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Spin-dependent properties are the heart of spintronic devices. Spintronics exploits 

electron’s spin, in addition to charge, to process and store the information. Recently, 

antiferromagnetic (AFM) spintronics has emerged as a subfield of spintronics, where an 

AFM order parameter (the Néel vector) is exploited to control spin-dependent transport 

properties.  Due to being robust against magnetic perturbations, producing no stray fields, 

and exhibiting ultrafast dynamics, antiferromagnets can serve as promising functional 

materials for spintronic applications.  

Among antiferromagnets, high Néel temperature noncollinear antiperovskites 

ANMn3 (A = Ga, Ni, Sn, and Pt) are interesting due to their magnetic group symmetry 

supporting non-trivial spin-dependent transport phenomena. These materials have 

structural similarity to perovskites which allows their epitaxial deposition on perovskite 

substrates. Using symmetry analyses, first-principles methods based on density-

functional theory, tight-binding Hamiltonian models, and magnetization dynamics 

techniques, this dissertation makes predictions and provides insights into different spin-

dependent phenomena in non-collinear AFM antiperovskites. The results are as follow.  

It is shown that the noncollinear AFM Γ4𝑔𝑔 phase of the antiperovskites exhibits 

sizable anomalous Hall conductivity (AHC), while the Γ5𝑔𝑔 phase has zero AHC by 



symmetry. The Néel vector can be switched on the picosecond timescale using a spin 

torque generated by a spin polarized charge current. The critical switching current density 

can be tuned by ANMn3 stoichiometry engineering.  

 It is demonstrated that the noncollinear AFM Γ5𝑔𝑔 phase of GaNMn3 exhibits 

unconventional spin Hall conductivity, in addition to the conventional existing in the 

paramagnetic phase. Due to its out-of-plane spin polarization, spin Hall current exerts a 

spin torque that can switch out-of-plane magnetization in an adjacent ferromagnet. This 

unconventional spin torque has been realized experimentally using spin torque 

ferromagnetic resonance measurements carried out by our collaborators at University of 

Wisconsin-Madison.  

It is shown that noncollinear AFM antiperovskites allow generation of a spin-

polarized longitudinal charge current like ferromagnets. The magnitude of the net spin 

polarization depends on crystallographic direction.  These results demonstrate that AFM 

antiperovskites can be used as a spin source, spin-torque generator, and information 

carrier in spintronic devices. 
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 Introduction 

The quest for the energy efficient and ultrafast devices in the modern technological world 

has resulted in many scientific evolutions, especially in the field of spintronics. 

Spintronics is a branch of physics in which electronic devices use electron’s spin instead 

of charge to carry the information and hence, these spintronic devices are robust against 

charge perturbations. For example, the presence of leakage currents results in loss of the 

information in electronic devices, but the intrinsic spin momentum is retained. The rise of 

spintronics was possible due to the realization of useful functional properties of magnetic 

materials. Figure 1.1 shows the schematics of some magnetic phases that exist in nature. 

A ferromagnetic (FM) phase [Fig. 1.1(a)] is characterized by a single sublattice with 

magnetization 𝑚𝑚��⃗ 𝐴𝐴, which determines the FM order parameter known as 

magnetization  𝑚𝑚��⃗ = 𝑚𝑚��⃗ 𝐴𝐴. A ferrimagnetic phase contains multiple sublattices such that the 

total magnetic moment is uncompensated and hence it can also be characterized by the 

magnetization. Figure 1.1(b) shows a two-sublattice ferrimagnet with magnetization 𝑚𝑚��⃗ 𝐴𝐴 

and 𝑚𝑚��⃗ 𝐵𝐵. The magnetizations of the two sublattices are unequal and are pointing in 

opposite directions. The order parameter 𝑚𝑚��⃗ = 𝑚𝑚��⃗ 𝐴𝐴 + 𝑚𝑚��⃗ 𝐵𝐵 is finite, as shown by the blue-

white arrow in Figure 1.1(b). An antiferromagnetic (AFM) phase has magnetizations in 

multiple sublattices arranged in such a way that the total magnetization is compensated, 

i.e., 𝑚𝑚��⃗ = 𝑚𝑚��⃗ 𝐴𝐴 + 𝑚𝑚��⃗ 𝐵𝐵 +  𝑚𝑚��⃗ 𝐶𝐶 + ⋯ = 0. In this case, an AFM order parameter, known as the 

Néel vector, is used to explain properties of antiferromagnets.  The antiferromagnets can 

be either collinear with two sublattices A and B [Fig. 1.1(c)] or noncollinear with three 

(or more) sublattices A, B, and C [Fig. 1(d)]. The Néel vector is defined as the staggered 

magnetization and hence, in general they can be expressed as 𝑙𝑙 = 𝑚𝑚��⃗ 𝐴𝐴 − 𝛼𝛼 𝑚𝑚��⃗ 𝐵𝐵 + 𝛽𝛽 𝑚𝑚��⃗ 𝐶𝐶 +
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⋯, where 𝛼𝛼,𝛽𝛽 are real value numbers. In the case of the collinear antiferromagnet, the 

Néel vector is defined by difference in the sublattice magnetizations, i.e., 𝑙𝑙1 = 𝑚𝑚��⃗ 𝐴𝐴 − 𝑚𝑚��⃗ 𝐵𝐵, 

as shown by the double head arrow with red and blue colour in Figure 1 (c). In the case of 

a noncollinear antiferromagnet, we can define two mutually orthogonal Néel vectors  

𝑙𝑙1 = 𝑚𝑚��⃗ 𝐴𝐴 − 𝑚𝑚��⃗ 𝐵𝐵 and  𝑙𝑙2 = 𝑚𝑚��⃗ 𝐴𝐴 + 𝑚𝑚��⃗ 𝐵𝐵 − 2 𝑚𝑚��⃗ 𝐶𝐶   denoted by the two double head arrows in 

Figure 1.1(d). These examples indicate that the zero magnetization antiferromagnets must 

be very different from ferromagnets and ferrimagnets having finite magnetization. 

Ferromagnets or their multilayer combinations are the main elements in the 

traditional spintronic devices because the FM finite magnetization can be easily 

manipulated and detected using conventional techniques. A well-known example is the 

giant magnetoresistance (GMR) effect in FM-based multilayers [ 1, 2]. The GMR effect 

occurs in a device, known as a spin valve, which consists of two FM layers separated by 

a thin nonmagnetic metallic spacer layer.  The resistance of the spin valve depends on the 

relative magnetization orientation of the two FM layers. Similarly, in a magnetic tunnel 

junction (MTJ), where the two FM layers are separated by a thin nonmagnetic insulating 

barrier spacer layer, the tunnelling conductance depends on the relative magnetization 

orientation of the two FM layers. This phenomenon is known as the tunnelling 

magnetoresistance (TMR) effect [ 3, 4].  

The discoveries of the GMR and TMR effects were helpful in developing low 

cost, high density disk drive storage devices. In such devices, an AFM layer is used as a 

secondary element. The antiferromagnet produces an exchange bias field to pin the 

magnetization orientation in the adjacent FM layer while the magnetization of the other 

FM layer remains free to rotate. This free-layer magnetization can be manipulated by an 
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external magnetic field. The change in the relative magnetization orientation can be 

detected by GMR or TMR. The two opposite orientations of the FM magnetization can 

be regarded as “0” and “1” information bits in a device. GMR and TMR effects find their 

use in the magnetic read heads in magnetic hard drives, magnetic field sensors, and 

magnetoresistive random access memories (MRAMs). 

 

Slonczewski and Berger predicted that in addition to the external field, a spin-

polarized charge current can control the magnetization orientation [ 5, 6]. Upon 

application of a sufficiently large charge current density in a spin valve, spin-polarized 

electrons flowing from the pinned FM layer exert a spin transfer torque (STT) on the free 

FM layer which can switch its magnetization. The two FM layers must have noncollinear 

 

Figure 1.1. Schematics of different magnetic phases existing in nature. (a) 

Ferromagnetic phase with magnetization 𝑚𝑚��⃗ 𝐴𝐴 ; (b) Ferrimagnetic phase with two 

sublattices having magnetizations 𝑚𝑚��⃗ 𝐴𝐴 and  𝑚𝑚��⃗ 𝐵𝐵; (c) Collinear antiferromagnetic phase 

with two sublattices having magnetization 𝑚𝑚��⃗ 𝐴𝐴 and  𝑚𝑚��⃗ 𝐵𝐵; and (d) Noncollinear 

antiferromagnetic phase with three sublattices having magnetization 𝑚𝑚��⃗ 𝐴𝐴, 𝑚𝑚��⃗ 𝐵𝐵, 

and  𝑚𝑚��⃗ 𝐶𝐶. 𝑚𝑚��⃗  is the net magnetization given by the sum of magnetizations of magnetic 

sublattices. 𝑙𝑙1 and 𝑙𝑙2 represent the Néel vector. Noncollinear antiferromagnets with 

three sublattices has two mutually orthogonal Néel vectors. 
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magnetization orientations to realize the STT. The theoretical prediction of STT has been 

promptly realized in the experiments [ 7– 9]. Utilizing the STT phenomenon in MTJs led 

to the development of the STT-MRAM which is nowadays used in various technological 

applications.  

While STT has the advantage of high scalability of the non-volatile storage based 

on MTJs, it requires a high electrical current density. The large current dissipates a large 

energy. The energy dissipation can be somewhat reduced in spin-orbit torque (SOT)-

MRAM. Here a FM layer is used in combination with a heavy non-magnetic (NM) metal 

layer. The in-plane charge current injected in the NM layer induces a transverse spin 

current due to the spin Hall effect (SHE) driven by the spin-orbit coupling (SOC) in the 

heavy metal [ 10, 11]. Still, the devices based on SOT have a large switching critical 

charge current density which is unwanted. Nevertheless, these are the main spintronic 

devices in the market nowadays and all of them constitute ferromagnets as primary 

functional materials with antiferromagnets being passive elements. 

AFM materials are abundantly existent in nature, but they have a limited use in 

modern electronic devices. In MTJs and spin valves, the antiferromagnets provide only 

the supporting role delivering the hardness to a FM layer. Nobel prize laureate Louis 

Néel deemed antiferromagnets to be extremely interesting theoretically but useless 

practically [ 12]. This is mainly because of the difficulty to manipulate and detect their 

magnetic order parameter. However, recent demonstrations of the control of the Néel 

vector orientation using an electric current stimulated the idea of using antiferromagnets 

as a functional material in spintronics. The new research developments [ 13– 16 ] have 
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built up the emerging field of AFM spintronics which exploits antiferromagnets as the 

primary element in spintronics.  

1.1. Antiferromagnetic Spintronics  

An antiferromagnet with compensated total magnetization can be characterized by the 

Néel vector. The collinear and noncollinear antiferromagnets are determined by the 

overall orientation of the magnetization of each sublattice. These orientations define the 

unique symmetry as well as the Néel vector directions. A collinear antiferromagnet acts 

like two ferromagnets with their magnetic moment being antiparallel. In a noncollinear 

antiferromagnet, the total magnetization is fully compensated but the staggered (i.e., 

alternating in space) magnetic moment is finite like that in a collinear antiferromagnet. 

The staggered magnetic moment represents the Néel vector as shown in Figure 1.1(d). 

The zero magnetization in antiferromagnets makes them insensitive to the external 

magnetic field and hence, the Néel vector becomes difficult to manipulate. This has been 

the main reason of why antiferromagnets found their limited use in the spintronic devices. 

On the other hand, this insensitivity to the external magnetic field would make AFM 

spintronic devices robust against external perturbations. The information bits in the FM 

spintronic devices sometimes get changed accidentally due to the presence of an external 

magnetic field or even a static magnetic field generated within the device. This leads to 

the unwanted loss of information and in this regard, an AFM spintronic device is 

expected to have an advantage due to being robust with respect to magnetic perturbations.  

The current research is focused on how the modern spintronic devices can be 

made robust and compact. When many FM elements in a device are kept in proximity of 

each other, stray magnetic fields can perturb the magnetic moments storing the 
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information. This makes it difficult to achieve ultrahigh density in spintronic devices with 

ferromagnets as the primary functional element. Synthetic antiferromagnets where two 

FM layers with antiparallel magnetization are coupled through Ruderman-Kittel-Kasuya-

Yosida (RKKY) interactions were proposed as the alternative solution to reduce the 

magnetic stray fields [ 17]. But there is no complete compensation of the magnetization 

in synthetic antiferromagnets resulting in a small but finite stray field. On the contrary, 

antiferromagnets do not have any stray magnetic fields and hence, AFM spintronic 

devices can be compactly arranged side by side with ultrahigh density. Most importantly, 

the cost of making such kind of non-volatile and ultracompact devices is expected to be 

low. AFM materials are found abundantly in nature. These antiferromagnets can be 

metallic (FeMn, PtMn, IrMn, ANMn3 (A = Ga, Ni, Sn, Pt, Zn, etc.), semiconducting 

(Sr2IrO4, MnTe, etc), semimetallic (CuMnAs, Mn3Ge, Mn3Sn, etc.) or insulating (NiO, 

CoO, Cr2O3, BiFeO3, MnF2, etc.) at room temperature.  

In addition to all the above properties, modern devices should also be able to 

increase the time efficiency in doing the assigned work. The FM devices work at an 

optimal frequency within the GHz range, which limits the possibility of ultrafast 

performance. The presence of multiple sublattices which are coupled through the 

exchange field changes the dynamics of the antiferromagnets compared to the single 

sublattice ferromagnets. The FM resonance (FMR) frequency is enhanced by a factor 

proportional to the exchange field. Hence, the AFM resonance (AFMR) frequency is in 

the THz range [ 18].  

A simple example of an antiferromagnet described by a two sublattice model 

within the mean field theory is demonstrated in Appendix A. It is seen that the AFM 
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dynamics [Eq. (𝐴𝐴12)] is different from the FM dynamics [Eq. (𝐴𝐴1)] and enhanced by the 

exchange field. Eq. (𝐴𝐴12) in Appendix A is equivalent to the Newton’s equation for 

force acting on a solid body. An antiferromagnet follows the Newton’s first law of 

motion which describes the motion of a solid object with mass reflecting the inertia 

effect. Therefore, upon removal of the force, the Néel vector in the antiferromagnet 

continues exhibiting the effect of the force until the external force opposes such inertial 

motion.  

Although the results are very simplified, they agree well with the fact that the 

exchange field coupling of the multiple sublattices allows switching of the AFM order 

parameter much faster that the FM order parameter [15]. The exchange field 

enhancement also explains the requirement of a small charge current for the operation of 

the ultrafast AFM devices compared to FM counterparts. The power required to operate 

AFM devices is lower and hence, the energy loss by Joule heating is hugely minimized in 

antiferromagnets.  

Unlike FM spintronics, AFM spintronics provides a chance of creating ultrafast, 

non-volatile, ultra-dense memory and logic devices. In addition to the binary bit cells, 

there has been suggestions of multilevel bit cells and neuromorphic computing in AFM 

based spintronic devices [13, 14, 16]. The AFM/FM system coupled with exchange bias 

behaves as a memristor (circuit element that can memorize the amount of past electric 

charge as its resistance) which can function as a synapse [ 19, 20]. Moreover, AFM 

multi-stable resistors [14, 21] can be realized and used in pulse-counter devices [ 22].  

In additional to useful device functionalities, antiferromagnetism can give rise to 

interesting fundamental properties. Antiferromagnets break time-reversal (𝑇𝑇�) symmetry 
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due to the presence of the staggered magnetic moment, but it can be combined with other 

 

Figure 1.2. Manipulation and detection of the Néel vector in AFM spintronics. 

Manipulation of the Néel vector (represented by red-blue double arrow) is achieved by 

the application of magnetic field (𝐻𝐻), electric field (𝐸𝐸), electric current (𝑗𝑗), and 

optical excitation (ℏω). Schematics before and after application of the stimuli are 

shown in the respective sectors. Detection of the Néel vector is achieved by measuring 

giant magnetoresistance (GMR), tunnelling magnetoresistance (TMR), anisotropic 

magnetoresistance (AMR), spin Hall magnetoresistance (SMR), and anomalous Hall 

conductivity (AHC). The corresponding resistance states representing the information 

bits (“1” and “0”) are shown in the respective sectors.  AFM elements are shown with 

double-arrow Néel vectors, FM elements with a grey box with a black arrow, 

piezoelectric (PZE) or magnetoelectric (ME) elements with a blue box, and heavy 

metal (HM) inducing spin Hall effect (SHE) with a light grey box and arrows 

indicating the spin polarization. 
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symmetry operations (𝑂𝑂�) like space-inversion symmetry (𝑃𝑃�), mirror symmetry (𝑀𝑀�), 

translation symmetry, etc. The conservation of the 𝑂𝑂�𝑇𝑇� symmetry results interesting 

topological properties (for example 𝑃𝑃�𝑇𝑇�  symmetry enforces Kramers degeneracy and 

hence, the band crossing points forms Dirac points) and their dependence on the Néel 

vector orientation [ 23– 25]. These topological antiferromagnets exhibit different 

transport phenomena such as the anomalous Hall effect [ 26 – 37], the crystal Hall 

effect [ 38– 41], the anomalous Nernst effect [ 42], the spin Hall effect [ 43– 45], 

unconventional charge-to-spin conversion phenomena [ 467F– 50], etc. Not only 

antiferromagnets have extra features compared to paramagnets and ferromagnets, but 

they also exhibit properties like those in paramagnets and ferromagnets which could 

make them useful and even dominant in the field of spintronics. 

The realm of spintronics could be expanded to antiferromagnets if a possible 

solution was found to manipulate and detect the Néel vector. Figure 1.2 shows some 

possible ways to manipulate the Néel vector orientation and detect the change in its 

orientation. For example, the local staggered moment in antiferromagnets can be 

reoriented by applying a charge current (𝑗𝑗)  [14, 51]. In addition, Néel vector orientation 

can be controlled by a magnetic field (𝐻𝐻) using an exchange bias or a heat-assisted 

magnetic recording technique [ 52– 57], an electric field (𝐸𝐸),  a piezoelectric (PZE) 

effect [ 58, 59] or a magnetoelectric (ME) effect [ 60– 62]), and optical excitation 

(ℏ𝜔𝜔)[ 63]. The manipulation sector in Figure 1.2 shows two states before and after the 

application of the stimuli for the Néel vector reorientation. An AFM material is 

represented by the green box with the Néel vector indicated by a double arrow. The 

orientation of the Néel vector determines one of the two resistance states representing the 
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binary bits of information “1” and “0”. These resistance states can be read out by using 

GMR or TMR effects, anisotropic magnetoresistance (AMR), spin Hall 

magnetoresistance (SMR), and anomalous Hall conductivity (AHC). These methods of 

writing and reading the state of the Néel vector in antiferromagnets are further discussed 

in the next two sections. 

1.2. Manipulation of the Néel Vector 

The magnetization of a FM metal layer represents a state variable in modern spintronic 

devices. The ease to write the information bits by reorienting the magnetization in 

ferromagnets made them the primary element in spintronic devices. But with the massive 

advantages of antiferromagnets, it would be desirable to find ways to efficiently 

manipulate the Néel vector in antiferromagnets. Some of the methods such as the 

application of magnetic field, electric field, electric current, and optical excitation shown 

in Figure 1.2 will be discussed below [13, 15, 16, 64]. 

1.2.1. Magnetic 

AFM materials are robust against magnetic perturbations due to the absence of a finite 

magnetization. Nevertheless, the magnetic moments on each sublattice can be rotated 

upon application of a large external magnetic field [47, 65, 66].  For example, the Néel 

vector of a noncollinear antiferromagnet Mn3Sn with in-plane anisotropy was shown to 

reorient in a large magnetic field [47]. In general, antiferromagnets have zero 

magnetization but in some antiferromagnets like Mn3Sn, symmetry allows a small 

uncompensated magnetic moment in specific directions. The application of external 

magnetic field may bring the magnetic material through metamagnetic transition. When 

the field is applied parallel to the easy axis, the antiferromagnet becomes unstable and 
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hence, the sublattice magnetizations rotate freely in the direction perpendicular to the 

easy axis above some critical field. This phenomenon is known as the spin-flop transition 

and the corresponding critical field is called the spin-flop field. This occurs due to the 

competition of the Zeeman energy in the applied magnetic field and the magneto-

crystalline anisotropy energy. In the presence of the weak anisotropy field, the applied 

magnetic field leads to the rotation of the direction of staggered magnetization 

perpendicular to the easy axis. In contrast, in case of the strong magneto-crystalline 

anisotropy, there is a sudden rotation of the magnetization of one of the sublattices which 

is pointed antiparallel to the field direction at the critical field. This phenomenon is 

defined as the spin-flip transition. This explanation agrees with the AFM dynamics 

presented in Appendix A for the case of a uniform magnetic field. 

As was discussed earlier, antiferromagnets are used as passive elements in FM 

spintronic devices to produce an exchange bias and pin the FM magnetization. The 

exchange bias can also be used in AFM spintronics but this time to write the information 

using the AFM Néel vector. The exchange coupled ferromagnet creates an AFM 

exchange spring effect which transfers the change of the magnetic moment orientation 

from the ferromagnet to the antiferromagnet [52, 53, 67, 68]. The exchange bias effect 

reduces the strength of the magnetic field required to manipulate the Néel vector. Upon 

application of external magnetic field, the ferromagnet reorients its magnetization 

towards the direction of the field as shown in Figure 1.2. This results in the slight rotation 

of the AFM moments due to the presence of the exchange bias. This has been 

demonstrated  in many experiments where the rotated Néel vector was detected using 

tunnelling AMR [52, 53, 64, 69]. The exchange spring is affected by AFM film 



12 
 

thickness, temperature, layer termination, etc. [52, 70]. Due to the film thickness 

dependence, this phenomenon occurs within the AFM domain wall width and hence, the 

AFM film grown should be limited within this domain wall thickness.  Changes in 

temperature and layer termination alter interface characteristics significantly influencing 

the effect. This puts limitations on the use of the exchange bias. Moreover, the exchange-

coupled system uses a FM layer to control the AFM magnetic moment. The presence of 

the FM layer produces a stray magnetic field and hence, such a coupled system can be 

affected by weak magnetic perturbations.   

Reorientation of the Néel vector can also be achieved by heat assisted field 

cooling. An antiferromagnet can be field cooled below the Néel temperature resulting in 

different AFM orientations thus different AMR [ 71, 72]. The field cooling of the 

antiferromagnet may result in the formation of different metastable AFM phases in 

various proportions. Magnetic materials undergo phase transitions at different 

temperature. Some materials can be in an AFM phase at low temperature and a FM phase 

at high temperature. In such cases, the material can be driven to high temperature so that 

the magnetization of the corresponding FM phase can be reoriented by application of the 

external field, then, the material can be field cooled below the Néel temperature 

producing an antiferromagnet with different Néel vector orientations corresponding to the 

high temperature FM magnetization orientation [71]. The heat assisted method reduces 

the magnitude of the external magnetic field required to reorient the Néel vector. This all 

shows that the AFM can be manipulated by the application of the external magnetic field 

assisted by field-cooling or exchange bias effect. 
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1.2.2. Optical 

Magnetic materials interact with light and hence, the AFM magnetic moments can be 

optically manipulated. The spin-lattice interaction can be enhanced by the optical 

excitations in antiferromagnets. The temperature dependent magneto-crystalline 

anisotropy in some antiferromagnets (for example, rare-earth orthoferrites RFeO3) can be 

tuned by passing an ultrashort laser pulse [ 73]. This laser pulse leads to spin-lattice 

interaction and hence, reorientation of the Néel vector, as shown in Figure 1.2. Similarly, 

in the multiferroic with antiferromagnetic phase (e.g., TbMnO3), the Néel vector was 

found to be reversed using optical excitations [ 74]. The switching of the AFM order 

parameter was achieved based on two colour light pulses which were absorbed based on 

the electric polarization induced by the corresponding Néel vector. In addition to the 

optical excitations, the application of the laser pulses can produce an effective magnetic 

field in the presence of a circularly polarized pump pulse which can drive inertia motion 

between two metastable phases. AFM dynamics is defined in terms of the staggered 

magnetization (𝑙𝑙𝑖𝑖) and this dynamic follows the Newtonian motion as shown in 

Appendix A [Eq. (𝐴𝐴11)]. The FM dynamics is of first order in time, but the AFM 

dynamics is of second order in time which defines the massive particle and thus the 

capability of inertia-driven motion [ 75]. In the inertia-driven motion, the Néel vector can 

reorient even after the light pulse is switched off. The main difference of the optical 

manipulation of the AFM order parameter compared to the FM order parameter is that the 

Néel vector reorientation acts like the rotation of the solid body due to the Newtonian 

effect [16, 64, 75]. 
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1.2.3. Electric: Field Induced 

The magnetic properties of a material can be changed by applying a strain. Changes in 

the atomic environment in the magnetic material alters the magnetic anisotropy due to a 

change in spin-orbit interactions. For example, in collinear antiferromagnet Mn2Au, 

application of the sufficiently strong strain along the easy axis rotates the uniaxial 

anisotropy compared to the unstrained antiferromagnet [ 76]. The metamagnetic phase 

transition from a FM to AFM phase can also involve changes in the atomic structure. 

This implies that the epitaxial growth of such kind of AFM thin films on different 

substrates can control the orientation of the Néel vector due to different strain applied on 

the thin film. Such effect has been realized in FeRh thin films grown on different 

substrates [ 77, 78]. Moreover, if the substrate is piezoelectric the application of electric 

field changes the lattice parameters and hence can change the Néel vector orientation and 

even produce FM to AFM phase transition.  This effect was realized using FeRh films 

epitaxially grown on the ferroelectric BaTiO3 crystals under application of an electric 

field. It was shown that the FeRh films can be electrically driven through the phase 

transition from ferromagnet to antiferromagnet [ 79, 80]. The application of the voltage 

made the ferroelectric domain in BaTiO3 uniform and hence, voltage-induced strain in 

FeRh changed the magnetization significantly. Like the metamagnetic transition, 

application of electric field can tune the exchange spring effect in AFM metals [ 81]. 

Therefore, combining the magnetic and electric fields can help to achieve the 

reorientation of the Néel vector. 

A combination of an antiferromagnet with high Néel temperature (TN) with a 

piezoelectric could make it possible to realize ultra-dense energy-efficient spintronic 
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devices. Collinear antiferromagnets MnPt (TN ~ 975 K) and Mn2Au (TN > 1000 K) in 

combination with piezoelectric PMN-PT show that the AFM order parameter can be 

manipulated by the piezoelectric strain induced in the PMN-PT substrate due to 

application of an electric field in the order of 1 kV/cm at room temperature [58, 82]. 

These devices were found to show the rotation of the AFM order parameter due to the 

piezoelectric effect and the observed states were unperturbed even in the presence of a 

huge magnetic field. They exhibited low and high resistance states even at zero electric 

field. This is due to the remnant polarization of PMN-PT inducing residual strain on the 

antiferromagnet. The piezoelectric strain changes the magnetic easy axis of the adjacent 

antiferromagnet and hence, the Néel vector reorients. 

In addition to the piezoelectric effect, AFM materials also show a magnetoelectric 

(ME) effect in which the electric field can control the orientation of the AFM order 

parameter. In single-phase ME materials, the unidirectional magnetic anisotropy can be 

switched without the piezoelectric effect. The FM surface in collinear AFM chromia 

Cr2O3 (0001) provides the reversible, isothermal, and global electric control of the 

exchange bias in the presence of small external magnetic field such that the product of 

the applied electric field and the magnetic field is above the critical value [60]. The 

change in the sign of the exchange bias indicates the change in the surface magnetization 

orientation associated with the global rotation of the Néel vector by 𝜋𝜋 in ME Cr2O3.  

The exchange bias effect discussed above needs to have FM and AFM layers 

adjacent to each other, but it would be desirable to avoid ferromagnets as a passive 

element in AFM spintronics. Experimentally, it was observed that the AFM order 

parameter can be controlled in a Cr2O3/Pt heterostructure, i.e., without any FM element, 
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by applying electric field in presence of a low external magnetic field [61]. The 

advantage of using purely AFM components in spintronic devices is a possibility of 

ultrafast switching of the order parameter. But still the requirement of a non-zero applied 

magnetic field remains for the ME switching of Cr2O3.  Recently, it was found that in the 

B-doped ME AFM Cr2O3, the Néel vector can be rotated upon application of the electric 

field only [62]. This was possible due to the formation of the polar nano regions changing 

the magnetic anisotropy of Cr2O3 and resulting in rotation of the Néel vector. 

1.2.4. Electric: Current Induced 

One of the well-known methods to manipulate FM magnetization is by applying an 

electric current [ 83– 86]. For example, in FM spin valves or MTJs, the transfer of spin 

angular momentum leads to the rotation of the FM magnetization in the free layer. The 

longitudinal current across the spin-valves gets spin polarized in the pinned FM layer and 

this spin polarization produces a spin transfer torque of the free FM layer which 

magnetization is noncollinear to that of the pinned layer. If the spin transfer torque is 

sufficiently large this leads to the switching of the free FM layer. Similar, AFM spin 

valve has been proposed using a one-dimensional (1D) model [51], which was later 

elaborated using more sophisticated models [ 87– 90]. So far, however, no experimental 

evidence of AFM switching has been demonstrated using this approach involving AFM 

spin valves or MTJs. Nevertheless,  more recent theoretical and experimental 

developments showed that the AFM order parameter can be manipulated by electric 

currents in bulk antiferromagnets provided that certain symmetry conditions are satisfied 

[13–16, 53, 71]. For example, the presence of inversion asymmetry allows producing a 

finite spin-orbit torque on the Néel vector. The spin-orbit torque can also be exerted by 
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absorption of the spin polarization generated by the spin Hall effect in the adjacent heavy 

metal.  

The electric current in a non-magnetic semiconductor with broken inversion 

symmetry results in a finite non-equilibrium spin polarization density. This phenomenon 

is known as the inverse spin galvanic effect (iSGE) or the Edelstein effect [ 91]. FM 

materials with the broken inversion symmetry exhibit the iSGE, where the induced non-

equilibrium spin accumulation depends on the direction of the electric field [ 92 – 94]. 

The exchange interaction between the conduction electrons and the magnetization results 

in the finite spin-orbit torque which can be used to manipulate the FM order. Similarly, in 

antiferromagnets with broken inversion symmetry, there is a finite non-equilibrium spin 

polarization analogous to that in ferromagnets.  

There are two types of the spin accumulation in sublattice A of a two-dimensional 

(2D) antiferromagnet with broken inversion symmetry: 

�⃗�𝑝𝐴𝐴 = 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑧𝑧 × 𝚥𝚥 + 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑚𝑚��⃗ 𝐴𝐴 × 𝑧𝑧 × 𝚥𝚥 , (1.1) 

where 𝑧𝑧 is normal to the 2D plane, 𝚥𝚥 is the applied current density, and 𝑚𝑚��⃗ 𝐴𝐴 is the 

sublattice magnetization. The first contribution is the intraband effect associated with the 

extrinsic properties arising from the iSGE, and the second term is the interband effect 

which can be purely intrinsic. The iSGE produces the same kind of spin accumulation on 

the two sublattices because it is independent of the sublattice magnetization. This is the 

reason why the torque produced by the first term acts in opposite directions on the two 

magnetic sublattices which cancels the net effect at the macroscopic level. This torque is 

inefficient for switching the Néel vector. On the contrary, the second term produces 
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opposite spin accumulation of the two magnetic sublattices due to its dependence on the 

sublattice magnetization. Therefore, this kind of torque can switch the Néel vector.  

