde in 100 mM phosphate buffer 

(PH 7.0) at room temperature for 1 hour. Samples were rinsed with phosphate buffer twice 

with 10 minutes each. Matrices were sequentially dehydrated using 30%, 50%, 70%, 95% 

(twice), 100% (twice) ethanol with 5 minutes for each treatment. Samples were then 

sequentially treated using 33%, 66%, 100% (twice) hexamethyldisilane with 2 minutes for 

each treatment. Samples were air-dried overnight before sputter-coated with gold-

palladium and imaged with a scanning electron microscope (Hitachi S4700 Field-Emission 

SEM, Hitachi, Tokyo, Japan).  
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Animal experiment 

The animal protocol was approved by the Institutional Animal Care and Use 

Committee of the University of Nebraska-Lincoln. The experimental procedure was 

performed in accordance with the guidelines of the Institutional Animal Care and Use 

Committee of the University of Nebraska-Lincoln. Human MSCs were stained with 

Vybrant DiI dye (V-22885, Molecular probe), and injected subcutaneously to the back of 

the neck of NOD-SCID mice (Charles River Laboratory). 6 mice were used for the study. 

For each mouse, 8 x 105 cells in 200 μl Ringer’s solution were injected to the left side of 

the neck, and 8 x 105 cells with a fibrin matrix were injected to the right side of the neck 

using a Tisseel-Duploject dual-syringe. Within the Tisseel-Duploject dual-syringe, one 

syringe had 100 μl Ringer’s solution contained 10 mg/ml rFI and 4 x 105 MSCs, the other 

syringe had 100 μl Ringer’s solution contained 0.16 mg/ml rFXIIIa, 20 U/ml rFIIa, and 10 

mM CaCl2. The injected site was marked. After 24 hours, mice were euthanized. The skin 

and connective tissue at and surrounding the injected site were harvested for analysis. The 

harvested tissues were fixed with 4% PFA followed by soaking in 30% sucrose for 4 days. 

Tissues were embedded in OCT and cryosectioned (vertical to the skin surface) with 40 

μm thickness for each section. Tissue sections were imaged with a Zeiss Axio Observer 

fluorescent microscopy. The total fluorescence intensity in the section that crosses the 

needle track was quantified with Image J. software and used to evaluate the retention of 

the injected MSCs at the injection site in each mouse.   
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Statistical analyses 

The data are presented as the mean ± S.D.. We used an unpaired t-test to compare 

two groups and one-way ANOVA to compare more than two groups (GraphPad Software, 

La Jolla, CA). P < 0.05 was considered statistically significant. 

Results 

Using mouse mesenchymal stem cells (D1 cells) to study the matrix composition- 

matrix structure-cell behavior relationship 

Effect of recombinant the thrombin (rFIIa) concentration 

To study the effect of rFIIa concentration, the recombinant fibrinogen (rFI) and 

activated recombinant factor thirteen (rFXIIIa) was fixed at 5 mg/ml and 0.04 mg/ml 

respectively. The rFIIa concentration was varied from 1 U/ml to 15 U/ml (Figure 2.1). 

Scanning electron microscope (SEM) images showed the fibrin fiber diameter, fiber 

branching, fiber density and matrix pore size were similar between matrices made with 

different rFIIa concentrations (Figure 2.1A). Cells exhibited a characteristic, spindle-like 

morphology in all matrices after 2 days (Figure 2.1B). Live and dead staining on day 1 

showed no obvious cell death in all matrices (Figure 2.1C). The total numbers of live cells 

in the four matrices were similar on day 2 and day 4 (Figure 2.1D). These results showed 

that the rFIIa concentration at the tested range had no significant influence on the matrix 

structure and cell behaviors including cell morphology, viability, and the final live cell 

numbers.    
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 Figure 2.1. Culturing D1 cells in 3D recombinant fibrin matrices made with different recothrombin (rFІІa) 

concentrations (1 U/ml, 5 U/ml, 10 U/ml, 15 U/ml). Recombinant fibrinogen (rFІ) = 5 mg/ml; recombinant 

factor thirteen (rFXIIIa) = 0.04 mg/ml; (A) Scanning electron microscope (SEM) images; (B) Phase images 

at 4 h, day 2 and day 4; (C) Live dead cell staining of day 1 cells; (D) Cells in 100 μl fibrin matrix on day 2 

and day 4 were quantified by alamar blue assay. Cell numbers were related to initial seeded cells. 
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Effect of the rFXIIIa concentration 

FXIIIa covalently crosslinks the fibrin matrix and enhances the stability of the 

matrix. The yeast-produced activated recombinant FXIIIa has dimeric catalytic subunits 

and has been under clinical studies45. To assess the effect of the rFXIIIa concentration, the 

rFI and rFIIa was fixed at 5 mg/ml and 10 U/ml respectively. The rFXIIIa concentration 

was varied from 0 mg/ml to 0.15 mg/ml (Figure 2.2). SEM images showed the fibrin fiber 

diameter, fiber branching, fiber density and matrix pore size were very similar between 

matrices made with different rFXIIIa concentrations (Figure 2.2A). Cells showed spindle-

like morphology in all samples on day 2. However, the fibrin matrix without rFXIIIa had 

significant degradation and shrank on day 4 (Figure 2.2B). Live and dead staining on day 

1 did not detect evident cell death in all samples (Figure 2.2C). The alamar blue assay 

showed a significantly higher cell number in the matrix without rFXIIIa on day 4, but there 

was no significant difference between the other 3 matrices (Figure 2.2D). In summary, 

rFXIIIa was required to form a fibrin matrix that could last 4 days in the presence of MSCs. 

However, its concentration at the range from 0.04 mg/ml to 0.15 mg/ml had no significant 

influence on the matrix structure and cell behaviors.   
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  Figure 2.2. Culturing D1 cells in fibrin matrices made with different recombinant factor thirteen (rFXIIIa) 

concentrations (0 mg/ml, 0.04 mg/ml, 0.08 mg/ml, 0.15 mg/ml). rFІ = 5 mg/ml, rFІІa = 10 U/ml. (A) SEM 

images; (B) Phase images at 4 h, day 2 and day 4; (C) Live/dead cell staining of day 1 cells; (D) Cells in 100 

μl fibrin matrix on day 2 and day 4 were quantified by alamar blue assay. Cell numbers were related to initial 

seeded cells. ****: p<0.0001. 
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Effect of the rFI concentration 

To study the effect of the rFI concentration, the rFIIa and rFXIIIa was fixed at 10 

U/ml and 0.08 mg/ml respectively. The rFI concentration was varied from 5 mg/ml to 20 

mg/ml (Figure 2.3). The SEM revealed that the fibrin matrix with higher rFI concentration 

had more condensed and larger (in diameter) fibers (Figure 2.3A). Cells had spindle-like 

morphology only in the fibrin matrix with 5 mg/ml rFI. Cells had round morphology in 

fibrin matrices with 10, 15 and 20 mg/ml rFI (Figure 2.3B). Significant cell deaths were 

observed in matrices with 10, 15 and 20 mg/ml rFI using live and dead staining on day 1 

(Figure 2.3C). During the 4 day culture, the cell number increased in the matrix made with 

5 mg/ml rFI, while they decreased in other groups, especially in matrices with 15 and 20 

mg/ml rFI (Figure 2.3D). These results showed that, unlike rFIIa and rFXIIIa, the 

concentration of rFI had a significant effect on the matrix structure, cell morphology, 

survival and/or growth.    
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Figure 2.3. Culturing D1 cells in fibrin matrices made with different recombinant fibrinogen (rFІ) 

concentrations (5 mg/ml, 10 mg/ml, 15 mg/ml, 20 mg/ml). rFІІa = 10 U/ml, rFXIIIa = 0.08 mg/ml. (A) SEM 

images; (B) Phase images at 4 h, day 2 and day 4; (C) Live dead cell staining of day 1 cells; (D) Cells in 100 

μl fibrin matrix on day 2 and day 4 were quantified by alamar blue assay. Cell numbers were related to initial 

seeded cells. ****: p<0.0001. 
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Validate the findings with human MSCs (hMSCs) 

To study if the above findings with mouse MSCs can be translated to hMSCs, we 

selected 5 representative formulations for culturing human bone marrow MSCs (Figure 4). 

In the matrix made with 5 mg/ml rFI, 0.08 mg/ml rFXIIIa and 10 U/ml rFIIa, (labeled as 

(5, 0.08, 10) or the control group), hMSCs had spindle-like morphology after 2 days and 

no significant cell death was observed by live and dead staining (Figure 2.4A and 2.4B). 

When the rFI concentration was increased to 10 mg/ml (labeled as (10, 0.08, 10)), cells 

showed no spreading even after 4 days. The Live and dead staining detected significant 

dead cells (Figure 2.4A and 2.4B). There was significantly less cells in this matrix on both 

day 2 and 4 (Figure 2.4C). When the rFIIa concentration was decreased to 5 U/ml (5, 0.08, 

5), the cell morphology, viability and numbers were very similar to these of the control 

group. There was much more cells in the matrix without rFXIIIa (5, 0, 10) than other groups. 

We observed significant matrix degradation for this condition on day 1 (Figure 2.4D). 

hMSCs in the matrix made with 0.15 mg/ml rFXIIIa (5, 0.15, 10) were very similar to cells 

in the control matrix. In short, the recombinant fibrin matrix compositions had similar 

effects on mouse and human mesenchymal stem cells. Fibrin matrices made with rFI higher 

than 5 mg/ml were inappropriate for hMSC culture.  
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Deliver hMSCs with fibrin matrix 

Lastly, we studied if the recombinant matrix could be used to deliver hMSCs and 

enhanced their retention at the injection site. The fibrin matrix with 5 mg/ml rFI, 0.08 

mg/ml rFXIIIa and 10 U/ml rFIIa was used because the in vitro cell culture experiment 

found it was stable for at least 4 days, supported high cell viability and reasonable cell 

growth (Figure 2.4C). hMSCs were labeled with fluorescent Dil dyes and injected 

subcutaneously to NOD-SCID mice. Using the fibrin matrix, significantly higher numbers 

(two-fold) of cells were retained at the injection site (Figure 2.5).   

Figure 2.5. Deliver hMSCs with recombinant fibrin matrices. hMSCs were labeled with Dil dyes and injected 

subcutaneously into NOD-SCID mice without (A) and with the fibrin matrix (B) (rFI = 5 mg/ml, rFXIIIa = 

0.08 mg/ml, rFІІa = 10 U/ml). Representative fluorescent images of the labeled MSCs at the injection sites 

from three mice were shown.  (C) The relative fluorescent intensities at the injection sites of the two 

transplantation groups. 6 mice were used for the analysis. ***: p<0.001. 

Figure 2.4. Culturing human MSC cells in fibrin matrices made with different rFІ, rFXIIIa, and rFІІa 

concentrations. Group 1: rFІ = 5 mg/ml, rFXIIIa = 0.08 mg/ml, rFІІa = 10 U/ml; Group 2: rFІ = 10 mg/ml, 

rFXIIIa = 0.08 mg/ml, rFІІa = 10 U/ml; Group 3: rFI = 5 mg/ml, rFXIIIa = 0.08 mg/ml, rFІІa = 5 U/ml; 

Group 4: rFІ = 5 mg/ml, rFXIIIa = 0 mg/ml, rFІІa = 10 U/ml; Group 5: rFI = 5 mg/ml, rFXIIIa = 0.15 mg/ml, 

rFІІa = 10 U/ml. (A) Phase images at 4 h, day 2 and day 4; (B) Live/ dead cell staining of day 1 cells; (C) 

Cells in 100 μl fibrin matrix on day 2 and day 4 were quantified by alamar blue assay. Cell numbers were 

related to initial seeded cells; (D) The fibrin matrix without rFХIII had significant degradation on day 1. The 

white cycles indicate areas with significant degradation. ****: p<0.0001, ***: p<0.001, *: p<0.05.   
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Conclusion  

Recombinant fibrin matrices, which have lower cost and risk of the human 

pathogen transmission, are very attractive for MSCs culture and delivery42,43. For the first 

time, our studies found fibrin matrices made with entirely recombinant proteins were 

suitable for culturing and delivering MSCs. We found the protein formulation affected both 

the matrix structure and the cell behaviors. Increasing the rFI concentration led to larger 

fiber diameter and denser matrix, and in turn, significantly reduced the cell viability, 

inhibited cell spreading and growth. Our studies showed fibrin matrices with rFI 

concentration above 5 mg/ml could not support efficient cell survival (Fig. 3 and 4). Both 

rFIIa and rFXIIIa were required to form stable fibrin matrices. However, their 

concentrations at the tested range had a minor influence on the matrix structure and cell 

behaviors (Fig. 1, 2 and 4). The totally recombinant fibrin matrix could be used to deliver 

MSCs and enhanced their retention at the injection site. Future research should investigate 

the long-term effect of the fibrin matrix on cell survival, integration, and function. It will 

also be valuable to use clinic-relevant disease models such as myocardial infarction and 

stroke to test the capability of the matrix to retain the cells at the injection sites.  
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CHAPTER 3. THE SYNTHESIS OF A RECOMBINANT FACTOR XIII 

CROSS-LINKED γγ’-FIBRIN MATRIX HAVING PERIODIC 

FIBRONECTIN NANOBANDS THAT ACCELERATE WOUND CLOSURE 

Introduction 

Plasma fibrinogen (F1) consists of two bio-monomer sub-populations when 

integrated with plasma fibronectin (pFN) form fibrin polymer that is both a hemostatic 

barrier1–5 and a provisional matrix needed to initiate wound healing6–10. Purified fibrinogen 

formulations used to form fibrin for culturing cells associated with healing have long been 

reconstituted to the same mass ratio of 1 fibrinogen to 10 pFN as found in plasma to help 

optimize colonization of human fibrin in vitro11. F1 is linear fibrin precursor that is a 

hexameric, 340 kDa glycoprotein that includes 2 gamma chains1,2,12,13 while is pFN is a 2-

chain globular, 440 kDa protein. Importantly, about 90% of F1 occurs in circulation as a 

homodimeric pairing of γ-chains (γγF1)14 with the remaining occurring as a heterodimeric 

pairing of γ with a slightly larger, more acidic γ’-chain (γγ’F1) that is associated with a 

pleotropic biology of vascular health15,16. Furthermore, pFN and γγ’F1 coincidentally both 

occur at about the same concentration in plasma of about 300 µg/ml16–19.   

The formation of the fibrin:pFN polymer begins with thrombin mediated activation 

of γγF1,γγ'F1 and Factor XIII (pFXIII). The activated fibrinogens produce a semi-soluble, 

viscoelastic fibrin aggregate1–3 containing pFN entrained from plasma. The pFXIII is 

inherently present within the polymerizing fibrin aggregate as a complex with 1 out of 

every 100 γγ'F1 molecules15 which disassociates upon formation of activated pFXIII 
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(pFXIIIa) so as enable efficient intra-fibrin cross-linking activity. This results both in the 

insoluble pFN:fibrin matrix4,11,20–22 and its simultaneously cross-linked to the wound 

surface over the course of about 3 minutes15,23.    

The wound anchored pFN:fibrin also catalyzes healing by the dual colonization of  

fibroblasts and endothelial cells (ECs) which forms a provisional vascularized tissue called 

‘granulation tissue24,25. It does this through different mechanisms for fibroblasts than for 

endothelial cells where the colonization by ECs is more tenuously dependent on pFN4,11,26. 

For example, fibroblasts have cellular receptors that recognize R-G-D residues that are 

presented by pFN after conformational changes induced by FXIII-crosslinking11,27–30. In 

contrast, the predominant interaction of endothelial cells (EC)31,32 with fibrin is by VE-

Cadherin cellular receptors which bind to the β-chain of cross-linked fibrin. Furthermore, 

the presence of vascular endothelial growth factor (VGEF) and fibroblast growth factor 2 

(FGF-2) in cell culture media has been shown to be necessary for catalyzing the EC 

colonization of fibrin in vitro31–33. Thus, far the influence on EC colonization at the length 

scale of the 3-D fiber presented by the pFN:fibrin matrix has not been well detailed.   