The torque exerted on the sublattice magnetization due to the non-equilibrium 

spin accumulation can be expressed as 

𝜏𝜏𝐴𝐴 = 𝜏𝜏𝐹𝐹𝐹𝐹  𝑚𝑚��⃗ 𝐴𝐴 × ( 𝑧𝑧 × 𝚥𝚥𝑖𝑖) + 𝜏𝜏𝐷𝐷𝐹𝐹𝑚𝑚��⃗ 𝐴𝐴 × (𝑧𝑧 × 𝚥𝚥𝑖𝑖 ×  𝑚𝑚��⃗ 𝐴𝐴), (1.2) 

where the first term defines the field like torque and the second term defines the damping 

like torque. The AFM order parameter with broken inversion symmetry can be reoriented 

by the damping like torque [ 95]. This relativistic effect is known as the Néel spin-orbit 

torque (NSOT). In antiferromagnets with bulk inversion symmetry, the NSOT having 

field like torque features can be realized [95]. This occurs in AFM metals exhibiting the 

combination of the inversion and time reversal symmetries (PT symmetry). In the local 

environment, due to the presence of two different magnetic sublattices, the inversion 

symmetry is broken, but due to the two magnetic sublattices occupying the inversion 

partner lattice sites, the PT symmetry is preserved. This leads to Kramers’ degeneracy of 

the electronic bands. Each spin band is equally contributing due to the two magnetic 

sublattices. In the presence of the electrical current, each magnetic sublattice generates a 

nonequilibrium spin accumulation proportional to (−1)𝑠𝑠𝑧𝑧 × 𝚥𝚥 , where s is 0 or 1 for 

different magnetic sublattices.  The staggered spin-orbit field exerts a staggered field like 

torque which can switch the orientation of the Néel vector. AFM crystals like Mn2Au, 

CuMnAs, etc. are centrosymmetric in bulk but the Mn sublattices occupy inversion 

partner cites and hence, the staggered spin-orbit torque is generated upon application of 

the current. This can lead to the reorientation of the Néel vector by 𝜋𝜋/2 [14, 95, 96]. The 
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AFM dynamics in Appendix A for the case of uniform and staggered fields agrees with 

the above discussion that the staggered field is required for deterministic switching. 

As mentioned earlier, the spin-orbit torque can be provided in a ferromagnet/ 

heavy metal combination due to the spin Hall effect. This is also possible using an 

antiferromagnet/heavy metal bilayer. The non-equilibrium spin accumulation at the 

interface of the bilayer due to the spin Hall effect in the heavy metal gets absorbed in the 

antiferromagnet and exerts a damping like NSOT which can rotate the Néel vector. 

Recent experimental results in noncollinear AFM IrMn and collinear AFM insulator NiO 

thin films which were kept in contact with heavy metals, like Ta or Pt, showed that the 

spin-orbit torque can be realized due to the spin Hall effect in heavy metal [ 97, 98].  

1.3. Detection of the Néel Vector 

In the previous section, we discussed different methods to manipulate the Néel vector in 

antiferromagnets, but they would not be worth if we could not read out the changes in the 

AFM order parameter. Changes in the macroscopic magnetization orientations in 

ferromagnets are detected using the magnetoresistive effects like GMR, TMR, and AMR. 

The counterparts of such magnetoresistive behaviours can be found in antiferromagnets 

as well. On passing through a spin valve or MTJ, the reading current depends on the 

relative orientation of the magnetization in FM layers which gives rise the GMR or TMR 

effects. The spin torque applied by the charge current on the magnetization of a FM free 

layer is explained based on the conservation of the total spin angular momentum. The 

approximation that the local spin angular momentum is conserved can also be used in 

antiferromagnets [ 99– 101].  So, from the microscopic point of view, the difference in 

the local torques due to the applied charge current acting on the magnetic sublattices with 
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opposite spins can change the Néel vector orientation. While the possibility of GMR was 

proposed for spin valves based on AFM metals, its realization required very strict 

interface conditions and a coherent transport through the interface [51, 101– 103].  The 

interfaces should have a perfect structural order which is mostly not under the 

experimental control and hence, the experimental realization of the GMR effect was not 

achieved with only AFM elements [ 104, 105].  Similarly, the TMR effect in the AFM 

tunnel junctions was found difficult to detect experimentally and even, if detected it was 

found to be very small [16]. In the AFM/FM case, a finite TMR was observed due to the 

exchange bias but there was no clear explanation of the origin of the spin torque effect 

[105, 106]. 

Initially, anisotropic magnetoresistance (AMR) was used as reading method in the 

FM-based recording devices. AMR depends on the spin-orbit coupling. AMR is an even 

function of magnetization (𝜌𝜌 ∝  � 𝑀𝑀� . 𝚥𝚥̂�
2
) and hence, we expect it to occur in AFM metals 

as well. There are two types of AMR, namely ohmic non-crystalline AMR and ohmic 

crystalline AMR. Non-crystalline AMR depends on the angle between the direction of 

the current and the magnetization and hence, the electron travelling parallel and 

perpendicular to the magnetization axis is scattered differently by the relativistic spin-

orbit coupling. But the crystalline AMR depends on the angle between the magnetization 

and the crystal axes and hence, different magnetization direction changes the relativistic 

electronic structure in such cases. The non-crystalline AMR effect was observed in 

collinear antiferromagnets like FeRh, CuMnAs, Mn2Au, etc. under application of the 

reading current after manipulation of the Néel vector [14, 71, 96, 107]. In the single 

crystalline AFM Sr2IrO4, the current is applied perpendicular to the magnetization plane, 
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but the AMR effect was observed with respect to the crystal axes indicating crystalline 

AMR [ 108]. The main information in such cases is that the relative orientation of the 

Néel vector with respect to the staggered magnetization axis or crystal axes changes the 

resistance and, hence, we obtain the AMR effect.  

Similar to a single FM layer, in a tunnel junction with a single FM electrode, the 

system goes from high to low resistance state on changing the direction of the applied 

magnetic field due to the presence of magneto-crystalline anisotropy originating from the 

relativistic spin-orbit coupling [ 109– 112]. This phenomenon is known as tunnelling 

anisotropic magnetoresistance (TAMR). The even dependence of the TAMR on the 

magnetic moment indicates that this effect should also be present in case of an AFM 

electrode. This fact has been confirmed experimentally in several works [14, 21, 52, 53, 

71, 108, 113, 114]. The physical origin of TAMR is that in a tunnel junction with an 

AFM electrode, the spin-orbit coupling makes the tunnelling density of states dependent 

on the Néel vector direction [76]. Therefore, AFM can effectively determine the spin-

dependent transport properties. The change in the orientation of the magnetic moment in 

a single layer is sufficient for the appearance of TAMR which removes the stringent 

conditions required for GMR in AFM spin valves.  The TAMR effect can also be 

achieved by combining FM/AFM with the tunnel barriers [52, 76]. The exchange spring 

effect due to the FM/AFM coupling changes the Néel vector and hence the resistance 

state.  

As was discussed before, AFM insulators in combination with heavy metals can 

be switched using the NSOT originated from the spin accumulation due to the spin Hall 

effect in an adjacent heavy metal layer [98, 115]. The detection of such switching cannot 
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be done with AMR because the AFM insulators are used in these experiments. In some 

cases, the AFM insulators themselves can also be used as a tunnel barrier and hence, the 

TMR effect can be expected. But one of the most promising method to detect the 

switching of the Néel vector in an AFM insulator is the spin Hall magnetoresistance 

(SMR). Unlike AMR, the SMR is the change of the resistance with the change of the 

angle between the spin polarization generated due to the spin Hall effect in a heavy metal 

with the AFM Néel vector [ 116]. In the case of the AFM insulators/heavy metal bilayer, 

on passing the charge current through the heavy metal, a finite non-equilibrium spin 

polarization is created at the interface due to the spin Hall effect. If this spin polarization 

is non-collinear to the Néel vector, a part of the spin current gets absorbed exerting a spin 

transfer torque and hence, the inverse spin Hall effect generates small current [116, 117]. 

This implies that the corresponding state has larger resistance compared to the state with 

collinear spin polarization. This difference helps to detect switching of the Néel vector in 

AFM insulators. 

In antiferromagnets, the value of the AMR, TAMR, and SMR effects are found to 

be very small and hence, we get a very weak signal while trying to read the information 

bits written in AFM devices [14, 16, 117]. Moreover, the AMR signal detected 

experimentally may be an artifact of the multiterminal patterned structure which is used 

to detect the AFM switching [ 118]. The AMR signal indicating the switching of the Néel 

vector was also detected in the Pt/Si bilayer without any AFM layer. This indicates that 

the AMR signal may be not reliable. Alternative ways to detect the Néel vector switching 

in antiferromagnets need to be searched.  
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When an electrical current is applied across the ferromagnet with finite 

magnetization, perpendicular current is created. This phenomenon is known as the 

anomalous Hall effect (AHE). Conventional Hall resistivity is defined as 𝜌𝜌𝐻𝐻 = 𝜌𝜌𝑂𝑂𝐵𝐵 +

𝜌𝜌𝑀𝑀𝑀𝑀 where 𝜌𝜌0 is the ordinary Hall resistivity due to the Lorentz force generated by the 

applied magnetic field  𝐵𝐵 and 𝜌𝜌𝑀𝑀 is the anomalous Hall resistivity associated with the 

finite magnetization 𝑀𝑀 of the ferromagnet.  

Recently, the AHE was found to exist in the AFM metal with zero net 

magnetization due to the presence of the finite total Berry curvature [26, 28, 38]. The 

Berry curvature acts like a magnetic monopole in the AFM momentum space, and this 

gives rise to the finite anomalous Hall conductivity (AHC) for the antiferromagnet with 

uncompensated magnetization. In such materials, there are no time reversal symmetry or 

any combination of time reversal symmetry and crystal symmetry which does not allow 

any finite net magnetization. Theoretical and experimental calculations show that both 

collinear and noncollinear AFM metals with uncompensated magnetization can have 

large AHC comparable to that obtained in FM metals [26, 28–30, 36–38, 119]. The finite 

AHC in collinear antiferromagnets originates due to the arrangement of the nonmagnetic 

atoms and the AHC originated through this mechanism is referred to as the crystal Hall 

effect (CHE) [38]. A change in the magnetization direction changes the electronic 

structure and hence, the anomalous Hall resistivity which can be used to read out the state 

of the Néel vector. Although the antiferromagnet has zero net magnetization, in some 

cases, we can consider a finite magnetization along certain directions which does not 

break the magnetic group symmetry of the material considered. For example, if the 

antiferromagnet has a combined time reversal and mirror symmetry, a finite 
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magnetization is allowed parallel to the mirror plane. These antiferromagnet where finite 

uncompensated magnetizations are allowed by symmetry were seen to have small 

uncompensated magnetization in the experimental setup as well [26, 28–30, 36–38]. This 

type of antiferromagnetic material will always have a finite AHC. Unfortunately, there 

are many AFM materials in which the magnetic group symmetry leads to zero net 

magnetization. Such materials generally have combined time reversal and translation 

symmetries which makes the total Berry curvature zero and hence, zero AHC. However, 

if the system has broken inversion symmetry, then it has a finite Berry curvature dipole 

which determines the nonlinear AHE [ 120– 123]. The Berry curvature dipole changes 

with the orientation of the Néel vector and hence, in any compensated antiferromagnet, 

switching of the Néel vector can be read out by measuring the nonlinear AHC.  

1.4. Antiperovskites 

Antiperovskites are materials with the perovskite structure but interchanged positions of 

the cations and anions. An antiperovskite can be described by the formula AXM3, where 

M is the cation, A and X are anions.  The cation M occupies the corner sharing octahedra 

sites with the X anion as shown in Figure 1.3 (a). The chemical formula shows that 

antiperovskites are rich chemically with M cation. This M cation determines magnetism 

of the antiperovskite. A magnetic antiperovskite AXM3 has transition metals like Fe, Mn, 

Cr, etc. as M cations, X are usually the p-block elements like C, N, S, etc., and A is 

usually either the transition metal like Zn, Ni, Pt, Cu, etc. different from M or a p-block 

element like Ga, Sn, Pb, Br, Ge, etc. as shown in Figure 1.3(a). Mn based magnetic 

antiperovskites are very interesting because they exhibit different magnetic phases, such 

as ferromagnetic, antiferromagnetic, and ferrimagnetic, at room temperatures as shown in 
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Figure 1.3(b)-(e) [ 124, 125]. Moreover, chemical substitution in antiperovskites 

provides a new material platform for stoichiometrically engineered new devices 

favourable for some applications [125 – 127]. Figure 1.3(b) shows the collinear FM 

antiperovskites, e.g., GaCMn3 with magnetization pointing along the (111) direction. 

Doped antiperovskites like Ga1-xSnxCMn3 are found to exist in the ferrimagnetic phase 

with two magnetic sublattices in the [111] plane with opposite and unequal 

magnetizations as shown in Figure 1.3(c). Noncollinear AFM phase Γ4𝑔𝑔 and Γ5𝑔𝑔 with 

three sublattice magnetizations on a single [111] plane is found to be stable at room 

temperature for antiperovskites like NiNMn3 and GaNMn3, respectively. These structures 

are shown in Figures 1.3(d) and 1.3(e), respectively, where the magnetization on each 

sublattice makes an angle of 2𝜋𝜋/3 with each other. It is evident that they can be 

converted to each other by rotation of 𝜋𝜋/2 about the (111) axis. 

Antiperovskites are found to possess many functional properties like 

superconductivity [ 128], magnetoresistance [ 129], and magnetovolume [124, 130, 

131], magnetocaloric [ 132, 133], piezomagnetic [ 134– 136], and barocaloric effects 

[ 137]. As mentioned, the AXM3 antiperovskites exhibit an AFM ordering, both collinear 

and noncollinear. Most of these AFM phases occurs at room temperature. For example, 

the Neel temperatures of some of these antiperovskites are GaNMn3 – 288K, NiNMn3 – 

262K, SnNMn3 – 237K, PtNMn3 – 510K [124, 131, 138]. Also, the antiperovskite 

materials have flexibility for the magnetic phase transitions. The magnetic phases can be 

changed by doping, strain, pressure, or temperature [126, 139, 140]. The metallic 

antiperovskites can also host interesting topological properties [ 141– 143].  These  
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properties of the antiperovskites make these materials interesting for further exploration 

and using them in AFM spintronic devices. 

1.5. Motivations 

The great advantages of the antiferromagnets over ferromagnets for the development of 

ultrafast, ultradense, and ultrarobust spintronic devices have stimulated the search for 

new functional spin-dependent transport properties of different AFM materials. Mn based 

magnetic antiperovskites with plethora of AFM phases (collinear or noncollinear AFM 

phases like Γ4𝑔𝑔 and Γ5𝑔𝑔) provide the new material platform to explore for the potential 

use in AFM spintronics.  Due to the different AFM phases having different magnetic 

 

Figure 1.3. Antiperovskite AXM3 structure and different Magnetic phases. (a) 

General structure of antiperovskite with octahedral cavity formed by anion X. Part of 

periodic table with the purple colour represents the possible M cation, anion A and X 

represented by grey and green colour. (b) Ferromagnetic phase with magnetization in 

(111) direction (c) Collinear antiferromagnetic phase with Néel vector in (111) 

direction. Noncollinear magnetic phase (d) Γ4𝑔𝑔 and (e) Γ5𝑔𝑔 with magnetic vectors 

lying on the [111] plane making an angle 2𝜋𝜋/3 with each other. 
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group symmetries, these materials are expected to exhibit very diverse spin-dependent 

transport properties. These involve the anomalous Hall effect and the spin Hall effect, 

which appearance are controlled by the Berry curvature – the topological property 

intrinsic to the spin-dependent electronic band structure of the material. The AHE may be 

useful for the detection of the Néel vector in the AFM materials and has advantages over 

the AMR and TMR effects by the magnitude of this effect as well as a more simplified 

experimental setup. The SHE is interesting because, as is shown in this dissertation, its 

magnitude appears to be sizable despite a relative low spin-orbit coupling in AFM 

antiperovskites. Moreover, it appears that spin Hall conductance is strongly dependent on 

the current direction with respect to the crystallographic axes as well as the orientation of 

the Néel vector. Since the spin current generated by the SHE can be used to produce spin-

orbit torques, this result could provide an opportunity to control the spin-orbit torques by 

the Neel vector. Furthermore, there is a possibility to control the non-collinear AFM state 

as well as the orientation of the Néel vector by an applied spin-polarized current. In AFM 

metals, the spin dynamics occurs on the ps scale, i.e., much faster than in ferromagnets 

where it occurs on the ns scale. The dynamics of the switching process driven by spin-

polarized current is another important direction to explore.  

The theoretical studies of these phenomena carried out in this dissertation are 

expected to provide the new fundamental knowledge about functional properties of the 

AFM antiperovskite materials which could be useful for their experimental exploration as 

well their use in AFM spintronics. Recent advances in thin-film growth techniques have 

demonstrated a possibility to realize singe-crystal antiperovskite structures grown 

epitaxially on different substrates. Therefore, the results of this dissertation may provide 
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guidance to the experimentalists working in this field on anticipated functional properties 

of the AFM antiperovskite materials.  

The structure of this dissertation is as follows. Chapter 2 elaborates the theoretical 

methods implemented in this work. Chapter 3 involves the study of the different AFM 

phases of the antiperovskite materials to explain the symmetry requirements for the 

existence of the finite anomalous Hall conductivity. Chapter 4 is devoted to AFM 

terahertz dynamics driven by the application of the spin-polarized charge current and the 

importance of the antiperovskite stoichiometrically on the possibility to realize these 

dynamics in practice. Chapter 5 explores spin polarization of the Mn based 

antiperovskites dependent on the Néel vector which can be used to generate the 

unconventional spin-orbit torque properties and involves collaboration with 

experimentalists. Finally, Chapter 6 summarizes the results and concludes this 

dissertation. 
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 Theoretical Methods 

Properties of the condensed matter systems consisting of many electrons and ions can be 

found by solving the Schrödinger equation exactly. But the complexity of the exact 

solution of this many-body problem increases with increase in the number of electrons 

and ions. Protons are about 1800 times heavier than the electron and hence, the motion of 

the ions (protons + neutrons) in the real system can be frozen compared to the fast-

moving electron. This approximation is well known as the Born-Oppenheimer (BO) 

approximation [ 1]. This approximation reduces the problem to that of the system where 

electrons move under the external potential produced by the frozen ions. The electronic 

Hamiltonian then is given by 

𝐻𝐻� = −�
ℏ2

2𝑚𝑚
∇𝑖𝑖2

𝑖𝑖

+ ��
1

4𝜋𝜋𝜖𝜖0�𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑖𝑖�
−��

𝑍𝑍𝐴𝐴
|𝑅𝑅𝐴𝐴 − 𝑟𝑟𝑖𝑖|𝑖𝑖

= 𝑇𝑇�𝑖𝑖 + 𝑉𝑉�𝑖𝑖𝑖𝑖 + 𝑉𝑉�𝑁𝑁𝑖𝑖
𝐴𝐴𝑖𝑖≠𝑖𝑖𝑖𝑖

, (2.1) 

where 𝑇𝑇�𝑖𝑖 is the kinetic energy operator of the electrons, 𝑉𝑉�𝑖𝑖𝑖𝑖 is the electron-electron 

correlation, 𝑉𝑉�𝑁𝑁𝑖𝑖 = ∑ 𝑣𝑣�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖  is the coulomb potential of the nuclei and any external 

potential acting on the electrons. 

The BO approximation decouples the electron and nuclei motions but still the 

number of electrons is very large. In addition, the quantum nature of electrons and 

electron-electron correlations makes the solution of the many-body Schrödinger equation 

very complicated. Several methods have been developed to simplify the Hamiltonian. In 

particular, the Hartree-Fock (HF) approximation takes into account the fermionic nature 

of the electron and uses the Slater determinant wavefunction which respects the Pauli 

exclusion principle [1– 3]. The HF approximation reduces the many-body Schrödinger 
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equation into a single-particle Schrödinger equation. This equation can be solved by 

variational self-consistent iterations. But the main problem is that HF fails to account for 

electron-electron correlations [2, 3]. 

Within the HF approximation utilizes an approach based on the wave function. 

The wavefunction of the electronic Hamiltonian consisting of N electrons is dependent 

upon the 4N variables (3 spatial and one spin for each of the electrons). The number of 

the variables can be reduced if we solve the Schrödinger equation using the electron 

density. The electron density depends only upon 3 spatial variables and is defined as 

𝑛𝑛(𝑟𝑟) =< 𝜓𝜓(𝑟𝑟1, … 𝑟𝑟𝑁𝑁 , 𝑠𝑠1 … 𝑠𝑠𝑁𝑁)| 𝑛𝑛�(𝑟𝑟)|𝜓𝜓(𝑟𝑟1, … 𝑟𝑟𝑁𝑁 , 𝑠𝑠1 … 𝑠𝑠𝑁𝑁) >, (2.2) 

where 𝑛𝑛�(𝑟𝑟) is the electron density operator, 𝜓𝜓 is the wavefunction with spatial variable 𝑟𝑟𝑖𝑖 

and spin variable 𝑠𝑠𝑖𝑖. Moreover, the electron density, unlike the wavefunction, can be 

determined experimentally. The theoretical methods utilizing the electron density are 

known as density functional theory (DFT). DFT methods are known to be accurate and 

providing high accuracy in computations.  Therefore, in this work, we apply the DFT 

methods to solve the nonrelativistic Schrödinger equation. The relativistic part is added 

as a perturbation to solve the relativistic Schrödinger equation. Below, we give an 

overview of the DFT methods which are used in this work. 

2.1. Density Functional Theory 

DFT uses the density of electrons as the basic variable to find the ground state of the 

condensed matter system described by the single-particle electronic Hamiltonian. 

Electron density describes the distribution of electrons in the system and indirectly 

includes the information of the atomic number of the ions. The Hohenberg-Kohn theorem 
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[ 4] and the Kohn-Sham approach [ 5] are central in the DFT showing that the ground 

state energy of the interacting system can be found in terms of the electron density. 

2.1.1. Hohenberg-Kohn Theorem 

The electronic Hamiltonian in Eq. (2.1) consists of the kinetic energy operator, electron-

electron correlation term, and external potential 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 due to the nuclei and the external 

field. The application of the DFT is possible if we can define an energy functional in 

terms of the electron density. The Hohenberg-Kohn (HK) theorem shows that the ground 

state electron density can determine this external potential. The HK theorem consists of 

two parts which explain how to express the 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 in terms of the ground state electron 

density. 

HK Theorem I: The ground state energy is a unique functional of the ground state 

electron density n0(r⃗). 

Proof: Consider two different external potentials 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝐴𝐴  and 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝐵𝐵  with ground state 

wavefunctions 𝜓𝜓𝐴𝐴 and 𝜓𝜓𝐵𝐵 and energy 𝐸𝐸𝐴𝐴 and 𝐸𝐸𝐵𝐵 respectively. The ground state energy 

is defined by 

𝐸𝐸𝑖𝑖 = �𝜓𝜓𝑖𝑖�𝑇𝑇�𝑖𝑖 +  𝑉𝑉�𝑖𝑖𝑖𝑖 + 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �𝜓𝜓𝑖𝑖�  =  �𝜓𝜓𝑖𝑖�𝐹𝐹� + 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �𝜓𝜓𝑖𝑖�, 𝑖𝑖 = 𝐴𝐴,𝐵𝐵 , (2.3) 

where 𝐹𝐹� is the universal functional because it has the same form for all N electron 

systems and 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 (𝑟𝑟𝑖𝑖)𝑖𝑖 . Consider that these states are not degenerate, i.e.,  𝜓𝜓𝐴𝐴 ≠

𝜓𝜓𝐵𝐵, but the ground state electron density is same 𝑛𝑛𝐴𝐴 = 𝑛𝑛𝐵𝐵 = 𝑛𝑛0. Ground state energy for 

the electronic Hamiltonian with potential 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖  is lower than the energy determined with 

the trial function 𝜓𝜓𝑖𝑖, i.e. 
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𝐸𝐸𝑖𝑖 =  �𝜓𝜓𝑖𝑖�𝐹𝐹� + 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 �𝜓𝜓𝑖𝑖�  <  �𝜓𝜓𝑖𝑖�𝐹𝐹� + 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖 �𝜓𝜓𝑖𝑖�, 𝑖𝑖 ≠ 𝑗𝑗 = 𝐴𝐴,𝐵𝐵 

𝐸𝐸𝑖𝑖 < �𝜓𝜓𝑖𝑖�𝐹𝐹� + 𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖 �𝜓𝜓𝑖𝑖� + �𝜓𝜓𝑖𝑖�𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 −𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖

𝑖𝑖 �𝜓𝜓𝑖𝑖�, 

𝐸𝐸𝑖𝑖 < 𝐸𝐸𝑖𝑖 + ∫ 𝑑𝑑𝑟𝑟𝑛𝑛0(𝑟𝑟)�𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 −𝑉𝑉�𝑖𝑖𝑥𝑥𝑖𝑖
𝑖𝑖 � . (2.4) 

Adding Eq. (2.4) with (𝑖𝑖 = 𝐴𝐴, 𝑗𝑗 = 𝐵𝐵)  and (𝑖𝑖 = 𝐵𝐵, 𝑗𝑗 = 𝐴𝐴) , we obtain a contradictory 

equation 𝐸𝐸𝐴𝐴 + 𝐸𝐸𝐵𝐵 < 𝐸𝐸𝐵𝐵 + 𝐸𝐸𝐴𝐴, which means that our assumption of the non-degenerate 

ground state for the same ground state electron density is wrong. Therefore, 𝜓𝜓, 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖,  and 

𝑛𝑛0 determine each other uniquely and the potential just differs by some constant at most. 

The HK theorem suggests that the ground state energy can be expressed as 

𝐸𝐸0[𝑛𝑛0] = ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛0(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛0] = �𝜓𝜓[𝑛𝑛0]�𝐻𝐻�𝑖𝑖�𝜓𝜓[𝑛𝑛0]� , (2.5) 

where 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛0] is the universal functional of the ground state density which consists of 

the kinetic energy of the electron and the electron-electron interaction. The HK theorem 

makes the energy a functional of the ground state density. 

HK Theorem II: The energy functional 𝐸𝐸[𝑛𝑛] in the presence of an external potential 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 

is minimized by the ground state electron density.  

Proof: The HK second theorem explains the variational approach to define the ground 

state system. Consider a trial density 𝑛𝑛(𝑟𝑟) for an external potential 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 such that 𝑛𝑛(𝑟𝑟) ≥

0 and ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟) = 𝑁𝑁 is satisfied. The energy evaluated using this trial density satisfy the 

condition  

𝐸𝐸[𝑛𝑛(𝑟𝑟)] = ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛] ≥ 𝐸𝐸0[𝑛𝑛0(𝑟𝑟)], (2.5) 

where the equality sign holds if the trial density is the ground state density. Using the 

variational approach, we can minimize the energy functional in Eq. (2.5) as follows 
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𝛿𝛿
𝛿𝛿𝑛𝑛(𝑟𝑟) �𝐸𝐸

[𝑛𝑛] − 𝜇𝜇�∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟) −𝑁𝑁��
𝑖𝑖(𝑖𝑖)=𝑖𝑖0

= 0 , (2.6) 

where, 𝜇𝜇 is the Lagrange multiplier. This proves the HK second theorem suggesting that 

the ground state density is the condition for the minimum energy functional. 

The HK theorem shows that the ground state density of a condensed matter 

system in the presence of an external potential has one to one mapping to the ground state 

energy. But the energy functional is expressed in terms of the unknown functional 𝐹𝐹𝐻𝐻𝐻𝐻. 

Kohn and Sham explained the methods to deal with this unknown functional which 

helped to make the HK theorem useful in practical computations. 

2.1.2. Kohn-Sham Approach 

The Kohn-Sham (KS) approach uses a single-particle orbital to map the non-interacting 

system to the real system with interacting electrons [ 6]. This method is analogous to the 

HF approximation. Similar to the HF approximation mentioned above, the KS approach 

is also a self-consistent procedure to derive a set of the KS orbitals from an effective one-

electron potential [ 7]. Kohn and Sham considered a fictitious non-interacting system 

having the ground state density equal to the real interacting system. The Hamiltonian of 

such non-interacting system can be written simply as the sum of the individual energy 

operators i.e. 

𝐻𝐻�𝑠𝑠 = 𝑇𝑇�𝑠𝑠 + 𝑉𝑉�𝑠𝑠(𝑟𝑟) = −
ℏ2

2𝑚𝑚
 �∇𝑖𝑖2

𝑖𝑖

+ ∫ 𝑑𝑑𝑟𝑟𝑉𝑉𝑠𝑠(𝑟𝑟) 𝑛𝑛�(𝑟𝑟), (2.7) 

where, 𝑉𝑉�𝑠𝑠(𝑟𝑟)  is the effective potential experienced by the non-interacting system. We can 

derive the general form of this effective potential using the KS approach. The 



53 
 

wavefunction 𝜙𝜙𝑠𝑠 satisfies 𝐻𝐻�𝑠𝑠Φ𝑠𝑠 = 𝐸𝐸𝑠𝑠Φ𝑠𝑠 and it can be expressed as the Slater determinant 

of the individual atomic orbitals 𝜙𝜙𝑖𝑖 in the system, i.e. 

Φ𝑠𝑠 =
1
√𝑁𝑁!

�

𝜙𝜙1(𝑟𝑟1) 𝜙𝜙2(𝑟𝑟1) ⋯ 𝜙𝜙𝑁𝑁(𝑟𝑟1)
𝜙𝜙1(𝑟𝑟2) 𝜙𝜙2(𝑟𝑟2) ⋯ 𝜙𝜙𝑁𝑁(𝑟𝑟2)
⋮

𝜙𝜙1(𝑟𝑟𝑁𝑁)
⋮

𝜙𝜙2(𝑟𝑟𝑁𝑁)
⋮
⋯

⋮
𝜙𝜙𝑁𝑁(𝑟𝑟𝑁𝑁)

�  . (2.8) 

Hence, the many-body problem is reduced to a single particle equation analogous to the 

HF equation 

ℎ�𝐻𝐻𝐾𝐾𝜙𝜙𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖 . (2.9) 

where,  𝐸𝐸𝑠𝑠 = ∑ 𝜀𝜀𝑖𝑖𝑖𝑖  is the energy of the KS system and ℎ�𝐻𝐻𝐾𝐾 = − ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑠𝑠(𝑟𝑟) is the 

single electron KS operator. The potential 𝑣𝑣𝑠𝑠 is chosen such that the non-interacting 

system density 𝑛𝑛(𝑟𝑟) = ∑ 𝜙𝜙𝑖𝑖(𝑟𝑟)∗𝜙𝜙𝑖𝑖(𝑟𝑟)𝑖𝑖 = 𝑛𝑛0(𝑟𝑟) gives the ground state density of the real 

condensed matter system. The energy functional for the non-interacting system with 

electron density  𝑛𝑛(𝑟𝑟) with the potential 𝑣𝑣𝑠𝑠 is  

𝐸𝐸𝑠𝑠[𝑛𝑛] = �𝜀𝜀𝑖𝑖[𝑛𝑛]
𝑖𝑖

= −
ℏ2

2𝑚𝑚
�⟨𝜙𝜙𝑖𝑖|∇2|𝜙𝜙𝑖𝑖⟩
𝑖𝑖

+ ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑠𝑠(𝑟𝑟)

= 𝑇𝑇𝑠𝑠[𝑛𝑛] + ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑠𝑠(𝑟𝑟). (2.10)
 

This is not exactly equal to the real energy and hence, Kohn and Sham defined the real 

energy of the interacting system as 

𝐸𝐸0[𝑛𝑛] = ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖(𝑟𝑟) + 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛] 

= ∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖(𝑟𝑟) + 𝑇𝑇𝑠𝑠[𝑛𝑛] + 𝐽𝐽[𝑛𝑛] + 𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛], (2.11) 

where, 𝐽𝐽[𝑛𝑛] is the classical Coulomb interaction and 𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛] is the exchange-correlation 

energy functional. We see that the unknown functional is expressed in terms of the non-
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interacting kinetic energy 𝑇𝑇𝑠𝑠[𝑛𝑛] which can be evaluated using the relation in Eq. (2.10). 

The Coulomb interaction can be easily expressed in terms of the electron density as 

𝐽𝐽[𝑛𝑛] =
1
2
∫ ∫ 𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑖𝑖

𝑛𝑛(𝑟𝑟𝑖𝑖)𝑛𝑛�𝑟𝑟𝑖𝑖�
4𝜋𝜋𝜖𝜖0𝑟𝑟𝑖𝑖𝑖𝑖

 . (2.12) 

The exchange-correlation energy remains still unknown as it contains the unknown 

functional which is the sum of the interacting electron kinetic energy (𝑇𝑇[𝑛𝑛]) and electron-

electron correlation energy (𝐸𝐸𝑖𝑖𝑖𝑖[𝑛𝑛]): 

𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛] = 𝐹𝐹𝐻𝐻𝐻𝐻[𝑛𝑛] − 𝑇𝑇𝑠𝑠[𝑛𝑛] − 𝐽𝐽[𝑛𝑛] = 𝑇𝑇[𝑛𝑛] − 𝑇𝑇𝑠𝑠[𝑛𝑛] + 𝐸𝐸𝑖𝑖𝑖𝑖[𝑛𝑛]− 𝐽𝐽[𝑛𝑛]. (2.13) 

 The exchange-correlation functional reflects all the quantum mechanical effects in the 

system. Equation (2.11) can be expanded in terms of the KS orbitals 𝜙𝜙𝑖𝑖 which is just a 

trial function and hence, a variational method is used in KS approach to find the best 

value for the KS orbitals which are closer to the exact KS orbitals. The exact KS orbitals 

determine the ground state energy of the real interacting system. Using the constraint of 

∫ 𝑑𝑑𝑟𝑟𝑛𝑛(𝑟𝑟) = 𝑁𝑁 to minimize the energy with the Lagrange’s multiplier 𝜇𝜇, using variational 

method, we obtain 

𝛿𝛿{𝐸𝐸[𝑛𝑛] − 𝜇𝜇�∫ 𝑑𝑑𝑟𝑟𝑛𝑛(𝑟𝑟) − 𝑁𝑁�} = 0 . (2.14) 

 The HK theorem I states that the electron density is uniquely defined for a given external 

potential and so for the state 𝜙𝜙 + 𝛿𝛿𝜙𝜙, there should be a unique electron density 𝑛𝑛 + 𝛿𝛿𝑛𝑛. 

By definitions of the electron density 𝑛𝑛 = ∑ 𝜙𝜙𝑖𝑖∗𝜙𝜙𝑖𝑖𝑖𝑖  and the orthonormality condition 

∫ 𝑑𝑑𝑟𝑟𝜙𝜙𝑖𝑖∗𝜙𝜙𝑖𝑖 = 1, by using the variations, we obtain  

𝛿𝛿𝑛𝑛 = �𝛿𝛿𝜙𝜙𝑖𝑖∗𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑖𝑖∗𝛿𝛿𝜙𝜙𝑖𝑖 ,
𝑖𝑖
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0 = �𝑑𝑑𝑟𝑟𝛿𝛿𝜙𝜙𝑖𝑖∗𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑖𝑖∗𝛿𝛿𝜙𝜙𝑖𝑖 , (2.15) 

 𝛿𝛿𝐸𝐸[𝑛𝑛] in Eq. (2.14) consists of 𝛿𝛿𝑇𝑇𝑠𝑠[𝑛𝑛], 𝛿𝛿𝐽𝐽[𝑛𝑛], 𝛿𝛿𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛], and 𝛿𝛿∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖(𝑟𝑟) term as 

followed from Eq. (2.11). The non-interacting kinetic energy can be easily expressed in 

terms of the ground state density as follows 

𝛿𝛿𝑇𝑇𝑠𝑠[𝑛𝑛] = −
ℏ2

2𝑚𝑚
�∫𝑑𝑑𝑟𝑟𝛿𝛿(𝜙𝜙𝑖𝑖∗∇2𝜙𝜙𝑖𝑖)
𝑖𝑖

= −
ℏ2

2𝑚𝑚
�∫𝑑𝑑𝑟𝑟(𝛿𝛿𝜙𝜙𝑖𝑖∗∇2𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑖𝑖∗∇2𝛿𝛿𝜙𝜙𝑖𝑖
𝑖𝑖

. (2.16) 

We arrived at Eq. (2.16) using Eqs. (2.9) and (2.15). Similarly, we can write the external 

potential term of the non-interacting system and the Coulomb interaction also in terms of 

the electron density: 

𝛿𝛿𝐽𝐽[𝑛𝑛] = ∫ ∫ 𝑑𝑑𝑟𝑟𝑖𝑖𝑑𝑑𝑟𝑟𝑖𝑖
𝑛𝑛�𝑟𝑟𝑖𝑖�

4𝜋𝜋𝜖𝜖0𝑟𝑟𝑖𝑖𝑖𝑖
𝛿𝛿𝑛𝑛(𝑟𝑟𝑖𝑖), 

𝛿𝛿∫ 𝑑𝑑𝑟𝑟 𝑛𝑛(𝑟𝑟)𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖(𝑟𝑟) = ∫ 𝑑𝑑𝑟𝑟 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖(𝑟𝑟)𝛿𝛿𝑛𝑛(𝑟𝑟) . (2.17) 

The exchange correlation functional is unknown but we can use the functional derivative 

measures to write it as 

𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛 + 𝛿𝛿𝑛𝑛] = 𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛] + ∫ 𝑑𝑑𝑟𝑟 𝛿𝛿𝐸𝐸𝑋𝑋𝑋𝑋[𝑖𝑖]
𝛿𝛿𝑖𝑖

𝛿𝛿𝑛𝑛, 

𝛿𝛿𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛] = ∫ 𝑑𝑑𝑟𝑟
𝛿𝛿𝐸𝐸𝑋𝑋𝐶𝐶[𝑛𝑛]
𝛿𝛿𝑛𝑛

𝛿𝛿𝑛𝑛 , (2.18) 

Using Eqs. (2.15) to (2.18) in Eq. (2.14) and the chemical potential 𝜇𝜇 which is the sum of 

the occupied energy ∑ 𝜀𝜀𝑖𝑖𝑖𝑖 , we obtain for the variation 𝛿𝛿𝜙𝜙𝑖𝑖∗, 

∑ ∫ 𝑑𝑑𝑟𝑟𝑖𝑖 𝛿𝛿𝜙𝜙𝑖𝑖∗ �−
ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + ∫ 𝑑𝑑 𝑟𝑟𝑖𝑖

𝑖𝑖�𝑖𝑖𝑗𝑗�
4𝜋𝜋𝜖𝜖0𝑖𝑖𝑖𝑖𝑗𝑗

+ 𝛿𝛿𝐸𝐸𝑋𝑋𝑋𝑋[𝑖𝑖]
𝛿𝛿𝑖𝑖

− 𝜀𝜀𝑖𝑖� 𝜙𝜙𝑖𝑖 = 0. 

Since 𝛿𝛿𝜙𝜙𝑖𝑖∗ is arbitrary, we have 
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∑ �− ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + ∫ 𝑑𝑑 𝑟𝑟𝑖𝑖

𝑖𝑖�𝑖𝑖𝑗𝑗�
4𝜋𝜋𝜖𝜖0𝑖𝑖𝑖𝑖𝑗𝑗

+ 𝛿𝛿𝐸𝐸𝑋𝑋𝑋𝑋[𝑖𝑖]
𝛿𝛿𝑖𝑖

�𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖 , 

∑ �− ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑉𝑉𝐻𝐻 + 𝑉𝑉𝑋𝑋𝐶𝐶�𝜙𝜙𝑖𝑖𝑖𝑖 = ∑ 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖 , 

��−
ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉𝑖𝑖𝑒𝑒𝑒𝑒�𝜙𝜙𝑖𝑖

𝑖𝑖

= �𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖
𝑖𝑖

 , (2.19) 

The KS approach reduces the problem to N single-particle Schrödinger equations. So, the 

KS potential (𝑣𝑣𝑠𝑠) defined for the non-interacting system compared to Eq. (2.9)  shows that 

𝑣𝑣𝑠𝑠 = 𝑉𝑉𝑖𝑖𝑒𝑒𝑒𝑒 is the sum of the external potential, the Hartree potential (𝑉𝑉𝐻𝐻) and the exchange-

correlation potential (𝑉𝑉𝑋𝑋𝐶𝐶). This potential is required to convert the interacting system into 

the non-interacting system which has the ground state electron density of the real system. 

Both the external potential and the Hartree potential are known and can be calculated 

easily. But the exchange-correlation potential is still unknown and hence, we need to use 

some approximations to this term. 

Magnetic materials have spin-polarized electronic structure. So, we need to use a 

spin-dependent KS approach to solve the Schrödinger equation in magnetic systems. Up 

to now, we have ignored the spin-dependent terms. For FM and collinear AFM materials 

with the (sublattice) magnetization along a certain direction (for example, the z axis), we 

can define separately the spin-up (𝑛𝑛↑) and spin-down (𝑛𝑛↓)  components of the electron 

density with spin up (down) pointing parallel (antiparallel) to the z axis. The magnetic 

moment associated with such system is given by  𝑚𝑚𝑥𝑥 = 𝑚𝑚𝑥𝑥 = 0,𝑚𝑚𝑧𝑧 = 𝜇𝜇𝐵𝐵(𝑛𝑛↑- 𝑛𝑛↓). The 

KS equations for each spin component can be decoupled, and we can solve them similar 

to Eq. (2.19) for the two spin components, i.e., 𝐻𝐻𝛼𝛼𝜙𝜙𝑖𝑖,𝛼𝛼 = 𝜀𝜀𝑖𝑖,𝛼𝛼𝜙𝜙𝑖𝑖,𝛼𝛼,  where the Hamiltonian 

𝐻𝐻𝛼𝛼 is defined as 
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𝐻𝐻𝛼𝛼 = −
ℏ2

2𝑚𝑚
∇2 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑉𝑉𝐻𝐻 + 𝑉𝑉𝑋𝑋𝐶𝐶,𝛼𝛼 + (−1)𝑠𝑠 𝐵𝐵𝑧𝑧 , (2.20) 

where 𝐵𝐵𝑧𝑧 is the magnetic field, 𝑠𝑠 = 0 (1) for 𝛼𝛼 = ↑ (↓) .  

In a noncollinear magnetic system, such as a noncollinear antiferromagnet, where 

the spin quantization axis changes from site-to-site spin is not a good quantum number. 

Therefore, in the noncollinear case, the Kohn-Sham eigenstate is a mixed state of spin up 

and spin down which is given by the spinor [ 8, 9]: 

𝜙𝜙𝑖𝑖 = �
𝜙𝜙𝑖𝑖,↑
𝜙𝜙𝑖𝑖,↓

�  . (2.21) 

 In this case, we can define a 2 × 2 Hermitian spin-density matrix  

𝑛𝑛(𝑟𝑟) = �𝜙𝜙𝑖𝑖𝜙𝜙𝑖𝑖+

𝑖𝑖

= ��
|𝜙𝜙𝑖𝑖,↑|2 𝜙𝜙𝑖𝑖,↑𝜙𝜙𝑖𝑖,↓∗

𝜙𝜙𝑖𝑖,↓𝜙𝜙𝑖𝑖,↑∗ |𝜙𝜙𝑖𝑖,↓|2
�

𝑖𝑖

 . (2.22) 

The electron density has form 𝑛𝑛(𝑟𝑟) = ∑ ∑ 𝜙𝜙𝑖𝑖,𝛼𝛼∗ 𝜙𝜙𝑖𝑖,𝛼𝛼𝑖𝑖𝛼𝛼  and the magnetization density is 

𝑚𝑚��⃗ (𝑟𝑟) = �𝜙𝜙𝑖𝑖�𝜎𝜎𝑥𝑥 𝑥𝑥� + 𝜎𝜎𝑥𝑥 𝑦𝑦� + 𝜎𝜎𝑧𝑧 �̂�𝑧�𝜙𝜙𝑖𝑖�, where 𝜎𝜎𝑖𝑖  are the Pauli matrices. Using these 

definitions, we can rewrite the spin density matrix as 

𝑛𝑛(𝑟𝑟) =
1
2
�𝑛𝑛(𝑟𝑟)𝐼𝐼 + �⃗�𝜎.𝑚𝑚��⃗ (𝑟𝑟)� =

1
2
�
𝑛𝑛(𝑟𝑟) + 𝑚𝑚𝑧𝑧(𝑟𝑟) 𝑚𝑚𝑥𝑥(𝑟𝑟) − 𝑖𝑖𝑚𝑚𝑥𝑥(𝑟𝑟)
𝑚𝑚𝑥𝑥(𝑟𝑟) + 𝑖𝑖𝑚𝑚𝑥𝑥(𝑟𝑟) 𝑛𝑛(𝑟𝑟) −𝑚𝑚𝑧𝑧(𝑟𝑟) � . (2.23) 

Unlike Eq. (2.20), the KS equations for spinors are  

�𝐻𝐻𝛼𝛼𝛼𝛼𝜙𝜙𝑖𝑖,𝛼𝛼 = 𝜀𝜀𝑖𝑖𝜙𝜙𝑖𝑖,𝛼𝛼
𝛼𝛼

 , (2.24) 

where the Hamiltonian 𝐻𝐻𝛼𝛼𝛼𝛼 is not diagonal but with an off-diagonal element  

𝐻𝐻𝛼𝛼𝛼𝛼 = (𝑇𝑇 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑉𝑉𝐻𝐻)𝛿𝛿𝛼𝛼𝛼𝛼 + 𝑉𝑉𝑋𝑋𝐶𝐶,𝛼𝛼𝛼𝛼 . (2.25) 
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  In the case of the collinear spins, the off-diagonal components resulting from the 

exchange-correlation potential  �𝛿𝛿𝐸𝐸𝑋𝑋𝑋𝑋�𝑖𝑖(𝑖𝑖)�
𝛿𝛿𝑖𝑖𝛼𝛼𝛼𝛼

�  vanishes because the density matrix is 

diagonal. For collinear spins, we have a decoupled spin up and spin down equation. But 

in the non-collinear case, the off-diagonal components in the Hamiltonian are not zero as 

in the density matrix. Using a unitary matrix 𝑈𝑈(𝑟𝑟), which is the spin 1/2 rotation matrix, 

the density matrix can be diagonalized. In the absence of spin-orbit coupling, the energy 

is invariant with respect to spin rotation. On the contrary, in the presence of the spin-orbit 

coupling, the energy depends on the spin orientation, and thus the spin rotation cannot be 

separated from the crystal symmetry. As a result, the noncollinear spin DFT is 

computationally more expensive. 

2.1.3. Exchange-Correlation Functional 

The HK theorem and the KS approach explain the method to implement DFT but do not 

provide a method to determine the exchange-correlation energy 𝐸𝐸𝑋𝑋𝐶𝐶. The exact form of 

this functional would allow the exact solution of the many-body problem, which is 

extremely complicated. Therefore, approximations are used to represent the exchange-

correlation energy. As a result, DFT calculations are not exact and depend upon the type 

of the approximation used.  

The simplest form of DFT is the Thomas-Fermi (TF) approximation. The TF 

approximation assumes that an inhomogeneous system can be divided into a small 

volume of the homogeneous subsystem, where the kinetic energy density can be easily 

found. Within the TF approximation, the kinetic energy of the system can be expressed as 

follows [ 10]: 
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𝑇𝑇[𝑛𝑛] = ∫ 𝑑𝑑𝑟𝑟𝐶𝐶𝑘𝑘𝑛𝑛(𝑟𝑟)
4
3 , (2.27) 

Where, 𝐶𝐶𝑘𝑘 is an adjustable constant.  

The TF approximation does not include neither the exchange energy nor electron-

electron correlation energy. One can approximate the exchange-correlation energy either 

by an empirical or non-empirical method. In the empirical method, the exchange-

correlation functional is expressed in terms of some parameters which can be found by 

fitting the experimentally known results. Therefore, the empirical methods depend upon 

what quantity is used to fit these parameters and this type of methods is valid only for 

calculating that kind of quantities. On the contrary, in the non-empirical methods, the 

exchange-correlation functional is expressed in terms of the variables such as the electron 

density and its gradient. This kind of approximation is universal and can be used for a 

large group of systems compared to the non-empirical method. Some of the widely used 

approximations are a local density approximation (LDA), a generalized gradient 

approximation (GGA), hybrid methods, B3LYP (empirical method), etc.  

Local density approximation (LDA) is analogous to the Thomas-Fermi 

approximation. In LDA, we assume that the system under consideration can be divided 

into smaller regions with a homogeneous electron gas distribution and electron density 

𝑛𝑛(𝑟𝑟) and hence, we can define the exchange-correlation energy density (𝜀𝜀𝑋𝑋𝐶𝐶ℎ𝑜𝑜𝑚𝑚) for such 

regions. The total exchange-correlation energy in LDA is defined as [ 11, 12] 

𝐸𝐸𝑋𝑋𝐶𝐶𝐹𝐹𝐷𝐷𝐴𝐴[𝑛𝑛(𝑟𝑟)] = ∫ 𝑑𝑑𝑟𝑟 𝜀𝜀𝑋𝑋𝐶𝐶ℎ𝑜𝑜𝑚𝑚[𝑛𝑛(𝑟𝑟)]𝑛𝑛(𝑟𝑟). (2.28) 
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 This exchange-correlation energy density can be split into the exchange energy density 

�𝜀𝜀𝑋𝑋ℎ𝑜𝑜𝑚𝑚� and correlation energy density (𝜀𝜀𝐶𝐶ℎ𝑜𝑜𝑚𝑚). The exchange energy density for the 

uniform electron gas is given by [2, 3, 13] 

𝜀𝜀𝑋𝑋ℎ𝑜𝑜𝑚𝑚[𝑛𝑛] = −
3
4
�

3
𝜋𝜋
�
1
3

 𝑛𝑛
1
3  . (2.29) 

 The correlation energy density for a uniform electron gas is not known exactly but can 

be found using quantum Monte-Carlo calculations for a homogeneous system [ 14– 17]. 

LDA does not contain any free parameters and hence, it belongs to a non-empirical 

method. LDA is a very simple approximation and hence, it is used extensively in the DFT 

calculations. LDA predicts fairly accurate bond lengths, lattice constants, phase stability, 

etc. However, LDA overestimates the atomization energy and underestimates the energy 

band gaps of semiconductors and insulators [ 18].  

In magnetic systems, LDA can be extended to local spin density approximation 

by incorporating the spin-up (𝑛𝑛↑(𝑟𝑟)) and spin-down (𝑛𝑛↓(𝑟𝑟)) electron densities, so that the 

exchange-correlation energy is expressed as 

𝐸𝐸𝑋𝑋𝐶𝐶𝐹𝐹𝐾𝐾𝐷𝐷𝐴𝐴[𝑛𝑛↑(𝑟𝑟),𝑛𝑛↓(𝑟𝑟)] = ∫ 𝑑𝑑𝑟𝑟 𝜀𝜀𝑋𝑋𝐶𝐶ℎ𝑜𝑜𝑚𝑚[𝑛𝑛↑(𝑟𝑟),𝑛𝑛↓(𝑟𝑟)]𝑛𝑛(𝑟𝑟), (2.30) 

where the electron density is 𝑛𝑛(𝑟𝑟) = 𝑛𝑛↑(𝑟𝑟) + 𝑛𝑛↓(𝑟𝑟). 

Another widely used DFT approach is generalized gradient approximation 

(GGA). Real condensed matter systems are not generally homogeneous. There are always 

some changes in the electron density at different regions. The inhomogeneity can be well 

defined by including a gradient of the electron density. The GGA is just the extension of 
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the LDA but with extra dependence on the gradient. The exchange-correlation functional 

can be defined as [ 19] 

𝐸𝐸𝑋𝑋𝐶𝐶𝐺𝐺𝐺𝐺𝐴𝐴[𝑛𝑛(𝑟𝑟)] = ∫ 𝑑𝑑𝑟𝑟 𝜀𝜀𝑋𝑋𝐶𝐶ℎ𝑜𝑜𝑚𝑚[𝑛𝑛(𝑟𝑟), |∇𝑛𝑛(𝑟𝑟)|]𝑛𝑛(𝑟𝑟). (2.28) 

In the case of the spin-polarized calculations, the GGA exchange-correlation 

functional can be expressed in terms of the spin-up and spin-down electron density and 

their gradients. Usually, the GGA more correctly predicts the atomic structure (bond 

lengths and lattice parameters) than LDA. Similar to LDA, GGA also underestimates the 

band gaps. The experimentally found ground states of magnetic systems (like Fe (bcc), 

Ni (fcc), Cr (bcc), etc.) are well predicted by both GGA and LDA. In some cases, 

however, GGA provides a more realistic description. In this work, we studied the 

magnetic systems using GGA approximation within the Perdew-Burke-Ernzerhof (PBE) 

approach [19].  

Although GGA is an improvement over LDA, both approximations have 

deficiencies. In particular, they are not able to describe weak van der Waals interactions. 

Also, electronic structures of the systems with strongly localized 𝑑𝑑 and 𝑓𝑓 electrons are 

not well described by LDA and GGA. In such cases, LDA+U methods with empirical 

parameters 𝑈𝑈 and 𝐽𝐽 are more appropriate [ 20, 21]. There are also other functionals like 

hybrid functionals (e.g., B3LYP, HSE06) which use a combination of the exchange-

correlation energy obtained from the Hartree-Fock and DFT methods through some 

fitting parameters [2,3]. 
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2.2. Wannier Function 

In the condensed matter systems, we generally deal with the crystalline solids which has 

a periodic crystal potential (𝑉𝑉(𝑟𝑟) = 𝑉𝑉(𝑟𝑟 + 𝑅𝑅�⃗ )), where 𝑅𝑅�⃗  is the crystal lattice vector. 

According to the Bloch theorem, the solution of the Kohn-Sham equations for such 

systems can be written in terms of the function [3] 

𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟) = 𝑒𝑒𝑖𝑖 𝑘𝑘�⃗ .𝑖𝑖𝑢𝑢𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟) , (2.29) 

where 𝑛𝑛 is the band index, 𝑘𝑘�⃗  is the quasi-momentum in a Brillouin zone, 𝑒𝑒𝑖𝑖 𝑘𝑘�⃗ ∙𝑖𝑖 is the 

envelope function, and 𝑢𝑢𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟) is the periodic Bloch function (𝑢𝑢𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟 + 𝑅𝑅�⃗ ) = 𝑢𝑢𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟)). 

Eq. (2.29) implies that the Bloch wavefunction 𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟) is periodic in the reciprocal space 

(𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ +�⃗�𝐺(𝑟𝑟) = 𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟)), where �⃗�𝐺 is the reciprocal lattice vector. The isolated bands would 

be better explained using the atomic functions instead of the Bloch functions. But the 

atomic functions lack the orthogonality. Wannier proposed to use orthogonal functions 

constructed from the Bloch functions – now known as Wannier functions (WFs) [ 22]. 

The WFs can be constructed by the superposition of the Bloch functions across the 

Brillouin zone (BZ) as  

𝑤𝑤𝑖𝑖,0(𝑟𝑟) =
𝑉𝑉

(2𝜋𝜋)3 � 𝑑𝑑𝑘𝑘�⃗  𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ (𝑟𝑟)
𝐵𝐵𝐵𝐵

 , (2.30) 

where 𝑉𝑉 is the volume of the unit cell, the integral is carried over the BZ. The real-space 

WFs has translational invariance and hence, more WFs can be constructed by inserting a 

phase factor 𝑒𝑒−𝑖𝑖 𝑘𝑘�⃗ ∙ 𝑅𝑅�⃗ . In the Dirac bra-ket representation, the WF in a cell  𝑅𝑅�⃗  associated 

with the band index 𝑛𝑛 is given by   
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|𝑛𝑛 𝑅𝑅�⃗  � =
𝑉𝑉

(2𝜋𝜋)3 � 𝑑𝑑𝑘𝑘�⃗  𝑒𝑒−𝑖𝑖 𝑘𝑘�⃗ ∙ 𝑅𝑅�⃗ �𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ �
𝐵𝐵𝐵𝐵

 . (2.31) 

This represents a Fourier transform of the Bloch wavefunction and hence, its inverse 

transform is 

�𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ � = �𝑒𝑒𝑖𝑖 𝑘𝑘�⃗ .𝑅𝑅�⃗

𝑅𝑅�⃗

�𝑛𝑛 𝑅𝑅�⃗ � . (2.32) 

The Bloch wavefunctions can be constructed by a linear superposition of the WFs with 

the corresponding phase factor. Equation (2.31) shows that the WFs are real space 

functions centred near 𝑅𝑅�⃗  and decay rapidly with increasing |𝑟𝑟 − 𝑅𝑅�⃗ | .  WFs are localized 

like atomic wavefunctions, but they are also orthonormal, �𝑛𝑛 𝑅𝑅�⃗ �𝑚𝑚 𝑅𝑅�⃗ ′� = 𝛿𝛿𝑖𝑖𝑚𝑚𝛿𝛿𝑅𝑅�⃗  𝑅𝑅�⃗ ′  as 

follows from  

 �𝑛𝑛 𝑅𝑅�⃗ �𝑚𝑚 𝑅𝑅�⃗ ′� = �
𝑉𝑉

(2𝜋𝜋)3�
2

∫ 𝑑𝑑𝑟𝑟  � 𝑑𝑑𝑘𝑘�⃗
𝐵𝐵𝐵𝐵

� 𝑑𝑑𝑘𝑘�⃗ ′
𝐵𝐵𝐵𝐵

�𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ �𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ ′�𝑒𝑒
−𝑖𝑖 𝑘𝑘�⃗ .𝑅𝑅�⃗ −𝑖𝑖𝑘𝑘�⃗ ′.𝑅𝑅�⃗ ′ 

=
𝑉𝑉

(2𝜋𝜋)3 � 𝑑𝑑𝑘𝑘�⃗
𝐵𝐵𝐵𝐵

� 𝑑𝑑𝑘𝑘�⃗ ′
𝐵𝐵𝐵𝐵

 𝛿𝛿𝑖𝑖𝑚𝑚𝛿𝛿�𝑘𝑘�⃗ − 𝑘𝑘�⃗ ′�𝑒𝑒−𝑖𝑖 𝑘𝑘�⃗ .𝑅𝑅�⃗ −𝑖𝑖𝑘𝑘�⃗ ′.𝑅𝑅�⃗ ′ = 𝛿𝛿𝑖𝑖𝑚𝑚𝛿𝛿𝑅𝑅�⃗  𝑅𝑅�⃗ ′  . (2.33) 

The Bloch wavefunctions can differ by the overall phase. A gauge transformation 

of the Bloch wavefunction gives a Bloch wavefunction which has the same physical 

meaning as the original one because the electron density remains unchanged. In this 

regard, the Bloch wavefunction can be considered as unique. For the real gauge function 

𝜃𝜃(𝑘𝑘�⃗ ), which is periodic in the reciprocal space, the gauge transformation of the Bloch 

wavefunction has form 

�𝜓𝜓�𝑖𝑖,𝑘𝑘�⃗ � = 𝑒𝑒𝑖𝑖𝜃𝜃𝑛𝑛�𝑘𝑘�⃗ ��𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ � . (2.34) 
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This gauge transformation changes the shape and spread of the WF [ 23].  The WF for the 

band 𝑛𝑛 under the gauge transformation given by Eq. (2.34) can be expressed as 

�𝑛𝑛 𝑅𝑅�⃗� � =
𝑉𝑉

(2𝜋𝜋)3 � 𝑑𝑑𝑘𝑘�⃗ 𝑒𝑒𝑖𝑖𝜃𝜃𝑛𝑛�𝑘𝑘�⃗ �𝑒𝑒−𝑖𝑖 𝑘𝑘�⃗ .𝑅𝑅�⃗ �𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ � 
𝐵𝐵𝐵𝐵

. (2.35) 

 If some bands remain degenerate and cross at some points in the BZ, the gauge 

transformation can be defined by the unitary transformation (𝑈𝑈𝑚𝑚𝑖𝑖𝑘𝑘
�⃗ ) of the set of these 

bands {𝑛𝑛} as 

�𝜓𝜓�𝑖𝑖,𝑘𝑘�⃗ � = �𝑈𝑈𝑚𝑚𝑖𝑖𝑘𝑘
�⃗

{𝑖𝑖}

�𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ � . (2.36) 

The corresponding WF constructed from this gauge transformed Bloch wavefunction is 

�𝑛𝑛 𝑅𝑅�⃗� � =
𝑉𝑉

(2𝜋𝜋)3 �  𝑑𝑑𝑘𝑘�⃗ 𝑒𝑒−𝑖𝑖 𝑘𝑘�⃗ .𝑅𝑅�⃗  �𝑈𝑈𝑚𝑚𝑖𝑖𝑘𝑘
�⃗

{𝑖𝑖}

�𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �
𝐵𝐵𝐵𝐵

 . (2.37) 

 The smoothness of these unitary transformation determines whether the WF are 

maximally localized or not. The criterion for the maximally localized WF can be 

described by calculating the spread Ω of the WF as 

Ω = �[⟨0 𝑛𝑛|𝑟𝑟2|0 𝑛𝑛⟩ − ⟨0 𝑛𝑛|𝑟𝑟|0 𝑛𝑛⟩2]
𝑖𝑖

 . (2.38) 

A set of the Bloch wavefunctions is selected in such a way that the unitary transformation 

chosen will minimize the spread of the WF.  Nicola Marzari and David Vanderbilt 

proposed the steepest descent algorithm to find the maximally localized WF [23]. In this 

approach, initially orthonormal Bloch wavefunctions are defined in terms of the smooth 

trial functions through projection. The periodic wavefunctions at each quasi-momenta for 

each band can be extracted and their overlap can be calculated using equation (2.38) and 
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minimized. Using the band structure obtained from DFT, k-point mesh, and unit cell 

volume, we can build the Hamiltonian matrix written within a basis of the obtained 

localized WF. Using this tight-binding Hamiltonian, we can then calculate the Berry 

curvature, anomalous Hall conductivity, spin Hall conductivity, and other properties [ 24, 

25]. 