The general fiber structure and biological activity of fibrin made from purified 

γγ’F1 or γγF1 but without discernable levels of pFN has been recently studied7,15,23.  While 

there were subtle differences in fiber structure, fibrins made from either γγ’F1 or γγF1 

induced similar levels of angiogenesis by ECs in wound healing studied in a normal mouse 

model7. We here describe the synthesis of a viscoelastically strong, 1:1 γγ’F1:pFN fibrin 

having fibers periodically wrapped with a pFN nanostructure.  We report on the ability of 
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this matrix to enhance EC colonization in vitro and wound closure in a normal mouse 

model.  

Materials and Methods 

Materials  

All reagents were obtained from Sigma Chemical Company (St. Louis MO) unless 

otherwise noted. Human source plasma was provided by the U.S. Army Materials 

Command (Fort Detrick, MD.). Recombinant human thrombin was purchased from 

ZymoGenetics (Seattle, WA). DEAE Sepharose fast flow, Superose 6 and Gelatin 

Sepharose were purchased from GE Healthcare (Uppsala, Sweden). 4-12% NuPage Bis-

Tris SDS polyacrylamide gels, Colloidal Blue stain and See Blue molecular weight markers 

were from Invitrogen (Carlsbad, CA). Polyclonal antibody (GMA-034) for human 

fibrinogen (1:100) was purchased from Green Mountain Antibodies (Burlington, VT). 

Antibody (ab2413) for human fibronectin (1:200) was from Santa Cruz Biotechnology. 

Antibodies were reconstituted according to manufacturer’s instruction.  

Recombinant Factor XIII  

Recombinant Factor XIII (rFXIII) was made in Pichia pastoris according the 

methods of Park34,35. Briefly, the rFXIII was purified from cell lysates using Ni-IMAC 

from GE Healthcare. The activity was determined using Pefakit (Pentapharm, Norwalk, 

CT). The final specific activity of the >95% purity preparations was typically 154 ± 19 

Plasma FXIII Equivalent Units/mg (PEU/mg) where the specific activity of pFXIII was 25 

u/mg using a peptide incorporation cross-linking assay. 
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Preparation of fibrinogen and fibronectin from human plasma  

Three units of human plasma that had been stored at -80 ºC were thawed at 4 ºC. 

The plasma was centrifuged at 4000 rpm for 20 min. The supernatant was re-frozen and 

stored for subsequent purification of fibronectin and other plasma-derived proteins. The 

cryoprecipitate was re-suspended in 45 mM sodium citrate, 100 mM 6-aminocaproic acid, 

pH 7.0 at 37 ºC. The solution was then centrifuged for 25 min at 4000 rpm. The pellet was 

discarded, and the supernatant was treated with a solvent detergent viral inactivation step 

by addition of 0.15% TnBP, 0.5% Triton X-100 and stirred at room temperature for 60 min. 

The solvent-detergent treated supernatant was adjusted to 1 M ammonium sulfate by 

addition of a 4 M stock. The sample was stirred at room temperature for 30 min, and then 

centrifuged at 2000 rpm for 15 min at room temperature. The pellet was re-suspended in 

20 mM sodium citrate, 100 mM NaCl. The sample was dialyzed overnight at room 

temperature against the same buffer. The dialyzed sample was centrifuged at 2000 rpm for 

15 min at room temperature. Any resulting pellet was discarded.  

The supernatant was fractionated further  to isolate γγF1, γγ’F1 and pFN as 

described by Siebenlist et al36 using DEAE Sepharose Fast Flow chromatography at room 

temperature. The sample was applied to a DEAE column then washed with 10 column 

volumes of 20 mM sodium citrate, 100 mM NaCl, pH 7.4. The unabsorbed fraction was 

γγF1. Bound protein was eluted with a linear gradient of 0.1 M to 1.0 M NaCl. The pooled 

eluate from the DEAE resin produced an approximately equimolar mixture of γγ’F1 and 

pFN that was dialyzed against 20 mM citrate buffer, 20 mM NaCl at pH 6.8. The dialyzed 
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mixture was concentrated using a 10 kDa centrifugal ultrafiltration device at 4000 g for 30 

min. 

Pure pFN and γγ’F1 were produced by application of the DEAE eluate pool to 

gelatin-Sepharose. Briefly, a 10 ml γγ’F1:pFN mixture was applied to a 3 ml analytical 

gelatin-Sepharose column. The column was washed with 10 volumes of the dialysis buffer 

then eluted with the same buffer containing 6 M urea. Samples were analyzed by SDS-

PAGE. pFN was eluted by urea while the γγ’F1 fell through the column. 

2D adhesion assay  

Human foreskin fibroblasts were isolated and cultured in DMEM with 10% 

FBS10,37. The use of primary human fibroblasts from anonymous donors (no subject 

identifiers and no informed consent) without the use of informed consent was approved by 

the Institutional Review Board at the University of Nebraska Medical Center and by the 

Research and Development Committee at the Omaha VA Medical Center. Passage 4 to 6 

cells were used. HUEVCs were purchased from Lonza and cultured in EGM2 medium. 

Passage 3 and 4 cells were used for the experiments. 100 µl fibrin matrix was made in one 

well of the 96-well plate. 1x104 cells were placed in each well with 200 µl medium. 3 hours 

after plating, medium and unattached cells were removed. Cells were washed with 200 µl 

PBS once. Attached cells were recorded with phase-contrast microscope. Alternatively, the 

cells were fixed with 4% PFA and stained with DAPI. The nuclei were recorded with 

fluorescence microscope. 100 µl fresh medium with 10 µl alamar blue reagent were added 

and incubated for 3 hour. 100 µl medium was collected for measuring the fluorescence that 
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was calibrated to a standard curve to calculate the numbers of attached cells within each 

well.  

3D cell culture within fibrin matrix  

100 µl fibrin matrix with 2x104 cells were made in individual wells of a 96-well 

format plate. 200 µl medium was added to each well. At varied time points after plating, 

cell morphologies were recorded by phase-contrast microscopy. The medium was removed 

and 100 µl fresh medium with 10 µl alamar blue reagent were added and incubated for 3 

hour. 100 µl medium was collected for measuring the fluorescence that was calibrated to a 

standard curve to calculate the numbers of cells in each matrix. The viability of cells within 

the gel was accessed with Live/Dead cell assay kit (Invitrogen) according to the 

Manufacturer’s instruction.    

Fibrin formulation  

To make the fibrin matrix for the above cell culture experiment, the following fibrin 

formation components were mixed to the final concentration of the respective fibrinogen 

(γγF1, γγ’F1) of 2.5 mg/ml total protein; thrombin at 1 U/ml; factor XIIIa at 15.4 U/ml; 

and 3.3 mg/ml pFN. The mixtures were incubated at 37 ºC for 15 min to form the fibrin 

matrix. 

SEM and confocal microscopy  

Fibrin matrices were made according to the formulation above. For SEM, samples 

were fixed with 2.5% glutaraldehyde in 100 mM phosphate buffer (PH 7.0) at room 
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temperature for 1 hour, then at 4 ºC overnight. Samples were rinsed with phosphate buffer 

twice, 10 minutes each. Ethanol dehydration series were performed: 30%, 50%, 70%, 2 x 

95%, 2 x 100%, 5 minutes for each procedure. Then samples were treated with 

hexamethyldisilazane (HMDS) as following: 33% HMDS, 66% HMDS, 2 x 100% HMDS, 

2 minutes for each procedure. Samples were left in 100% HMDS to air-dry at least 

overnight. before sputter-coated with gold-palladium and imaged with the scanning 

electron microscope (Hitachi S4700 Field-Emission SEM, Hitachi, Tokyo, Japan) at 10 kV 

and a magnification of 30000. For confocal microscopy, samples were fixed with 4% 

paraformaldehyde (PFA) at 4 ºC overnight, washed with PBS for 3 times, permeabilized 

with 0.25% Triton X-100 for 15 minutes, and blocked with 5% goat serum for 1 hour before 

incubating with primary antibodies at 4 ºC overnight. After extensive washing, secondary 

antibodies were added and incubated for 2 hours at room temperature and. Samples were 

then washed with PBS before imaged with confocal microscope (Nikon A1-R confocal 

system on a Nikon Eclipse 90i upright fluorescence microscope). 

Animal research  

 All animal protocols were approved by the Institutional Animal Care and Use 

Committee of the University of Nebraska-Lincoln. All experimental procedures involving 

animals were performed in accordance with the guidelines of the Institutional Animal Care 

and Use Committee of the University of Nebraska-Lincoln. The mouse excisional wound 

splinting model was descripted previously38. Briefly, donut-like splints with 5-mm 

diameter of the center hole and 15-mm diameter of the disc were created. The splints were 

sterilized in 70% ethanol before experiment. Mice were anesthetized. Two symmetrical 5-
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mm full-thickness excisional wounds were created on the back of each mouse. The splint 

was carefully placed around the wound and secured to the skin with eight interrupted 

sutures. The left wound was sealed with 50 μl γγ'F1:pFN fibrin matrix, while the right 

wound was added with 50 μl γγF1:pFN fibrin matrix. The total protein concentration are 

2.5 mg/ml fibrinogen and 3.3 mg/ml fibronectin; 15.4U/ml rFXIII, 0.2 μg/ml VEGF, and 

1 U/ml recombinant thrombin were used to form the fibrin matrix. The wounds were 

covered with sterile transparent dressing. On days 2, 4, 6, and 9, additional 20 μl of the 

fibrin matrix were added to the wounds.  

Frozen section and Hematoxylin and Eosin (H&E) staining 

Mice were sacrificed on day 15. The wound tissues were carefully harvest. The 

wound area was calculated before dissecting each wound across the center into two equal 

pieces. The wound tissues were fixed in cold 4% (wt/vol) paraformaldehyde in PBS at 4 °C 

overnight and submerge into 30% sucrose in PBS at 4 °C until the sinks. Tissues were 

embedded in OCT compound and freeze in - 70 °C. 40-µm thick cryostat sections were cut. 

The sections were wash with PBS subsequently stained with hematoxylin (RICCA, 

Arlington, TX) and eosin. Images were taken by EVOS® FL Auto Cell Imaging System. 

Statistical analyses  

The data are presented as the mean ± S.D.. We used an unpaired t-test to compare 

two groups and one-way ANOVA to compare more than two groups. P < 0.05 was 

considered statistically significant.  
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Results 

The naturally occurring mass ratio of pFN within the total F1 population in human 

plasma is about 1:10 and which naturally coincides with about a 1:1 molar ratio of pFN 

with the γγ’F1 subpopulation. Our experimental focus reported here is the study in vitro 

and in vivo of novel cross-linked fibrin matrices using recombinant Factor XIII (rFXIII) 

made from each of the fibrinogen sub-populations and with or without pFN.   

Fibrin formulation and material characteristics 

The biological function related to the naturally occurring plasma ratios of pFXIII, 

pFN, and F1 have been established in the context of normal hemostasis and wound healing 

in vivo. Here we have focused on enhancing this function by making a unique cross-linking 

of pFN into fibrin made either from γγF1 or from γγ’F1. We do this in the context of the 

natural 1:1 ratio that γγ’F1 occurs with pFN while using much higher levels of cross-

linking activity supplied by rFXIII. We made high purity γγF1, γγ’F1 and pFN from human 

plasma as shown by Coomassie blue stained SDS-PAGE under reducing conditions 

(Figure 3.1A).  As part of that processing and due to their similar degrees of acidity, we 

were able to purify a fraction which contained an approximately 1:1 γγ’F1 and pFN (here 

designated γγ’F1:pFN). The rFXIIIa used here had a novel specific cross-linking activity 

was 154 U/mg which was about 6-fold higher than plasma-derived FXIII (Figure 3.1B). 

We used a commercially available, biotherapeutic grade recombinant thrombin and our 

rFXIIIa to make fibrin matrices from based upon the naturally occurring stoichiometric 

plasma molarity of γγ’F1 and pFN (Figure 3.1C-F). Fibrins made at the same fibrinogen 
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concentrations were evaluated when made from γγF1 alone, γγ’F1 alone, and the 1:1 

γγ’F1:pFN obtained from the DEAE eluate fraction and a 1:1 mixture of γγF1 and pFN 

(designated here as γγF1:pFN). 

We characterized both the kinetics of the formation of the fibrins and the resulting 

viscoelastic strengths of the fibrins made at different levels of rFXIII using TEG (Figure 

3.1C-F) where the data range bars are small or almost imperceptible. The highest strength 

obtained at the lowest F1 concentration which the TEG could reliably measure occurred at 

about a 5:1 molar ratio of F1 to rFXIII (Figure 3.1C-F). This rFXIIIa activity level was 

estimated to be about 20-fold or higher (2 units/nmol F1) than the trace amounts of FXIII 

activity that typically associates with the γ’ chain of γγ’F1 (estimated to be 0.08 units/nmol 

F1) and which typically co-purifies with biotherapeutic grade plasma F1 products. All 

treatment groups of different rFXIII levels respectively possessed a similar time course 

polymerization pattern and an equivalent viscoelastic strength. Interestingly, the presence 

of a 1:1 total F1 to pFN molar ratio (Figure 3.1D, 3.1F) further lowered the viscoelastic 

strength of both fibrins made from γγF1 or γγ’F1 showing the impact of pFN in the 

fibrin:pFN polymerization process.   

Our studies chose the fibrin formulation with the lowest level of 2.5 mg/ml F1 while 

at a level of rFXIII activity as to produce a fibrin facile for wound application in the studies 

presented below. All of these fibrins made with or without pFN yielded a sufficiently stable 

tissue sealant with rapid wound adhesion as applied in our mouse model studies. In 

summary, for in vitro cell culture analysis and in vivo wound applications, we chose a level 
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of 15.5 U/ml rFXIIIa to sufficiently stabilize the fibrin by cross-linking the fibrins at the 

low level of 2.5 mg/ml of γγ’F1 or γγF1.   
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Figure 3.1. Material characteristics. (A) Reducing SDS-PAGE gel. (B) rFXIIIA1 activity (153.5 ± 19 U/mg) 

was estimated by the 5-(biotinamido) pentylamine incorporation assay. The effect of rFXIIIa on the 

viscoelastic and clotting kinetics of γγF1 (C), γγF1 and pFN (D), γγ’F1 (E), and γγ’F1 and pFN (F) were 

evaluated by TEG assay. 
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Our in vitro studies of the fibrins focused primarily on culture behavior most 

relevant to the wound healing phenomena associated with fibroblasts and ECs8,27. Figure 

3.2A shows the fiber networks we observed by SEM for the four fibrin formulations. All 

matrices showed a similar frequency of branch points and the similar range of fiber 

diameters ranging primarily from about 250 to 350 nm. Generally, F1 reactive 

immunostaining to either γγF1 or γγ’F1 and confocal microscopy was used to study the 

distribution of pFN within the fibrin matrices (Figure 3.2B, 3.2C). A sporadic appearance 

of irregularly sized pFN aggregates was observable within the fibrin matrix made from 

γγF1:pFN. In contrast, the fibrin made from the γγ’F1:pFN mixture presented pFN 

aggregates as a regularly occurring banded structure that was wrapped around the fibers 

with an axial dimension of about 300-400 nm that was displayed throughout the matrix 

(Figure 3.2B, 3.2C).  
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Figure 3.2. Scanning electron microscopy (A) and confocal microscopy (B) images of fibrin matrices 

made from γγF1, γγ’F1, a 1:1 mixture of γγF1 and pFN, or a 1:1 mixture of γγ’F1 and pFN. (C) Zoom-

in images of squared areas in (B). 
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In vitro evaluation of fibrin biological activity for fibroblasts  

Fibroblasts have been previously shown to grow robustly on fibrin in the presence 

of pFN made from a ratio of 10 F1 to 1 pFN7,27–30. The adhesion of fibroblasts to the surface 

of our fibrin matrices was measured on 2-D format for 3 hours which is a time established 

to be sufficient for cellular adhesion (Figure 3.3A). The nuclei of attached fibroblasts were 

stained by DAPI.  Adhered cells were also quantified with alarmar blue assay (Figure 

3.3D). These 2-D culture results showed nearly 100% of the plated fibroblasts adhered to 

all four of these matrices. We observed fibroblasts after embedding within each of the 4 

fibrin matrices (Figure 3.3B, 3.3C). After 48 hours of this 3-D culturing a normal and 

healthy progression to an extended morphology occurred within all matrice types. Good 

viability was also indicated by live/dead cell staining. In particular, the fibroblasts had 

expanded about 6-fold within γγ’F1:pFN matrix and about 4-fold in each of the other three 

fibrin formulations. Thus, all of the fibrin materials induced fibroblast viability which was 

similar to that reported in the literature for fibrin with or without pFN7,27–30. 
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Figure 3.3. Culturing primary human fibroblasts on top of (A,D) and within 3D fibrin matrices (B,C,E). (A) 

The nuclei of cells attached to fibrin matrices at 3 hr. (B) Fibroblasts in 3D fibrin matrices at 2 h and 48 h. 