2.3. Berry Curvature 

Consider a parametric space defined by 𝑅𝑅�⃗ = (𝑅𝑅1,𝑅𝑅2, … … ) where the set of parameters is 

implicitly included in the Schrödinger equation 

𝐻𝐻�𝑅𝑅�⃗ �|𝜓𝜓𝑖𝑖⟩ =𝐸𝐸𝑖𝑖�𝑅𝑅�⃗ �|𝜓𝜓𝑖𝑖⟩ . (2.39) 

This parametric space may evolve in time so that 𝑅𝑅�⃗ (𝑡𝑡) = (𝑅𝑅1(𝑡𝑡),𝑅𝑅2(𝑡𝑡), … … ) and hence, 

the Hamiltonian depends on time through these parameters. Consider a system slowly 

moving along a path Γ𝑐𝑐 in the parameter space from 𝑅𝑅�⃗ (𝑡𝑡 = 0) to 𝑅𝑅�⃗ (𝑡𝑡 = 𝑡𝑡𝑒𝑒), we can find 

the corresponding state by solving the time-dependent Schrödinger equation 

𝑖𝑖ℏ
𝜕𝜕|𝜓𝜓𝑖𝑖(𝑡𝑡)⟩

𝜕𝜕𝑡𝑡
= 𝐻𝐻 �𝑅𝑅�⃗ (𝑡𝑡)� |𝜓𝜓𝑖𝑖(𝑡𝑡)⟩ . (2.40)  

According to the quantum adiabatic theorem, the instantaneous eigenstate of the 

Hamiltonian remains still in the initial eigenstate. Hence, due to the gauge freedom, the 

eigenstate can be expressed as  𝑒𝑒𝑖𝑖𝜉𝜉𝑛𝑛(𝑖𝑖)|𝜓𝜓𝑖𝑖(𝑡𝑡)⟩ with the time dependent phase 𝜉𝜉𝑖𝑖(𝑡𝑡). 

Equation (2.40) has the following solution 

−ℏ
𝜕𝜕𝜉𝜉𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑡𝑡

 |𝜓𝜓𝑖𝑖(𝑡𝑡)⟩ + 𝑖𝑖ℏ
𝜕𝜕|𝜓𝜓𝑖𝑖(𝑡𝑡)⟩

𝜕𝜕𝑡𝑡
= 𝐸𝐸𝑖𝑖 �𝑅𝑅�⃗ (𝑡𝑡)� |𝜓𝜓𝑖𝑖(𝑡𝑡)⟩ . (2.41) 
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Multiplying by ⟨𝜓𝜓𝑖𝑖(𝑡𝑡)| and integrating over time, the phase factor for this eigenstate can 

be obtained as 

𝜉𝜉𝑖𝑖(𝑡𝑡) = 𝑖𝑖∫ 𝑑𝑑𝑡𝑡⟨𝜓𝜓𝑖𝑖(𝑡𝑡)|
𝜕𝜕
𝜕𝜕𝑡𝑡

|𝜓𝜓𝑖𝑖(𝑡𝑡)⟩ −
1
 ℏ
� 𝑑𝑑𝑡𝑡′
𝑖𝑖

0
𝐸𝐸𝑖𝑖 �𝑅𝑅�⃗ (𝑡𝑡′)�  . (2.42) 

There are two contributions to the phase. The second term is the usual dynamical phase 

factor seen in quantum-mechanics books. While the first term, as further analysis shows, 

determines the geometric phase that is independent of time and only depends on the path 

Γ𝑐𝑐 followed during the evolution in the parametric space: 

𝛾𝛾𝑖𝑖(Γ𝑐𝑐) = 𝑖𝑖 �𝑑𝑑𝑡𝑡
𝑑𝑑𝑅𝑅�⃗
𝑑𝑑𝑡𝑡

   ⟨𝜓𝜓𝑖𝑖|∇𝑅𝑅�⃗ |𝜓𝜓𝑖𝑖⟩ = 𝑖𝑖 � 𝑑𝑑𝑅𝑅�⃗
Γ𝑐𝑐

∙  ⟨𝜓𝜓𝑖𝑖|∇𝑅𝑅�⃗ |𝜓𝜓𝑖𝑖⟩. (2.43) 

This geometric phase gained during the adiabatic evolution is known as the Berry phase 

and the integrand is known as the Berry connection (analogous to the vector potential) 

defined by 𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ � = 𝑖𝑖⟨𝜓𝜓𝑖𝑖|∇𝑅𝑅�⃗ |𝜓𝜓𝑖𝑖⟩ for the 𝑛𝑛𝑖𝑖ℎ band.  

Let us consider a gauge transformation |𝜓𝜓𝑖𝑖⟩� = 𝑒𝑒−𝑖𝑖𝛼𝛼(𝑅𝑅�⃗ )|𝜓𝜓𝑖𝑖⟩ so that the 

transformed Berry connection is  

𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ �
� = 𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ � + ∇𝑅𝑅�⃗ 𝛽𝛽�𝑅𝑅�⃗ �. (2.44) 

This shows that the Berry connection is gauge dependent. The corresponding Berry phase 

under this gauge transformation is 

𝛾𝛾𝑖𝑖(Γ𝑐𝑐)� = � 𝑑𝑑𝑅𝑅�⃗
Γ𝑐𝑐

∙  𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ �
� = 𝛾𝛾𝑖𝑖(Γ𝑐𝑐) + 𝛽𝛽�𝑅𝑅�⃗𝑒𝑒� − 𝛽𝛽�𝑅𝑅�⃗ 𝑖𝑖�. (2.45) 

The Berry phase is not gauge invariant as we traversed from the initial position 𝑅𝑅�⃗ 𝑖𝑖 to the 

final position 𝑅𝑅�⃗𝑒𝑒 in the parametric space. The gauge invariant Berry phases cannot be 
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observed in real life according to quantum mechanics. But, if we considered a closed path 

in the parametric space, 𝛽𝛽�𝑅𝑅�⃗𝑒𝑒� − 𝛽𝛽�𝑅𝑅�⃗ 𝑖𝑖� = 2𝜋𝜋 × 𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝑟𝑟, the Berry phase becomes 

gauge invariant and hence, a meaningful physical quantity. In the 3D space, we can 

define this closed boundary Γ𝑐𝑐 on the surface 𝑆𝑆 and the corresponding Berry phase as 

𝛾𝛾𝑖𝑖(Γ𝑐𝑐) = � 𝑑𝑑𝑅𝑅�⃗
Γ𝑐𝑐

∙  𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ � = �𝑑𝑑𝑆𝑆  ∙ ∇ × 𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ �  , (2.46) 

The integrand in the surface integral is analogous to the magnetic field and the whole 

integral is analogous to the magnetic flux coming out of the surface 𝑆𝑆 [ 26, 27]. The 

integrand term is well known as the Berry curvature Ω��⃗ 𝑖𝑖�𝑅𝑅�⃗ � = ∇ × 𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ �. The curl of 

the Berry connection shows that the Berry curvature is gauge invariant, i.e., ∇ × ∇𝛽𝛽 = 0. 

The Berry curvature can be written as 

Ω��⃗ 𝑖𝑖�𝑅𝑅�⃗ � = ∇R��⃗ × 𝐴𝐴𝑖𝑖�𝑅𝑅�⃗ � =  𝑖𝑖�∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖� × |∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖⟩, 

Ω��⃗ 𝑖𝑖�𝑅𝑅�⃗ � = 𝑖𝑖�∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖��|𝜓𝜓𝑚𝑚⟩⟨𝜓𝜓𝑚𝑚|
𝑚𝑚

× �∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖⟩ 

= �𝑖𝑖�∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖�𝜓𝜓𝑚𝑚� × ⟨𝜓𝜓𝑚𝑚|∇𝑅𝑅�⃗ 𝜓𝜓𝑖𝑖⟩
𝑚𝑚≠𝑖𝑖

 . (2.47) 

Here, we used the completeness relation 1�=∑ |𝜓𝜓𝑚𝑚⟩⟨𝜓𝜓𝑚𝑚|𝑚𝑚  and the fact that 𝑚𝑚 = 𝑛𝑛 term 

vanishes. Using the Equation (2.39) and taking the inner product with ket ⟨𝜓𝜓𝑚𝑚|, we can 

rewrite Equation (2.47) as 

Ω��⃗ 𝑖𝑖�𝑅𝑅�⃗ � = 𝑖𝑖 �
�𝜓𝜓𝑚𝑚�∇𝑅𝑅�⃗ 𝐻𝐻�𝜓𝜓𝑖𝑖� × �𝜓𝜓𝑚𝑚�∇𝑅𝑅�⃗ 𝐻𝐻�𝜓𝜓𝑖𝑖�

(𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑚𝑚)2  
𝑚𝑚≠𝑖𝑖

 . (2.48) 
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This equation shows that the sum of the Berry curvatures of all the eigenstates for a given 

Hamiltonian vanishes and the Berry curvature is usually large at avoided crossing 

regions. 

 

To further understand the Berry curvature and the Berry phase, let us consider an 

example of the spin 1/2 system in the presence of a magnetic field in the parameter space 

�𝐵𝐵𝑥𝑥,𝐵𝐵𝑥𝑥,𝐵𝐵𝑧𝑧� → (𝜃𝜃,𝜙𝜙) of the Bloch sphere as shown in Fig. 2.1. The Hamiltonian is given 

by H=𝐵𝐵�⃗ ∙  �⃗�𝜎 where �⃗�𝜎 is the Pauli matrices and 𝐵𝐵�⃗ = 𝐵𝐵(𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃𝑠𝑠𝑜𝑜𝑠𝑠𝜙𝜙, 𝑠𝑠𝑖𝑖𝑛𝑛𝜃𝜃𝑠𝑠𝑖𝑖𝑛𝑛𝜙𝜙, 𝑠𝑠𝑜𝑜𝑠𝑠𝜃𝜃) as 

 

Figure 2.1. The parametric space for the spin 1/2 system in the presence of magnetic 

field is defined by the Bloch sphere. (a) Magnetic field 𝐵𝐵�⃗  denoted by the green arrow 

traces the path Γ𝑐𝑐 in the parametric space (𝐵𝐵𝑥𝑥,𝐵𝐵𝑥𝑥,𝐵𝐵𝑧𝑧). (b) The Berry curvature field is 

acting like a field due to monopole at the origin (point of degeneracy). The surface S 

enclosed by the boundary Γ𝐶𝐶 makes a solid angle Ω𝐾𝐾. The number of lines of the Berry 

curvature field traversing through the green conic section determines the Berry phase 

and hence, the corresponding geometric phase obtained on traversing this closed path 

is 1
2
Ω𝐾𝐾. 
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shown in Figure 2.1(a) by the green arrow. The eigenstate obtained for this Hamiltonian 

is 𝐸𝐸± = ±𝐵𝐵 and corresponding eigenfunctions are 

|+⟩ = �
cos

𝜃𝜃
2

  𝑒𝑒−𝑖𝑖𝑖𝑖

sin
𝜃𝜃
2

� , |−⟩ = �
sin

𝜃𝜃
2

  𝑒𝑒−𝑖𝑖𝑖𝑖

cos
𝜃𝜃
2

�  . (2.49)  

The Berry connection in the parametric space (𝜃𝜃,𝜙𝜙) for the nth band is 

𝐴𝐴𝑖𝑖(𝜃𝜃,𝜙𝜙) = (𝐴𝐴𝑖𝑖(𝜃𝜃),𝐴𝐴𝑖𝑖(𝜙𝜙)) where 𝐴𝐴𝑖𝑖(𝜃𝜃) = 𝑖𝑖 < �𝑛𝑛� 1
𝐵𝐵
𝜕𝜕𝜃𝜃�𝑛𝑛� and 𝐴𝐴𝑖𝑖(𝜙𝜙) = 𝑖𝑖 <

�𝑛𝑛� 1
𝐵𝐵𝑠𝑠𝑖𝑖𝑖𝑖𝜃𝜃

𝜕𝜕𝑖𝑖�𝑛𝑛� are the corresponding components in the spherical coordinates. For the 

lower band |−⟩, the Berry connection is found to be 𝐴𝐴|−⟩(𝜃𝜃,𝜙𝜙) = (0, 1
2𝐵𝐵

tan 𝜃𝜃
2

) and the 

corresponding Berry curvature in the spherical coordinates is Ω��⃗ = ∇ × 𝐴𝐴|−⟩(𝜃𝜃,𝜙𝜙) =

1
2𝐵𝐵

tan 𝜃𝜃
2

 𝐵𝐵� = 𝐵𝐵�⃗

2𝐵𝐵3
. The Berry curvature is pointing radially outward as shown in Figure 

2.1(b). The high energy state also has the same Berry connection and Berry curvature but 

opposite in sign. The sum of the total berry curvature due to the total band is zero.  

The corresponding Berry connection and Berry curvature are analogous to the 

vector potential and the magnetic field generated by the magnetic monopole at the origin 

(𝐵𝐵 = 0) where the two energy levels are degenerate. The region of the degeneracy points 

acts as a source and drain of the Berry curvature flux.  Consider a magnetic field 𝐵𝐵�⃗  

tracing around the Bloch sphere an enclosed surface 𝑆𝑆 with boundary path Γ𝑐𝑐 as shown in 

Figure 2.1 (a). Then, we have  

𝛾𝛾𝑖𝑖 = �𝑑𝑑𝑆𝑆 ∙  
𝐵𝐵�⃗

2𝐵𝐵3
 =

1
2

 Ω𝐾𝐾 . (2.50) 
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Equation (2.50) explains that the Berry phase gained on moving across the closed 

boundary Γ𝑐𝑐 enclosing the surface 𝑆𝑆 is half of the solid angle Ω𝐾𝐾 subtended by this surface 

as shown by the green conic section in Figure 2.1(b). If the enclosed surface is a half of 

the sphere (𝜃𝜃 = 0 to 𝜋𝜋
2
), 𝛾𝛾𝑖𝑖 = 𝜋𝜋 and the Berry phase for the whole surface of the sphere 

(𝜃𝜃 = 0 to 𝜋𝜋
2
) is 2𝜋𝜋. 

In condensed matter systems, the periodic potential in the crystal provides the 

momentum space which acts like the parameter space. On integrating over the closed 

loop in the BZ, we gain the Berry phase due to the Bloch Hamiltonian providing the torus 

like topology. The modern theory of polarization is developed in terms of the Berry 

phase. Similarly, the Berry curvature explains the intrinsic anomalous Hall conductivity, 

the spin Berry curvature determines the intrinsic spin Hall conductivity [26, 27, 28]. The 

variations of the magnetic moment in the real space forming a noncoplanar configuration 

provide the parametric space in which the traversing electron gains the Berry phase. This 

phenomenon gives rise to the topological Hall effect [ 29].  

The Bloch Hamiltonian in the presence of the adiabatic perturbation can be 

written to first order as [ 30]  

|𝑢𝑢𝑖𝑖�⟩ = |𝑢𝑢𝑖𝑖⟩ − 𝑖𝑖 ℏ �
|𝑢𝑢𝑚𝑚⟩ �𝑢𝑢𝑚𝑚�

𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡 �

𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑚𝑚𝑚𝑚≠𝑖𝑖 

  . (2.51) 

The velocity operator is given by 

�⃗�𝑣𝑖𝑖�𝑘𝑘�⃗ � =
1
ℏ
�𝑢𝑢𝑖𝑖��∇𝑘𝑘�⃗ 𝐻𝐻�𝑢𝑢𝑖𝑖�� 
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=
1
ℏ
�𝑢𝑢𝑖𝑖�∇𝑘𝑘�⃗ 𝐻𝐻�𝑢𝑢𝑖𝑖� − 𝑖𝑖 � �

�𝑢𝑢𝑖𝑖�∇𝑘𝑘�⃗ 𝐻𝐻�𝑢𝑢𝑚𝑚� �𝑢𝑢𝑚𝑚�
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑡𝑡 �

𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑚𝑚
+ 𝑠𝑠𝑠𝑠�

𝑚𝑚≠𝑖𝑖 

 

=
1
ℏ
�𝑢𝑢𝑖𝑖�∇𝑘𝑘�⃗ 𝐻𝐻�𝑢𝑢𝑖𝑖�

− 𝑖𝑖 � �
�𝑢𝑢𝑖𝑖�∇𝑘𝑘�⃗ 𝐻𝐻�𝑢𝑢𝑚𝑚��𝑢𝑢𝑚𝑚�∇𝑘𝑘�⃗ 𝑢𝑢𝑖𝑖�

𝐸𝐸𝑖𝑖 − 𝐸𝐸𝑚𝑚
 𝑘𝑘�⃗ ̇ + 𝑠𝑠𝑠𝑠�

𝑚𝑚≠𝑖𝑖 

, 

�⃗�𝑣𝑖𝑖�𝑘𝑘�⃗ � =
1
ℏ
𝜕𝜕𝐸𝐸𝑖𝑖�𝑘𝑘�⃗ �
𝜕𝜕𝑘𝑘�⃗

− 𝑘𝑘�⃗ ̇ × Ω��⃗ �𝑘𝑘�⃗ � . (2.52) 

Equation (2.52) has an extra term compared to the regularly used velocity term in the 

Bloch bands. This kind of anomalous velocity appears in some magnetic systems.  The 

anomalous velocity term depends upon the Berry curvature. Eq. (2.52) can be used to 

analyze the symmetry relationship of the Berry curvature. For example, under the 

operation of the time reversal symmetry (𝑇𝑇�), Eq. (2.52) is valid if 𝑇𝑇�  Ω��⃗ �𝑘𝑘�⃗ � = −Ω��⃗ �−𝑘𝑘�⃗ � 

and under the operation of the inversion symmetry operator (𝑃𝑃�), the Berry curvature 

relation is 𝑃𝑃� Ω��⃗ �𝑘𝑘�⃗ � = Ω��⃗ �−𝑘𝑘�⃗ �. The sum of the Berry curvature over the BZ in the presence 

of the time reversal symmetry vanishes and hence, the absence of the time reversal 

symmetry leads to a finite anomalous velocity. Magnetic materials break the time 

reversal symmetry. The presence of the finite Berry curvature changes the transport 

properties of the magnetic materials. 

2.4. Landau-Lifshitz-Gilbert-Slonczewski Equation 

The transport properties of the magnetic materials are determined by the dynamics of the 

magnetization. Consider a free electron with spin angular momentum 𝑆𝑆, in the presence 

of the magnetic field. The spin dynamics is described by the following equation 
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𝑑𝑑〈𝑆𝑆(𝑡𝑡)〉
𝑑𝑑𝑡𝑡

= −
𝑖𝑖𝜇𝜇𝐵𝐵
ℏ

〈𝑆𝑆(𝑡𝑡)〉 × 𝐻𝐻��⃗  (𝑡𝑡). (2.53) 

For a volume of the electron gas, we can define the magnetic moment 𝑚𝑚��⃗ = 𝑀𝑀��⃗

𝑉𝑉
 where the 

magnetization is 𝑀𝑀��⃗ = 𝑔𝑔𝜇𝜇𝐵𝐵
ℏ
〈𝑆𝑆(𝑡𝑡)〉 = 𝛾𝛾〈𝑆𝑆(𝑡𝑡)〉. Equation (2.53) in terms of the magnetic 

moment determines the magnetization dynamics 

𝑑𝑑𝑚𝑚��⃗
𝑑𝑑𝑡𝑡

= −𝛾𝛾 𝑚𝑚��⃗ × 𝐻𝐻��⃗ (𝑡𝑡) . (2.54) 

This equation only describes the precession motion of the magnetic moment around the 

magnetic field. In practice, however, the magnetic moment dissipates which can be 

described by an additional damping term in Equation (2.54):  

𝑑𝑑𝑚𝑚��⃗
𝑑𝑑𝑡𝑡

= −𝛾𝛾 𝑚𝑚��⃗ × 𝐻𝐻��⃗ (𝑡𝑡) + 𝛼𝛼 𝑚𝑚��⃗ ×
𝑑𝑑𝑚𝑚��⃗
𝑑𝑑𝑡𝑡

 . (2.55) 

Eq. (2.55) is known as the Landau-Lifshitz-Gilbert (LLG) equation [ 31] where, 𝛼𝛼 is the 

damping constant.  

Eq. (2.55) can be generalized to describe the magnetization dynamics of the 

system with multiple magnetic sublattices with magnetic moments 𝑚𝑚��⃗ 𝑖𝑖 on the 𝑖𝑖𝑖𝑖ℎ site. The 

magnetic field felt by the 𝑖𝑖𝑖𝑖ℎ lattice site is 𝐻𝐻��⃗ 𝑖𝑖 = − 1
𝜇𝜇

𝜕𝜕𝐻𝐻
𝜕𝜕 𝑚𝑚���⃗ 𝑖𝑖

. The spin Hamiltonian of such a 

system can be represented as follows  

𝐻𝐻 = �𝐽𝐽𝑖𝑖𝑖𝑖  𝑚𝑚��⃗ 𝑖𝑖.𝑚𝑚��⃗ 𝑖𝑖
𝑖𝑖≠𝑖𝑖

+ 𝐻𝐻𝐻𝐻 + 𝐻𝐻𝐵𝐵 + 𝐻𝐻𝐷𝐷𝑀𝑀𝐷𝐷 , (2.56) 

where the first term is the Heisenberg exchange coupling between the neighbouring 

atoms, 𝐻𝐻𝐻𝐻 is the magnetic anisotropy Hamiltonian which depends upon symmetry of the 

magnetic crystal, 𝐻𝐻𝐵𝐵 is the Zeeman term due to the external magnetic field, and 𝐻𝐻𝐷𝐷𝑀𝑀𝐷𝐷 is 
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the Dzyaloshinskii-Moriya interaction (DMI) which ensures the non-coplanarity in the 

magnetic system. The exchange term makes the magnetic moments to align either 

parallel or antiparallel resulting in the FM or AFM phases. The terms in the spin 

Hamiltonian can be extracted from the DFT calculations using the energy mapping 

method [ 32]. 

The internal field cannot switch the magnetic moment. Therefore, we need an 

external source to overcome the energy barrier provided by the anisotropy term to switch 

the magnetic moment. The application of the spin-polarized electric current in a system 

with noncollinear magnetic moments leads to the spin transfer torque, as was discussed in 

the introduction. The effect of the spin transfer torque on the magnetization dynamics can 

be described by adding a new term in the LLG equation [ 33, 34] 

𝑑𝑑𝑚𝑚��⃗ 𝑖𝑖
𝑑𝑑𝑡𝑡

= −𝛾𝛾 𝑚𝑚��⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖 + 𝛼𝛼 𝑚𝑚��⃗ 𝑖𝑖 ×
𝑑𝑑𝑚𝑚��⃗ 𝑖𝑖
𝑑𝑑𝑡𝑡

+
𝛾𝛾

𝜇𝜇0𝑀𝑀𝑠𝑠
�𝑎𝑎[𝐼𝐼𝑠𝑠] 𝑚𝑚��⃗ 𝑖𝑖 × 𝑚𝑚��⃗ 𝑖𝑖 × 𝐼𝐼𝐾𝐾 + 𝑏𝑏[𝐼𝐼𝑠𝑠]𝑚𝑚��⃗ 𝑖𝑖 × 𝐼𝐼𝐾𝐾� , (2.57) 

where 𝜇𝜇0 is the magnetic permeability, 𝑀𝑀𝑠𝑠 is the saturation magnetization, and 𝐼𝐼𝐾𝐾 is the 

spin polarized current which exerts the spin transfer torque on the magnetic moment.  

𝑎𝑎[𝐼𝐼𝑠𝑠] and 𝑏𝑏[𝐼𝐼𝑠𝑠] are the current dependent functions for the longitudinal and transverse 

torque, respectively. The spin current produces dual effect of the precession and 

switching. This equation is known as the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) 

equation. It can be applied to describe the magnetization dynamics driven by the spin 

transfer torque on different magnetic sublattices [ 35].  
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 Symmetry Dependent Anomalous Hall Conductivity 

It is known that the anomalous Hall effect (AHE) emerges in metals with broken time-

reversal symmetry (TRS) and strong spin-orbit coupling (SOC) [ 1]. Usually, the AHE is 

found in ferromagnetic (FM) metals, where a transverse voltage generated by a 

longitudinal charge current is sensitive to the net magnetization. The intrinsic AHE is 

driven by a fictitious magnetic field in the momentum space associated with the Berry 

curvature, a quantity inherent in the electronic band structure [ 2]. With the magnitude 

and direction determined by the magnetization and SOC, this fictitious magnetic field 

controls the charge current in a similar way as a real magnetic field in the ordinary Hall 

effect. The AHE vanishes in conventional collinear antiferromagnetic (AFM) metals due 

to the anomalous Hall conductivities being opposite in sign and hence cancelling each 

other for the two ferromagnetic sublattices with opposite magnetization. In other words, 

the existence of symmetry combining time reversal and lattice translation prohibits the 

AHE. This observation suggested that the presence of a non-vanishing net magnetic 

moment is the necessary condition to break the related symmetry and produce the AHE 

[ 3].  

It appeared, however, that the AHE can be observed in certain types of non-

collinear antiferromagnets, such as Mn3X alloys (X = Ga, Ge, Ir, etc.) [ 4– 8]. In these 

metals, the Mn moments are arranged in a Kagome-type lattice within the (111) plane. 

The magnetic space group symmetry operations in these compounds cannot eliminate the 

total Berry curvature, leading to a non-vanishing AHE [4]. The presence of a sizable 

AHE in non-collinear AFM metals is interesting for AFM spintronics, where an AFM 

order parameter (Néel vector) can be used as a state variable and can be controlled on a 
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much shorter time scale compared to magnetization in ferromagnets as discussed in 

Section 1.1 [ 9– 11]. 

Importantly, specifics of magnetic ordering in non-collinear AFM materials 

associated with different magnetic space group symmetries have a strong impact on the 

AHE [ 12, 13]. For example, it was found that the AHC tensors have a different form in 

Mn3X (X = Ga, Ge, and Sn) and Mn3Y (Y = Rh, Ir, and Pt) compounds, due to different 

magnetic moment configurations. One can expect therefore that a significant change in 

the anomalous Hall conductivity (AHC) can emerge at the magnetic phase transition 

associated with switching between different non-collinear magnetic orderings. Realizing 

such an effect in practice would be interesting for potential spintronic applications, and 

therefore exploring the AHE in possible material systems with competing and tuneable 

non-collinear magnetic phases is valuable. 

 

As discussed in Chapter 1 (Section 1.4), antiperovskite [Fig. 3.1] materials are 

potential candidates for the control of the AHE by tuneable non-collinear magnetism. 

Manganese nitride antiperovskites ANMn3 (A = Ga, Cu, Ni, etc.) are typically metallic 

and often reveal complex magnetic orderings [ 14, 15, 16]. Various magnetic phases, 

 

Figure 3.1. Different non-collinear magnetic phases in AFM antiperovskite GaNMn3. 

(a) Γ5g, (b) Γ4g, and (c) M-1. Red arrows denote magnetic moments. 
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such as non-collinear AFM Γ5g and Γ4g phases and a non-collinear ferrimagnetic M-1 

phase have been found in these compounds [Fig. 3.1]. Transformations between these 

magnetic phases can be induced by perturbations, such as doping, pressure, and 

temperature [16– 18]. It has also been predicted that the transition between the Γ5g and 

Γ4g phases can be achieved using a spin transfer torque [ 19]. These properties make 

ANMn3 compounds promising for a functional control of the non- collinear magnetism 

and thus interesting for exploring the AHE in different magnetic phases.  

In this work, we consider gallium manganese nitride GaNMn3 as a representative 

antiperovskite material to investigate the magnetic phase dependent AHC of the whole 

ANMn3 family.  The high temperature paramagnetic phase of GaNMn3 has a cubic 

crystal structure with the space group 𝑃𝑃𝑚𝑚3�𝑚𝑚. The Γ5g phase emerges below room 

temperature [Fig. 3.1(a)] and represents the most common non-collinear AFM phase of 

the ANMn3 compounds. In this phase, to avoid the frustration from the triangular 

geometry of the Ga-Mn Kagome-type lattice in the (111) plane, the magnetic moments of 

the three Mn atoms form a chiral configuration with the 120° angle between each other. 

The Γ4g magnetic structure is another common non-collinear AFM phase in the ANMn3 

family, which can be obtained from the Γ5g phase by rotating all magnetic moments 

around the [111] axis by 90° [Fig. 3.1(b)]. Both the Γ5g and Γ4g phases have zero net 

magnetization.  GaNMn3 also exhibits a non-collinear ferrimagnetic M-1 phase [Fig. 

3.1(c)], which can be stabilized by stoichiometric deficiency or high pressure [16]. In this 

phase, the Mn magnetic moments are antiferromagnetically (ferromagnetically) coupled 

in (between) the Ga-Mn (001) planes, resulting in collinear AFM sublattices within these 

planes. On the other hand, the magnetic moments in the Mn-N (002) planes are arranged 
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non-collinearly [Fig. 3.1(c)], leading to the net magnetic moment along the [001] 

direction. 

Using symmetry analyses and first-principles density-functional theory (DFT) 

calculations, we explore the AHE of the three non-collinear magnetic phases of GaNMn3. 

We show that with nearly identical band structure, the nearly degenerate AFM Γ5g and 

Γ4g phases have zero and finite AHC, respectively. A similar behaviour is exhibited by 

non-collinear antiferromagnetic antiperovskites SnNMn3 and NiNMn3. In a non-collinear 

ferrimagnetic M-1 phase, GaNMn3 exhibits a large AHC due to the presence of a sizeable 

net magnetization. With a possibility to control the appearance of these magnetic phases 

by external stimulus, the predicted variation of the AHC between different magnetic 

phases in the same material point to a new approach of designing the AHE-based 

functional devices for spintronic applications. 

3.1. Symmetry Analysis 

Within the linear response theory, the intrinsic AHC is expressed as the integral of the 

total Berry curvature (Ωαβ) over the Brillouin zone (BZ) of the crystal [1, 20] 

𝜎𝜎𝛼𝛼𝛼𝛼 = −
𝑒𝑒2

ℏ
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3 Ω𝛼𝛼𝛼𝛼�𝑘𝑘

�⃗ �
𝐵𝐵𝐵𝐵

, (3.1) 

where the total Berry curvature Ω𝛼𝛼𝛼𝛼 = ∑ 𝑓𝑓𝑖𝑖(𝑘𝑘�⃗ )Ω𝑖𝑖
𝛾𝛾

𝑖𝑖 (𝑘𝑘�⃗ ) is the sum of the Berry curvatures 

Ω𝑖𝑖,𝛼𝛼𝛼𝛼(𝑘𝑘�⃗ ) corresponding the individual bands n,  𝑓𝑓𝑖𝑖�𝑘𝑘�⃗ � is the Fermi distribution function, 

and indices (α, β) denote Cartesian co-ordinates. The expression for the Berry curvature 

Ω𝑖𝑖,𝛼𝛼𝛼𝛼(𝑘𝑘�⃗ ) is given by [1, 20] 
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Ω𝑖𝑖,𝛼𝛼𝛼𝛼�k�⃗ � = −2iℏ2 �
�𝜓𝜓𝑖𝑖,k��⃗ �𝑣𝑣𝛼𝛼�𝜓𝜓m,𝑘𝑘�⃗ ��𝜓𝜓𝑚𝑚,𝑘𝑘�⃗ �𝑣𝑣𝛼𝛼�𝜓𝜓𝑖𝑖,𝑘𝑘�⃗ �

(𝐸𝐸𝑚𝑚(𝑘𝑘�⃗ ) − 𝐸𝐸𝑖𝑖(𝑘𝑘�⃗ ))2m≠n

, (3.2) 

where 𝜓𝜓𝑖𝑖,𝑘𝑘�⃗  is the Bloch function and �⃗�𝑣 is the velocity operator. Equation (3.2) represents 

one of the components of the Berry curvature vector given in Eq. (2.48). Space group 

symmetry of a material determines the presence or absence of a finite AHC. For example, 

as discussed in Chapter 2 (Section 2.3), since Ω𝑖𝑖,𝛼𝛼𝛼𝛼�𝑘𝑘�⃗ � is odd with respect to time 

reversal symmetry, i.e., Ω𝑖𝑖,𝛼𝛼𝛼𝛼�−𝑘𝑘�⃗ � = −Ω𝑖𝑖,𝛼𝛼𝛼𝛼�𝑘𝑘�⃗ �, the total Berry curvature Ω𝛼𝛼𝛼𝛼 and 

 

Figure 3.2. Symmetry operations for non-collinear AFM phases Γ5g (a) and Γ4g (b) in 

the (111) Ga-Mn plane of GaNMn3. (a) The Γ5g phase preserves mirror planes (1�10), 

(101�) and (01�1) (denoted by dashed lines) and is invariant under symmetry 

transformations 𝑀𝑀� =  𝑀𝑀�01�1,𝑀𝑀�101�, or 𝑀𝑀�1�10. (b) The Γ4g phase does not preserve the 

mirror planes but is invariant under the product of mirror symmetry 𝑀𝑀�  and time 

reversal symmetry 𝑇𝑇� . Red arrows denote the magnetic moments. Dotted lines denote 

the mirror planes.  
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hence the AHC are zero for non-magnetic materials. Similarly, if there is symmetry 

operation O� transforming 𝑘𝑘�⃗  to 𝑘𝑘�⃗ ′ (i.e., 𝑘𝑘�⃗ ′ = O�𝑘𝑘�⃗ ), such as two-fold rotation or mirror 

reflection, for which O�Ω𝑖𝑖(𝑘𝑘�⃗ ′� = −Ω𝑖𝑖(𝑘𝑘�⃗ �, the AHC vanishes [12, 13]. In non-collinear 

AFM materials, such as GaNMn3, various magnetic phases are associated with different 

magnetic space group symmetries (Table 3.1), resulting in different AHC. 

 

The Γ5g phase of GaNMn3 is characterized by a lattice of magnetic “whirls” 

composed of non collinear Mn magnetic moments in the (111) plane [Fig. 3.2(a)]. This 

arrangement forms the magnetic space group 𝑅𝑅3�𝑚𝑚, which has three mirrors planes 

perpendicular to the (111) plane. Mirror symmetry M preserves the spin component 

perpendicular to the mirror plane and reverses the spin components parallel to the mirror 

plane. As shown in Fig. 3.2(a), the magnetic moments of the Mn atoms at the mirror 

plane are always perpendicular to this plane. Therefore, application of the symmetry 

transformations 𝑀𝑀� =  𝑀𝑀�01�1,𝑀𝑀�101�, or 𝑀𝑀�1�10 preserves the original configuration of 

magnetic moments. The invariance under these three mirror symmetry transformations 

Table 3.1. Matrix elements of the AHC tensor for different magnetic phases in 

GaNMn3. Here, the ordinary Cartesian coordinates are used, i.e., 𝑥𝑥�||[100], 𝑦𝑦�||[010], 

and �̂�𝑧||[001]. 

Magnetic Phase Γ5g Γ4g M-1 

Magnetic Space 
Group R3�m R3�𝑚𝑚′ P4 

AHC tensor �
0 0 0
0 0 0
0 0 0

� �
0 𝜎𝜎𝑥𝑥𝑥𝑥 −𝜎𝜎𝑥𝑥𝑥𝑥

−𝜎𝜎𝑥𝑥𝑥𝑥 0 𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥 −𝜎𝜎𝑥𝑥𝑥𝑥 0

� �
0 𝜎𝜎𝑥𝑥𝑥𝑥 0

−𝜎𝜎𝑥𝑥𝑥𝑥 0 0
0 0 0

� 
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causes the AHE in the Γ5g phase to vanish. For example, under the  𝑀𝑀1�10 symmetry 

operation, the Berry curvature is transformed as  𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧� =

−Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧�, which implies that the integral over the whole Brillouin zone in Eq. 

(3.1) leads to a zero 𝜎𝜎𝑥𝑥𝑥𝑥. Similarly, Ω𝑥𝑥𝑧𝑧 and Ω𝑧𝑧𝑥𝑥 are odd with respect to  𝑀𝑀�01�1 and  𝑀𝑀�101�, 

respectively. Table 3.2  shows details of different symmetry transfromations. These 

transformations are obtained using the symmetry properties of Eq. (2.52).   

This odd property of the Berry curvature in GaNMn3 under the mirror symmetry 

transformations is broken in the Γ4g phase.  In this phase, the Mn magnetic moments form 

a lattice of “vertices” in the (111) plane, in which the magnetic moments of the Mn atoms 

within the mirror plane are parallel to this plane [Fig. 3.2(b)]. This configuration 

corresponds to the magnetic space group 𝑅𝑅3�𝑚𝑚′, in which the mirror symmetries are 

broken. As seen from Fig. 3.2(b), mirror symmetry transformation 𝑀𝑀 reverses all the 

magnetic moments.  

In contrast, the product of mirror symmetry 𝑀𝑀�  and time reversal symmetry 𝑇𝑇�  is 

preserved in the Γ4g phase. As shown in Fig. 3.2(b), when reversal of all moments by the 

mirror symmetry operation 𝑀𝑀�  is followed by the time reversal symmetry transformation 

𝑇𝑇�  all the moments are reversed back to their initial configuration. This clearly illustrates 

that 𝑇𝑇�𝑀𝑀�  symmetry allows finite out of plane magnetization (along [111] axis) but 𝑀𝑀�  

completely prohibits any finite magnetization. The presence of the combined 𝑇𝑇�𝑀𝑀�  

symmetry makes the Berry curvature an even function of wave vector 𝑘𝑘�⃗ . For example, 

applying the  𝑇𝑇�𝑀𝑀�1�10 transformation we obtain   𝑇𝑇�𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧� =

Ω𝑥𝑥𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧). This even property of the Berry curvature with respect to 
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 𝑇𝑇�𝑀𝑀�1�10,  𝑇𝑇�𝑀𝑀�01�1, and  𝑇𝑇�𝑀𝑀�101�  makes the AHC non-zero in the Γ4g phase. The complete 

analysis of the 𝑇𝑇�𝑀𝑀�  symmetry transformations is given in Table 3.2. 

 

Magnetic space group symmetry determines the shape of the AHC tensor. While 

in the Γ5g phase, all the nine components of the AHC tensor are zero, in the Γ4g phase, 

corresponding to the magnetic space group 𝑅𝑅3�𝑚𝑚′, the AHC tensor is non-zero.  Table 3.1 

Table 3.2. Symmetry transformations of wave vector 𝑘𝑘�⃗  and Berry curvature Ω��⃗ . 

Transformation of 𝒌𝒌��⃗  Transformation of  𝛀𝛀��⃗  

 𝑴𝑴� 𝟏𝟏�𝟏𝟏𝟏𝟏�𝒌𝒌𝒚𝒚,𝒌𝒌𝒙𝒙,𝒌𝒌𝒛𝒛� = �𝒌𝒌𝒙𝒙,𝒌𝒌𝒚𝒚,𝒌𝒌𝒛𝒛� 
 𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧� = −Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�1�10Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧� = −Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�1�10Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧� = −Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 

 𝑴𝑴� 𝟏𝟏𝟏𝟏�𝟏𝟏�𝒌𝒌𝒙𝒙,𝒌𝒌𝒛𝒛,𝒌𝒌𝒚𝒚� = �𝒌𝒌𝒙𝒙,𝒌𝒌𝒚𝒚,𝒌𝒌𝒛𝒛� 
 𝑀𝑀�01�1Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥� = −Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�01�1Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥� = −Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�01�1Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥� = −Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 

 𝑴𝑴� 𝟏𝟏𝟏𝟏𝟏𝟏��𝒌𝒌𝒛𝒛,𝒌𝒌𝒚𝒚,𝒌𝒌𝒙𝒙� = �𝒌𝒌𝒙𝒙,𝒌𝒌𝒚𝒚,𝒌𝒌𝒛𝒛� 
 𝑀𝑀�101�Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑧𝑧, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥� = −Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�101�Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥� = −Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 
 𝑀𝑀�101�Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥� = −Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� 

 𝑻𝑻�𝑴𝑴� 𝟏𝟏�𝟏𝟏𝟏𝟏�𝒌𝒌𝒚𝒚,𝒌𝒌𝒙𝒙,𝒌𝒌𝒛𝒛� = (−𝒌𝒌𝒙𝒙,−𝒌𝒌𝒚𝒚,−𝒌𝒌𝒛𝒛) 
 

 𝑇𝑇�𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� = Ω𝑥𝑥𝑥𝑥�−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧� 
 𝑇𝑇�𝑀𝑀�1�10Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧� = Ω𝑧𝑧𝑥𝑥�−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥 ,−𝑘𝑘𝑧𝑧� 
 𝑇𝑇�𝑀𝑀�1�10Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥, 𝑘𝑘𝑧𝑧� = Ω𝑥𝑥𝑧𝑧(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥 ,−𝑘𝑘𝑧𝑧) 

 𝑻𝑻�𝑴𝑴� 𝟏𝟏𝟏𝟏�𝟏𝟏�𝒌𝒌𝒙𝒙,𝒌𝒌𝒛𝒛,𝒌𝒌𝒚𝒚� = (−𝒌𝒌𝒙𝒙,−𝒌𝒌𝒚𝒚,−𝒌𝒌𝒛𝒛) 
 𝑇𝑇�𝑀𝑀�01�1Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧, 𝑘𝑘𝑥𝑥� = Ω𝑧𝑧𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧) 
 𝑇𝑇�𝑀𝑀�01�1Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧, 𝑘𝑘𝑥𝑥� = Ω𝑥𝑥𝑧𝑧(−𝑘𝑘𝑥𝑥 ,−𝑘𝑘𝑥𝑥 ,−𝑘𝑘𝑧𝑧) 
 𝑇𝑇�𝑀𝑀�01�1Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑧𝑧, 𝑘𝑘𝑥𝑥� = Ω𝑥𝑥𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧) 

 𝑻𝑻�𝑴𝑴� 𝟏𝟏𝟏𝟏𝟏𝟏��𝒌𝒌𝒛𝒛,𝒌𝒌𝒚𝒚,𝒌𝒌𝒙𝒙� = (−𝒌𝒌𝒙𝒙,−𝒌𝒌𝒚𝒚,−𝒌𝒌𝒛𝒛) 
 𝑇𝑇�𝑀𝑀�101�Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥� = Ω𝑥𝑥𝑧𝑧(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧) 
 𝑇𝑇�𝑀𝑀�101�Ω𝑥𝑥𝑧𝑧�𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥� = Ω𝑥𝑥𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧) 
 𝑇𝑇�𝑀𝑀�101�Ω𝑧𝑧𝑥𝑥�𝑘𝑘𝑧𝑧 , 𝑘𝑘𝑥𝑥 , 𝑘𝑘𝑥𝑥� = Ω𝑧𝑧𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧) 
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shows that there are six non-vanishing matrix elements of the AHC tensor in the Γ4g 

phase with only one 𝜎𝜎𝑥𝑥𝑥𝑥 being independent. 

In the non-collinear ferrimagnetic M-1 phase, the unit cell is a tetragonal 

√2 × √2 × 1 supercell of the conventional cubic unit cell without any distortion [Fig. 3.1 

(c)]. In this phase, GaNMn3 has a net magnetization along the [001] direction. Therefore, 

a non-zero AHC is expected in this case similar to that in ferromagnetic metals. Table 3.1 

shows the AHC tensor for the magnetic space group symmetry P4 corresponding to the 

M-1 phase. Like in collinear ferromagnetic metals, the AHC tensor has two non-zero 

components with only one 𝜎𝜎𝑥𝑥𝑥𝑥 being independent. 

3.2. Calculation Methods 

Next, we perform first-principles DFT calculations to obtain the AHC of the three non-

collinear magnetic phases of GaNMn3. The DFT calculations are performed using a 

plane-wave pseudopotential method with the fully-relativistic ultrasoft pseudopotentials 

[ 21] implemented in Quantum-ESPRESSO [ 22]. The exchange and correlation effects 

are treated within the generalized gradient approximation (GGA) [ 23]. We use the plane-

wave cut-off energy of 52 Ry, the charge density cut-off energy of 520 Ry, and the k-

point mesh of 16 × 16 × 16 for the cubic Γ5g and Γ4g phases and 12 × 12 × 16 for the 

tetragonal M-1 phase in GaNMn3. Spin-orbit coupling is included in all the calculations. 

The electronic structure is converged to 10-7 eV/cell. The lattice parameters are obtained 

by fitting the calculated total energy to the Murnaghan equation of state [ 24]. 

The AHC is calculated using the PAOFLOW code [ 25] based on pseudo-atomic 

orbitals (PAO) [ 26, 27 ]. Tight-binding Hamiltonians are constructed from the non-self-
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consistent DFT calculations with a 16 × 16 × 16 k-point mesh for the Γ5g and Γ4g phases 

and a 12 × 12 × 16 k-point mesh for the M-1 phase. Then, the AHC are calculated with a 

48 × 48 × 48 k-point mesh for the Γ5g and Γ4g phases and a 46 × 46 × 48 k-point mesh for 

the M-1 phase using the adaptive broadening method. We find satisfactory convergence 

of the calculated AHC for a k-mesh of denser than 40×40×40. Increasing the grid size to 

100×100×100 changed the AHC negligibly.  

The symmetry determined geometries of the AHC tensor are obtained using the 

FINDSYM code and the linear response symmetry code [ 28]. The figures are created 

using VESTA [ 29] and gnuplot [ 30]. 

 

3.3. Anomalous Hall Conductivity 

The calculated lattice parameters of GaNMn3 in different magnetic phases are listed in 

Table 3.3. For the Γ5g phase of GaNMn3, we find a = 3.869 Å, which is close to the 

experimental and previously calculated values [15, 16, 31– 33], and is identical to the 

calculated lattice parameter of Γ4g. The calculated lattice parameter of the M-1 phase is 

smaller, which is consistent with the emergence of the M-1 phase in GaNMn3 under high 

Table 3.3. Calculated lattice parameters a and AHC σxy for different magnetic phases 

of ANMn3 (A = Ga, Ni, Sn). 

 a (Å)  σxy ( Ω−1cm−1) 

ANMn3 Γ5g Γ4g M-1  Γ5g Γ4g M-1 

GaNMn3 3.87 3.87 3.82  0 40 377 
NiNMn3 3.84 3.84 -  0 130 - 
SnNMn3 3.99 3.99 -  0 133 - 
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pressure in experiment. We find that the Γ5g phase is the ground state of GaNMn3, while 

the total energies of the Γ4g and M-1 phases are higher by 0.49 meV/f.u. and 164.35 

meV/f.u., respectively [see Appendix B for ground state of other ANMn3 

antiperovskites]. This result is consistent with the experimental observations showing the 

appearance of the Γ5g phase in GaNMn3 at low temperature [15, 17, 34].  

The calculated local magnetic moment in the Γ5g and Γ4g phases is about 2.16 

μB/Mn atom, which is in a qualitative agreement with the experimental and previously 

calculated values [15, 16, 31, 32]. As expected, the non-collinear AFM configuration 

leads to a zero net magnetic moment.  For the ferrimagnetic M-1 phase, we obtain 2.00 

μB per Mn atom in the (001) plane and 1.47 μB/Mn atom in the (002) plane, resulting in 

the net magnetic moment of 1.80 μB /f.u pointing along the z direction.  

Since Γ5g and Γ4g have similar magnetic structures, we first investigate the AHE 

in these two phases of GaNMn3. Figure 3.3(a) shows the band structure of the Γ5g phase. 

Five bands cross the Fermi energy (EF). These dispersive bands are largely composed of 

the Mn-3d orbitals. It is seen that in some directions the bands are very close to each 

other. For example, along the Γ-Z and R-Γ directions, there are nearly degenerate bands. 

Figure 3.3(b) shows the calculated Berry curvature Ω𝑥𝑥𝑥𝑥.  It is seen that there are peaks 

along the R-Γ direction, which appear, according to Eq. (3.2), due to the small band 

separation between the three bands crossing EF along this direction close to the Γ point 

[see Fig. 3.3(a)]. Along the Γ-Z direction, the Berry curvature Ω𝑥𝑥𝑥𝑥 is zero within the 

computation accuracy. This is due to the mirror symmetry 𝑀𝑀�1�10 which holds along this 

high symmetry direction, resulting in  𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥(0,0,𝑘𝑘𝑧𝑧) = −Ω𝑥𝑥𝑥𝑥(0,0,𝑘𝑘𝑧𝑧), and hence  

Ω𝑥𝑥𝑥𝑥(0,0,𝑘𝑘𝑧𝑧) = 0. In order to demonstrate the odd nature of the Berry curvature under the  
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Figure 3.3. (a-c) The calculated band structure (a), Berry curvature Ω𝑥𝑥𝑥𝑥 along high 

symmetry path (b), and the color map of Ω𝑥𝑥𝑥𝑥 in the (1�10) plane (c) for the Γ5g phase 

of GaNMn3. (d-f) The calculated band structure (d), Ω𝑥𝑥𝑥𝑥 along high symmetry path 

(e), and the color map of Ω𝑥𝑥𝑥𝑥 in the (1�10) plane (f) for the Γ4g phase of GaNMn3. The 

inset of (b) shows the Brillouin zone. The solid lines and the dashed line in (c) and (f) 

denote the Fermi surfaces and the mirror plane 𝑀𝑀�1�10. 
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mirror symmetry  𝑀𝑀�1�10, we plot in Figure 3.3(c) the color map of Ω𝑥𝑥𝑥𝑥 around the Γ point 

in the (110) plane, which is perpendicular to the (1�10) plane. It is seen that hot spots (i.e. 

regions where the absolute values of the Berry curvature are large) appear around the k-

points where the Fermi surfaces of different bands (indicated by solid lines in [Fig. 

3.3(c)]) cross. As is evident from Figure 3.3(c),  Ω𝑥𝑥𝑥𝑥 changes sign with respect to the 

mirror symmetry transformation  𝑀𝑀�1�10 (reflection with respect to the dashed line in [Fig. 

3.3(c)]). Clearly, integration of the Ω𝑥𝑥𝑥𝑥 over the whole Brillouin zone using Eq. (3.1) 

leads to zero AHC (within the computational accuracy) for the Γ5g phase. As seen from 

Fig. 3.5(a), this property is independent of energy (Fermi energy).  

Figure 3.3(d) shows the band structure of GaNMn3 in the Γ4g phase. The Γ4g phase 

can be obtained from the Γ5g phase by rotation of all magnetic moments around the [111] 

axis by 90°, in the absence of SOC the band structure of the two phases should be 

identical. Thus, the subtle differences in the bands structures in Figures 3.3(a) and 3.3(d) 

are due to SOC. These differences are seen, particularly, along the Γ-Z and Γ-R 

directions, where there is a slight increase in the band splitting around the Fermi energy.   

Figure 3.3(e) shows the calculated Berry curvature of GaNMn3 in the Γ4g phase 

and reveals pronounced peaks in Ω𝑥𝑥𝑥𝑥  along the Γ-Z and Γ-R directions.  According to 

the  𝑇𝑇�𝑀𝑀�1�10 symmetry, Ω𝑥𝑥𝑥𝑥 is an even function of the wave vector 𝑘𝑘�⃗ , i.e. 

 𝑇𝑇�𝑀𝑀�1�10Ω𝑥𝑥𝑥𝑥�𝑘𝑘𝑥𝑥,𝑘𝑘𝑥𝑥,𝑘𝑘𝑧𝑧� = Ω𝑥𝑥𝑥𝑥(−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑥𝑥,−𝑘𝑘𝑧𝑧). This is reflected in the calculated color 

map of Ω𝑥𝑥𝑥𝑥 around the Γ point in the (110) plane, which is shown in Figure 3.3(f). It is 

seen that the hot spots of  Ω𝑥𝑥𝑥𝑥  appear nearly at the same locations as for the Γ5g phase 

[Fig. 3.3 (c)]. However, in the Γ4g phase, they are distributed symmetrically and have the 
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same sign, proving that Ω𝑥𝑥𝑥𝑥 is an even function with respect the  𝑇𝑇�𝑀𝑀�1�10 symmetry 

transformation. The AHC is calculated by integration of Ω𝑥𝑥𝑥𝑥 according to Eq. (3.2).  

Figure 3.5(a) shows that 𝜎𝜎𝑥𝑥𝑥𝑥  is finite as a function of energy and at the Fermi energy 

𝜎𝜎𝑥𝑥𝑥𝑥 = −40 Ω−1𝑠𝑠𝑚𝑚−1. Clearly, the difference in the AHC between the Γ5g and Γ4g phases 

is due to the different magnetic space group symmetry of these phases.  

 

Figure 3.4(a) shows the calculated band structure of GaNMn3 in the M-1 phase 

along high symmetry directions in the Brillouin zone. The band structure is more intricate 

compared to those for the Γ5g and Γ4g phases, because of a larger unit cell and more 

 

Figure 3.4. Calculated band structure (a) and Berry curvature Ω𝑥𝑥𝑥𝑥 (b) of GaNMn3 in 

the M-1 phase along high symmetry paths in the Brillouin zone. The inset of (b) 

shows the Brillouin zone. 
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complex magnetic configuration. The presence on the net magnetic moment breaks time 

reversal symmetry, which makes the AHC non-zero. Figure 3.4(b) shows the calculated 

Berry curvature Ω𝑥𝑥𝑥𝑥 along the high symmetry directions. It is seen that there are number 

of pronounced broad peaks which are associated with the multiple low dispersive bands 

around the Fermi energy which are coupled by the spin-orbit interaction.  Figure 3.5(b) 

shows the calculated AHC as a function of energy in the M-1 phase. At the Fermi energy, 

𝜎𝜎𝑥𝑥𝑥𝑥 = 377 Ω−1𝑠𝑠𝑚𝑚−1 which is much larger than the AHC in the Γ4g phase, due to the 

presence of the net magnetic moment in the M-1 phase. It is notable that 𝜎𝜎𝑥𝑥𝑥𝑥 can be 

strongly enhanced in the M-1 phase by hole doping. For example, at E = EF – 0.1 eV, the 

calculated value of 𝜎𝜎𝑥𝑥𝑥𝑥  is as large as 816 Ω−1𝑠𝑠𝑚𝑚−1 which is larger than the AHC in Fe 

(𝜎𝜎𝑥𝑥𝑥𝑥~700 Ω−1𝑠𝑠𝑚𝑚−1 [ 35]). The dependence of the AHC on different growth direction of 

the antipeovskite thin film can be find using Eq. C1 (Appendix C). The transformation of 

the AHC matrix tensors for Γ5g and Γ4g magnetic phases with 𝑥𝑥�||[1�10], 𝑦𝑦�||[1�1�2] and 

�̂�𝑧||[111] are listed in Table C1 (Appendix C). 

Similar properties are expected for other antiperovskite compounds, which may 

exhibit the non-collinear magnetic Γ4g or Γ5g phases.  For comparison, we have calculated 

the AHC of antiperovskites NiNMn3 and SnNMn3, in which the Γ4g phase exists at room 

temperature [14]. Consistent with the experiment, our calculations find that the Γ4g phase 

is the ground state for these compounds. The calculated energy difference ∆𝐸𝐸 = 𝐸𝐸5𝑔𝑔 −

 𝐸𝐸4𝑔𝑔 is 0.19 meV/f.u. for NiNMn3 and 0.16 meV/f.u. for SnNMn3. Large AHC over 100 

 Ω−1cm−1 is predicted for the Γ4g phase of NiNMn3 and SnNMn3, as indicated in Table 

3.3. The AHE in the Γ4g phase of NiNMn3 has been recently observed experimentally, 
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which confirms our results [ 36]. Contrary to GaNMn3, we find that the M-1 magnetic 

configuration is unstable in the NiNMn3 and SnNMn3 antiperovskites.  

 

Our results demonstrate that in the family of antiperovskite compounds, as 

represented by ANMn3, the AHC is strongly dependent on the specific magnetic 

configuration. A significant change in the AHC can be produced by transitions between 

different magnetic phases. Such transitions can be driven by an external stimulus, 

provided that the energies of the different non-collinear magnetic phases are engineered 

to be nearly degenerate.  

 

Figure 3.5. (a,b) Calculated AHC 𝜎𝜎𝑥𝑥𝑥𝑥 as a function of energy for the Γ5g and Γ4g (a) 

and M-1 (b) phases of GaNMn3. 
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In experiment, the Γ5g phase is found in the ANMn3 compounds with A = Zn, Ga, 

and the Γ4g phase is found for A = Ni, Ag, Sn [14]. The M-1 phase can be produced by 

non-stoichiometry and pressure [16]. These facts imply the sensitivity of the non-

collinear magnetic phases to the chemical composition and lattice volume. Recently, 

monocrystalline ANMn3 films have been successfully grown on different substrates, such 

as SrTiO3, BaTiO3, and LSAT [ 37, 38]. This opens a possibility to engineer 

antiperovskite compounds with nearly degenerate energies of the different magnetic 

phases by proper doping and suitable epitaxial strain produced by the substrate. In 

particular, the dynamic strain generated by a piezoelectric substrate, such as PMN-PT, 

can be used to realize the reversible switching between different magnetic phases. 

Furthermore, since the AHC is odd under time reversal symmetry, the 

antiferromagnetic Γ4g phase with a reversed Néel vector (corresponding to 180o rotation 

of all magnetic moments in the (111) plane) is expected to have AHC of opposite sign. 

The Néel vector can be switched using a spin transfer torque induced by a spin polarized 

current [19], and its switching can be detected by the sign change of AHC. This 

functionality can be engineered by stoichiometry design of the antiperovskite compounds 

to tune the energy barrier between the two Γ4g states of the opposite Néel vector (∆𝐸𝐸 =

𝐸𝐸5𝑔𝑔 −  𝐸𝐸4𝑔𝑔) to a lower positive value. These possibilities make the ANMn3 family of 

materials a promising platform for the AHE based applications of spintronic devices.  In 

this work, we have studied the intrinsic AHC in different non-collinear magnetic phases 

of GaNMn3, as a representative of a broader materials family of antiperovskite 

compounds ANMn3 (A is a main group element).  Based on the symmetry analysis and 

first-principles DFT calculations, we showed that the nearly degenerate non-collinear 
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AFM Γ5g and Γ4g phases of GaNMn3 have zero and finite AHC, respectively. This 

difference was explained by the different magnetic space group symmetry of these 

phases. After the submission of our work, anomalous Hall effect in ANMn3 compounds 

with similar results were published [36, 39]. We also predicted that GaNMn3, in the non-

collinear ferrimagnetic M-1 phase, exhibits large AHC which is comparable to the AHC 

in elemental ferromagnets, such as iron, and calculated the AHC of antiperovskites 

SnNMn3 and NiNMn3 exhibiting the Γ4g ground state. We argued that by doping and 

strain it is possible to engineer the ANMn3 compounds where the energy difference 

between these magnetic phases could be small, so that an external stimulus, such as the 

dynamic strain or the spin transfer torque could produce switchable magnetic phase 

transitions. Our work demonstrates that the antiperovskite family of non-collinear 

magnetic materials is a good platform to realize the multiple AHE states in a single 

compound, which is promising for novel spintronic applications.  
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 Spin Torque Switching 

As was discussed in the Chapter 1 (Section 1.4), antiferromagnets are promising 

candidates to replace ferromagnets in spintronic devices for information processing and 

storage [ 1- 3]. To realize this potential, however, new schemes to write and read the 

information, which is stored in the AFM Néel vector, are required. The absence of net 

magnetization in antiferromagnets makes the realization of these schemes more 

challenging compared to their ferromagnetic counterparts.   

In Chapter 1 (Sections 1.2 and 1.3), we described different methods to manipulate 

and detect the Néel vector in antiferromagnets. As was discussed there, recent studies 

showed that manipulation of the AFM Néel vector can be achieved by passing an electric 

current across a metallic collinear antiferromagnet of certain magnetic group symmetry. 

For example, in the antiferromagnets, such as CuMnAs [ 4] and Mn2Au [ 5], where the 

space-inversion symmetry is broken but the two spin sublattices form space-inversion 

partners, the inverse spin galvanic effect produces staggered field-like spin-torque on 

different sublattices [ 6, 7, 8]. When the electric current exceeds the critical value, this 

leads to switching of the Néel vector [4, 5]. In the bilayer heterostructures, such as 

NiO/Pt [ 9, 10] or Mn2Au/Pt [ 11], switching of the Néel vector can be achieved as a 

result of the antidamping spin-torque produced by an injected spin current due to the 

spin-Hall effect. The detection of the AFM Néel vector in these structures is usually 

performed using anisotropic magnetoresistance (AMR) [ 12- 14] or spin-Hall 

magnetoresistance (SMR) effects [ 15- 18]. However, very small magnitudes of these 

effects (usually <1%) limit possible miniaturization and readout speed of these devices. 

Also, some of the observed magnetoresistive phenomena could have been an artifact of 
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the large writing currents and the associated thermal effects, rather than the Néel vector 

switching [ 19].  

Using the anomalous Hall effect (AHE) [ 20] may be a more promising way to 

realize a detection scheme of the AFM order parameter [ 21]. In this regard, noncollinear 

AFM materials [ 22] could provide a viable alternative to their collinear counterparts. 