(C) Live and dead cells at 48 h. (D) Cells attached to the fibrin matrices were quantified with alamar blue 

assay. (E) Cells in 100 μl fibrin matrices at 48 h were quantified with alamar blue assay. Cell numbers are 

related to the initial seeded cells. **: p<0.01. 
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In vitro evaluation of fibrin biological activity for ECS  

Recent studies have shown that culture of ECs on γγF1 or γγ’F1 fibrin is greatly 

more tenuous than the culture of fibroblasts using preparations which showed no visible 

pFN content by SDS-PAGE. Our studies showed that HUVECs cultured in 2-D exhibited 

some degree of adherence after 3 hours to all fibrin matrices studied here (Figure 3.4A). 

However, quantification showed that nearly 100% of HUVECs attached to the 2-D 

γγ’F1:pFN matrix, while only about 50% of HUVECs attached to the other three fibrin 

matrices (Figure 3.4D). We then used 3-D culture of HUVECs within the fibrin matrices: 

after 48 hours on γγF1, γγ’F1, and 1:1 γγF1:pFN fibrin matrices showed spherical 

morphology, indicating a poor adhesion that is characteristic of apoptosis (Figure 3.4B, 

3.4C). This apoptotic profile was confirmed by live/dead cell staining (Figure 3.4C). In 

contrast, HUVECs cultured within γγ’F1:pFN showed no evidence of apoptosis while 

having a high level of morphologically healthy sprouting. Quantification clearly showed a 

3-fold expansion of these ECs within the γγ’F1:pFN matrix relative to the low level of 

expansion observed for the other fibrins (Figure 3.4E).    
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Figure 3.4. Culturing primary human umbilical vein endothelial cells (HUVECs) on top of (A,D) and within 

3D fibrin matrices (B,C,E). (A) HUVECs attached to fibrin matrices at 3 h. (B) HUVECs in 3D fibrin matrices 

at 30 min and 48 h. Red and black arrows point to apoptotic and live cells, respectively. (C) Live and dead 

cells at 48 h. (D) Cells attached to the fibrin matrices were quantified with alamar blue assay. (E) Cells in 100 

μl fibrin matrices at 48 h were quantified with alamar blue assay. Cell numbers are related to the initial seeded 

cells. ***: p<0.001 and ****: p<0.0001. 
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In vivo wound mouse dermal wound closure model   

We studied healing in wounds sealed by γγ’F1:pFN fibrin using paired, dermal 

wound model in normal mice. We paired the 1:1 γγF1:pFN mixture as the wound control 

treatment group because it did not form a banded pFN fibrin nanostructure. Successive 

wound sealing applications were done on day 0, 2, 4, 6 and 9 for each of the two treatments 

that were juxta-positioned within each given mouse. After 15 days, we observed that the 

open area of the wounds sealed with fibrin made from γγ’F1:pFN were smaller relative to 

that treated with fibrin made from γγF1:pFN (Figure 3.5A, 3.5D ). Histology showed a 

native granulation tissue profile across the remaining, not fully closed wound surface 

(typical histological cross-section shown in Figure 3.5B), where open wounds treated with 

fibrin made from γγF1:pFN were markedly less advanced towards closure (zoomed in view 

Figure 3.5C).   
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Figure 3.5. Mouse skin wounds treated with fibrin matrices. (A) Wounds treated with γγF1:pFN or 

γγ’F1:pFN matrix on day 15. (B) H&E staining.( C) Zoom-in images of squared areas in (B). (D) Wound 

areas on day 15. *: p<0.05. 
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Discussion and conclusion  

Our fibrin engineering is based upon the pleotropic biological activities of γγ’F1 

with respect to vascular physiology15 and the known catalytic properties of pFN for wound 

healing. Fibronectin also plays a mechanical role in augmenting fibrin strength.  

Furthermore, both γγ’F1 and pFN occur at nearly a 1:1 molar ratio in normal human 

plasma16,18,19,29. This is consistent with the 1:10 ratio of pFN to F1 typically present in 

fibrinogen preparations that is considered an optimal composition for fibrin based cell 

culture of fibroblasts11. Fibronectin also plays a mechanical role in augmenting fibrin 

strength5,25. We were able to produce a mixture containing a 1:1 ratio of pFN and γγ’F1 

using anion exchange chromatography of fibrinogen-pFN concentrates obtained by 

classical precipitation. This procedure exploited the similar acidity of pFN and γγ’F1 and 

also enabled isolation of γγF1. We further isolated pFN from the γγ’F1 DEAE eluate 

mixture using collagen affinity chromatography. The fibrins respectively made here from 

the core γγ’F1 and γγF1 and were similar in formation kinetics as measured by TEG, range 

of fibrin diameters and branch points. The γγ’F1:pFN and γγF1:pFN fibrins were stronger 

than respective γγ’F1 and γγF1 formulations confirming that the presence of pFN 

strengthens fibrin.    

The cross-linking activity needed for the formation of an effective hemostatic fibrin 

barrier and integration of pFN is normally supplied by a complex of pFXIII with γγ’F117,23. 

Here we augmented this activity by >20-fold using rFXIII to produce a strong fibrin matrix 

when formed over a range of 2.5-4.5 mg/ml F1. In general, we observed that decreasing 

the F1 levels resulted in fibrin mechanical properties that provided more dexterous mouse 
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wound application were effectively made at the F1 levels which normally occur in human 

plasma. However, a facile kinetic balance between rapid polymerization and wound 

adhesion of the fibrin during wound surface application was possible due to the high levels 

of rFXIII activity.   

 Importantly, the elevated cross-linking activity here also induced the formation of 

pFN aggregates. Relative to the other fibrins studied, the γγ’F1:pFN fibrin was unique in 

its high efficiency for both fibroblast and EC colonization in vitro as well as normal wound 

closure and healing. Because of the similarities in core fiber matrix structure among all 

fibrins studied here, the enhanced interaction of ECs with γγ’F1:pFN fibrin was likely due 

to its unique presence of the pFN aggregate fiber wrappings. An enhanced ability of ECs 

to engage with the γγ’F1:pFN fibrin was observed with both 2-D and 3-D culture 

experiments: the 2-D culturing of ECs showed a rapid establishment of cell adhesion points 

which initiated cell elongation while the 3-D culture showed robust survival, proliferation 

and vascular morphogenesis. In contrast, the other fibrins were associated with a greater 

extent of apoptosis in 3-D culture. To our knowledge, this is the first report of enhanced 

EC colonization and healing using a γγ’F1:pFN fibrin matrix.  

The initiation of cellular engagement by fibroblasts with fibrin containing pFN is 

well known to be provided by FXIII cross-linking that converts pFN to a conformationally 

active form11. However, this activity has not been specifically associated with EC 

recruitment by pFN so as to result vascularization of granulation tissue24,31. Our study 

supports an rFXIII induced activation of pFN conformation within the aggregate wrappings 

that are periodically presented throughout the γγ’F1:pFN fibrin matrix. In contrast, the 
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sporadically occurring and irregular aggregates of pFN formed within the γγF1 fibrin did 

not enhance EC colonization. It is noted that VEGF and FGF-2 are known to promote the 

initial colonization of either γγ’F1 or γγF1 fibrin by EC32,33 but not the entire sequence 

leading to vascular morphogenesis.  

In summary, our wound healing results reinforce the enhanced colonization of both 

EC and fibroblasts on γγ’F1:pFN fibrin that were observed in vitro. Fibroblasts cultured in 

3-D have been shown to be stimulated on collagen that axially presented aggregates of 

about 90 pFN molecules that were dispersed along the matrix fibers. 37,39 In the future, we 

will continue our in vitro study of the EC colonization and potential integrin-pFN activity 

with the pFN wrapped γγ’F1 fibers and its impact on the vascularization phenomena 

associated with wound healing 
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CHAPTER 4. ENGINEERED HUMAN BROWN ADIPOCYTE 

MICROTISSUES IMPROVED GLUCOSE AND INSULIN HOMEOSTASIS 

IN HIGH FAT DIET-INDUCED OBESE AND DIABETIC MICE 

Introduction 

According to World Health Organization data, about 10% of adults have obesity 

(OB), and the population with OB-associated T2DM will reach 300 million by 20251. 

There are currently no safe and long-lasting approaches to prevent/treat OB and T2DM2. 

Healthy humans have a substantial amount of BAT, a tissue that augments the whole-body 

energy expenditure. Large clinical data shows BAT activity inversely correlates to body 

mass index, plasma glucose, and triglycerides levels, and insulin resistance, and BAT 

activity is a negative predictor of T2DM, dyslipidemia, coronary artery disease, 

cerebrovascular disease, congestive heart failure, and hypertension3–5. Furthermore, the 

beneficial effects of BAT are more pronounced in obese individuals, suggesting the 

importance of this tissue for the obese population3–5.  

Clinical studies have shown that augmenting BAT activities using pharmaceuticals 

(e.g., mirabegron6, glucocorticoids7, BIBO33048), or cold stimulation9–12 enhances the 

whole-body energy expenditure, glucose tolerance, and insulin sensitivity13–15. These 

findings suggest that BAT is a promising therapeutic target. However, these BAT-

activating approaches require sustained treatments, have significant side effects16, and may 

not work long-term. Additionally, they may work poorly on patients with a low abundance 
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of BATs, such as obese and senior individuals (a population mostly affected by OB and its 

associated diseases).  

An alternative approach to overcome these problems is to augment BAT mass and 

activity via tissue transplantation. Several groups transplanted BAT (0.1-0.2 g) from 

healthy mouse donors to diet-induced or genetically obese mice17–20. The transplantation 

significantly reduced plasma glucose, triglyceride, lipid levels, body weight gain, fat 

composition, and hepatic steatosis19,20 while increasing the body energy expenditure, 

oxygen consumption rate (OCR), glucose homeostasis, and insulin sensitivity21,22. 

Transplanted BAT could directly burn fatty acids and glucose and dissipate the energy as 

heat via non-shivering thermogenesis (e.g., act as an energy sink)15,16. They also secreted 

soluble factors and exosomes that enhanced glucose uptake and energy expenditure in the 

heart, muscle, and WAT (e.g., act as an endocrine organ)13,23–27. Although few studies have 

used T2DM mice as recipients, research found that transplanting mouse BAT into 

streptozotocin (STZ)-induced diabetic mice prevented and reversed type 1 diabetes 

mellitus (T1DM)21,28.  

To date, most transplantation studies used mouse BATs, and it is uncertain whether 

these therapeutic effects, cellular and molecular mechanisms would be applied to human 

BAT since human and mouse BATs have distinct differences29. However, human BAT is 

located at deep organs, e.g., the supraclavicular, perirenal/adrenal, and paravertebral 

regions, and isolating sufficient human BAT for transplantation and research is 

challenging30. The Tseng group recently isolated and immortalized human brown 

adipocyte progenitors (BAPs) and found that these BAPs, when transplanted with Matrigel, 
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could prevent/reverse diet-induced OB and metabolic disorders31. Interestingly, they also 

showed that human white preadipocytes activated to express endogenous UCP-1 had 

similar effects, indicating the importance of UCP-1 protein32. The study transplanted a 

large number (1.5-2x107 cells per animal) of proliferating BAPs, which have potential 

tissue overgrowth risk. It also used Matrigel, an extracellular matrix (ECM) extracted from 

mouse tumors that contain hundreds of undefined components. Matrigel is not compatible 

with clinical applications.  

To address these limitations, we explored if transplanting a low dose of mature BAs 

(differentiated from the above BAPs) in the absence of Matrigel could alleviate HFD-

induced OB, metabolic symptoms, and T2DM in mice. When harvesting the fully 

differentiated BAs cultured in the conventional two-dimensional (2D) cell culture dishes, 

the trypsin-based dissociation killed a large percentage of cells. Additionally, the remaining 

BAs had a very low survival rate after transplantation. We thus proposed to prepare 

injectable 3D BA microtissues to overcome these problems. Here, we report the BA 

microtissue fabrication method, their survival, safety, and capability to improve glucose 

and insulin homeostasis and manage body weight gain in HFD-induced OB and diabetic 

mice.  

Materials and Methods 

2D cell culture and differentiation  

Immortalized BAPs are gifts from Dr. Tseng at Harvard University(Xue et al>, 

2015). We followed published methods to culture BAPs34,35. Briefly, BAPs were cultured 
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in Dulbecco’s Modified Eagle Medium (DMEM, HyClone, #SH30003.03) supplemented 

with 10% FBS (Atlanta biologicals, #S11150). When cells reached 80% confluence, they 

were passaged (1:3) with 0.25% trypsin-EDTA (Giboco, #25200056). To induce 

differentiation, BAPs were seeded at 0.5x104 cells/cm2 and maintained in the growth 

medium to reach confluence. Then cells were cultured in differentiation medium I 

consisting EBM-2 (Lonza, #CC-3156), 0.1% FBS, 5 μM SB431542 (Selleckchem, 

#S1067), 25.5 μg/ml ascorbic acid (Sigma, #A89605G), 4 μg/ml hydrocortisone (Sigma, 

#H0396), 10 ng/ml Epidermal Growth Factor (Peprotech, # 100-15), 0.2 nM 3,3′,5-Triiodo-

L-thyronine (T3, Sigma, #T2877), 170 nM insulin (Sigma, #I9287-5ML), 1 μM 

rosiglitazone (Sigma, #R2408), 0.5 mM 3-Isobutyl-1-methylxanthine (IBMX, Sigma, 

#I5879) and 0.25 μM dexamethasone (Sigma, #D4902) for 3 days, then in differentiation 

medium II (differentiation medium I without IBMX and dexamethasone) with medium 

change once a week. Mature BAs could be obtained 20–30 days after induction.  

Fabricating 3D BA microtissues in microwells  

Aggrewells (Stemcell Technologies #34815, #34425) were pre-treated with anti-

adherence rinsing solution (Stemcell Technologies, #07010) following the manufacturer’s 

instruction. Single BAPs were seeded into Aggrewells with differentiation medium I. 

Differentiation medium II was used after three days and refreshed once a week. 

Differentiated BA microtissues were collected by centrifugation at 100 g for 3 min.  
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Fabricating 3D BA microtissues in shaking plates 

Single BAPs were suspended in differentiation medium I in a low adhesion 6-well 

plate (Corning, #3471) shaking at 75 rpm. Detailed methods of culturing cells in shaking 

plates can be found in our previous publications36–40. Differentiation medium II was used 

after three days and refreshed once a week. The plate was tilted and placed in static for 5 

min to settle down the microtissues to change medium. 90% of the exhausted medium was 

replaced with fresh medium. BA microtissues were collected by pipetting the medium up 

and down to suspend the microtissues and spinning at 100 g for 3 min.  

Fabricating 3D BA microtissues in thermoreversible hydrogels  

Single BAPs were suspended in growth medium I in low adhesion 6-well plate 

shaking at 75 rpm overnight to form BAP spheres. The spheres were then mixed with 10% 

ice-cold PNIPAAm-PEG (Cosmo Bio, #MBG-PMW20-5005) solution dissolved in 

DMEM medium. The mixture was then cast on a tissue culture plate and incubated at 37 °C 

for 10 min to form a hydrogel before adding the pre-warmed differentiation medium I. 