Recent studies have also shown that a number of high temperatures noncollinear 

antiferromagnets, such as Mn3X (X = Ga, Ge, Sn or Ir) [ 23- 28] exhibit large 

anomalous Hall conductivities (AHC). Similarly, our results presented in chapter 3 also 

show that the noncollinear antiferromagnets ANMn3 (A = Ga, Ag or Ni) possess large 

anomalous Hall conductivities (AHC) which agree well with other published results [ 29-

31]. Due to the AHC being odd with respect to time reversal symmetry, reversal of the 

Néel vectors [ 32] in these compounds is expected to change sign of the AHE that can be 

used as an efficient detection scheme of the AFM order using the standard Hall 

measurements.  

Switching of the AFM order in these non-collinear antiferromagnets can be 

achieved using a spin torque. It was argued that the magnetic structure of a non-collinear 

antiferromagnet can be dynamically controlled by injecting a spin current [ 33]. Using a 

simple two-dimensional model of a chiral antiferromagnet described by a single Kagomé 

layer, it was shown that spin structure can be rotated in the in-plane by spin-transfer 

torque [ 34]. Very recently, it was predicted that the injected spin current, when it is 

polarized perpendicular to the triangular plane, can drive a translational motion of a 

domain wall in the Γ4g-type antiferromagnet [ 35].  
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These modelling results provide important insights into the spin-torque driven 

magnetization dynamics in noncollinear antiferromagnets. However, a realistic 

description of the AFM order switching based on the magnetic properties of these 

antiferromagnets obtained from first principles is missing. In this work, we combine 

density functional theory (DFT) calculations and atomistic spin-dynamics modelling 

based on the Landau-Lifshitz Gilbert-Slonczewski (LLGS) equation and predict that the 

spin torque can efficiently control the noncollinear AFM order in antiperovskite 

materials. We demonstrate that in antiperovskites ANMn3 (A=Ga, Ni, etc.), the AFM 

order of the Γ4𝑔𝑔 ground state can be switched on the picosecond scale by a spin current. 

The threshold switching current density can be tuned by the ANMn3 stoichiometry 

engineering that changes the magnetocrystalline anisotropy. The anomalous Hall effect 

then can be used to detect the spin-torque switching of the AFM order. 

A special interest has been attracted to Mn based antiperovskite nitrides ANMn3 

(A=Ga, Ni, Cu, Zn, etc,), where the AFM coupling within the frustrated Kagome lattice 

in the (111) plane results in a noncollinear alignment of the magnetic moments in the 

AFM phase such as Γ4g [Fig. 4.1(a)] and Γ5g (where all the Mn magnetic moments are 

rotated by 90º in the (111) plane).   As mentioned in Chapter 1 (Section 1.4), these 

noncollinear AFM orderings lead to various functionalities such as magnetovolume [22, 

36, 37], magnetocaloric [ 38, 39], piezomagnetic [ 40- 42], and magnetoelectric [ 43, 

44] effects.  

Recently, the AHE has been predicted theoretically and confirmed experimentally 

in Mn based antiperovskite nitrides with the Γ4g AFM order [31, 45- 48]. Due to the 
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AHC being odd with respect to the time reversal symmetry operation, reversal of the 

AFM  

 

 

Figure 4.1.  (a) A cubic unit cell of antiperovskite ANMn3 in the noncollinear AFM 

Γ4g state. Red arrows denote the Mn magnetic moments. (b) The sign change of the 

anomalous Hall conductivity σxy induced by AFM order switching. The insets show 

magnetic configurations of ANMn3 in the (111) plane. (c) The orthorhombic supercell 

of ANMn3 used for the modelling of spin dynamics. Spin current Js along the [111] 

direction exerts a spin torque on the magnetic moments of ANMn3. (d) The switching 

process of the AFM order driven by the spin torque. The spin torque rotates the 

magnetic moments of the AFM Γ4g phase away from their initial energy minimum 

thought the metastable AFM Γ5g phase. After overcoming the magnetic anisotropy 

barrier and releasing the current, the system relaxes to another minimum with the 

reversed AFM order. 
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order in the Γ4g type antiperovskites is expected to change sign of the AHE [Fig. 4.1(b)]. 

This provides an efficient approach to distinguish between the two reversed AFM states 

in the Γ4g-phase compounds. Thus, demonstrating a feasible method to switch between 

the two AFM states in the Γ4g compounds would open a promising direction in AFM 

spintronics based on the AHE read-out.   

Here, we explore spin-torque switching of the AFM order in antiperovskite 

compounds exhibiting the Γ4g noncollinear antiferromagnetism. We consider an 

antiperovskite thin film stacked in the (111) plane with the Mn magnetic moments 

aligned noncollinear in this plane due to the AFM exchange coupling. The magnetic 

dynamics is induced by spin current Js injected along the [111] direction, as shown in 

Fig. 4.1(c). The spin current may be carried by a spin-polarized charge current from an 

adjacent ferromagnetic layer or may be produced by an adjacent heavy-metal layer due to 

the spin Hall effect. The spin current Js exerts a spin-transfer torque rotating the Mn 

magnetic moments in the (111) plane. The related magnetization dynamics is determined 

by the LLGS equation as discussed in the theoretical methods (Chapter 2) [ 49, 50, 51]: 

𝜕𝜕𝑚𝑚��⃗ 𝑖𝑖
𝜕𝜕𝑡𝑡

= −𝛾𝛾�𝑚𝑚��⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖� + 𝛼𝛼𝐺𝐺 �𝑚𝑚��⃗ 𝑖𝑖 ×
𝜕𝜕𝑚𝑚��⃗ 𝑖𝑖
𝜕𝜕𝑡𝑡

� + +𝛾𝛾�𝑚𝑚��⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠� . (4.1) 

Here 𝛼𝛼𝐺𝐺  is the Gilbert damping constant, γ is the gyromagnetic ratio, 𝑚𝑚��⃗ 𝑖𝑖 = 𝑀𝑀��⃗ 𝑖𝑖
�𝑀𝑀��⃗ 𝑖𝑖�

 is 

the unit magnetization vector for each sublattice with the magnetization 𝑀𝑀��⃗ 𝑖𝑖. The 

magnetic field 𝐻𝐻��⃗ 𝑖𝑖 = − 1
𝜇𝜇
𝜕𝜕𝐻𝐻
𝜕𝜕𝑚𝑚���⃗ 𝑖𝑖

 is determined by the spin Hamiltonian: 

 𝐻𝐻 = −�𝐽𝐽𝑖𝑖𝑖𝑖𝑚𝑚��⃗ 𝑖𝑖 ⋅ 𝑚𝑚��⃗ 𝑖𝑖
𝑖𝑖≠𝑖𝑖

− 𝐾𝐾�(𝑛𝑛�𝑖𝑖 ⋅ 𝑚𝑚��⃗ 𝑖𝑖)2
𝑖𝑖

, (4.2) 
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where 𝜇𝜇 is the magnetic moment of a Mn atom, 𝐽𝐽𝑖𝑖𝑖𝑖 is the exchange coupling energy 

between sublattices, K is the magnetic anisotropy energy per Mn atom, and 𝑛𝑛�𝑖𝑖 is the 

direction of the easy axis for each sublattice. 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 = ℎ𝑠𝑠(𝑚𝑚��⃗ 𝑖𝑖 × �⃗�𝑝𝑠𝑠) is the effective magnetic 

field produced by the spin current Js with the spin polarization along the �⃗�𝑝𝑠𝑠 direction. The 

coefficient ℎ𝑠𝑠 is given by ℎ𝑠𝑠 = ℏ𝐽𝐽𝑠𝑠
𝑖𝑖𝐹𝐹𝑀𝑀

, where 𝑀𝑀 = �𝑀𝑀��⃗ 𝑖𝑖� is the magnitude of the sublattice 

magnetization, e is the electronic charge, ℏ is the Planck’s constant, L is thickness of the 

sample. This effective field generates the spin torque ~𝑚𝑚��⃗ 𝑖𝑖 × 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠, which drives the 

magnetization dynamics.  

To reverse the AFM order, all the moments need to be rotated by 180° within the 

horizontal plane [Fig. 4.1(d)]. If �⃗�𝑝𝑠𝑠 is along an in-plane direction, the induced out-of-

plane field 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 will have a tendency to reorient the moments out-of-plane. This will 

produce an additional parallel magnetic component which is energetically unfavourable 

due to the intrinsic AFM exchange coupling between the moments. On the other hand, if 

�⃗�𝑝𝑠𝑠 is along the out-of-plane direction, i.e., �⃗�𝑝𝑠𝑠 = �̂�𝑧, the induced field 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 = ℎ𝑠𝑠(𝑚𝑚��⃗ 𝑖𝑖 × �̂�𝑧) is 

along the in-plane direction perpendicular to 𝑚𝑚��⃗ 𝑖𝑖 (black arrows in Fig. 4.2(a)). In this case, 

the staggered field 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 will rotate the magnetic moments in three sublattices nearly 

uniformly, not affecting the 120° angles between the nearest magnetic moments. This 

won’t cost the exchange energy and thus is more favourable for the switching. Therefore, 

below we consider the spin-torque switching driven by spin current Js with the spin 

polarization �⃗�𝑝𝑠𝑠 along the �̂�𝑧 direction.  
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4.1. Calculation Methods 

In this work, we perform DFT calculations using VASP [ 52] and Quantum-ESPRESSO 

[ 53] codes.  In VASP, the projector augmented wave method [ 54] is used. In Quantum-

ESPRESSO, the plane-wave pseudopotential method with the fully relativistic ultrasoft 

pseudopotentials [ 55] is employed. The exchange and correlation effects are treated 

within the generalized gradient approximation (GGA) similar as we did in Chapter 3 

[ 56]. The k-point mesh of 16×16×16 is used in the irreducible Brillouin zone. Spin-orbit 

coupling is included in all the calculations. All the atomic co-ordinates are relaxed until 

the force on each atom was less than 0.01 eV/Å. In the calculations, we firstly set the 

initial magnetic configurations according to the experimentally observed magnetic states, 

and then perform full relaxations for both the crystal structure, the magnetic structure, 

and the electronic structure without any constraint. The magnetic ground state is 

determined by comparing the energies of those states with the converged magnetic 

structures.  

In order to simulate the doping effect in Ga1-xNixNMn3, we consider a ANMn3 

cell where the pseudopotential is generated by compositionally averaging the potentials 

of Ga and Ni as 𝑉𝑉�𝑝𝑝𝑠𝑠𝐴𝐴 = 𝑥𝑥𝑉𝑉�𝑝𝑝𝑠𝑠𝑁𝑁𝑖𝑖 + (1 − 𝑥𝑥)𝑉𝑉�𝑝𝑝𝑠𝑠𝐺𝐺𝑖𝑖 based on the virtual crystal approximation. 

This is a widely used treatment of the A-site doping effect in antiperovskite AXM3 [ 57], 

since the band structures near the Fermi level of AXM3 are majorly contributed by the d 

electrons of the transition metal M.  

The atomistic spin-dynamics modelling is performed using the Vampire code 

[ 58]. The AHC is calculated using the PAOFLOW code [ 59] based on pseudo-atomic 

orbitals (PAO) [ 60, 61]. Tight-binding Hamiltonians are constructed from the non-self-
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consistent DFT calculations with a 16×16×16 k-point mesh. Then, the AHC is calculated 

with a 48×48×48 k-point mesh using the adaptive broadening method [ 62].  

4.2. Atomistic Modelling of Spin Torque Switching 

The atomistic modelling of the spin-torque dynamics is performed using an ANMn3 (111) 

slab of thickness L = 6 nm which consists of periodically repeated supercells [Fig. 

4.1(c)]. Specifically, we consider NiNMn3, an antiperovskite metal, which AFM Γ4g 

order and non-vanishing AHE effect near room temperature have been confirmed 

recently [31, 46]. Consistent with the experiments, our DFT calculation shows that the 

Γ4g order with negligible net magnetization has the lowest energy among the tested 

magnetic states in NiNMn3. The parameters in Eq. (4.2) for NiNMn3 are obtained from 

our DFT calculations. We found that each Mn atom has the moment of 2.76 μB and Ni 

atom doesn’t have the local magnetic moment. The exchange constant 𝐽𝐽𝑖𝑖𝑖𝑖 is found to be –

24 meV, using the energy mapping method [ 63]. Reversal of the Γ4g magnetic structure 

by 180° rotation of all magnetic moments about the [111] axis passes through the Γ5g 

magnetic structure (90° rotation), which has higher energy due to magnetic anisotropy 

[Fig. 4.1(d)]. By calculating the energy difference between the Γ5g and Γ4g phases, we 

find that the magnetic anisotropy constant  𝐾𝐾 = (𝐸𝐸5𝑔𝑔 − 𝐸𝐸4𝑔𝑔)/3 ≈ 0.03 meV per Mn 

atom. The damping constant 𝛼𝛼𝐺𝐺  has been found experimentally to be in the range of 0.05 

to 0.28 for similar non-collinear magnets [ 64, 65]. In our modelling, we assume 𝛼𝛼𝐺𝐺 =

0.1 and gyromagnetic ratio 𝛾𝛾 = 1.76 × 1011T-1s-1.  

Figure 4.2(a) (top panel) shows the initial magnetic configuration, where the 

magnetic moments 𝑚𝑚��⃗ 1, 𝑚𝑚��⃗ 2, and 𝑚𝑚��⃗ 3 for the three sublattices point toward the centre of the 

triangle formed by the nearest Mn atoms. In order to track the simulated spin-torque 
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switching process, we observe variation of 𝑚𝑚��⃗ 1, which initially has zero x-component 

(m1x) and maximum y-component (m1y). Figure 4.2(a) (bottom panel) shows the rotation 

of 𝑚𝑚��⃗ 1 due to the spin torque produced by spin current density Js = 1.8× 1012 A/m2: when 

the current is turned on, m1x and m1y start to oscillate, revealing the clockwise rotation of 

the moments. The time period of these oscillations is 𝜏𝜏 ≈ 9.8 ps, which corresponds to 

the frequency of 𝑓𝑓 ≈ 0.1 THz as expected in antiferromagnets. The observed oscillation 

frequency qualitatively agree with that predicted in ref. 33, i.e. 𝑓𝑓 ≈ 1
4𝜋𝜋√3

𝐽𝐽𝑠𝑠
𝐽𝐽𝑐𝑐

𝛾𝛾𝐻𝐻
𝛼𝛼𝐺𝐺𝜇𝜇

, where 𝐽𝐽𝑐𝑐 

is the critical current density (see discussion below). We note that the predicted AFM 

dynamics may be interesting for the development of compact generators of coherent 

radiation in the THz frequency range, which are important for different technological 

applications [ 66, 67, 68]. 

The 180° rotation of the moments can be achieved by application of a spin 

current pulse, which duration is a half time of the oscillation period, i.e., 𝜏𝜏/2 ≈ 4.9 ps. 

As shown in Figure 4.2(b), applying such a pulse to the original magnetic configuration 

of NiNMn3, where all three Mn magnetic moments 𝑚𝑚��⃗ 1, 𝑚𝑚��⃗ 2, and 𝑚𝑚��⃗ 3 are pointing to the 

center of the triangle formed by the nearest Mn atoms,  switches  𝑚𝑚��⃗ 1, 𝑚𝑚��⃗ 2, and 𝑚𝑚��⃗ 3  to be 

pointing away from the center of the triangle. The switching occurs through an 

intermediate Γ5g phase where the magnetic moments are aligned in a vortex. Applying a 

4.9 ps pulse again switches the magnetic structure back to the initial configuration. These 

results demonstrate a possibility of an ultrafast spin-torque switching of the AFM order in 

NiNMn3. 
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Figure 4.2. Spin dynamics in antiperovskite NiNMn3. (a) Top panel: schematic of 

effective magnetic field 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 (black arrows) on the three sublattices 𝑚𝑚��⃗ 1, 𝑚𝑚��⃗ 2, and 𝑚𝑚��⃗ 3 

generated by spin current Js with the spin polarization 𝑝𝑝𝑠𝑠 along the z-direction. 

Bottom panel: time-dependent variations of the x- and y- components of 𝑚𝑚��⃗ 1 during 

the application of spin current Js = 1.8× 1012 A/m2. (b) Top panel:  schematic of the 

spin-torque switching process induced by two spin-current pulses. Bottom panel: 

time-dependent variations of the x- and y- components of 𝑚𝑚��⃗ 1 driven by applying the 

two spin-current pulses of 4.9 ps in duration.  
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The spin current is produced either by a spin-polarized charge current or a charge 

current resulting in the spin Hall effect. Since a large charge current generates Joule heat 

and thus energy consuming, it is desirable to reduce its density and hence Js required for 

the spin-torque switching. The major factor influencing Js is the anisotropy energy [33, 

69]. In order to reorient Mn magnetic moments, the Zeeman energy 𝜇𝜇ℎ𝑠𝑠 of the magnetic 

moment in the effective field 𝐻𝐻��⃗ 𝑖𝑖𝑠𝑠 generated by Js should overcome the anisotropy energy 

K, i.e., 𝜇𝜇ℎ𝑠𝑠  > 𝐾𝐾. This condition leads to the critical current density 𝐽𝐽𝑐𝑐 = 𝐻𝐻𝐹𝐹𝑖𝑖
ℏ𝑉𝑉

, where V is 

the volume of the cubic unit cell of NiNMn3. This result for  𝐽𝐽𝑐𝑐 is identical to that 

obtained in ref. 33. Since 𝐽𝐽𝑐𝑐 is proportional to K, reducing the magnetic anisotropy is 

expected to reduce the critical current density.   

This expectation is confirmed by our atomistic modelling of the spin-torque 

switching of NiNMn3, where we fix all the parameters but vary the magnetic anisotropy 

constant K. As expected, and seen from Fig. 4.3(a), with decreasing K the 𝐽𝐽𝑐𝑐 decreases 

linearly. According to our modelling results, the critical current density 𝐽𝐽𝑐𝑐 is reduced to 

about 1010 A/m2 if the anisotropy constant K is 0.01 meV per Mn atom. The calculated 

critical current density is in agreement with that predicted by the simple estimate  𝐽𝐽𝑐𝑐 =

𝐻𝐻𝐹𝐹𝑖𝑖
ℏ𝑉𝑉

  [see the solid line in Fig. 4.3(a)].  

The magnetic anisotropy of the antiperovskite can be controlled by chemical 

doping. There are a number of antiperovskites with the AFM Γ5g order, such as GaNMn3. 

Therefore, a doped compound Ga1-xNixNMn3 is expected to exhibit the ground Γ5g state in 

the Ga rich phase and the Γ4g state in the Ni rich phase. At the intermediate doping x, 

there should be a transition point between these two phases, where the magnetic  
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Figure 4.3. (a) Critical current density Jc for switching of the AFM order in ANMn3 

antiperovskite as a function of the anisotropy energy. The red dots are Jc obtained by 

the atomistic spin dynamics modelling. The solid black line is obtained from  𝐽𝐽𝑐𝑐 =

𝐻𝐻𝐹𝐹𝑖𝑖
ℏ𝑉𝑉

. (b) The energy difference between the Γ4g and Γ5g magnetic configurations in 

Ga1-xNixNMn3. The insets show the energy as a function of rotation angle 𝜙𝜙 of the 

magnetic moments around the [111] axis in Ga1-xNixNMn3 for x = 0 (GaNMn3) and x = 

1 (NiNMn3), where 𝛥𝛥E = 𝐸𝐸4𝑔𝑔 − 𝐸𝐸(𝜙𝜙). 
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anisotropy is zero. Figure 4.3(b) shows the calculated energy difference between the Γ5g 

and Γ4g magnetic orderings as a function of doping x. Consistent with experimental 

results, we find that the ground state is Γ5g for GaNMn3 (x = 0) and Γ4g for NiNMn3 (x = 

1). There is a transition between the two phases for x ≈ 0.58. At this region, the magnetic 

anisotropy is strongly reduced, and the small critical current density ~1010 A/𝑚𝑚2 is 

expected for spin-torque switching of the AFM order.  

Switching of the AFM order in the Γ4g phase can be detected by measuring the 

anomalous Hall conductivity, as was discussed in Chapter 3. The Berry curvature is odd 

under certain symmetry operations, i.e., O�Ω𝑖𝑖(𝑘𝑘�⃗ ′� = −Ω𝑖𝑖(𝑘𝑘�⃗ �, where O� is a symmetry 

operation such as time reversal symmetry or mirror symmetry as was discussed in 

Chapter 3 and seen from Table 3.2 [ 70 , 71]. Table 3.2 shows that in the Γ4g AFM state, 

there is no such symmetry operation O� with respect to which Ω𝑖𝑖 is odd [31]. Therefore, a 

finite value can be obtained according to Eq. (4.4), leading to the appearance of the 

anomalous Hall effect. Figure 4.4 shows the calculated AHC 𝜎𝜎𝑥𝑥𝑥𝑥 of Ga1-xNixNMn3 as a 

function of energy for x = 0.58. We find sizable 𝜎𝜎𝑥𝑥𝑥𝑥 = 260 Ω−1𝑠𝑠𝑚𝑚−1 at the Fermi 

energy. Rotating the magnetic moments around the [111] axis changes the magnetic 

space group and thus the band structure, which affects the magnitude of 𝜎𝜎𝑥𝑥𝑥𝑥 [ 72]. As 

shown in Appendix D, 𝜎𝜎𝑥𝑥𝑥𝑥 decreases when the moments are rotated away from their 

initial alignment in the Γ4g state and vanishes when the moments are aligned in the Γ5g 

state. The AHC changes sign with reversal of the AFM order, as shown in Fig. 4.4.   

 We note that the AFM order can be switched in the antiperovskite ANMn3 films 

layered in the plane different from (111). As long as the spin-polarization of the spin 

current has the component perpendicular to the (111) plane, the spin-torque switching of 
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the noncollinear AFM order can be achieved. The spin current can be generated from a 

non-metal bottom layer through the spin Hall effect. Recently, such a spin-Hall torque 

switching has been reported in the GaNMn3 (001)/Pt bilayer structure [ 73]. In this  

 

experiment that AFM switching was detected using a conventional AMR effect, since the 

noncollinear AFM Γ5g phase in Mn3GaN does not support the AHE [31]. The sign change 

of the AHC in noncollinear AFM antiperovskites exhibiting the AFM Γ4g phase, which is 

demonstrated in our paper, is advantageous for the AFM order detection compared to the 

conventional AMR and SMR measurements.  

In conclusion, we have predicted a possibility of spin-torque switching of the 

noncollinear AFM order in Mn-based antiperovskite nitrides, such as NiNMn3. We have 

shown that this switching can be achieved on the picosecond time scale using a spin-

 

Figure 4.4. Calculated anomalous Hall conductivity (AHC) 𝜎𝜎𝑥𝑥𝑥𝑥 of antiperovskite 

Ga0.42Ni0.58NMn3 with the AFM Γ4g order as a function of energy. The red and blue 

lines denote the AHC for the two AFM states with reversed magnetic structure shown 

in the insets.  
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current density feasible in experiment. The critical current density for AFM switching 

can be reduced by controlling the magnetocrystalline anisotropy through the 

stoichiometry engineering.  For the antiperovskite compound Ga1-xNixNMn3 with x ≈ 

0.58, we have predicted the critical spin-current density 𝐽𝐽𝑐𝑐~1010 A/𝑚𝑚2 and sizable 

anomalous Hall conductivity 𝜎𝜎𝑥𝑥𝑥𝑥 = 260 Ω−1𝑠𝑠𝑚𝑚−1. The anomalous Hall conductivity 

changes sign with the AFM switching and hence can be used for the AFM order 

detection. Our prediction offers a new material platform based on noncollinear AFM 

antiperovskites to realize both the efficient manipulation and detection of the AFM order, 

which is promising for the next generation of the AFM spintronic devices. 

References 

 
[1] T. Jungwirth, X. Marti, P. Wadley, and J. Wunderlich, Antiferromagnetic   

spintronics. Nat. Nanotech. 11, 231 (2016). 

[2] V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, 

Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018). 

[3] T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, and C. Felser, The 

multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200 (2018). 

[4]  P. Wadley, B. Howells, J. Železný, C. Andrews, V. Hills, R. P. Campion, V. Novák, 

K. Olejník, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. 

Freimuth, Y. Mokrousov, J. Kuneš, J. S.  Chauhan, M. J. Grzybowski, A. W. 

Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, Electrical switching 

of an antiferromagnet. Science 351, 587 (2016). 

[5]  S. Y. Bodnar, L. Šmejkal, I. Turek, T. Jungwirth, O. Gomonay, J.  Sinova, A. A. 

Sapozhnik, H.-J. Elmers, M. Kläui, and M. Jourdan, Writing and reading 



116 
 

 
antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic 

magnetoresistance. Nat. Commun. 9, 348 (2018). 

[6] J. Železný, H. Gao, K. Výborný, J. Zemen, J. Mašek, A. Manchon, J. Wunderlich, J. 

Sinova, and T. Jungwirth, Relativistic Néel-order fields induced by electrical current 

in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). 

[7] J. Železný, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Mašek, J. 

Sinova, and T. Jungwirth, Spin-orbit torques in locally and globally 

noncentrosymmetric crystals: Anti-ferromagnets and ferromagnets. Phys. Rev. B 95, 

014403 (2017). 

[8] A. Manchon, J. Zelezný, I. M. Miron, T. Jungwirth, J. Sinova, A. Thiaville, K. 

Garello, and P. Gambardella, Current-induced spin-orbit torques in ferromagnetic and 

antiferromagnetic systems. arXiv:1801.09636 (2018). 

[9] X. Z. Chen, R. Zarzuela, J. Zhang, C. Song, X. F. Zhou, G. Y. Shi, F. Li, H. A. Zhou, 

W. J. Jiang, F. Pan, and Y. Tserkovnyak, Antidamping torque-induced switching in 

biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018). 

[10] T. Moriyama, K. Oda, T. Ohkochi, M. Kimata, and T. Ono, Spin torque control of 

antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018). 

[11] X. F. Zhou, X. Z. Chen, J. Zhang, F. Li, G. Y. Shi, Y. M. Shun, M. S. Saleem, Y. F. 

You, F. Pan, and C. Song, From fieldlike torque to antidamping torque in 

antiferromagnetic Mn2Au. Phys. Rev. Applied 11, 054030 (2019). 

[12] B. G. Park, J. Wunderlich, X. Martí, V. Holý, Y. Kurosaki, M. Yamada, H. 

Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, A. B. Shick, and T. Jungwirth, A 



117 
 

 
spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nat. 

Mater. 10, 347 (2011). 

[13] X. Martí, B. G. Park, J. Wunderlich, H. Reichlová, Y. Kurosaki, M. Yamada, H. 

Yamamoto, A. Nishide, J. Hayakawa, H. Takahashi, and T. Jungwirth, Electrical 

measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. 

Phys. Rev. Lett. 108, 017201 (2012). 

[14] Y. Y. Wang, C. Song, B. Cui, G. Y. Wang, F. Zeng, and F. Pan, Room-temperature 

perpendicular exchange coupling and tunneling anisotropic magnetoresistance in an 

antiferromagnet-based tunnel junction. Phys. Rev. Lett. 109, 137201 (2012). 

[15] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida, Y. Kajiwara, D. Kikuchi, T. 

Ohtani, S. Geprägs, M. Opel, S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. 

Goennenwein, and E. Saitoh, Spin Hall magnetoresistance induced by a 

nonequilibrium proximity effect. Phys. Rev. Lett. 110, 20 6601 (2013). 

[16] H. Wang, D. Hou, Z. Qiu, T. Kikkawa, E. Saitoh, and X. Jin, Antiferromagnetic 

anisotropy determination by spin Hall magnetoresistance. J. Appl. Phys. 122, 083907 

(2017). 

[17] D. Hou, Z. Qiu, J. Barker, K. Sato, K. Yamamoto, S. Vélez, J. M. Gomez-Perez, L. 

E. Hueso, F. Casanova, and E. Saitoh, Tunable sign change of spin Hall 

magnetoresistance in Pt/NiO/YIG structures. Phys. Rev. Lett. 118, 147202 (2017). 

[18] L. Baldrati, A. Ross, T. Niizeki, C. Schneider, R. Ramos, J. Cramer, O. Gomonay, 

M. Filianina, T. Savchenko, D. Heinze, A. Kleibert, E. Saitoh, J. Sinova, and M. 

Kläui, Full angular dependence of the spin Hall and ordinary magnetoresistance in 

epitaxial antiferromagnetic NiO(001)/Pt thin films. Phys. Rev. B 98, 024422 (2018). 



118 
 

 
[19] C. C. Chiang, S. Y. Huang. D. Qu, P. H. Wu, and C. L. Chien, Absence of evidence 

of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 

227203 (2019). 

[20] N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall 

effect. Rev.  Mod. Phys. 82, 1539 (2010).  

[21] T. Kosub, M. Kopte, R. Hühne, P. Appel, B. Shields, P. Maletinsky, R. Hübner, M. 

O. Liedke, J. Fassbender, O. G. Schmidt, and D. Makarov, Purely antiferromagnetic 

magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017). 

[22] D. Fruchart and E. F. Bertaut, Magnetic studies of the metallic perovskite-type 

compounds of manganese. J. Phys. Soc. Jap. 44, 781 (1978). 

[23] H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect arising from 

noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014). 

[24]  J. Kübler and C. Felser, Non-collinear antiferromagnets and the anomalous Hall 

effect. EPL 108, 67001 (2014). 

[25] S. Nakatsuji, N. Kiyohara, and T. Higo, Large anomalous Hall effect in a non-

collinear antiferromagnet at room temperature. Nature 527, 212 (2015). 

[26] A. K. Nayak, J. E. Fischer, Y. Sun, B. Yan, J. Karel, A. C. Komarek, C. Shekhar, N. 

Kumar, W. Schnelle, J. Kübler, C. Felser, and S. P. P. Parkin, Large anomalous Hall 

effect driven by a nonvanishing Berry curvature in the noncollinear antiferromagnet 

Mn3Ge. Sci. Adv. 2, e1501870 (2016). 

[27] Y. Zhang, Y. Sun, H. Yang, J. Železný, S. P. P. Parkin, C. Felser, and B. Yan, 

Strong anisotropic anomalous Hall effect and spin Hall effect in the chiral 



119 
 

 
antiferromagnetic compounds Mn3X (X = Ge, Sn, Ga, Ir, Rh, and Pt). Phys. Rev. B 

95, 075128 (2017). 

[28] N. Kiyohara, T. Tomita, and S. Nakatsuji, Giant Anomalous Hall Effect in the Chiral 

Antiferromagnet Mn3Ge. Phys. Rev. Applied 5, 064009 (2016). 

[29] G. Gurung, D.-F. Shao, T. R. Paudel, and E. Y. Tsymbal, Anomalous Hall 

conductivity of non-collinear magnetic antiperovskites. Phys. Rev. Mater. 3, 044409 

(2019). 

[30] D. Boldrin, I. Samathrakis, J. Zemen, A. Mihai, B. Zou, B. Esser, D. McComb, P. 

Petrov, H. Zhang, and L. F. Cohen, The anomalous Hall effect in non-collinear 

antiferromagnetic Mn3NiN thin films. Phys. Rev. Mater. 3, 094409 (2019). 

[31] X. Zhou, J. -P. Hanke, W. Feng, F. Li, G.-Y. Guo, Y. Yao, S. Blügel, and Y. 

Mokrousov, Spin-order dependent anomalous Hall effect and magneto-optical effect 

in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag, or Ni. Phys. Rev. 

B 99, 104428 (2019). 

[32] There are several Néel vectors describing an AFM order in noncollinear 

antiferromagnets. Switching of the antiferromagnet implies reversal of all of them. 

Below we refer to this process as “AFM order switching.”   

[33] H. V. Gomonay, and V. M. Loktev, Spin transfer and current-induced switching in 

antiferromagnets, Phys. Rev. B 81, 144427 (2010). 

[34] H. Fujita, Field-free, spin-current control of magnetization in non-collinear chiral 

antiferromagnets. Phys. Stat. Sol. (RRL) 11, 1600360 (2017). 



120 
 

 
[35] Y. Yamane, O. Gomonay, and J. Sinova, Dynamics of noncollinear 

antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 

(2019). 

[36] T. Kaneko, T. Kanomata, and K. Shirakawa, Pressure effect on the magnetic 

transition temperatures in the intermetallic compounds Mn3MC (M = Ga, Zn and Sn). 

J.  Phys. Soc. Jap. 56, 4047 (1987).  

[37] K. Takenaka, M. Ichigo, T. Hamada, A. Ozawa, T. Shibayama, T. Inagaki, and K. 

Asano, Magnetovolume effects in manganese nitrides with antiperovskite structure. 

Sci. Tech. Adv. Mat. 15, 015009 (2014). 

[38] T. Tohei, H. Wada, and T. Kanomata, Negative magnetocaloric effect at the 

antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94, 1800 

(2003). 

[39] B. S. Wang, P. Tong, Y. P. Sun, X. Luo, X. B. Zhu, G. Li, X. D. Zhu, S. B. Zhang, 

Z. R. Yang, and W. H. Song, Large magnetic entropy change near room temperature 

in antiperovskite SnCMn3. EPL 85. 47004 (2009). 

[40] P. Lukashev, R. F. Sabirianov, and K. Belashchenko, Theory of piezomagnetic 

effect in Mn-based antiperovskites. Phys. Rev. B 78, 184414 (2008). 

[41] J. Zemen, Z. Gercsi, and K. G. Sandeman, Piezomagnetism as a counterpart of the 

magnetovolume effect in magnetically frustrated Mn-based antiperovskite nitrides. 

Phys. Rev. B 96, 024451 (2017). 

[42] D. Boldrin, A. P. Mihai, B. Zou, J. Zemen, R. Thompson, E. Ware, B. V. Neamtu, L. 

Ghivelder, B. Esser, D. W. McComb, P.  Petrov, and L. F. Cohen, Giant 

piezomagnetism in Mn3NiN. ACS Appl. Mater. & Int. 10, 18863 (2018). 



121 
 

 
[43] P. Lukashev, K. D. Belashchenko, R. F. Sabirianov, Large magnetoelectric effect in 

ferroelectric/piezomagnetic heterostructures. Phys. Rev. B 84, 133420 (2011). 

[44] D. F. Shao, G. Gurung. T. R. Paudel, and E. Y. Tsymbal, Electrically reversible 

magnetization at the antiperovskite/perovskite interface. Phys. Rev. Mater. 3, 024405 

(2019). 

[45] X. Zhou, J. P. Hanke, W. Feng, F. Li, G. Y. Guo. Y. Yao, S. Blugel, and Y. 

Mokrousov, Spin-order dependent anomalous Hall effect and magneto-optical effect 

in the noncollinear antiferromagnets Mn3XN with X = Ga, Zn, Ag or Ni. Phys. Rev. B 

99, 104428 (2019) 

[46] K. Zhao, T. Hajiri, H, Chen, R. Miki, H. Asano, and P. Gegenwart, Anomalous Hall 

effect in the noncollinear antiferromagnetic antiperovskite Mn3Ni1-xCuxN. Phys. Rev. 

B 100, 045109 (2019). 

[47] D. Boldrin, I. Samathrakis, J. Zemen, A. Mihai, B. Zou, F. Johnson, B. D. Esser, D. 

W. McComb, P. K. Petrov, H. Zhang, and L. F. Cohen, Anomalous Hall effect in 

noncollinear antiferromagnetic Mn3NiN thin films. Phys. Rev. Mater. 3, 094409 

(2019). 

[48] V. T. N. Huyen, M. T. Suzuki, K, Yamauchi, and T. Oguchi, Topology analysis for 

anomalous Hall effect in the noncollinear antiferromagnetic states of Mn3AN (A = 

Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt). Phys. Rev. B 100, 094426 (2019). 

[49] J. C. Slonczewski, Current-driven excitation of magnetic multilayers. J. Magn. 

Magn. Matter 159, L1 (1996). 

[50] Z. Li and S. Zhang, Magnetization dynamics with a spin-transfer torque. Phys. Rev. 

B 68, 024404 (2003).  



122 
 

 
[51] S. Zhang, P. M. Levy, and A. Fert, Mechanisms of spin-polarized current-driven 

magnetization switching. Phys. Rev. Lett.  88, 236601 (2002). 

[52] G. Kresse and D. Joubert, Fully unconstrained noncollinear magnetism within the 

projector augmented-wave method. Phys. Rev. B 59, 1758 (1999). 

[53] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, 

G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. 

Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. M. 

Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, 

C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, 

and R. M. Wentzcovitch, Quantum ESPRESSO: A modular and open-source 

software project for quantum simulations of materials. J. Phys.: Condens. Matt. 21, 

395502 (2009). 

[54] P. E. Blöchl, Projected augmented-wave method. Phys. Rev. B 50, 17953 (1994).  

[55] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue 

formalism. Phys. Rev. B 41, 7892 (1990). 

[56] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made 

simple. Phys. Rev. Lett. 77, 3865 (1996). 

[57] H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti, 

Superconductivity near ferromagnetism in MgCNi3. Phys. Rev. Lett. 88, 027001 

(2001) 

[58] R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. A. Ellis and R. W. 

Chantrell, Atomistic spin model simulations of magnetic nanomaterials. J. Phys.: 

Condens. Matter 26, 103202 (2014).  



123 
 

 
[59] M. B. Nardelli, F. T. Cerasoli, M. Costa, S. Curtarolo, R. De Gennaro, M. Fornari, 

L. Liyanage, A. Supka, and H. Wang, PAOFLOW: A utility to construct and operate 

on ab-initio Hamiltonians from the projections of electronic wavefunctions on 

atomic orbital bases, including characterization of topological materials. Comp. Mat. 

Sci. 143, 462 (2017). 

[60] L. A. Agapito, A. Ferretti, A. Calzolari, S. Curtarolo, and M. B. Nardelli, Effective 

and accurate representation of extended Bloch states on finite Hilbert spaces. Phys. 

Rev. B 88, 165127 (2013). 

[61]  L. A. Agapito, S. Ismail-Beigi, S. Curtarolo, M. Fornari, and M. B. Nardelli, 

Accurate tight-binding Hamiltonian matrices from ab-initio calculations: Minimal 

basis sets. Phys. Rev. B 93, 035104 (2016).  

[62] J. R. Yates, X. Wang, D. Vanderbilt, and I. Souza, Spectral and Fermi surface 

properties from Wannier interpolation. Phys. Rev. B 75, 195121 (2007).  

[63] H. J. Xiang, E. J. Kan, S. H. Wei, M.-H. Whagngbo, and X. G. Gong, Predicting the 

spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, 224429 

(2011). 

[64] T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. 

Pfleiderer, and D. Grundler, Universal helimagnon and skyrmion excitations in 

metallic, semiconducting, and insulating chiral magnets. Nat. Mater. 14, 478 (2015). 

[65] M. Beg, M. Albert, M.-A. Bisotti, D. Cortés-Ortuño, W. Wang, R. Carey, M. 

Vousden, O. Hovorka, C. Ciccarelli, C. S. Spencer, C. H. Marrows, and H. Fangohr, 

Dynamics of skyrmionic states in confined helimagnetic nanostructures. Phys. Rev. B 

95, 014433 (2017). 



124 
 

 
[66] B. Ferguson, and X. Zhang, Materials for terahertz science and technology. Nat. 

Mater.  1, 26 (2002). 

[67] M. Tonouchi, Cutting-edge terahertz technology. Nat. Photon.  1, 97 (2007). 

[68] R. Kleiner, Filling the terahertz gap. Science 318, 1254 (2007). 

[69] O. V. Gomonay and V. M. Loktev, Using generalized Landau-Lifshitz equations to 

describe the dynamics of multi-sublattice antiferromagnets induced by spin-polarized 

current. Low Temp. Phys. 41, 698 (2015). 

[70] M. Gradhand, D. V. Fedorov, F. Pientka, P. Zahn, I. Mertig, and B. K. Györffy, 

First-principle calculations of the Berry curvature of Bloch states for charge and spin 

transport of electrons. J. Phys.: Condens. Matt. 24, 213202 (2012). 

[71] M. V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 

392, 45 (1984). 

[72] M. P. Ghimire J. I. Facio, J.-S. You, L. Ye, J. G. Checkelsky, S. Fang, E. Kaxiras, 

M. Richter, and J. van den Brink., Creating Weyl nodes and controlling their energy 

by magnetization rotation. Phys. Rev. Res. 1, 032044(R) (2019). 

[73] T. Hajiri, S. Ishino, K. Matsuura, and H. Asano, Electrical current switching of the 

noncollinear antiferromagnet Mn3GaN. Appl. Phys. Lett. 115, 052403 (2019). 

 

 



125 
 

 Spin Polarization in Noncollinear Antiferromagnets 

As mentioned earlier, spintronics exploits the spin degree of freedom in electronic 

devices for information processing and storage [ 1]. The magnetic order parameter is used 

as the state variable in these devices, and its detection and manipulation manifest the read 

and write operations of the stored information. Currents with sizable spin polarization 

play a central role in the electric performance of such operations used in realistic 

nanoscale spintronic devices. For example, in magnetic tunnel junctions (MTJs), which 

are employed in commercial magnetic random-access memories (MRAMs) [ 2], the 

electrical detection is realized via the tunnelling magnetoresistance (TMR) effect 

signifying a response of the longitudinal spin-polarized charge current to the relative 

magnetization orientation of the two ferromagnetic electrodes [ 3- 5]. On the other hand, 

the electric manipulation of magnetization can be achieved via a spin transfer torque 

driven by a longitudinal spin-polarized charge current [ 6, 7] or via a spin Hall effect [ 8-

10] where a transverse pure spin current is generated by spin-orbit coupling.  Generally, 

in the case of the heavy nonmagnetic metals, charge currents flowing along the in-plane 

direction generate out-of-plane spin currents that have spin polarization �⃗�𝑝 perpendicular 

to the charge current direction and spin current direction. This spin current with spin 

polarization �⃗�𝑝 generated due to the conventional spin Hall effect (SHE) exerts an anti-

damping spin torque 𝑚𝑚��⃗ × 𝑚𝑚��⃗ × �⃗�𝑝 in the adjacent ferromagnet with magnetization 𝑚𝑚��⃗ . This 

type of torque can only manipulate magnetization which lies along an in-plane direction. 

But the ferromagnet with out-of-plane magnetization is favoured over the in-plane 

magnetization for the development of the high-density memory spintronic devices. The 

conditions for the spin polarization to be along the spin current directions will be required 
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for out-of-plane magnetization manipulations. Such process will be defined as 

unconventional properties from now onwards.  

Ferromagnetic metals have been widely used in spintronics due to their finite 

magnetization which can easily spin-polarize electric currents. More recently, it was 

argued that antiferromagnetic spintronics is more promising, due to antiferromagnets 

being robust against magnetic perturbations, producing no stray fields, and exhibiting 

ultrafast spin dynamics [ 11- 13]. Nevertheless, until recently antiferromagnets have 

been rarely considered efficient to generate spin-polarized currents. This is because most 

antiferromagnets exhibit a combined 𝑇𝑇�𝑂𝑂� symmetry, where 𝑇𝑇�  is the time reversal 

symmetry and 𝑂𝑂� is a crystal symmetry (translation symmetry and Inversion symmetry). 

The 𝑇𝑇�𝑂𝑂� symmetry enforces Kramers’ spin degeneracy and hence vanishing 

magnetization. While the antiferromagnetic order may lower the symmetry to support 

some unconventional spin Hall current useful for spin-orbit torque devices [ 14], the 

efficiency of the intrinsic charge-to-spin conversion of antiferromagnets [14- 16] do not 

show obvious advantages compared to those of the widely used nonmagnetic heavy metal 

spin sources [15- 17]. 

Recently, it was found that the 𝑇𝑇�𝑂𝑂� symmetry in antiferromagnets can be broken 

by the noncollinear magnetic order [ 18] or non-centrosymmetric arrangement of 

nonmagnetic atoms [ 19]. The broken 𝑇𝑇�𝑂𝑂� symmetry was shown to result in interesting 

electronic, magnetic and transport properties that previously were only known for 

ferromagnets, such as the anomalous Hall effect [26- 34], the non-relativistic Zeeman-

like band splitting [ 35- 25F 37], and the unconventional charge-to-spin conversion [ 38-

43]. In Table 3.2, the 𝑇𝑇�𝑀𝑀�  symmetry does not enforce Kramers’ spin degeneracy and 
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hence, allows the finiteness of the anomalous Hall effect. The emergence of electric 

currents with sizable spin polarization is particularly exciting, due to the possible use of 

these currents and the antiferromagnets generating them in spintronic devices [46, 44, 

45 ].  

In the diffusive transport regime, the spin conductivity has two contributions: [8, 

46] 

𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 = −
𝑒𝑒ℏ
𝜋𝜋
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3�

Γ2Re��𝑛𝑛𝑘𝑘�⃗ �𝐽𝐽𝑖𝑖𝑘𝑘�𝑚𝑚𝑘𝑘�⃗ ��𝑚𝑚𝑘𝑘�⃗ �𝑣𝑣𝑖𝑖�𝑛𝑛𝑘𝑘�⃗ ��

��𝐸𝐸𝐹𝐹 − 𝐸𝐸𝑖𝑖𝑘𝑘�⃗ �
2

+ Γ2� ��𝐸𝐸𝐹𝐹 − 𝐸𝐸𝑚𝑚𝑘𝑘�⃗ �
2

+ Γ2�
  𝑖𝑖,𝑚𝑚

, (5.1) 

and 

𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 = −
2𝑒𝑒
ℏ
�

𝑑𝑑3𝑘𝑘�⃗
(2𝜋𝜋)3 �

Im��𝑛𝑛𝑘𝑘�⃗ �𝐽𝐽𝑖𝑖𝑘𝑘�𝑚𝑚𝑘𝑘�⃗ ��𝑚𝑚𝑘𝑘�⃗ �𝑣𝑣𝑖𝑖�𝑛𝑛𝑘𝑘�⃗ ��

�𝐸𝐸𝑖𝑖𝑘𝑘�⃗ − 𝐸𝐸𝑚𝑚𝑘𝑘�⃗ �
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  𝑚𝑚≠ 𝑖𝑖

. (5.2) 

Here 𝐽𝐽𝑖𝑖𝑘𝑘 = 1
2{𝑣𝑣𝑖𝑖, 𝑠𝑠𝑘𝑘} is the spin current operator, Γ is the  scattering rate in a constant 

relaxation time approximation, 𝑓𝑓𝑖𝑖𝑘𝑘�⃗  is the Fermi-Dirac distribution function for band n 

and wave vector 𝑘𝑘�⃗ , 𝑣𝑣𝑖𝑖 and 𝑠𝑠𝑘𝑘 are velocity and spin operators, respectively, and 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 

are the spin-current, charge-current, and spin polarization directions, respectively. The 

spin conductivity 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  given by Eq. (5.1) is the Fermi surface property odd under time 

reversal symmetry (𝑇𝑇�-odd). As a result, this contribution is allowed only for 

ferromagnetic and some antiferromagnetic metals without 𝑇𝑇�  or 𝑇𝑇�𝑂𝑂� symmetries, such as 

noncollinear antiferromagnet ANMn3. In these materials, the Fermi surface is intrinsically 

spin textured resulting in spin-polarized currents even in the absence of spin-orbit 

coupling. This leads to finite non-relativistic components of the 𝑇𝑇�-odd spin conductivity 
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tensor.  Spin-orbit coupling alters the spin texture and hence the spin conductivity tensor.  

In contrast to the 𝑇𝑇�-odd 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  , the spin conductivity tensor given by Eq. (5.2) is determined 

by the interband contributions that are even under time reversal symmetry (𝑇𝑇�-even). As a 

result, non-vanishing 𝑇𝑇�-even 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  components can only appear in the presence of spin-

orbit coupling. Therefore, these relativistic components are expected to be small 

compared to the non-relativistic components of the 𝑇𝑇�-odd 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 . 

Here, we explore spin polarization of Mn-based antiperovskite nitrides ANMn3 (A 

= Ga, Ni, Sn, and Pt) [ 47].  The electronic structure of ANMn3 [see Fig. 3.3] at the Fermi 

energy (EF) being majorly controlled by the Mn atoms which do not produce strong spin-

orbit coupling, spin conductivities are not expected to be significant (Note though that the 

spin-orbit coupling makes some 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘   components finite, which were zero in its absence). 

We find that the spin Hall effect in the noncollinear antiferromagnet GaNMn3 allow 

generation of spin current with different spin polarization (even parallel to the spin 

current or charge current direction). This unconventional spin Hall effect leads to 

unconventional spin-torques. The theoretical calculations support the experimental 

findings. We also found out that the longitudinal charge currents passing through ANMn3 

can have a sizable spin polarization, which allows using antiperovskites in magnetic 

tunnel junctions and spin transfer torque devices. Moreover, we show that the out-of-

plane transverse spin currents with giant charge-to-spin conversion efficiencies can be 

achieved by controlling the film growth direction. These properties make ANMn3 

compounds promising for application in spintronics.  
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5.1. Calculation Methods 

DFT calculations were performed using a Quantum-ESPRESSO code [ 48]. The plane-

wave pseudopotential method with the fully relativistic ultrasoft pseudopotentials [ 49] 

was employed in the calculations. The exchange and correlation effects were treated 

within the generalized gradient approximation (GGA) [ 50]. The k-point mesh of 

16×16×16 and plane-wave cut-off energy of 52 Ry were used for the integration in the 

irreducible Brillouin zone. Spin-orbit coupling was included in all the calculations. 

Charge and spin conductivities were calculated using a Wannier linear response code 

[ 51] based on the tight-binding Hamiltonian utilizing the maximally localized Wannier 

functions [ 52] obtained using a Wannier90 code [ 53]. Symmetry of the spin 

conductivity tensors was obtained using a linear response symmetry code [ 54]. The 

integration in equations (1) and (2) in the main text was performed using a 

200 × 200 × 200 k-point mesh.  Even spin Hall conductivities in the Table 5.1 and Fig. 

5.1(d) were calculated by constructing the tight-binding Hamiltonians using 

PAOFLOW code [ 55]  based on the projection of the pseudo-atomic orbitals (PAO) [ 56, 

57] from the non-self-consistent calculations with a 16 × 16 × 16 k-point mesh. In this 

case, we use the tight-binding Hamiltonians with a 48 × 48 × 48 k-point mesh by the 

adaptive broadening method to get the converged values. 

The figures were created using VESTA [ 58], Matplotlib, and Fermi Surfer [ 59]. 

We also present the experimental work done by our collaborator at University of 

Wisconsin-Madisson. The experimental work was carried out by epitaxial GaNMn3 thin 

films on (001)-oriented LSAT substrates. Spin torque-ferromagnetic resonance (ST-
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FMR) measurements were done to extract the spin torque. Further experimental methods 

can be found in the reference 14.  

5.2. Unconventional Spin Torque 

Antiperovskite GaNMn3 transforms from the ground state noncollinear antiferromagnetic 

Γ5𝑔𝑔 phase to paramagnetic phase on passing through the Néel temperature ( 𝑇𝑇𝑁𝑁~350𝐾𝐾). 

The paramagnetic phase has higher symmetry with space group group 𝑃𝑃𝑚𝑚3�𝑚𝑚 only 

allows the conventional components in spin-Hall conductivity tensors [ 60]. But below 

the Néel temperature, GaNMn3 exhibit antiferromagnetic ordering with a noncollinear 

Γ5𝑔𝑔 Kagome-like structure (magnetic space group: 𝑅𝑅3�𝑚𝑚) stabilized by the magnetic 

frustration of the Mn atoms in the (111) plane. Figure 5.1 (b) and (e) shows the GaNMn3 

(001) plane with and without noncollinear spins respectively. The blue dotted lines show 

the available mirror symmetry which commutes with the respective Hamiltonian. 

Noncollinear Γ5𝑔𝑔 phase of GaNMn3(001) thin film has only one (110) mirror plane and 

hence, the restriction on the spin Hall tensors is hugely reduced compared to the 

nonmagnetic phase. Only the conventional components (with mutually perpendicular 

current, spin current and spin polarization direction) is allowed in the paramagnetic phase 

due to the cancellation of other components of total Berry curvature upon imposing the 

preserved symmetry operations [see Fig. 5.1 (f), four mirror planes in the crystal plane].  

Three of these mirror planes symmetries are broken in Γ5𝑔𝑔 phase (only (110) mirror plane 

symmetry allowed) and hence, the cancellation of the Berry curvature does not occur 

leading to finite unconventional components [see Fig. 5.1 (d) and (f)]. The experimental 

and theoretical work finds that on application of the charge currents along 𝑥𝑥 generate 

transverse spin current along  𝑧𝑧 with usual conventional spin polarization along 𝑦𝑦 and in 
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addition, unconventional spin polarization along 𝑥𝑥 and 𝑧𝑧. Hence, in Fig. 5.1 (d), we have 

finite even spin Hall conductivities 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥 , 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥  and 𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧  (𝜎𝜎𝑖𝑖𝑘𝑘𝑖𝑖  where 𝑖𝑖, 𝑗𝑗 and 𝑘𝑘 corresponds to 

spin polarization, spin flow and charge flow directions). This symmetry allowed 

components correspond to the anti-damping torque components in the form of 𝜏𝜏𝑝𝑝 ∝

 𝑚𝑚��⃗ × 𝑚𝑚��⃗ × �⃗�𝑝 with finite unconventional term with spin polarization 𝑝𝑝 = 𝑥𝑥, 𝑧𝑧 and 

conventional term with �⃗�𝑝 = 𝑦𝑦. Figure 5.1(d) shows that the 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥 , 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥  and 𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧  components 

calculated theoretically for the bulk GaNMn3 is finite and large within a wide energy 

window around the fermi level which implies the existence of a sizable even spin Hall 

current even in the presence of charge carrier doping by defects. The even spin Hall 

conductivity tensors obtained from symmetry analysis and calculations for Γ5𝑔𝑔 and 

paramagnetic phases are shown in Table 5.1. 

 Experimental collaborators measure the symmetry of the spin torques using the 

ST-FMR [ 61, 62] in Py/GaNMn3 interface. The torque components were found 

quantitatively by performing ST-FMR measurements as a function of the in-plane 

magnetic field angle. They found non-zero anti-damping torque terms 𝜏𝜏𝑥𝑥,𝑥𝑥,𝑧𝑧 with 

unconventional torque due to the spin polarizations along 𝑥𝑥 and 𝑧𝑧. Angular-dependent 

ST-FMR measurements across antiferromagnetic-to-paramagnetic phase transition shows 

that the noncollinear spin structure in GaNMn3 is correlated with the unconventional spin 

polarization [see Fig. 5.2 (b)-(d)]. Figure 5.2 shows the temperature dependence (300 K 

to 380 K) of the ratios between anti-damping torque components and the Oersted torque,  



132 
 

 

 

Figure 5.1. The concept of the unconventional spin-Hall effect in GaNMn3. (a) The 

crystallographic unit cell of antiperovskite GaNMn3 with the AFM Γ5g spin structure 

where Mn spins (arrows) form a Kagome-type lattice in the (111) plane. The x, y, and z 

correspond to the cubic [100], [010], and [001] axis, respectively. (b) Spin structure of 

GaNMn3 in the (001) plane. The blue dashed line corresponds to the (110) mirror plane. 

(c) Schematic illustrations of the Py/GaNMn3 bilayer and the allowed spin-Hall spin 

polarization in the low-symmetry state (a). This indicates non-zero spin-Hall 

conductivities 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥 , 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥  and 𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧 , which correspond to spin polarizations along y, x and z 

direction, respectively (with the charge current along x and spin current along z). (d) 

Calculated spin-Hall conductivities 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥 , 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥  and 𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧  for GaNMn3 as a function of Fermi 

energy. (e) Crystal structure of GaNMn3 without non-collinear spin structure (i.e., above 

the Neel temperature TN) in the (001) plane, which gives rise to a high-symmetry state. 

(f) Allowed spin polarization in the high-symmetry state, where only the conventional 

spin-Hall conductivity 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥  is non-zero. 
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τ𝑥𝑥,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹, τ𝑥𝑥,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹and τ𝑧𝑧,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹 (extracted from the full angular dependent ST-

FMR measured at each temperature). All three torque ratios drastically reduce at the Néel 

temperature of GaNMn3. In particular, the unconventional torque ratios τ𝑥𝑥,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹and 

 

Figure 5.2. Temperature dependence of spin-orbit torques. (a) Out-of-plane lattice 

parameter of a 30 nm GaNMn3/LSAT sample as a function of temperature, where the 

decrease of the lattice parameter indicates the GaNMn3 Néel temperature TN of ~345 K. 

(b)-(d) The torque ratios τ𝑥𝑥,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹, τ𝑥𝑥,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹 and τ𝑧𝑧,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹 as a function of the 

temperature. The schematic on the right panel shows the geometry of the spin-Hall 

effect with different spin polarizations.  
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τ𝑧𝑧,𝐴𝐴𝐷𝐷/τ𝑥𝑥,𝐹𝐹𝐹𝐹 vanish when the sample temperature is above the Néel temperature. This 

directly demonstrate the strong correlation between the non-collinear spin structure and 

the existence of unconventional spin torque.    

5.3. Spin Polarized Current 

In addition to the Γ5𝑔𝑔 magnetic phase (ground state of GaNMn3) considered in Section 

5.2; we take into consideration Γ4𝑔𝑔 magnetic phases for different antiperovksite ANMn3. 

Γ5g is a compensated antiferromagnetic phase due to three mirror planes 𝑀𝑀�01�1, 𝑀𝑀�101� , 

or  𝑀𝑀�1�10 perpendicular to the (111) plane in the magnetic space group 𝑅𝑅3�𝑚𝑚 which 

prohibit the net magnetization [see Fig. 3.2 (a)]. Another common noncollinear 

antiferromagnetic phase is Γ4g, which can be obtained from the Γ5g phase by rotating all 

magnetic moments about the [111] axis by 90° [Fig. 3.2(b)]. The mirror symmetries are 

broken in the Γ4g phase so that the corresponding magnetic space group 𝑅𝑅3�𝑚𝑚′ allows an 

uncompensated magnetization (though very small) and the anomalous Hall effect as 

observed in Chapter 3. 

We find that the magnetic group symmetries of both Γ5g and Γ4g phases support 

sizable longitudinal and transverse spin currents. Table 5.3 displays the 𝑇𝑇�-odd 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  of 

ANMn3 according to the magnetic space group symmetry of the crystal. For a (001)-

stacked ANMn3 with the x, y, and z axes aligned along the [100], [010], and [001] 

crystal directions, there are four independent tensor components (denoted by a, b, c, and 

d) in the Γ5g phase. These include the off-diagonal tensor components 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  (𝑖𝑖 ≠ 𝑗𝑗) which 

determine the transverse spin current generated by a longitudinal charge current and are 

related to the magnetic spin Hall effect proposed recently [46-49]. However, these off-
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diagonal components are relativistic in nature and are non-zero only in the presence of 

spin-orbit coupling. Therefore, these relativistic contributions to spin conductivity are not 

expected to be large, due to the weak spin-orbit coupling in ANMn3.  

There are also non-relativistic diagonal components of the spin conductivity 

tensor 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  (𝑘𝑘 ≠ 𝑗𝑗). These components determine a longitudinal spin current carrying a 

transverse spin polarization generated by a longitudinal charge current. These diagonal 

components are non-zero even in the absence of spin-orbit coupling and hence are 

expected to be large. This implies that a longitudinal spin-polarized charge current can be 

produced in the compensated antiferromagnetic Γ5g phase.  

In order to obtain a more intuitive understanding of why the longitudinal charge 

current is spin-polarized, we use GaNMn3 as a representative example and explore its 

momentum-dependent spin texture. Due to the broken 𝑇𝑇�  symmetry in antiferromagnetic 

GaNMn3, the spin degeneracy is lifted and hence the spin expectation values 〈𝑠𝑠〉 are 

finite.  Since the 𝑇𝑇�-odd spin conductivity is a purely Fermi surface property [see Eq. 

(5.1)], it is the spin texture at the Fermi surface that matters. Figure 5.3(a) shows the 

calculated expectation values of the x, y, and z components of the spin at the Fermi 

surface of GaNMn3 in the Γ5g phase, indicating a rather intricate distribution. The same 

spin texture, but within the (110) plane, is displayed in Figure 5.3(b) and enlarged in 

Figure 5.3(c) to focus on the Fermi pocket at the centre of the Brillouin zone. These spin 

textures can make the electric currents flowing along certain crystallographic directions 

of GaNMn3 spin polarized. 
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To demonstrate this, we consider symmetry transformations of the spin texture 

within this Fermi pocket. The inversion-symmetric fragments of the Fermi pocket have 

the same spin expectation values, since the inversion symmetry 𝑃𝑃� does not change the 

spin:  

 

𝑃𝑃�(𝑘𝑘110,𝑘𝑘1�10,𝑘𝑘001) = (−𝑘𝑘110,−𝑘𝑘1�10,−𝑘𝑘001), 

𝑃𝑃�(〈𝑠𝑠110〉, 〈𝑠𝑠1�10〉, 〈𝑠𝑠001〉) = (〈𝑠𝑠110〉, 〈𝑠𝑠1�10〉, 〈𝑠𝑠001〉). (5.3) 

Further, the spin expectation values for the wave vectors being symmetric with 

respect to the 𝑀𝑀�1�10 mirror plane have the same 〈𝑠𝑠1�10〉 components but opposite 〈𝑠𝑠001〉 

 

Figure 5.3. Spin texture of noncollinear antiferromagnetic phases. (a) The spin-

projected Fermi surface of GaNMn3 in the Γ5g phase. (b) The (110) plane cut of the 

Fermi surfaces shown in (a), where the solid lines denote the Fermi surface, the 

colored arrows denote the spin textures, and the dashed line denote the   𝑀𝑀�1�10 mirror 

plane. (c) The zoomed plot of (b) showing only the central Fermi pocket. (d,e,f) The 

same in (a,b,c) for GaNMn3 in the Γ4g phase.  
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and 〈𝑠𝑠110〉 components. This is due to the mirror symmetry operation conserving the spin 

component normal to the mirror plane but flipping the spin component parallel to it:   

  𝑀𝑀�1�10(𝑘𝑘110,𝑘𝑘1�10,𝑘𝑘001) = (𝑘𝑘110,−𝑘𝑘1�10,𝑘𝑘001), 

  𝑀𝑀�1�10(〈𝑠𝑠110〉, 〈𝑠𝑠1�10〉, 〈𝑠𝑠001〉) = (−〈𝑠𝑠110〉, 〈𝑠𝑠1�10〉,−〈𝑠𝑠001〉). (5.4) 

As a result, the longitudinal electric current parallel to the (1�10) plane, such as 

the current along the [001] direction shown in Fig. 5.3(c) is polarized by this spin texture. 