Differentiation medium II was used after three days and refreshed once a week. To harvest 

BA microtissues, the medium was removed, and ice-cold DPBS (Life Technologies, 

#21600044) was added to dissolve the hydrogel for 5 min. Finally, BA microtissues were 

collected by spinning at 100 g for 3 min. Detailed methods of encapsulating cells in this 

thermoreversible hydrogel can be found in our previous publications36,40–44.   
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3D microtissues transplantation 

The animal experiments were conducted following the protocols approved by the 

University of Nebraska–Lincoln Animal Care and Use Committee. 6 mice were used for 

each study group.  6-week-old male B6.129S7-Rag1tm1Mom/J or Rag1 knock-out mice 

(Rag1-/-) were purchased from Jackson. Mice were transplanted with 1.25 million cells 

suspended in DPBS. DPBS was used as a sham control. Briefly, 3D microtissues were 

collected and transferred into a sample loading tip bent to have a U-shape. The tips were 

connected to a PE50 tube (BD Diagnostics system, #427516), and microtissues were 

slowly pushed into the center of the tube using a pipetman. The PE50 tube with 

microtissues was then bent into U-shape and placed into a microcentrifuge tube with both 

the PE50 tube ends kinked and facing up. The EP tube was centrifuged at 1000 rpm for 10 

seconds to pack the microtissues tightly so that the medium was located to the two ends. 

The PE50 tube was connected to a loading tip again.  Microtissues were slowly pushed to 

one end of the PE50 tube using a pipetman. This operation was to remove the medium so 

that no medium was injected into the kidney capsule. Otherwise, the medium would wash 

out the injected microtissues from the kidney capsule.  The right kidney of an anesthetized 

mouse was exposed. A small scratch on the flank of the kidney was made by a syringe 25-

gauge needle, creating a nick in the kidney capsule. Saline was applied with a cotton swab 

to keep the kidney wet. The PE50 tube was inserted into the capsule to make a small pocket 

under the capsule. Microtissues were slowly pushed into the pocket. The PE50 tube was 

carefully retracted, and the nick was cauterized with low heat. After stopping bleeding, 

saline was applied, and the kidney was placed back.  Details can be found in previous 
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publications (Szot, Koudria and Bluestone, 2007; Jofra et al>, 2018). After 18 days of 

transplantation surgery, Rag1-/- mice without BA transplantation were fed with NCD 

(Research diets, #D12450Ji) or HFD (Research diets, #D12492i) and labeled as Rag1-/- 

NCD and Rag1-/- HFD, respectively. Rag1-/- mice transplanted with BA microtissues were 

fed with HFD and labeled Rag1-/- HFD+BA. Wild-type (WT) mice without BA 

transplantation were fed with NCD or HFD and labeled as WT NCD and WT HFD.  

Immunocytochemistry  

Cells cultured on 2D were fixed with 4% paraformaldehyde (PFA) at room 

temperature for 15 min, permeabilized with 0.25% Triton X-100 for 10 min and blocked 

with 5% donkey serum for 1 h before incubating with primary antibodies (Table S1) in 

DPBS + 0.25% Triton X-100 + 5% donkey serum at 4 °C overnight. After washing, 

secondary antibodies (Table S1) were added and incubated at room temperature for 2 h 

followed by incubating with 10 mM 4',6-Diamidino-2-Phenylindole, Dihydrochloride 

(DAPI) for 10 min. Cells were washed with DPBS three times before imaging with a 

Fluorescent Microscopy (Zeiss, Germany). For 3D microtissues immunostaining, 

microtissues were fixed with 4% PFA at 4 °C overnight. 40 μm thick tissue sections were 

obtained via cryosection. The sections were washed with DPBS three times and stained as 

the 2D cell cultures.  

For in vivo studies, mouse tissues were harvested and fixed with 4% PFA at 4 °C 

overnight. 5 μm thick sections were obtained via paraffin-embedding and section. The 

sections were deparaffined with xylene three times and rehydrated sequentially in 100%, 
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95%, 70%, 50% ethanol, and distilled water. For hematoxylin and eosin (H&E) staining, 

rehydrated sections were stained in Mayers Hematoxylin (Ricca Chemical Company, 

#3530-16) for 1 min, washed in distill water for 5 times, in DPBS once, and in distilled 

water 3 times with 1 min for each wash and stained in Eosin (Fisher, #SE23-500D) for 1 

min. The sections were then dehydrated in 95% ethanol (3 times), 100% ethanol (2 times), 

and xylene (3 times) with 1 min for each wash before being mounted with coverslips. For 

immunostaining, heat-induced epitope retrieval was done on rehydrated tissue sections 

using the antigen retrieval buffer (Abcam, #ab93680) following the manufacturer’s 

instruction. The sections were stained as the 2D cell cultures.  

Flow Cytometry  

Cell culture or microtissues were dissociated into single cells with 0.25% trypsin-

EDTA. Single cells were fixed with 4% PFA and stained with primary antibodies at 4 °C 

overnight. After washing (three times) with 1% BSA in DPBS, secondary antibodies were 

added and incubated at room temperature for 2 h. Finally, cells were washed with 1% BSA 

in DPBS and analyzed using CytoFLEX LX (Beckman Coulter, USA). Isotype controls 

served for negative gating. 

Serum preparation 

Blood samples were collected from the mouse tail. Cells were removed via 

centrifugation at 3000 g for 10 min at 4 ºC. The supernatant was transferred into a new 

tube and centrifuged at 3000 g for 5 min at 4 ºC to collect the serum.  
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Mouse adipokine array and human obesity array  

Mice were sacrificed. Blood was collected, and serum was isolated as described 

above. 100 µL serum was applied to the mouse adipokine array (R&D systems, #ARY-

013) following the manufacturer’s instruction. 70 µL serum was applied to the human 

obesity array (RayBiotech, #QAH-ADI-3-2) following the manufacturer’s instructions. 

Glucose tolerance test (GTT) 

Mice were fasted from the morning for 16 h. Glucose (0.75 g/kg body weight) was 

administrated via intraperitoneal injection. Blood samples were collected to measure the 

glucose level at 0 (baseline), 30, 60, 90, and 120 min after injection. 

Insulin tolerance test (ITT)  

Mice were fasted overnight for 8 h.  Insulin (Sigma, # I9278-5ML, 0.75 U/kg body 

weight) was administered via intraperitoneal injection. Blood samples were collected to 

measure the glucose level at 0 (baseline), 30, 60, and 90 min after injection. 

Body composition  

Mouse fat and lean mass were analyzed by Minispec LF50 (Bruker, USA).  

Statistical Analysis  

The data are presented as the mean ± SEM. Unpaired t-test and one-way analysis 

of variance (ANOVA) were used to compare two and more than two groups, respectively. 
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Two-way ANOVA was used to compare mice metabolic curves and arrays. P < 0.05 was 

considered statistically significant.  

Results 

Fabricating 3D BA microtissues. 

The brown adipose progenitors (BAPs) used in this study were isolated from the 

superficial neck fat of a human subject and have been well characterized and documented33. 

Like the 2D differentiation, we cultured the microtissues in differentiation medium I for 3 

days and then in differentiation medium II with a medium refresh every 7 days (Figure 

4.1A). To prepare 3D BA microtissues, single BAPs were placed in microwells 

(Aggrewells) in the growth medium. Cells interacted, gradually contracted, and formed 

compact spheroids after 24 h (Figure 4.1B). Microtissues grew in size significantly during 

the differentiation (Figure 4.1B). For instance, microtissues with an initial diameter of 100 

µm became 200 µm on day 17 (Figure 4.1B). The microtissue size growth can result from 

the cell number increase due to cell proliferation or the cell size increase, or both. Cell 

proliferation and size growth were observed during the differentiation of BAPs to BAs in 

2D culture34. When the day 17 microtissues were placed in a conventional tissue culture 

plate, they adhered to the surface, and individual cells migrated out (Figure 4.1C, 4.1D).  

Immunostaining showed that most of the cells in the microtissues expressed the UCP-1 

protein, a biomarker of mature and functional BAs (Figure 4.2A). The attached 

microtissues also expressed high level UCP-1 (Figure 4.2B). UCP-1 is a mitochondria 



71 

membrane protein that is critical for non-shivering thermogenesis. BAT dissipates energy 

in the form of heat via the UCP-1 activity47,48. 
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Figure 4.1. Fabricating BA microtissues. (A) BA differentiation protocol. (B) Preparing BA microtissues in 

microwells. Phase images day-27 BA microtissues after plating on 2D surface for 3 days (C) and 9 days (D). 
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Figure 4.2. 3D culture enhanced BA differentiation. (A) 3D BA microtissues in microwells on day 17 and 

their immunostaining. HuNu: human nuclear antigen. (B) The day 17 BA microtissues were plated on 2D 

surface for 6 days and stained for UCP-1 expression. (C) Flow cytometry analysis of UCP-1 expression on 

day 17 for BAs prepared in 2D culture and 3D culture with varied aggregate sizes. (D) The mean fluorescent 

intensity (MFI) of UCP-1 as measured with flow cytometry in (C). Data are represented as mean ± SEM 

(n=3). ****p < 0.0001. 
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To study if the microtissue size influences the differentiation efficiency, we 

prepared microtissues with a diameter of 100, 250, and 450 µm (initial diameter) and 

differentiated them. All microtissues grew in size significantly (Figure 4.3). While the 100 

and 250 µm microtissues maintained spherical, the 450 µm microtissues gradually became 

non-spherical (Figure 4.3D). Cell death (Figure 4.3D, red arrows) and fusion between 

microtissues (Figure 4.3D, blue arrows) were observed only in the 450 µm microtissues. 

On day 17, flow cytometry analysis showed 92.6%, 72.6%, and 80.4% of the cells in the 

100, 250, and 450 µm microtissues were UCP-1 positive. For comparison, 2D culture 

resulted in 78.8% UCP-1 positive cells (Figure 4.2C). The mean fluorescent intensity (MFI) 

of UCP-1 intensity in 100 µm microtissues is significantly higher than in other groups 

(Figure 4.2D). The results show that a 3D microenvironment promoted brown 

adipogenesis and UCP-1 expression. However, a small microtissue size should be used to 

maximize the benefits.  We used 100 µm microtissues for the rest of the study. 

The cells migrated from microtissues had the classical BA characteristics (Figure 

4.4). They expressed a high level of UCP-1 protein (Figure 4.2A-C, 4.4D) and had 

multiple small oil droplets (Figure 4.1C, 4.4A-C) and a high mitochondrial content 

(Figure 4.4C). In addition, they expressed the typical BA marker genes at high levels 

(Figure 4.4E). 
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Figure 4.3. Preparing BAs in 2D culture (A) or microwells with varied aggregate sizes (B, C, D). Day 9 and 

Day 17 microtissues were released from microwells before imaging. 
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Figure 4.4. Characterization of BA microtissues. BAs prepared in 3D had typical BA phenotypes such as large 

numbers of small lipid droplets (A, B), abundant mitochondria (C) and UCP-1 proteins (D).  They expressed 

BA-specific genes at high level (E). WA and BA: adipocytes differentiated from human WAPs and BAPs in 

microwells. TMRM: Tetramethylrhodamine, methyl ester (mitochondrial probe). Data are represented as mean 

± SEM (n=3). ***p < 0.001, ****p < 0.0001 ***p < 0.001 
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BA microtissues survived in vivo with angiogenesis and innervation.  

As said, very few BAT transplantation studies used T2DM mice. To fill the gap, 

we used high fat diet (HFD)-induced OB and T2DM mouse model to test the engineered 

BA microtissues. We selected the immune-deficient Rag1-/- mice as recipients since they 

tolerate xenogeneic and allogeneic tissues and have HFD-induced OB and metabolic 

disorders49,50. In addition, they developed diabetes when given STZ51. Rag1-/- mice fed with 

normal chow diet (NCD) and HFD with no microtissue transplantation were used as 

positive and negative controls to evaluate the microtissue efficacy. Wild type (WT) mice 

fed with NCD and HFD were also included to assess the difference of response to HFD 

between WT and Rag1-/- mice. HFD was initiated 18 days post-transplantation (Figure 

4.5A). A significant number of adipose tissues was found in the kidney capsule 1 month 

and 5 months after transplantation (Figure 4.5B). H&E staining showed the dense kidney 

tissue and the adjacent adipose tissue with large amounts of oil droplets (Figure 4.5B). The 

oil droplets were bigger in the 5 month sample. No tumor or non-adipose tissues were 

found in the transplants, indicating safety of fully differentiated BAs in vivo.  

The oil droplets were much bigger than those of the endogenous BAT (endoBAT) 

of NCD fed mice, but comparable to the endoBAT of HFD fed mice (Figure 4.7A), which 

indicates whitening of the transplanted BAs. However, a high level of UCP-1 protein was 

observed (Figure 4.5C), showing the BA function was maintained for at least 5 months. 

Host blood vessels grew into the transplants (Figure 4.5D). The vessel density was lower 

than the endoBAT of NCD mice but comparable to the endoBAT of HFD mice (Figure 

4.7D). Innervation is critical for BA function. Tyrosine hydroxylase (TH+) nerves were 
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found in the transplants (Figure 4.5E), and their density was lower than this of the NCD 

mouse endoBAT but comparable to the density in the HFD mouse endoBAT (Figure 4.7E).  
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Figure 4.5. BA microtissues survived in vivo with angiogenesis and innervation. (A) The transplantation 

protocol. (B) H&E staining of 1-month and 5-month transplant. The transplant and adjacent kidney tissue 

are labelled. Immunostaining of the 5-month transplant and adjacent kidney tissue with human UCP1 

(hUCP1) (C), mouse CD31 (mCD31) (D) , and mouse tyrosine hydroxylase (mTH) (E) . 
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BA microtissues alleviated obesity and diabetes. 

We regularly measured the body weight, fat and lean mass, plasma glucose level, 

glucose tolerance, and insulin sensitivity (Figure 4.6). To mimic the β cell dysfunction of 

T2DM, we injected low-dose STZ (90 mg/kg) after 3-month HFD. The bodyweight drops 

and the fasting glucose level rise after the STZ injection indicated the progression of T2DM 

(Figure 4.6A, 4.6D). There was no significant difference in total diet intake between the 

HFD groups. Under HFD, both WT and Rag1-/- mice developed OB (Figure 4.6A) and 

grew large fat masses (Figure 4.6B, 4.6C). We found Rag1-/- mice were slightly more 

prone to HFD-induced OB and metabolic disorders but were suitable for our studies. The 

transplant significantly reduced the body weight gain, fat content, and fasting glucose level 

while increasing insulin sensitivity and glucose tolerance (Figure 4.6). 
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Figure 4.6. BA microtissues alleviated obesity and diabetes. (A) Body weight gain, (B) % fat mass, (C) % 

lean mass, (D) fasting glucose level, (E) GTT (day 150), and (F) ITT (day 170). WT: wild type mouse; Rag1-

/-: Rag1 knock-out mice; NCD: normal chow diet; HFD: high fat diet. Data are represented as mean ± SEM 

(n=6). *p < 0.05, ***p < 0.001, ****p < 0.0001. 
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BA microtissues prevented the whitening of endogenous BATs.  

The endoBAT was whitened in Rag1-/- mice fed with HFD, as shown by an increase 

of adipocyte size and oil droplets (Figure 4.7A-C), and a reduction of the mUCP-1 protein 

expression (Figure 4.7D), blood vessel density (Figure 4.7D, 4.7E) and TH+ nerve density 

(Figure 4.7E). The transplanted BA microtissues almost wholly prevented the whitening 

of endoBAT (Figure 4.7A-E). HFD mice with BA microtissues had similar BA 

morphology, blood vessel, and nerve densities to the NCD mice.  
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Figure 4.7. BA microtissues protected endogenous BAT (endoBAT). (A) H&E staining of endoBAT. BA 

size (B) and area (C) in endoBAT. (D) Mouse UCP-1 and CD31 expression in endoBAT. (E) Mouse TH and 

CD31 expression in endoBAT. Data are represented as mean ± SEM (n=6). ****p < 0.0001.  
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BA microtissues alleviated endogenous WAT hypertrophy and liver steatosis. 

The adipocyte and oil droplet size of subcutaneous WAT (scWAT) was increased 

by the HFD. BA microtissues significantly reduced the adipocyte and oil droplet size 

(Figure 4.8A-C). CD31 staining showed fewer blood vessels in HFD fed mice. BA 

microtissues increased the blood vessel density in HFD fed mice (Figure 4.8D). The liver 

fat content was significantly increased in HFD mice but was almost normalized by BA 

microtissues (Figure 4.8E). These results showed that the transplanted microtissues had a 

profound effect on multiple organs.  
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Figure 4.8. BA microtissues reduced endogenous WAT hypertrophy and liver steatosis. (A) H&E staining 

of mouse subcutaneous white adipose tissue (scWAT). (B, C) Adipose size and area in scWAT. (D) Mouse 

CD31 expression in scWAT. (E) H&E staining of mouse liver. (F) Adipose area in liver. Data are represented 

as mean ± SEM (n=6). *p < 0.05, **p < 0.01, ****p < 0.0001. 



88 

BA microtissues secreted soluble factors and modulated endogenous adipokines. 

We used a Human Obesity Antibody Array to measure human protein factors in the 

blood. We found that the concentrations of human adiponectin, chemerin, and TGF-β1 in 

mice with transplants were significantly higher than background (Figure 4.9A), indicating 

the transplanted BAs were secreting soluble factors. Research has shown that adiponectin 

secreted by white and brown adipocytes has a protective role in obesity-associated 

metabolic and cardiovascular diseases. Adiponectin influences multiple tissues such as the 

liver, skeletal muscle, and vascular system. Adiponectin can increase insulin sensitivity52,53, 

suppress inflammation, and reduce atherosclerosis54–56. Plasma adiponectin level is 

negatively correlated with obesity, and adiponectin deficiency enhances HFD induced 

insulin resistance57. Chemerin plays a positive role in the metabolic health58,59. TGF-β1 is 

a mediator of insulin resistance in metabolic disease60,61.  

We also used a Mouse Adipokine Antibody Array to measure 38 obesity-related 

mouse molecules. The levels of Adiponectin, ANGPT-L3, C-reactive protein, ICAM-1, 

IGFBP-3, IGFBP-5, IGFBP-6, Lipocalin-2, and Pentraxion2 were significantly reduced, 

and the IGF-1 concentration was increased by the HFD (Figure 4.9B, 4.9C). All of these 

molecules were normalized by the transplanted BA microtissues (Figure 4.9C).  Thus, the 

transplanted microtissues had a significant effect on the endogenous adipokines.   
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Figure 4.9. BA microtissues secreted human protein factors and modulated endogenous adipokines. (A) Protein 

factors in mouse plasma detected using human obesity antibody array. (B, C) Heatmap and quantification of 

adipokines in mouse plasma detected using mouse adipokine antibody array. Data are represented as mean ± 

SEM (n=3). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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Scale up BA microtissues production.  

All the above experiments used microwells to prepare microtissues. However, 

microwells are unsuitable for producing microtissues at large scales, which are needed for 

future extensive animal studies, drug screens, and clinical applications. Previously, our lab 

used 3D suspension culture (e.g., shaking plates, spinning flasks, stirred tank bioreactors) 

to prepare human pluripotent stem cells at large scales36–40. We also pioneered in culturing 

stem cells at high density in thermoreversible PNIPAAm-PEG hydrogels36,40–44,62. We 

found that BA microtissues could be prepared in both systems (Figure 4.10). Large tissue 

aggregates formed via fusion of multiple microtissues were found in shaking flasks (Figure 

4.10A), while microtissues in PNIPAAm-PEG hydrogels were uniform (Figure 4.10B). 

BAs from both systems expressed a high level of UCP-1 protein (Figure 4.10C). Thus, 

both systems can be used to scale up the microtissues production.  
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Figure 4.10. Scaling up BA microtissue production. Preparing BA microtissues in shaking plates (A) and 

PEG hydrogel (B). (C)Immunostaining of day 17 BA microtissues prepared in shaking plates and PEG 

hydrogel.  Microtissues were plated on 2D surface for 6 days before staining. 
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Preserving BA microtissues. 

Lastly, we evaluated if BA microtissues could be preserved. Microtissues preserved 

in cell culture medium at room temperature for 24 h (Figure 4.11B) had similar viability 

to the fresh sample (Figure 4.11A). Microtissues could also be cryopreserved in liquid 

nitrogen for the long term without significantly sacrificing cell viability (Figure 4.11C).  
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Figure 4.11. Preserving BA microtissues. Live/dead cell staining of day 27 fresh BA microtissues (A) or 

stored at room temperature for 24 h (B) or stored in liquid nitrogen and recovered (C). 
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Table 4.1, Antibodies used in chapter 4.  

Antibody Supplier Catalog. No Host species Dilution 
Anti-UCP1 abcam ab155117 Rabbit 1:50 
Tyrosine Hydroxylase (TH) Fisher scientific AB152MI Rabbit 1:50 
CD31 abcam ab24590 Mouse 1:250 
Anti-UCP1 abcam ab23841 Rabbit 1:250 
Anti-Human Nuclear 
Antigen antibody [235-1] abcam ab191181 Mouse 1:100 
Secondary Antibody Thermo Fisher A-21202 Donkey 1:500 
Secondary Antibody Thermo Fisher A-21207 Donkey 1:500 

Secondary Antibody 
Jackson Immuno 
Research Labs 715585150 Donkey 1:500 

Secondary Antibody 
Jackson Immuno 
Research Labs 711545152 Donkey 1:500 

 

Table 4.2. One-way ANOVA multiple comparisons test results of mean UCP-1 intensities for day 17 BA in 

Figure 4.2D. Data are represented as mean ± SEM (n=3). *p < 0.05 , ****p < 0.0001. 

 Control 2D BA 100 µm 250 µm 450 µm 
Control      
2D BA ****     
100 µm **** ****    
250 µm **** **** ****   
450 µm **** **** **** *  
 

Table 4.3. Two-way ANOVA multiple comparisons test results of body weight gain in Figure 4.6. 

Tukey's multiple comparisons 
test (weight) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA  

WT NCD      
WT HFD ****     

Rag1
-/-

NCD  ns ****    

Rag1
-/-

HFD **** **** ****   

Rag1
-/-

HFD+BAT  **** ns **** ****  
 

Table 4.4. Two-way ANOVA multiple comparisons test results of body fat mass in Figure 4.6. 

Tukey's multiple comparisons 
test (fat mass) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA  

WT NCD      
WT HFD ****     

Rag1
-/-

NCD  ns ****    

Rag1
-/-

HFD **** **** ****   

Rag1
-/-

HFD+BAT  **** ns **** ****  
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Table 4.5. Two-way ANOVA multiple comparisons test results of body lean mass in Figure 4.6. 

Tukey's multiple comparisons 
test  (lean mass) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA 

WT NCD      
WT HFD ****     

Rag1
-/-

NCD  ns ****    

Rag1
-/-

HFD **** *** ****   

Rag1
-/-

HFD+BAT  **** ns **** ***  
 

Table 4.6. Two-way ANOVA multiple comparisons test results of fasting glucose in Figure 4.6. 

Tukey's multiple comparisons 
test (fasting glucose) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA 

WT NCD      
WT HFD ns     

Rag1
-/-

NCD  ns ns    

Rag1
-/-

HFD **** ** ****   

Rag1
-/-

HFD+BAT  ** ns ns *  
 

Table 4.7. Two-way ANOVA multiple comparisons test results of GTT in Figure 4.6. 

Tukey's multiple comparisons 
test (GTT) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA 

WT NCD      
WT HFD ns     

Rag1
-/-

NCD  ns ns    

Rag1
-/-

HFD **** **** ****   

Rag1
-/-

HFD+BAT  ** ns ns ****  
 

Table 4.8. Two-way ANOVA multiple comparisons test results of ITT in Figure 4.6. 

Tukey's multiple comparisons 
test  (ITT) WT NCD WT HFD Rag1

-/-
NCD  Rag1

-/-
HFD Rag1

-/-
HFD+BA 

WT NCD      
WT HFD ns     

Rag1
-/-

NCD  ns ns    

Rag1
-/-

HFD * ns ***   

Rag1
-/-

HFD+BAT  ns ns ns *  
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Table 4.9. Two-way ANOVA multiple comparisons test results of mouse adipokine antibody array in Figure 

4.9C.  

 

Rag1
-/-

NCD vs. Rag1
-/-

HFD   
Rag1

-/-
NCD vs. Rag1

-/-

HFD+BA 
Rag1

-/-
HFD vs. Rag1

-/-

HFD+BA 
Adiponectin **** ns ** 
ANGPT-L3 * ns * 
C-Reactive 
Protein * ns *** 
ICAM-1 * ns *** 
IGF-I *** ns *** 
IGFBP-3 **** ns **** 
IGFBP-5 ns ns * 
IGFBP-6 * ns * 
Lipocalin-2 ** ns ** 
Pentraxin 2 ns ns * 
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Discussion 

Our study showed that human BAPs could be differentiated into mature BAs in 3D 

to prepare injectable BA microtissues (Figure 4.1, 4.2, 4.3). The 3D culture promoted BA 

differentiation and UCP-1 protein expression. BA microtissues could survive in vivo for 

the long term with angiogenesis and innervation (Figure 4.5). They alleviated the body 

weight and fat gain and improved glucose tolerance and insulin sensitivity significantly in 

HFD-induced OB and diabetic mice (Figure 4.6). The transplanted BA microtissues 

impacted multiple tissues such as endogenous BAT, WAT, and liver (Figure 4.7, 4.8). In 

addition, they secreted protein factors and influenced the secretion of endogenous 

adipokines (Figure 4.9). These microtissues could be produced using the scalable 3D 

suspension culture or in a PEG hydrogel (Figure 4.10) and could be cryopreserved and 

shipped at room temperature (Figure 4.11). To our best knowledge, this is the first report 

on engineering human BA microtissues and showing their safety and efficacy in OB and 

T2DM mice. The findings that 3D culture promotes BA differentiation and the microtissue 

size affects the differentiation are all new. 

To date, most BAT transplantation studies used mouse BATs. There is a need to 

study if human BAT can manage OB and its associated metabolic disorders. The Tseng 

group isolated and immortalized human BAPs and demonstrated that these cells could 

differentiate into mature BAs in vivo and reduce the HFD-induced OB and metabolic 

symptoms32,33. They transplanted proliferating BAPs instead of mature BAs that have 

exited the cell cycle. The possible reason is that BAPs have a better survival rate in vivo. 

A recent study showed that about 12.1% of immortalized mouse BAPs survived in SCID 
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mice 7 days after transplantation with Matrigel, while only 2.7% of mature BA 

(differentiated from BAPs in vitro) were live after 7 days using the same transplantation 

procedure18. Consequently, only BAPs showed an efficacy in vivo18. However, there are 

potential problems with using BAPs. First, the differentiation efficiency in vivo is typically 

low18. Second, proliferating cells have a higher tumorigenic risk, especially for 

immortalized cells. Transplanting fully differentiated BAs has advantages in that they can 

be prepared in vitro at high purity (e.g., ~93% in this study) (Figure 4.2). They are less 

likely to have uncontrolled growth in vivo. However, approaches must be developed to 

improve their survival rate in vivo and avoid cell death during the harvest in vitro, as found 

in our preliminary studies.   

Prior studies showed transplanting mouse BATs prevented/reversed OB and its 

associated metabolic disorders. It should be noted that only transplanting intact 3D BAT, 

not dissociated single BAs, achieved long-term survival and function17–20, indicating that 

3D BAT, not single BAs, should be used as therapeutics in the future. Researchers typically 

inject cultured BAPs with Matrigel to mimic a 3D tissue. Matrigel can both restrict the 

cells at the transplantation size and enhance their survival18. However, Matrigel is extracted 

from mouse tumor tissue and is not chemically defined, and not compatible with clinical 

applications. Our preliminary study showed that a large percentage of mature BAs died 

during the harvest process, suggesting that single BAs are unsuitable for transplantation. 

Our engineered BA microtissues are injectable, do not need extra matrix and dissociation, 

thus addressing all these problems.  

Interestingly, we found that the microtissue size influenced the BA differentiation 
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efficiency significantly. The optimal diameter is about 100 µm (initial diameter). BAs have 

a high demand for glucose, oxygen, and nutrients to meet their high metabolic activities. 

BAs have a high demand for glucose, oxygen, and nutrients to meet their high metabolic 

activities18,63–67.  Nutrients are transported in these microtissues mainly through diffusion. 

Therefore, cells at the center of large microtissues may not have a sufficient supply of 

nutrients, negatively affecting the differentiation process. A second possible cause is that 

cells secrete autocrine or/and paracrine factors are important to BA differentiation. The 

microtissue diameter influences the concentrations and gradients of these factors. The exact 

reason should be made clear in future studies.  

We demonstrated that the production of BA microtissues could be scaled up using 

the 3D suspension culture or a 3D thermoreversible hydrogel matrix. A limitation with the 

3D suspension culturing is that the microtissues are heterogeneous in size (Figure 4.10A). 

Using the thermoreversible hydrogel matrix can produce homogenous microtissues in size 

(Figure 4.10B). However, the matrix is expensive. Our group recently developed a novel 

microbioreactor termed AlgTubes, in which cells are cultured in alginate hydrogel 

microtubes37,38,68–73. AlgTubes are scalable and have low cost. The cell aggregate size can 

be precisely controlled by the hydrogel tubes. AlgTubes can produce up to 5x108 cells per 

mL of culture volume, about 200 times more than the 3D suspension culture. Future studies 

can apply AlgTubes to produce fibrous BA microtissues with uniform and precise size at 

high density.  

BAT is among the most vascularized tissues in the body, averaging ~1.2 capillaries 

per BA (versus only ~0.4 capillaries per white adipocyte) 63–67. A substantial blood supply 
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is required to provide glucose, fatty acids, nutrients, and oxygen to fuel thermogenesis and 

rapidly distribute heat throughout the body 74. Vascular cells also produce soluble and 

insoluble factors critical for BA functions and homeostasis; conversely, BAs produce a 

range of growth factors and cytokines that collectively modulate vascular growth, survival, 

remodeling, regression, and blood perfusion 65,67,75. In obese mice, the capillary density in 

BAT decreases significantly (i.e., ~0.5 capillaries per BA) (Figure 4.7), resulting in 

hypoxia and BAT degeneration66. Our results showed that transplanted BA microtissues 

prevented the whitening of endogenous BAT (Figure 4.7), which may contribute to the 

improvement of glucose and insulin homeostasis. In addition, we showed transplanted BAs 

secreted human adipokines (Figure 4.9A) and altered the expression levels of many 

endogenous adipokines (Fig 4.9B, 4.9C). Thus, the transplanted microtissues function at 

least partially via the endocrine mechanism.  

We found that the transplanted microtissues gradually became white adipocyte-like 

in morphology (Figure 4.5B), although UCP-1 proteins are still expressed at a high level 

(Figure 4.5C). A reason for this whitening is the insufficient vascularization in the 

transplant. This agrees well with literature findings that the transplants had fewer blood 

vessels than endogenous BAT 18,32. Consequently, BAs gradually decreased UCP-1 

expression and became WAT-like features (i.e., whitening). There are two potential ways 

to address this problem.  First, as shown in a published study18, supplementing vascular 

endothelial growth factor (VEGF) to the transplant can significantly improve its 

engraftment, angiogenesis, and function. Second, endothelial cells can be included in the 

BA microtissues. As stated in the above paragraph, endothelial cells or vasculature are 
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indispensable for BAT in vivo. 

We used immortalized BAPs to prepare mature BA microtissues. No tumor or 

abnormal tissue growth was observed (Figure 4.5), indicating fully differentiated BAs are 

safe in vivo. Thus, it is applicable to isolate and immortalize BAPs from a patient and 

expand them to prepare BA microtissues for personalized BA augmentation therapy. An 

alternative approach is to prepare induced pluripotent stem cells (hiPSCs) for a patient. 

hiPSCs can be generated by reprogramming somatic cells76–78. They have unlimited 

proliferation capability and can be differentiated into all types of somatic cells. 

Additionally, the transplant’s immune rejection can be avoided by preparing BAT from 

personalized hiPSCs79,80. Recent clinical studies showed autologous hiPSCs-derived 

dopaminergic neurons, and retinal cells were safe and effective in treating Parkinson’s81 

and macular degeneration80, respectively, indicating the coming of the hiPSCs-based 

personalized medicine era. Alternatively, universal hiPSCs can be engineered, for instance, 

via inactivating major histocompatibility complex (MHC) class I and II genes and 

overexpressing CD47 or/and PD-L181–84. The derivatives of universal hiPSCs are 

hypoimmunogenic and can be prepared at large scales as “off-the-shelf” allogeneic 

products. hiPSCs have been successfully differentiated into BAs that are metabolically 

active in vitro and in mice models35,85–90. Therefore, future studies can explore using 

hiPSCs to prepare personalized BA microtissues.  

Conclusion 

In summary, our study showed that 3D BA microtissues could be fabricated at large 
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scales, cryopreserved for the long term, and delivered via injection. BAs in the microtissues 

had higher purity, and higher UCP-1 protein expression than BAs prepared via 2D culture. 

In addition, 3D BA microtissues had good in vivo survival and tissue integration and had 

no uncontrolled tissue overgrowth. Furthermore, they showed good efficacy in preventing 

OB and T2DM with a very low dosage compared to literature studies. Thus, our results 

show engineered 3D BA microtissues are promising anti-OB/T2DM therapeutics. They 

have considerable advantages over dissociated BAs or BAPs for future clinical applications 

in terms of product scalability, storage, purity, quality, and in vivo safety, dosage, survival, 

integration, and efficacy.   
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CHAPTER 5. SCALABLE CULTURE OF MYOCYTES IN ALGINATE 

HYDROGEL MICROTUBES 

Introduction 

Based on the Food and Agriculture Organization (FAO) data, the global population 

is expected to reach 9 billion by 2050. Accordingly, 70% more food will be needed to feed 

this population. Meat is a significant part of human food1. Currently, meat is obtained from 

natural animals or livestock raised through traditional farms or modern factories2–4. The 

natural supply is clearly limited.  Livestock farming requires large amounts of water and 

land and will reach a limitation. Additionally, farming causes significant environmental 

and animal welfare issues5,6. Therefore, alternative approaches that can produce meat in an 

efficient and environmentally friendly way are highly wanted.  

One option is to produce meat via cell culture7–9. Briefly, animal cells are expanded 

to generate large numbers and differentiated into myocytes that are assembled into muscle 

tissues. This approach is currently at the proof-of-concept stage. A few significant 

technological challenges must be addressed for its further advance. One of these challenges 

is to produce cells at large scales in a cost-effective way. Tons of cell mass will be needed 

per day for meat production. None of the current cell culture technologies, e.g., 2-

dimensional (2D) flasks and stirred tank bioreactors (STRs), can achieve this scale and 

price. For instance, STRs can only produce ~2x106 cells/mL. This cell mass occupies ~0.4% 

of the culture volume. Growing>1011 cells/batch with STRs is still difficult.  

Previously, our lab developed a new cell culture system termed AlgTubes10–17. With 
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this method, cells are cultured in hollow, microscale alginate hydrogel tubes. AlgTubes 

provide a cell-friendly microenvironment, resulting in paradigm-shifting improvements in 

cell viability, growth rate, yield, culture consistency, scalability. When culturing human 

stem cells and adult cells, we have achieved up to 5x108 cells/mL volumetric yield, which 

is ~250 times the current-state-of-the-art. AlgTubes make large-scale cell production 

feasible. For instance, to produce 1012 cells from 1x107 cell seeds, our modeling shows that 

AlgTubes (vs. the current stirred tank bioreactors) reduce the culture volume from 1365 to 

4.0 litters, culture time from 40 to 20 days, and passaging operations from 9 to 1, 

collectively reducing the production cost and increasing the production capability in a 

significant manner. Thus AlgTubes have huge potential for culturing animal cells for meat 

production. In this work, we systematically re-engineered the AlgTubes and studied 

culturing animal myoblasts to produce meat.  

Materials and Methods 

Cell lines and Materials  

Mouse bone marrow mesenchymal stem cell line (D1, CRL-12424), mouse 

myoblast cell line (C2C12, CRL-1772), quail myoblast cell line (QM7, CRL-1962), mouse 

beige adipocyte cell line (X9, CRL-3282), mouse fibroblast cell line (3T3, CRL-1658) 

were purchased from ATCC and maintained as instructed by ATCC. Briefly, C2C12, D1, 

and 3T3 were cultured in DMEM supplemented with 10% FBS. QM7 were cultured in 

medium 199 supplemented with 10% TPB and 10% FBS. X9 were cultured in DMEM/F12 

supplemented with 15% FBS and 2.36 mM L-glutamine. All cell culture medium was 
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refreshed every 2-3 days. To induce C2C12 and QM7 myotube formation, the culture 

medium was supplemented with 10% horse serum instead of fetal bovine serum.  

Additionally, the following chemicals and reagents were also used for the project: 

sodium alginate (cat # 194-13321, 80~120cp, Wako Chemicals), sodium hyaluronate: (cat 

# HA 700K-5, Lifecore Biomedical), tryptose phosphate broth (TPB, cat # 18050039, Life 

Technologies), Dulbecco's Modified Eagle's Medium (DMEM, cat # 30-2002, ATCC), 

Medium 199 with Earle's BSS (cat # 12119F, Lonza), DMEM/F12 (cat # 30-2006, ATCC), 

Fetal Bovine Serum (FBS, cat # 10437028, Gibco), L-Glutamine (cat # 25030081, Gibco), 

propidium iodide (cat # 195458, MP Biomedicals, LLC), Vybrant multi-color cell-labeling 

kit (cat # V22889, Molecular Probes), MF20 antibody (cat # MAB4470, R&D systems), 

RGD peptide (Genscript), Alginate Lyase (cat # A1603, Sigma). 

Modifying Alginates with RGD peptides 

2% alginate was dissolved in 0.1N NaOH and reacted with DVS (1:3 molar ratio 

between OH group and DVS) for 14 minutes. 20% to 30% of the OH groups in alginate 

polymers were modified with DVS. Dialysis was done to remove excessive DVS. The 

RGD peptide containing cysteine was used to react with alginate-vs under the alkaline 

condition to make alginate-RGD. 10% of the modified OH groups were reacted with RGD 

peptides. Alginate-RGD were mixed with unmodified alginate to make a 2% alginate 

solution with 1 mM RGD concentration.   
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Processing alginate-RGD hydrogel tubes (AlgTubes) 

A custom-made micro-extruder was used to process AlgTubes. A hyaluronic acid 

(HA) solution containing single cells and an alginate-RGD solution are pumped into the 

central and side channel of the micro-extruder, respectively, to form coaxial core-shell 

flows that are extruded into a CaCl2 buffer (100mM) to make AlgTubes. Subsequently, 

CaCl2 buffer was replaced by cell culture medium. Detailed methods of culturing cells in 

alginate hydrogel tubes can be found in our previous publications10–16. 

Culturing cells in AlgTubes  

For typical cell culture, 20 µL of cell solution in AlgTubes were suspended in 3 mL 

medium in a 6-well plate. Cells were seeded at the density of 1-2x106 cells/mL hydrogel 

tube space.  2% alginate modified with 1 mM RGD peptide was used. The hydrogel tube 

diameter was 200 – 300 µm with shell thickness around 30-70 µm. To passage cells, the 

medium was removed, and alginate hydrogels were dissolved with 0.5mM EDTA and 100 

µg/ mL alginate lyase for 10 min at 37 ºC. Cell mass was collected by centrifuging at 100 

g for 5 min and treated with 0.25% trypsin-EDTA at 37 ºC for 10 min and dissociated into 

single cells. Digestion was neutralized by complete cell culture medium. 

Immunocytochemistry 

Cells cultured on 2D were fixed with 4% paraformaldehyde (PFA) at room 

temperature for 15 min, permeabilized with 0.25% Triton X-100 for 10 min, and blocked 

with 5% donkey serum for 1 h before incubating with primary antibodies in DPBS + 0.25% 

Triton X-100 + 5% donkey serum at 4 °C overnight. After washing, secondary antibodies 
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were added and incubated at room temperature for 2 h followed by incubating with 10 mM 

4',6-Diamidino-2-Phenylindole, Dihydrochloride (DAPI) for 10 min. Cells were washed 

with DPBS three times before imaging with a Fluorescent Microscopy. For 3D fibrous cell 

mass immunostaining, cell mass was fixed with 4% PFA at 4 °C overnight. 40 μm thick 

tissue sections were obtained via cryosection. The sections were washed with DPBS three 

times and stained as the 2D cell cultures. Alternatively, the cell mass was directly incubated 

with primary antibody at 4 ºC for 48 h after fixed and wash. After extensive wash, 

secondary antibody was added and incubated at 4 ºC for 24 h followed by incubating with 

10 mM DAPI for 10 min and imaged with a Fluorescent Microscopy.  

Statistical analysis 

The data are presented as the mean ± SEM. We used one-way ANOVA to compare 

all groups. P < 0.05 was considered statistically significant. 

Results 

The engineered Alginate-RGD culture system (AlgTubes) 

We modified our alginate hydrogel tubes (AlgTubes) with RGD peptides so that 

anchor-dependent myoblasts could be cultured in AlgTubes. Briefly, the sodium alginate 

was dissolved in 0.1 N NaOH and reacted with DVS through “click” chemistry to generate 

VS groups on the alginate polymers18. The RGD peptides with free -SH groups then reacted 

with these VS groups via Michael addition reaction. Alginate-RGD was mixed with 

unmodified alginate to produce a 2% alginate solution with 1 mM RGD concentration, 
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used to process AlgTubes. A cell solution and the 2% alginate-RGD solution were pumped 

into the central and side channel of a custom-made micro-extruder, respectively, to form a 

coaxial core-shell flow extruded through a nozzle and into a CaCl2 buffer (100 mM) 

(Figure 5.1A and 5.1B). The shell alginate flow was crosslinked by Ca2+ ions in seconds 

to form an alginate hydrogel tube. Subsequently, cells were grown in the tubes suspended 

in the cell culture medium in a 6-well plate.   

The AlgTubes system is designed to provide cells with a friendly microenvironment 

(Figure 5.1C). First, RGD peptides allow cells to attach to a substrate and proliferate. 

Second, oxygen, nutrients, and macromolecules (with Mw up to 700 kDa) can freely and 

quickly diffuse through the hydrogel shell. Third, the hydrogel tubes direct cell expansion 

axially while confining the radial diameter of cell masses within the diffusion limit (~400 

μm) to ensure efficient mass transport during the whole culture period. As shown in our 

previous research, the diffusion limit in 3D human cell culture is typically less than 500 

µm10–17.  Forth, the hydrogel tubes also isolate hydrodynamic stresses from cells. Lastly, 

the tubes provide free and uniform 3D microspaces that allow cells to interact with each 

other and grow (Figure 5.1C).  



121 

 

 

  

Figure 5.1. Overview of culturing cells in alginate hydrogel tubes (AlgTubes). (A, B) Process AlgTubes. A 

cell suspension and an alginate solution is pumped into the central channel and side channel of the 

microextruder, respectively, to form a coaxial coreshell flow that is extruded through the nozzle into the 

CaCl
2
 buffer. The shell alginate flow is crosslinked by Ca

2+
 ions to form an alginate hydrogel tube within 

seconds. (C) Illustration of cell microenvironment of AlgTubes.   



122 

C2C12 expansion in AlgTubes 

We cultured C2C12 in AlgTubes for 19 days (Figure 5.2). Day 0 image showed 

our seeding density was very low (1x106 cells/mL hydrogel tube spaces). Only a few cells 

could be found in the amplified image on day 0. A low cell seeding density allows a large 

expansion fold per passage and is wanted for industrial cell production. After 24 hours, 

almost all cells attached to the hydrogel tube inner surface with no or minor cell death. On 

day 4, cells expanded significantly and formed a confluent monolayer. On day 7, multilayer 

cell masses were seen (green arrows).  The dark-field image on day 7 showed white cell 

mass (orange arrows), indicating 3D multilayer cell masses. After 14 days, the dark-field 

images show extensive 3D white cell masses (yellow arrows), and myotubes could be 

found in phase images (blue arrows). We found that some locations of the tubes were bent 

(Figure 5.2A, red arrows) after 14 days, indicating the myotube contraction force was more 

significant than the hydrogel elasticity. AlgTubes with stronger Young’s modulus can 

overcome this problem to further enhance the cell culture outcome in the future. The 

modulus can be increased by increasing the alginate concentration or using high molecular 

weight alginate or thicker shells.  

Live/Dead cell staining of the cell fibers on day 19 showed most cells were live 

cells, and a few dead cells were detected, indicating high viability of C2C12 cultured in 

AlgTubes after 19 days (Figure 5.3A). We counted the cells using Countless II cell counter. 

The cell quantification shows that C2C12 cells reached ~6.4x107 and ~1.1x108 cells/mL 

hydrogel tubes space on day 10 and day 19, respectively (Figure 5.3B). The released day 

19 cells had healthy morphology. There were some large cell aggregates (Figure 5.3C, 



123 

green arrows), which might be the contracted myotubes. Immunostaining on myofiber 

(MF20) confirmed the existence of myotubes (Figure 5.3C). Our results agree with the 

literature findings that C1C12 cells spontaneously differentiate to form myotubes at high 

density even in the expansion medium. 

 

  

Figure 5.2. C2C12 expansion in AlgTubes. (A) Phase or dark-field pictures of C2C12 cells in AlgTubes on 

different days. Green arrows: multilayer cell masses; yellow arrows: 3D white cells mass; blue arrows: 

myotubes; red arrows: bent tubes.  
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Figure 5.3. Viability and quantification of C2C12 expansion in AlgTubes. (A) Live/Dead cell staining of 

C2C12 in AlgTubes on day 19. (B) C2C12 quantification on day 0, day 10 and day 19. (C) Single C2C12 

cells released from Alg-RGD-Tubes on day 19 and stained with MF20 and PI.  Green arrows: myotubes. 



125 

C2C12 differentiation in AlgTubes  

C2C12 cells were expanded for 7 days in AlgTubes before initiating differentiation 

(Figure 5.4). Cells formed 3D cell masses with the differentiation protocol, indicating that 

cells maintained proliferation during the differentiation process. Myotubes could be seen 

after six days of differentiation (Figure 5.4A, blue arrows). Most cells were live based on 

the Live/Dead cell staining assay (Figure 5.4B). After differentiation for 12 days, the 

volumetric yield reached ~1.2x108/mL (Figure 5.7C).  We used immunostaining to 

evaluate the formed myotubes (Figure 5.5). The staining confirmed the 3D cell masses in 

the hydrogel tubes. There was still some space at the tube core (Figure 5.5B and 5.5D). 

Smaller tubes can be used in the future. A large percentage of cells were MF20 positive 

(Figure 5.5A and 5.5B). The myotubes were large and aligned along the hydrogel tubes. 

Most cells expressed MyoD and PAX7, indicating the cell renewal was repressed, and 

muscle differentiation was promoted (Figure 5.5C and 5.5D). 
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Figure 5.4. C2C12 differentiation in AlgTubes. C2C12 were cultured for 7 days in alginate tube before 

differentiation. (A) Phase or dark-field pictures of C2C12 differentiation in AlgTubes on different days. (B) 

Live/Dead cell staining on day 19. Blue arrows: Myotubes 
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Figure 5.5. Immunostaining of C2C12 expanded for 7 days and differentiated for 12 days in AlgTubes. Cell 

fibers were fixed, cryosection and stained with myofiber (MF20) and DPAI (A, B), and stained with MyoD 

and PAX7 (C, D). 
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C2C12 and D1 co-culture and differentiation   

Our previous research found that mesenchymal stem cells (MSCs) or fibroblasts 

could significantly improve cell viability in high density cell culture. We thus did a co-

culture experiment to evaluate if mouse MSCs (D1 cells) could boost the growth rate and 

yield of C2C12 in AlgTubes (Figure 5.6). D1 cells were pre-stained with vibrant cell-

labeling DIO (green color). C2C12 cells were seeded at 1x106 cells/mL with 1x105 D1 

cells/mL hydrogel tube spaces. Initially, few cells could be observed in the amplified image. 

After 24 hours, most of the cells showed round and spread morphology, suggesting almost 

all cells attached to the hydrogel tubes. On day 4, a confluent cell monolayer was formed 

on the inner surface of alginate tubes. Cells proliferate rapidly and generate a confluent 

monolayer. On day 7, The cells kept expanding, multilayer cell masses were seen (Figure 

5.6A, green arrows on d7).  The white cell mass in the dark-field image (Figure 5.6A, 

yellow arrows on d7) indicated 3D multilayer cell masses were formed. After the cells were 

cultured for 14 days, the more extensive 3D white cell masses were constructed in the 

hydrogel tubes (yellow arrows), and myotubes could be found (blue arrows). Alginate 

hydrogel tubes were bent by the strong cell contractile force after 14 days (red arrows), 

indicating the hydrogel elasticity is not enough for the myotube contraction (Figure 5.6A). 

Only 10% of D1 cells were applied to avoid taking over the culture.  Fluorescent images 

on day 0 to day 7 suggested D1 cells did not have a growth advantage over C2C12 cells 

(Figure 5.6B). Cells exhibited healthy morphologies when they were harvested and 

digested into single cells (Figure 5.6C). Immunostaining on myofiber (MF20) showed the 

existence of myotubes, indicating D1 cells did not inhibit the spontaneous C2C12 cell 
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differentiation (Figure 5.6C).  
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We evaluated if C2C12 cells could be differentiated when D1 cells were presented. 

After co-cultured for 6 days, the medium was changed to a differentiation medium. The 

differentiation was similar to monoculture (Figure 5.7). Cells maintained proliferation to 

form 3D cell masses, and myotubes could be seen after six days of differentiation (Figure 

5.7A, blue arrows).  The immunostaining shows that most cells were MF20 positive, 

indicating D1 cells did not inhibit C2C12 differentiation (Figure 5.7B). Based on images, 

D1 cells did not significantly change the cell culture. However, cell counting showed that 

co-culture improved the volumetric yield, especially under differentiation conditions 

(Figure 5.8).  In expansion medium, C2C12 cells reached ~6.4x107, and ~1.1x108 cells/mL 

hydrogel tubes tube space on day 10 and 19, respectively (Figure 5.3B). D1 co-culturing 

improved the yield to ~1.3x108 cells/ml hydrogel tubes. In the differentiation medium, 

~1.2x108 cells/ml hydrogel tubes were achieved on day 19. D1 co-culturing increased the 

yield to ~1.6x108 cells/ml hydrogel tubes (Figure 5.8). The Countless II cell counter was 

applied in this counting process. The actual yields should be higher than the numbers listed 

above since the cell counter excluded the large cell aggregates, which were commonly 

observed on day 19. 

  

Figure 5.6. C2C12 and D1 cells co-culture in AlgTubes. (A) Phase or dark-field pictures of cells in 

AlgTubes on different days. (B) Phase and fluorescent images of cells in AlgTubes. Green: D1 cells. (C) 

Cells were released from the tubes on day 19 and stained with MF20 and PI. Green arrows: multilayer cell 

masses; yellow arrows: 3D white cells mass; blue arrows: myotubes; red arrows: bent tubes. 
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Figure 5.7. C2C12 and co-culture and differentiation in AlgTubes. C2C12 and D1 cells were cultured for 7 

days in alginate tube before differentiation. (A) Phase or dark-field pictures of C2C12 differentiation in 

AlgTubes on different days. (B) cell fiber cryosections were immunostained with MF20, MyoD and PAX7. 

Blue arrows: Myotubes. 
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QM7 expansion in AlgTubes 

We then cultured myoblasts from a second species quail (QM7) in AlgTubes for 18 

days (Figure 5.9). After 24 hours, most cells attached to the hydrogel tube wall and 

exhibited fibroblast-like morphology. The day 3 images showed cells expanded 

significantly. However, a confluent monolayer had yet formed. On day 6, multilayer cell 

masses were seen (Figure 5.9A, green arrows). The dark-field image also had white cell 

mass (Figure 5.9A, yellow arrows), indicating 3D multilayer cell masses. However, some 

hydrogel inner surfaces were still not covered with cells (Figure 5.9A, blue arrow). This 

was different from C2C12 cells (Figure 5.2A), which formed a confluent monolayer before 

forming 3D cell masses. This data indicated quail cells might have stronger cell-to-cell 

interactions and weaker cell-to-hydrogel matrix interactions than the C2C12 cells. Most 

likely, quail cells express fewer integrins for the RGD ligands than C2C12 cells. We expect 
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Figure 5.8. Quantifications of C2C12 cultured under different conditions in AlgTubes on day 19. 
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that increasing the RGD concentration or increasing the hydrogel tube modulus will 

enhance cell adhesion and enhance cell culture outcomes. After 9 days, the dark-field 

images showed extensive 3D white cell masses (Figure 5.9A, yellow arrows). However, 

the cells started to form dense aggregates around 12 days and became more evident on day 

15 and day 18 (Figure 5.9A, red arrows).  

The cell quantification showed that the yields of QM7 cells cultured for 11 days 

and 18 days were both ~1.2 x 108 cell/mL (Figure 5.9B). The released day 11 cells had 

healthy morphologies. Live/dead cell staining showed that most cells were alive on day 11 

with a few dead cells found (Figure 5.10A). The Live/Dead cell staining for the whole cell 

fiber indicates that the dead cells were mainly inside the multilayers, especially the dense 

area (Figure 5.10A, red arrows). The released day 18 cells showed more cell death by 

Live/Dead cell staining (Figure 5.10B). There were more and larger aggregates in the tubes, 

and the dead cells were mainly inside the aggregates (Figure 5.10B, red arrows). Because 

cell death significantly increased from day 11 to day 18, the yields were very similar even 

cells continued to grow from day 11 to day 18 (Figure 5.9B).  
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Figure 5.9. QM7 expansion in AlgTubes. (A) Phase or dark-field pictures of QM7 cells in AlgTubes on 

different days. (B) QM7 quantification on day 0, day 11 and day 18. Green arrows: multilayer cell masses; 

yellow arrows: 3D white cells mass; red arrows: dense aggregates.   
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Figure 5.10. Live/Dead cell staining of QM7 cultured in AlgTubes on day 11 (A) and day 18 (B). 
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Quail cell differentiation in AlgTubes  

Before initiating differentiation, quail cells were first expanded for 6 days and 

reached 80-90% confluence in AlgTubes (Figure 5.11). Cells continued to proliferate and 

formed 3D cell masses in the differentiation process. Myotubes could be seen after 3 days 

of differentiation (Figure 5.11A, blue arrows). Live/Dead cell staining indicates a slight 

decrease of dead cells than QM7 expansion only, but still significant dead cells. The dead 

cells were also mainly inside the large and dark aggregates (Figure 5.11B, red arrows). 

Immunostaining confirmed the formation of myotubes, which were aligned along the 

hydrogel tubes. The myotubes also expressed MyoD and PAX7, indicating the muscle 

differentiation of QM7 cells was promoted (Figure 5.11C).  Compared to C2C12 cells, 

QM7 had more dead cells on day 18 both in expansion and differentiation. This could be 

due to the less adhesion to the hydrogel tubes and QM7 cells formed aggregates after being 

cultured for 11 days. Results in Figure 5.1 and Figure 5.8 show C2C12 and QM7 cells 

behaved differently in AlgTubes. C2C12 cells formed a confluent monolayer before 

forming 3D structures, while quail cells tended to form 3D cell aggregated. We asked if 

the AlgTubes caused the difference or it was the cells’ intrinsic difference. We cultured 

and differentiated C2C12 and QM7 using the traditional 2D cell culture dishes (Figure 

5.12 and 5.13). On day 5, both cells formed myotubes. On day 11, more myotubes were 

formed for C2C12 cells, while quail myotubes aggregated.  The results show that AlgTubes 

did not alter cells’ intrinsic programs. 

  



137 

Figure 5.11. QM7 differentiation in AlgTubes. QM7 were first expanded for 6 days in AlgTubes before 

initiating differentiation. (A) Phase or dark-field pictures of QM7 differentiation in AlgTubes on different 

days. Day 18 cells were harvested for live/dead staining (B) and fixed for MF20, MyoD and PAX7 

immunostaining (C). Blue arrows: Myotubes; red arrows: dead cells in aggregates. 
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Figure 5.12. C2C12 differentiation in 2D culture. Differentiation started on day 2. (A) Phase images of 2D 

culture. (B) Immunostaining of MF20. 
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Figure 5.13. QM7 differentiation in 2D culture. Differentiation started on day 3. (A) Phase images of 2D 

culture. (B) Immunostaining of MF20. 
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QM7 and D1 cell co-culture 

Similar to C2C12, we did the QM7 l and D1 cell co-culture. D1 cells did not alter 

the cell culture outcome significantly. For expansion, cells attached the inner surface of the 

hydrogel tubes after 24 hours without apparent cell death. Cells did not reach a confluent 

monolayer until multilayer cell masses were observed on day 6 (Figure 5.14A, green 

arrows). The dark-field images showed 3D multilayer cell masses from day 6 (Figure 

5.14A, yellow arrows),). Cells started to form dense aggregates around 12 days and became 

more obvious on day 15 and day 18 (Figure 5.14A, red arrows). Live/dead staining still 

showed significant cell death on day 18 (Figure 5.14B). Like QM7 single culture, dead 

cells were mainly in the large and dense dark aggregates (Figure 5.14B, red arrows). Thus, 

D1 co-culture did not cause significant changes on QM7 and did not increase QM7 survival 

in the expansion medium.  

We also evaluated if the D1 cells would increase the QM7 yield or differentiation 

in AlgTubes in the differentiation medium. QM7 and D1 cells were first expanded for 6 

days in AlgTubes before initiating differentiation. QM7 cells continued to proliferate and 

formed white cell masses. Myotubes were formed after 6 days of differentiation (Figure 

5.15A). However, significantly less cell death than the monoculture and co-culture in 

expansion medium was detected on day 18 (Figure 5.15B). The MF20 immunostaining 

confirmed the formation of myotubes. Most cells were MF20 positive(Figure 5.15C). Thus, 

D1 co-culture significantly increased QM7 survival in the differentiation medium.  
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Figure 5.14. QM7 and D1 cells expansion in AlgTubes. (A) Phase or dark-field pictures of cells in AlgTubes 

on different days. (B) Live dead cell staining on day 18. Green arrows: multilayer cell masses; orange arrows: 

3D white cells mass; red arrows: dense aggregates. 
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Figure 5.15. QM7 and D1 cell differentiation in AlgTubes. QM7 and D1 cells were first expanded for 6 days. 

(A) Phase or dark-field pictures of cells in AlgTubes on different days. Day 18 cells were harvested for 

live/dead staining (B) and fixed for MF20 immunostaining (C). 
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QM7 and 3T3 cell co-culture 

Fibroblasts are another type of stromal cells that can boost the survival of other cell 

types. We thus did co-culture experiments to evaluate if mouse 3T3 fibroblasts could boost 

the growth rate and yield of QM7 in AlgTubes (Figure 5.16). Cells attached to the hydrogel 

tubes after seeded in the hydrogel tubes for 24 hours. On day 6, cells started to form 

multilayer cell masses before reaching a confluent monolayer (Figure 5.16A). Dense 

aggregates were formed after being cultured for 12 days and continued to increase (Figure 

5.16A). Live/dead staining still showed significant cell death on day 18 (Figure 5.16B). 

Similar to QM7 monoculture, the dead cells were mainly in the large and dense dark 

aggregates (Figure 5.16B).  

Differentiation was initiated after QM7 and 3T3 were co-cultured for 6 days in 

AlgTubes. QM7 cells continued to proliferate and formed white cell masses as shown in 

dark-field images. Myotubes can be seen after 6 days of differentiation (Figure 5.17A, 

blue arrows), while dense and dark aggregates were formed. Significant cell death in the 

aggregates was still shown by Live/Dead cell staining on day 18 (Figure 5.17B).  Cells 

were harvested and fixed for immunostaining. Most cells were MF20 positive, which 

confirmed the formation of myotubes. The myotubes are also expressed high percentages 

of MyoD and PAX7 (Figure 5.17C). Thus, 3T3 co-culture did not cause significant 

changes on QM7. 
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Figure 5.16. QM7 and 3T3 cells expansion in Alg-RGD-Tubes. (A) Phase or dark-field pictures of cells in 

AlgTubes on different days. (B) Live dead cell staining on day 18.   
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Figure 5.17. QM7 and 3T3 cells differentiation in AlgTubes. QM7 and D1 cells were first expanded for 6 

days in AlgTubes before initiating differentiation. (A) Phase or dark-field pictures of cells in AlgTubes on 

different days. Day 18 cells were harvested for live/dead staining (B) and fixed for MF20 immunostaining 

(C). 
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Quantification of QM7 monoculture and co-culture  

To quantify the QM7 growth rate further, we harvested and digested the cells in the 

hydrogel tubes on day 18 and then used the Countless II cell counter to count the cells 

(Figure 5.18). We achieved a final yield of about 1.2 x108 cells/mL hydrogel tubes on day 

18 without differentiation and reached about 1.3x108 cells/mL hydrogel tubes on day 18 

with differentiation.  When co-cultured with D1 cells, the yield was similar to QM7 

monoculture without differentiation, which is ~1.15 x108 cells/mL. However, D1 cell co-

culture and differentiation significantly increased the yield to ~1.9 x108 cells/mL, which 

corresponds to the Live/Dead cell staining. When QM7 cells were co-cultured with D1 

cells in the differentiation medium, significantly fewer dead cells were detected (Figure 

5.15B). When QM7 cells were co-cultured with 3T3 cells, the expansion yield improved 

to ~1.45 x108 cells/mL, though there is no statistical difference.  Moreover, differentiation 

did not change the yield, which is also ~1.1 x108 cells/mL. Overall, the QM7 cells in the 

AlgTubes can achieve a final yield of more than 1.1 x108 cells/mL. If we want less cell 

death, we can culture the QM7 cells only for 11 days per passage before large and dense 

aggregates are formed. If a long-term culture with a higher yield is expected, the alginate 

tubes could be modified with higher RGD concentration or higher stiffness. 
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 X9 expansion in Alg Tubes 

Adipocytes are another main type of cell in meat. Thus, we used the mouse pre-

adipocyte X9 to examine if our system could produce a large number of pre-adipocytes or 

adipocytes (Figure 5.19). X9 cells were seeded with a low density (1 x106 cells/mL). After 

24 hours, most cells were attached to the hydrogel tube wall with no cell death. Unlike 

C2C12 and QM7, X9 cells expanded very slowly. The cell numbers in day 3 images were 

very similar to day 1. A confluent monolayer had yet formed even after 10 days. After 13 

days, most areas were confluent, and few multilayer cell masses were seen (Figure 5.19A, 

green arrows). However, even after 19 days of culture, most hydrogel tubes’ inner surface 

areas were still a single layer of X9 cells, and no large cell mass was seen (Figure 5.19A). 

The yield of X9 cells was 3.5 x106 cells/mL on day 19(Figure 5.19B). The Live/Dead cell 

staining on day 19 showed most cells were live cells with few dead cells were detected 
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Figure 5.18. Quantifications of QM7 cultured under different conditions in AlgTubes on day 19. 
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(Figure 5.19C). Although X9 cells expanded slowly in AlgTubes, the cells did grow in the 

hydrogel tubes and without significant cell death.  

 

  

Figure 5.19. X9 cells expansion in AlgTubes. (A) Phase or dark-field pictures of X9 cells on different days. 

(B) Cell quantification in alginate tubes on day 0 and day 19. (C) Live/Dead cell staining on day 19.   
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Discussion and Conclusion 

Large numbers of cells are needed for meat production. Additionally, the cost of 

cell production should be low so the final meat can be commercially viable. Current cell 

culture methods cannot meet this need. Due to its enormous success in culturing Chinese 

hamster ovary cells for producing protein therapeutics, 3D suspension culturing (e.g., a 

stirred-tank bioreactor), which suspends and cultures cells in an agitated medium, are being 

studied to scale up mammalian cell production19,20. However, several critical problems 

limit its success21–25. First, most mammalian cells have strong cell-cell interactions26,27, 

making them aggregate to form large cell agglomerates (i.e., agglomeration)28–30. The mass 

transport to cells located at the center of large agglomerates (e.g., >400 µm diameter, the 

diffusion limit in tissue) becomes insufficient, leading to slow cell growth, apoptosis, and 

uncontrolled differentiation30,31. Second, the agitation generates hydrodynamic conditions 

(e.g., the medium flow direction, velocity, shear force, and chemical environment) that 

vary spatially and temporally, resulting in locations with critical shear stress (e.g., near the 

vessel wall) that induce large cell death28–30. We24,25 and others21–23 show cells typically 

expand less than 10-fold per passage to yield less than 5x106 cells/mL in 3D suspension 

culturing. These cells occupy <1% of the culture volume25.  

Third, the hydrodynamic conditions are highly variable and sensitive to many 

factors, including bioreactor design (e.g., impeller geometry, size, and position; vessel 

geometry and size; positions of probes for pH, temperature, and oxygen), medium viscosity, 

and agitation rate30,32. They are currently not well understood and are hard to control28–30,32. 

Additionally, different cell types respond to hydrodynamic conditions differently28–30. 
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These result in significant culture variations between batches and cell lines and difficulty 

in scaling up. For instance, in recent studies to make hPSC-CMs from two hPSC lines in 

suspension culturing, the yield varied from 40 million to 125 million cells. The product 

purity varied from 28% to 88% in different batches (100 mL culture volume)33,34. When 

the culture was scaled from ~100 mL to ~1,000 mL, the yield and differentiation efficiency 

was significantly altered, and re-optimization was required33,34. These indicate the 

challenge of further scaling up (e.g., hundreds of liters) since optimizing multiple factors 

in a large volume is costly.  

We and others have cultured cells in hydrogels with the intention of using hydrogels 

as physical barriers to eliminate cell agglomeration and shear stress35–38, but cells have 

slow growth in most hydrogels. We speculate it is due to several factors: (1) the hydrogels 

hinder the initial cellular interactions required for their survival after cell passaging, and 

(2) cells must degrade or deform the scaffold to create spaces for the new cells. 

Significantly, we found a very soft thermoreversible hydrogel that enabled high yield 

(~2.0x107 cells/mL)24,25,39–41. However, this hydrogel is unsuitable for large-scale cell 

production because the material is expensive and highly variable between batches.  

In this study, we showed that our AlgTubes could support both expansion and 

differentiation of mouse and quail myoblasts. The yield reached ~1.5x108 cells/mL. To our 

best knowledge, this is the first time to achieve a volumetric yield above 100 million per 

ml culture volume. More importantly, the AlgTubes system is scalable. We believe this 

system is appropriate for meat production and will significantly impact this emerging field.   
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CHAPTER 6. CREATING A CELL-FRIENDLY MICROENVIRONMENT 

TO ENHANCE THE CELL CULTURE EFFICIENCY 

The need for more efficient cell culture technologies 

 A number of cellular therapeutics have been approved and hundreds of clinical 

trials are on-going. Cells will be a major type of medicine in the future. Human cells are 

also needed in large amounts for disease modeling, drug discovery and tissue engineering. 

To achieve the full potential of cellular therapeutics, we must be able to  cost-effectively 

and reproducibly manufacture cells at large scales and with high quality1.  Cells can be 

prepared and used as off-the-shelf products (i.e. allogenic cells). Allogenic cells have 

relatively low production cost, high quality control, and are available when patients need 

them. The commercial success of allogenic cellular therapeutics relies on a technology that 

can culture massive numbers of cells per batch (e.g. 1012 to 1013 cells per batch)2–4. 

Alternatively, autologous cells can be prepared for personalized treatment. Autologous 

cells have minimal immune rejection but their production cost is high and the production 

variation between patients is significant5–10. The commercial success of autologous cells 

requires a technology that can consistently culture cells for thousands of patients in parallel 

with affordable cost11. Currently, robust and cost-effective culture of high-quality allogenic 

or autologous cells in large scales is still very challenging1,12,13. Significant problems 

associated with the large-scale cell culture including the low cell yield, low scalability, 

high cost, large culture variation, and significant genetic and phenotypic changes. A 

healthy growth of cell therapy industry needs innovations and breakthroughs on cell culture 

technologies. This article will use human pluripotent stem cells (hPSCs) as examples to 
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show the critical need of creating a cell-friendly microenvironment during large-scale cell 

culture.  Though different cell types require different microenvironments, the principles 

and technologies discussed in this article are suitable for other cell types. 

Current cell culture technologies cannot provide a cell-friendly microenvironment 

 In vivo, most of our cells reside in a 3D microenvironment with abundant cell-to-

cell, cell-to-matrix interactions, local growth factors, autocrine and paracrine signaling, 

which collectively regulate the cell survival, growth, differentiation and functions (Figure 

6.1). In most of human tissues, the cellular microenvironment is soft and elastic. There are 

dense blood vessels to efficiently transport oxygen, nutrients, growth factors and metabolic 

wastes. The diffusion limit in human tissue is typically less than a few hundreds of 

micrometers. In most of human tissues, cells experience minimal hydrodynamic stresses. 

The cellular microenvironments of current cell culture methods are very different from this 

in vivo 3D microenvironment:   

  

Figure 6.1. The 3D cellular microenvironment in vivo. 
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The two-dimensional (2D) cell culture method 

Culturing cells on 2D surfaces is widely practiced. However, a 2D environment is 

very different from cells’ in vivo 3D environment (Figure 6.2). In 2D culture, cells are 

polarized and the cell-to-cell and cell-to-matrix interactions and local growth factors are 

considerably reduced. The apical surfaces of cells are free while the bottom surfaces are 

attached to a substrate, which is typically very stiff. To adapt to this physiologically-

irrelevant microenvironment, cells change their genetics and phenotypes14–17. Cells that 

adapt well proliferate and gradually take over the culture. For instance, research shows 34% 

hPSC lines that have been cultured in 2D culture for long-term have large chromosomal 

abnormalities14–19. Additionally, 2D culturing has low yield and is labor-, space-, and 

reagent-consuming. 2D culturing is generally considered suitable for preparing low-scale 

cells20.  

  

Figure 6.2. The two-dimensional (2D) cell culture method 
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The three-dimensional (3D) suspension culture method  

Due to its enormous success for culturing protein-producing cells (e.g. Chinese 

hamster ovary or CHO cells), 3D suspension culturing (e.g., in a stirred-tank bioreactor), 

which suspends and cultures cells in an agitated medium, has been extensively studied to 

scale up the cell cutlure21,22. However, there are still several critical problems with the 

cellular microenvironment of this system (Figure 6.3)2–4,23,24. First, most human cells have 

strong cell-cell interactions25,26 that make them aggregate to form large agglomerates27–29. 

The mass transport to cells located at the center of agglomerates larger than the diffusion 

limit becomes insufficient, leading to slow cell growth, apoptosis, and uncontrolled 

differentiation29,30. Second, the agitation generates hydrodynamic conditions (e.g., the 

medium flow direction, velocity, shear force, and chemical environment) that vary spatially 

and temporally, resulting in locations with critical hydrodynamic stresses (e.g., near the 

vessel wall) that induce large cell death. These factors lead to low cell expansion per 

passage and low volumetric yield27–29. For instance, hPSCs typically expand less than 10 

folds every passage (about 4 to 10 days) to yield ~2.0x to 5x106 cells/mL in 3D suspension 

culturing2–4,23,24 These cells occupy <1% of the culture volume24. Third, the hydrodynamic 

conditions are highly variable and sensitive to many factors, including the bioreactor design 

(e.g., the impeller geometry, size, and position; vessel geometry and size; positions of 

probes for pH, temperature, and oxygen), medium viscosity, and agitation rate29,31. 

Reproducibly and precisely controlling the hydrodynamic conditions is challenging. 

Additionally, different cell types respond to hydrodynamic conditions differently27–29. 

These contribute to the large culture variations between batches and cell lines. For instance, 
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in recent studies to make cardiomyocytes from hPSCs in suspension culturing, the yield 

varied from 40 million to 125 million cells and the product purity varied from 28% to 88% 

in different batches (100 mL culture volume)32,33. When the culture was scaled from ~100 

mL to ~1,000 mL, the yield and differentiation efficiency were significantly altered, 

requiring re-optimization32,33. These indicate the challenge of further scaling up (e.g., 

hundreds of liters), since optimizing multiple factors in a large volume is costly. 

Additionally, the shear stress and hydrodynamic variations become more severe at large 

scales, leading to more cell death and production variations27–29,31. Moreover, aeration (i.e., 

bubbling the medium with oxygen), which is required to meet the oxygen supply needs of 

large cultures, also causes significant cell death34. 

Cells can also be cultured on microcarriers suspended in a bioreactor35. This method 

also has the cell aggregation, shear-force induced cell death, hydrodynamic variation and 

scale up problems. The volumetric yield is also low. Using microcarriers also has some of 

the problems associated with 2D culture, such as the cell polarity and the stiff substrate-

induced cell changes. During the harvest, detaching cells from microcarriers using enzymes 

and mechanical force, and separating the dissociated cells from microcarriers at large scale 

re both very challenging.  
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Figure 6.3. The three-dimensional (3D) suspension culture method 
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The hollow fiber cell culture method 

Polymer hollow fibers have been used for culturing cells36–38. This method mimics 

the in vivo circulation and can generate high volumetric yield. However, it also has some 

critical problems with the microenvironment.  The dense cells consume oxygen and 

nutrients at a fast rate, thus the composition of culture medium along the hollow fibers (e.g. 

at the entrance and exit of hollow fibers) are expected to be different. Consequently, cells 

at different locations face very different microenvironment. Additionally, cells adhere to 

the fibers, and harvesting cells typically takes tens of minutes enzymatic treatment to 

detach cells from the fibers. This treatment can lead to large cell death. 

Culture cells in hydrogels  

Scientists have cultured cells in hydrogels with the intention of using hydrogel 

scaffolds to eliminate cell agglomeration and hydrodynamic stresses39–42. However, cells 

typically have moderate growth rate and volumetric yield in hydrogels23,24,43–45.  First, the 

scaffolds prevent the initial cellular interactions required for the survival of some cell types 

after cell passaging. Second, the scaffolds constrain cells. Cells have to degrade or deform 

the scaffolds to create spaces for the new born cells. In summary, current cell culture 

methods have not been designed to provide cells a well-controlled and friendly 

microenvironment, and consequently, the cell culture efficiency is not satisfactory.  
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Creating a cell-friendly microenvironment can significantly improve the culture 

outcome  

Recently, researchers developed scalable and dissolvable micro-bioreactors that 

can create a cell-friendly and 3D microenvironment for cell cutlure46–52. Specifically, cells 

are cultured in microscale hollow tubes made with alginate hydrogel (i.e., AlgTubes)46–52. 

To process hydrogel tubes, a cell solution and an alginate solution are pumped into the 

central channel and side channel of a micro-extruder, respectively, to form coaxial core-

shell flows that are extruded into a CaCl2 buffer. The shell alginate flow is instantly 

crosslinked by Ca2+ ions to generate a hydrogel tube, and cells are grown in the tube. The 

tube’s diameter and shell thickness can be precisely controlled by adjusting the nozzle 

diameter and the ratio of the shell and core flows. Typically, a shell thickness <40 µm and 

tube diameter <400 µm can ensure efficient mass transport and are appropriate for culturing 

cells. The tubes can be dissolved with the cell-compatible ethylenediaminetetraacetic acid 

solution (EDTA, 0.5 mM) in five minutes at room temperature to harvest the cells for the 

next passage or applications.  

This system is designed to provide cells a friendly microenvironment (Figure 6.4 

and 6.5). First, oxygen, nutrients and macromolecules (with Mw up to 700 kDa) can freely 

and quickly diffuse through the hydrogel shell. The hydrogel tubes direct cell expansion 

axially, while confining the radial diameter of cell masses within the diffusion limit (~400 

μm) to ensure efficient mass transport. Second, the hydrogel tubes also isolate 

hydrodynamic stresses from cells, and lastly, the tubes provide free and uniform 3D 

microspaces that allow cells to interact with each other and grow. The system is also 
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designed to be simple, scalable, low-cost and commercially-viable: i) Alginate hydrogels 

can be quickly processed in large scales with a multi-nozzle extruder46–52; ii) They can be 

quickly dissolved with the cell-compatible EDTA solution to release the product without 

harming cells; iii) The tubes are mechanically and chemically stable that allow culturing 

cells for long term (e.g. up to  a few months) and at large scales; and iv) alginates are 

affordable and available in large quantities, and they have been used in clinics and have no 

cellular toxicity.  

The cell-friendly microenvironment brings enormous improvements in culture 

efficiency including cell viability, growth rate, yield, genetic and phenotype stability, 

culture consistence and scalability (scale out and up)46–52. For instance, hPSCs expand 

~1000-fold per 9 days per passage to yield ~5.0x108 cells per milliliter of hydrogel tubes. 

For comparison, hPSCs typically expand less than 10-fold per passage to yield less than 

5x106 cells/mL in 3D suspension culture. Cells in AlgTubes have less DNA damage and 

phenotype changes: factors that correlate with higher product safety and potency. This 

method has been demonstrated for hPSCs expansion, differentiation and reprograming, as 

well as for expanding T cells and adult stem cells, all with extremely high efficiency46–52.  

The high yield and expansion/passage make it possible to produce clinically 

relevant numbers of cells (e.g., 1x1010) for each patient from small amounts of starting 

cells (e.g., 1x107) with less than 20 mL hydrogel tubes contained in a small, disposable 

bioreactor (e.g. a 50-mL conical tube) without passaging48,50. For instance, to make 

personalized dopaminergic (DA) neuron progenitors48,  reprogramming factors were 

delivered to fibroblasts through electroporation and cells were processed into the hydrogel 
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tubes into a conical tube. Cells were reprogrammed for 20 days, expanded for 10 days, and 

differentiated into DA progenitors for 11 days in the sealed conical tube. On day 41, 0.5 

mM EDTA was infused to dissolve hydrogel tubes. Few cells died during production. Cells 

survived well and matured into TH+ DA neurons in vivo. This all-in-one-tube device, if 

fully developed and automated, can have a significant impact on scaling out the production 

of autologous cells for personalized cell therapy.  

The high expansion/passage and yield also have high impact on scaling up the cell 

production46. For instance, mathematical modeling shows producing 1.5x1014 hPSCs (from 

2x108 hPSC seeds) with stirred-tank bioreactors requires ~104,811 liters of total bioreactor 

volume, 11 passaging operations, and 48 days, which is technically and economically 

challenging. The same production can be done with about 320 liters of AlgTubes in 20 

days and 1 passaging operation. The reductions in culture volume, time, and passaging 

makes the production technically and economically feasible.  

  

Figure 6.4. The cell-friendly microenvironment of alginate hydrogel tubes. 
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Day 10 

Day 12 Day 14 

Day 8 

Figure 6.5. The monodispersed cell mass in one alginate hydrogel tube suspended in a 6-well plate 

on day 8, 10, 12 and 14. Cells were seeded as 3x10
5
 cells/mL 
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Summary  

There is a critical need to develop efficient cell culture technologies to achieve the 

full potential of cellular therapeutics. Academia and industry are currently focusing on 

developing modular, disposable and closed bioreactors; automating the cell culture; 

integrating process analysis and control and artificial intelligence; and scaling out and 

scaling up the 3D suspension culture system1. These efforts are significant since they can 

change the current manual manufacturing to automated manufacturing. However, these 

efforts may not sufficient to fully address the large-scale cell culture challenge since they 

are not enough to create a cell-friendly microenvironment. The AlgTubes system shows 

improving the cellular microenvironment has enormous impact on the culture outcome. Its 

success indicates the academia and industry should put more efforts on  creating a cell-

friendly microenvironment during the cell manufacturing.  
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