The associated spin current 𝐽𝐽𝑐𝑐   has a finite 〈𝑠𝑠1�10〉 component but zero 〈𝑠𝑠110〉 and 〈𝑠𝑠001〉 

components, since only 〈𝑠𝑠1�10〉 is even with respect to 𝑀𝑀�1�10. This implies finite matrix 

elements of the longitudinal spin conductivity tensor 𝜎𝜎𝑧𝑧𝑧𝑧𝑥𝑥 = −𝜎𝜎𝑧𝑧𝑧𝑧
𝑥𝑥 = 𝑠𝑠, as shown in Table 

5.1 for ANMn3 in the Γ5g phase. 

In contrast to the Γ5g phase, the Γ4g phase of ANMn3 has five independent 

components (denoted by A, B, C, D, and E) of the 𝑇𝑇�-odd spin conductivity tensor for a 

(001)-stacked ANMn3. We find that both the diagonal components with spin polarization 

normal to the charge current direction, 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 = 𝐶𝐶 (𝑘𝑘 ≠ 𝑗𝑗), and those parallel to it, 𝜎𝜎𝑖𝑖𝑖𝑖
𝑖𝑖 = 𝐸𝐸, 

do not vanish in the absence of spin-orbit coupling. This can be illustratively understood 

by analyzing the spin projected Fermi surfaces of the Γ4g GaNMn3 (Fig. 5.2(d-f)). The 

spin textures in the Γ4g phase are very different from those in the Γ5g phase due to 

different magnetic-space group symmetry. The mirror 𝑀𝑀�1�10 plane is broken in the Γ4g 

phase, while a combined 𝑇𝑇�𝑀𝑀�1�10 symmetry is preserved, which transforms the wave 

vector, and the spin as follows: 

𝑇𝑇�𝑀𝑀�1�10(𝑘𝑘110,𝑘𝑘1�10,𝑘𝑘001) = (−𝑘𝑘110,𝑘𝑘1�10,−𝑘𝑘001), 
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𝑇𝑇�𝑀𝑀�1�10(〈𝑠𝑠110〉, 〈𝑠𝑠1�10〉, 〈𝑠𝑠001〉) = (〈𝑠𝑠110〉,−〈𝑠𝑠1�10〉, 〈𝑠𝑠001〉). (5.5) 

This symmetry together with inversion symmetry 𝑃𝑃� (Eq. (3)) implies that 〈𝑠𝑠1�10〉 is 

antisymmetric and 〈𝑠𝑠110〉 and 〈𝑠𝑠001〉  are symmetric with respect to (1�10) plane. 

Therefore, a longitudinal electric current parallel to the (1�10) plane, such as that along 

the [001] direction, becomes spin-polarized with finite 〈𝑠𝑠110〉 and 〈𝑠𝑠001〉 components and 

a zero 〈𝑠𝑠1�10〉 component. This implies finite longitudinal spin conductivities 𝜎𝜎𝑧𝑧𝑧𝑧𝑥𝑥 = 𝜎𝜎𝑧𝑧𝑧𝑧
𝑥𝑥 =

𝐶𝐶 and 𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧 = 𝐸𝐸 as shown in Table 5.2.  

The efficiency of the 𝑇𝑇�-odd spin current generation can be estimated by 

calculating a percentage spin conductivity ratio Φ�𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘� = 2𝑖𝑖
ℏ
𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘/𝜎𝜎𝑖𝑖𝑖𝑖 . Here 𝜎𝜎𝑖𝑖𝑖𝑖  is a 

conductivity of the longitudinal charge current 𝐽𝐽𝑐𝑐  used to generate the spin current 𝐽𝐽𝑠𝑠 with 

conductivity 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘 , which can be calculated by replacing the spin current operator 𝐽𝐽𝑖𝑖𝑘𝑘 in Eq. 

(5.1) by the charge current operator 𝐽𝐽𝑖𝑖 = −𝑒𝑒𝑣𝑣𝑖𝑖. Φ�𝜎𝜎𝑧𝑧𝑖𝑖𝑘𝑘 � serves as a figure of merit for the 

performance of realistic spintronic devices. In particular, Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 )  represents the spin Hall 

angle in spin-torque devices with current-in-plane (CIP) geometry, where an out-of-plane 

spin current is generated by an in-plane charge current. Similarly,  Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ) measures the 

degree of spin polarization for an out-of-plane charge current in devices with current-

perpendicular-to-plane (CPP) geometry, such as MTJs.  

We calculate Φ�𝜎𝜎𝑧𝑧𝑖𝑖𝑘𝑘 � for ANMn3 (A = Ga, Ni, Sn, Pt) compounds assuming they 

are stacked in the (001) plane. Table 5.2 shows the calculated results for Γ = 0.05 eV 

which provides realistic conductivity 𝜎𝜎𝑧𝑧𝑧𝑧 of the compounds. For the longitudinal spin 

conductivity, we find that Φ�𝜎𝜎𝑧𝑧𝑧𝑧𝑖𝑖 � is sizable for all ANMn3 antiferromagnets we  
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investigated. Especially, we obtain Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑥𝑥 ) = −20.7% for GaNMn3 which exhibits a Γ5g 

ground state, and Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑥𝑥 ) = −16.0% and Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑧𝑧 ) = 31.2% for SnNMn3 which has a high 

temperature Γ4g state. These sizable spin polarizations of the longitudinal current in 

antiferromagnetic antiperovskites are comparable to those in ferromagnetic metals, such 

as Fe, Co, and Ni [ 63- 65], indicating their potential for spintronic applications, such as 

antiferromagnetic tunnel junctions discussed below. We note that our results are robust 

with respect to disorder scattering, as follows from our calculations of Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ) as a 

function of Γ shown in Fig. 5.4. 

 

Figure 5.4 shows the calculated charge-to-spin conversion efficiency of GaNMn3 

(001) as a function of Γ.  It is seen that Φ�𝜎𝜎𝑧𝑧𝑖𝑖𝑘𝑘 � does not change much with Γ. As 

expected, independent of  Γ , the absolute values of Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ) are significantly larger than 

those for Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ), due to Φ(𝜎𝜎𝑧𝑧𝑧𝑧𝑘𝑘 ) being majorly contributed by the non-relativistic spin 

textures while Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) resulting from the weak spin-orbit coupling.  

 

Figure 5.4. Charge-to-spin conversion efficiency Φ�𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘� as a function of Γ for 

GaNMn3 (a) Γ5𝑔𝑔 and (b) Γ4𝑔𝑔 phases. 
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On the contrary, the transverse spin conductivity ratio Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) is negligible for 

ANMn3 (001) [Table 5.2]. This is understandable since the non-relativistic spin texture 

does not contribute to 𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘  and the effect appears entirely due to small spin-orbit coupling. 

However, although ANMn3 is not efficient for generating transverse spin currents in 

(001)-stacked films, it can form a good spin current source for spin-torque devices by 

engineering the ANMn3 growth direction. The related spin conductivity tensors for a film 

with different orientation can be obtained by applying transformation  

𝜎𝜎𝑖𝑖′𝑖𝑖′
𝑘𝑘′ = �𝑅𝑅𝑘𝑘′𝑘𝑘𝑅𝑅𝑖𝑖′𝑖𝑖𝑅𝑅𝑖𝑖′𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘,𝑖𝑖,𝑖𝑖

, (5.6) 

where 𝜎𝜎𝑖𝑖𝑖𝑖𝑘𝑘  is the spin conductivity for a (001)-stacked  film with coordinate system 

(𝑥𝑥,𝑦𝑦, 𝑧𝑧) , 𝜎𝜎𝑖𝑖′𝑖𝑖′
𝑘𝑘′  is the spin conductivity of a film with coordinate system (𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′), 𝑅𝑅 is 

the rotation matrix to transform the coordinate system (𝑥𝑥,𝑦𝑦, 𝑧𝑧) to (𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′).  A non-

relativistic spin texture contribution to Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) may be allowed by the magnetic-space 

group symmetry after the rotation transformation. 

As an example, Table 5.2 shows the spin conductivity tensor for ANMn3 (110) in 

the Γ5g and Γ4g phases. It is seen that when the charge current direction (x) is along the 

[1�10] direction, finite 𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥  and 𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧  appear in the Γ5g phase, and a finite 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥  appear in the 

Γ4g phase, even in the absence of spin-orbit coupling. Table 5.3 shows calculated Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) 

for ANMn3 (A = Ga, Ni, Sn, and Pt) (110) films.  For the Γ5g ground state in GaNMn3, we 

find large Φ�𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥 � = −21.0% and Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧 ) =  14.4%, which are comparable or even 

larger than these for the reported spin Hall angle in widely used spin source materials 

such as Pt [ 66- 68].Moreover, the transverse 𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥  component in the Γ5g phase can be  
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engineered by tilting the in-plane longitudinal current direction x from [110] by an angle 

𝜃𝜃 [Fig. 5.5(a)]. In this case, the 𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘  components are functions of 𝜃𝜃 as follows: 

𝜎𝜎𝑧𝑧𝑥𝑥𝑥𝑥 =
−𝑎𝑎 + 𝑠𝑠

2
sin 2𝜃𝜃 , 

𝜎𝜎𝑧𝑧𝑥𝑥
𝑥𝑥 =

1
2

(𝑎𝑎 + 𝑠𝑠 − 2𝑑𝑑) −
1
2

(𝑎𝑎 − 𝑠𝑠) cos 2𝜃𝜃 , 

 

Figure 5.5. Effect of epitaxial growth direction of ANMn3 thin film on spin 

conductivities. (a)  The schematic of charge-to-spin conversion in an ANMn3 (110) 

film. An out-of-plane spin current 𝐽𝐽𝑠𝑠 along the [110] (z) direction is generated by 

applying an in-plane longitudinal charge current 𝐽𝐽𝑐𝑐 along x direction which is away 

from [1�10] direction by the angle 𝜃𝜃. (b, c, d) Charge-to-spin conversion efficiency 

Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 )as a function of the longitudinal charge current direction for GaNMn3 (110)-

stacked films in the Γ5𝑔𝑔 phase.  

 

 

 



145 
 

𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧 = −
𝑎𝑎 + 𝑏𝑏 + 𝑠𝑠

√2
cos𝜃𝜃 . (5.7) 

Figures 5.5(b-d) show the respective variations of 𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘  as functions of 𝜃𝜃 for 

GaNMn3 (110). Similar angular dependences of 𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘  for the ground states of NiNMn3, 

SnNMn3, and PtNMn3 (110) films can be found in Fig. 5.6 (a-c) respectively. Figure 5.6 

shows the calculated 𝑇𝑇�-odd charge-to-spin conversion efficiency Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) as a function of 

longitudinal charge current direction for the ground state phases of ANMn3 (A = Ni, Sn, 

and Pt) stacked in (001) and (110) planes. Similar to the results in Fig. 5.5, we find that 

Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) is very small for (001) stacking and can be sizable for (110) stacking. 

 

 

Figure 5.6. 𝑇𝑇�-odd charge-to-spin conversion efficiency Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑘𝑘 ) as a function of 

longitudinal charge current direction for ground state phases of ANMn3 (110) (a) A = 

Ni, (b) A = Sn, and (c) A = Mn. The longitudinal charge current direction x is in the 

plane tilted away from the [1�10] direction by an angle 𝜃𝜃.    
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The predicted efficient generation of the longitudinal and transverse currents with 

sizable spin polarization allows promising spintronic devices based on noncollinear 

antiferromagnetic ANMn3. Here we propose two types of spintronic devices, as shown in 

Figure 5.7. The first one is an antiferromagnetic tunnel junction, where the two ANMn3 

electrodes are separated by an insulating nonmagnetic layer [Fig. 5.7(a)]. The CPP 

longitudinal spin polarized current is controlled by the relative orientation of the 

magnetic order parameters in the ANMn3 reference and free layers. Due to a large spin  

 

 

Figure 5.7. Antiferromagnetic spintronic devices. (a) The schematic of an 

antiferromagnetic tunnel junction using ANMn3 as the electrodes, where the transport 

of the out-of-plane longitudinal spin polarized current is controlled by the relative 

orientation of the magnetic moments between two ANMn3 layers. (b) The schematic 

of a spin torque device with CIP geometry. An in-plane charge current passes through 

ANMn3 (110) layer and generates an out-of-plane spin current carrying sizable spin 

polarization collinear to the spin current direction. This spin current can exert a torque 

on the perpendicular magnetization in the top ferromagnetic layer for an efficient 

switching. 

 

 

 



147 
 

polarization of the longitudinal current, the TMR effect is expected to be sizable and 

hence can be used to efficiently detect the magnetic order parameter in ANMn3. The spin 

polarized current can be also used to generate the spin-transfer torque for switching 

ANMn3 [ 69- 71].  

The second spintronic device is a CIP spin-torque device, where an ANMn3 (110) 

layer is used as a spin source to generate an out-of-plane spin current which enters the top 

ferromagnetic layer and exerts a torque on its magnetization [Fig. 5.7(b)]. Since ANMn3 

(110) layer exhibits large Φ(𝜎𝜎𝑧𝑧𝑥𝑥𝑧𝑧 ), the spin current can carry sizable spin component 

collinear to the spin current direction, which is necessary for switching a ferromagnet 

with perpendicular anisotropy required for high-density spintronic devices.  

In conclusion, based on first-principles density functional theory calculations, we 

have predicted that the low symmetry noncollinear antiferromagnetic antiperovskites 

ANMn3 (A = Ga, Ni, Sn, and Pt) support electric currents with sizable spin polarization, 

and they also exhibit unconventional spin orbit torque due to unconventional spin 

polarization which was realized in experiment by our experimental collaborators. This 

unconventional torques can be robustly manipulated by controlling the antiferromagnetic 

ordering across the Néel temperature. We also found that the calculated spin polarization 

of the longitudinal currents can be comparable to that in widely used ferromagnetic 

metals, which makes the antiperovskites promising for using in antiferromagnetic tunnel 

junction and spin transfer torque devices. Furthermore, we demonstrated that by 

controlling the film growth direction, the out-of-plane transverse spin currents with 

sizable charge-to-spin conversion efficiencies can be achieved, which implies that the 

ANMn3 compounds can serve as effective spin source materials. These properties make 
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noncollinear antiferromagnetic antiperovskites promising for realistic applications in 

spintronics. 
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 Conclusions 

This research work is aimed to identify the effective way of manipulating and detecting 

the Néel vector and in addition, to find other related spin-dependent properties such as 

spin Hall and anomalous Hall conductivities and spin polarization. Based on the 

symmetry analyses, first-principles DFT calculations, tight binding Hamiltonian, and 

magnetization dynamics techniques, we have explored the possibility of using 

noncollinear AFM antiperovskites ANMn3 (A = Ga, Ni, Sn, Pt) for spintronics 

applications. We have demonstrated a way to read and write the AFM order parameter – 

the Néel vector, using the spin polarized current. Our results have clearly demonstrated 

the emergence of the unconventional spin polarization associated with the noncollinear 

magnetic structure in the antiferromagnets. 

We considered GaNMn3 as the representative antiperovskite compound for the 

detailed study of different magnetic phases, such as an ferrimagnetic (M-1) phase and 

noncollinear AFM Γ5g and Γ4g phases. We showed that the combination of the time 

reversal symmetry 𝑇𝑇�  and mirror symmetry 𝑀𝑀�  in the Γ4g magnetic phase makes the Berry 

curvature odd and hence, the AHC finite. On the contrary, the Γ5𝑔𝑔 phase exhibits only 𝑀𝑀�  

symmetry resulting in zero AHC. The presence of the finite AHC in the Γ4g phase is 

correlated with the finite out-of-plane magnetization (along the [111] axis) not forbidden 

by the 𝑇𝑇�𝑀𝑀�  symmetry, whereas its absence in the Γ4𝑔𝑔 phase is correlated with 𝑀𝑀�  

symmetry prohibiting any finite magnetization.  The finite AHC in the Γ4g phase can be 

used to read out the state of the Néel vector during its manipulation.  
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Our results have demonstrated the possibility to manipulate the Néel vector by 

passing a spin-polarized charge current (with the spin polarization perpendicular to the 

(111) plane) in the GaNMn3 (111) thin film. The dynamics of the Néel vector occurs in 

the terahertz frequency range. The stoichiometric engineering of the antiperovskite 

material (Ga0.42Ni0.58NMn3) was demonstrated to highly reduce the critical current 

density required for the switching of the Néel vector. Since the Néel vector switching 

reverses the sign of the anomalous Hall effect, measuring the AHC allows an 

unambiguous detection of the Néel vector orientation. Thus, the predicted functional 

properties of the non-collinear AFM antiperovskites allow using these materials in 

ultrafast energy-efficient spintronic devices. 

In addition to the control of the Néel vector, we have also explored the spin 

polarization of the spin conductivity tensor in the noncollinear antiferromagnets. The 

lower symmetry of the noncollinear AFM phase of ANMn3 compared to its high-

temperature paramagnetic phase allows both conventional and unconventional spin 

conductivity components. The unconventional component has the out-of-pane spin 

polarization and thus allows for an unconventional spin torque to be exerted on the 

magnetization of an adjacent ferromagnetic layer which can switch its out-of-plane 

magnetization. This phenomenon not possible using non-magnetic heavy metals as the 

source of a spin current. The predicted phenomenon has been observed in the 

experiments by our collaborators at University of Wisconsin-Madison using spin torque 

ferromagnetic resonance measurements. We conclude therefore that the noncollinear 

AFM antiperovskites can be efficiently used to produce spin torques of desired symmetry 

and thus behave superior to widely-used paramagnetic heavy metals.  
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We have shown that the unique spin texture associated with the noncollinear 

AFM antiperovskites ANMn3 supported a spin-polarized charge current. In this regard, 

AFM antiperovskites behave like ferromagnets revealing a possibility of the AFM tunnel 

junctions. The structural similarity of the antiperovskites with perovskite oxides makes it 

feasible to grow them epitaxially. Our results have demonstrated that the charge-to-spin 

efficiency can be maximized by growing antiperovskite ANMn3 thin films along specific 

directions. For example, a (110) oriented GaNMn3 film was found to be an effective spin 

source with sizable charge-to-spin conversion efficiency. 

Overall, our research work shows the pathway for the development of ultrafast, 

ultradense, and ultrarobust spintronic devices with antiferromagnets as functional 

materials. While some of our theoretical predictions have been already demonstrated 

experimentally, many of them remain to be explored. For example, it would be 

interesting to explore the magnetization dynamics in non-collinear antiperovskites driven 

by spin-polarized charge currents and realize the proposed spintronic devices (e.g. those 

shown in Fig. 5.7). We do hope therefore that our results will stimulate the 

experimentalists working in the field of antiferromagnetic spintronics to further verify 

our predictions.   

  



161 
 

 
Appendices 

Appendix A: Magnetization Dynamics in a Ferromagnet and a Two- 

Sublattice Antiferromagnet  

The magnetization dynamics in a ferromagnet can be defined using the 

phenomenological equation 

𝜕𝜕𝑚𝑚���⃗
𝜕𝜕𝑖𝑖

= 𝛾𝛾�𝑚𝑚��⃗ ×  𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒�, (𝐴𝐴1)

where 𝑚𝑚��⃗  is the magnetization of the ferromagnet , 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒 is the effective magnetic field 

which consists of the external field (𝐻𝐻��⃗ 𝑖𝑖𝑥𝑥𝑖𝑖) and internal field (𝐻𝐻��⃗ = −∑ 𝜕𝜕𝐹𝐹
𝜕𝜕𝑚𝑚𝑖𝑖

𝑖𝑖=𝑥𝑥,𝑥𝑥,𝑧𝑧  𝚤𝚤̂ , 

where 𝐹𝐹 is the free energy and 𝑚𝑚𝑖𝑖 is an i-component of the magnetization vector) . The 

external field generally consist of the static magnetic field (𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖) and a small rf 

magnetic field (𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒). The internal magnetic field is contributed generally due to the 

anisotropic energy and the exchange energy.  Considering uniaxial anisotropy pointing in 

the �̂�𝑧 direction, the anisotropy field is defined as 𝐻𝐻��⃗ 𝐻𝐻 = 𝐻𝐻𝐻𝐻  �̂�𝑧. The exchange field is given 

by 𝐻𝐻��⃗ 𝐸𝐸 = −𝐽𝐽 𝑀𝑀��⃗ , similar to the Weiss molecular field. There are also other contributions 

like the demagnetization field, the DMI field, the dipole-dipole field, etc. Equation 𝐴𝐴1 

describes the precession of the magnetization around the effective magnetic field 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒 

and this term determines the FM resonance. The actual magnetization term contains the 

Gilbert damping term as well but Eq. (𝐴𝐴1) is sufficient to obtain the FMR frequency. 

Considering only the static magnetic field 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐻𝐻𝑜𝑜 �̂�𝑧 along �̂�𝑧 direction, Eq. (𝐴𝐴1) can 

be rewritten as,  
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𝜕𝜕𝑚𝑚𝑥𝑥

𝜕𝜕𝑡𝑡
= 𝛾𝛾(𝐻𝐻𝐻𝐻 + 𝐻𝐻𝑜𝑜)𝑚𝑚𝑥𝑥 , (𝐴𝐴2)

𝜕𝜕𝑚𝑚𝑥𝑥

𝜕𝜕𝑡𝑡
= −𝛾𝛾(𝐻𝐻𝐻𝐻 + 𝐻𝐻𝑜𝑜)𝑚𝑚𝑥𝑥 . (𝐴𝐴3)

 

Substituting 𝑚𝑚𝑖𝑖 = 𝑀𝑀𝑠𝑠𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, we find the frequency is 𝜔𝜔𝐹𝐹𝑀𝑀 = 𝛾𝛾(𝐻𝐻𝐻𝐻 + 𝐻𝐻𝑜𝑜). The FMR 

frequency is 𝜔𝜔 = 𝛾𝛾𝐻𝐻𝐻𝐻 which shows that the anisotropy field determines the strength of 

the FMR. In ferromagnets the FMR frequency is in the gigahertz (𝐺𝐺𝐻𝐻𝑧𝑧) range.  

In the case of a two-sublattice antiferromagnets, the antiferromagnet can be 

considered as two ferromagnets with two oppositely oriented magnetizations and hence, 

they can be described by two separate equations (𝐴𝐴1). The difference arises due to the 

exchange field which couples the two equations for two sublattices. This coupling 

completely changes the magnetization dynamics in antiferromagnets and these leads to 

interesting phenomena.  

The corresponding equations are  

𝜕𝜕𝑚𝑚���⃗ 𝑠𝑠

𝜕𝜕𝑖𝑖
= 𝛾𝛾 � 𝑚𝑚��⃗ 𝑠𝑠 × 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝑠𝑠�;  𝑠𝑠 = 𝐴𝐴,𝐵𝐵 , (𝐴𝐴4)

where the effective field for the 𝑠𝑠𝑖𝑖ℎ sublattice is 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝑠𝑠 =  𝐻𝐻��⃗ 𝐻𝐻𝑠𝑠 + 𝐻𝐻��⃗ 𝐸𝐸𝑠𝑠 + 𝐻𝐻��⃗ 𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠 . Considering 

the static external field 𝐻𝐻��⃗ 𝑖𝑖𝑥𝑥𝑖𝑖𝑠𝑠 = 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒 + 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 = 0 + 𝐻𝐻0 �̂�𝑧, the exchange field 𝐻𝐻��⃗ 𝐸𝐸,𝑠𝑠 =

−𝐽𝐽 𝑚𝑚��⃗ 𝑠𝑠′ for sublattices  𝑠𝑠 ≠ 𝑠𝑠′ = 𝐴𝐴,𝐵𝐵 with 𝐽𝐽 ≠ 0 and the anisotropic field 𝐻𝐻��⃗ 𝐻𝐻,𝑠𝑠 =

(−1)𝑠𝑠𝐻𝐻𝐻𝐻 �̂�𝑧 , where 𝑠𝑠 = 0,1 for 𝐴𝐴,𝐵𝐵 sublattices, respectively. Substituting this into 

equation (𝐴𝐴4) and using 𝐻𝐻𝐸𝐸 = 𝐽𝐽𝑚𝑚𝑧𝑧
𝐴𝐴 = −𝐽𝐽𝑚𝑚𝑧𝑧

𝐵𝐵 , we obtain    

𝜔𝜔 = 𝛾𝛾 �𝐻𝐻0 ±  �𝐻𝐻𝐴𝐴(2𝐻𝐻𝐸𝐸 + 𝐻𝐻𝐴𝐴)� , (𝐴𝐴5) 
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The AFM resonance frequency is 𝜔𝜔𝐴𝐴𝐹𝐹𝑀𝑀 = 𝜔𝜔𝐹𝐹𝑀𝑀 �2𝐻𝐻𝐸𝐸
𝐻𝐻𝐾𝐾

 and it is much larger than 

the corresponding FM resonance frequency. Generally, in most of the materials 𝐻𝐻𝐻𝐻 <

1𝑇𝑇;𝐻𝐻𝐸𝐸~102𝑇𝑇 and hence, the AFMR is in the terahertz (𝑇𝑇𝐻𝐻𝑧𝑧) range. 

We can define the Néel vector 𝑙𝑙 = 𝑚𝑚��⃗ 𝐴𝐴 − 𝑚𝑚��⃗ 𝐵𝐵 and the magnetization vector 𝑚𝑚��⃗ =

𝑚𝑚��⃗ 𝐴𝐴 + 𝑚𝑚��⃗ 𝐵𝐵 such that 𝑙𝑙 ∙ 𝑚𝑚��⃗ = 0 and 𝑙𝑙 ∙ 𝑙𝑙 + 𝑚𝑚��⃗ .𝑚𝑚��⃗ = 4𝑀𝑀𝑠𝑠
2 , where 𝑀𝑀𝑠𝑠 is the saturation 

magnetization that is |𝑚𝑚��⃗ 𝐴𝐴| = |𝑚𝑚��⃗ 𝐵𝐵| = 𝑀𝑀𝐾𝐾. The first conditional relation is always satisfied 

whatever be the sublattice number and hence, the magnetization vector is always 

perpendicular to the Néel vector. Similarly, we can obtain other conditional equations for 

a given AFM sublattice. Denoting 𝑚𝑚��⃗ 𝐴𝐴 = 𝑙𝑙+𝑚𝑚���⃗
2

 and 𝑚𝑚��⃗ 𝐵𝐵 = 𝑚𝑚���⃗ −𝑙𝑙
2

 , we can rewrite the above 

equations as follows  

𝜕𝜕�𝑚𝑚��⃗ + 𝑙𝑙�
𝜕𝜕𝑡𝑡

=  𝛾𝛾 � �𝑚𝑚��⃗ + 𝑙𝑙� × 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝐴𝐴� , (𝐴𝐴6) 

𝜕𝜕�𝑚𝑚��⃗ − 𝑙𝑙�
𝜕𝜕𝑡𝑡

=  𝛾𝛾 � �𝑚𝑚��⃗ − 𝑙𝑙� × 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝐵𝐵� , (𝐴𝐴7) 

where 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝐴𝐴 = 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖,𝐴𝐴 + 𝐻𝐻��⃗ 𝐻𝐻,𝐴𝐴 − 𝐽𝐽�𝑚𝑚���⃗ − 𝑙𝑙�
2

 and 𝐻𝐻��⃗ 𝑖𝑖𝑒𝑒𝑒𝑒,𝐵𝐵 = 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖,𝐵𝐵 + 𝐻𝐻��⃗ 𝐻𝐻,𝐵𝐵 − 𝐽𝐽�𝑚𝑚���⃗ +𝑙𝑙�
2

. In the 

above case, we assumed 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖,𝑠𝑠 = 𝐻𝐻0 �̂�𝑧, 𝐻𝐻��⃗ 𝐻𝐻,𝑠𝑠 = (−1)𝑠𝑠𝐻𝐻𝐻𝐻 �̂�𝑧 , where 𝑠𝑠 = 0,1 for 𝐴𝐴,𝐵𝐵 

sublattices, respectively.  Below, we consider two cases. 

Case 1: Staggered field 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖,𝑠𝑠 = (−1)𝑠𝑠𝐻𝐻��⃗ 0 , 𝐻𝐻��⃗ 𝐻𝐻,𝑠𝑠 = (−1)𝑠𝑠 𝐻𝐻��⃗ 𝐻𝐻; 𝑠𝑠 = 0,1 for 𝐴𝐴,𝐵𝐵. In this 

case, we obtain  

𝜕𝜕𝑚𝑚��⃗
𝜕𝜕𝑡𝑡

= 𝛾𝛾�𝑙𝑙 × (𝐻𝐻��⃗ 0 + 𝐻𝐻��⃗ 𝐻𝐻)�, (𝐴𝐴8) 
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𝜕𝜕𝑙𝑙
𝜕𝜕𝑖𝑖

= 𝛾𝛾�𝑚𝑚��⃗ × (𝐻𝐻��⃗ 0 + 𝐻𝐻��⃗ 𝐻𝐻)� − 𝛾𝛾𝐽𝐽 𝑙𝑙 × 𝑚𝑚��⃗ . (𝐴𝐴9)

Then taking a cross product with 𝑙𝑙 and assuming that 𝐽𝐽 is large, |𝑚𝑚��⃗ | ≪ |𝑙𝑙|, we have 

𝑚𝑚��⃗ ≈ −
𝑙𝑙̇× 𝑙𝑙

4𝛾𝛾𝐽𝐽𝑀𝑀𝑠𝑠
2    

. (𝐴𝐴10) 

Substituting into Eq. (𝐴𝐴8), we obtain 

𝑙𝑙̈× 𝑙𝑙 = −𝛾𝛾2𝐽𝐽𝑙𝑙2�𝑙𝑙 × (𝐻𝐻��⃗ 0 + 𝐻𝐻��⃗ 𝐻𝐻)�. (𝐴𝐴11) 

Taking a cross product with 𝑙𝑙 again and assuming that dynamics does not change the 

length of the Néel vector (𝑙𝑙 ∙  𝑙𝑙̇ = 0), we have 

𝑙𝑙̈ = −𝛾𝛾2𝐽𝐽 �𝑙𝑙 × 𝑙𝑙 × �𝐻𝐻��⃗ 0 + 𝐻𝐻��⃗ 𝐻𝐻�� −
1
𝑙𝑙2
𝑙𝑙2̇𝑙𝑙. (𝐴𝐴12) 

This is the Newtonian equation for the Néel vector indicating that the Néel vector 

acts as a solid object with mass so that the AFM dynamics exhibits inertia. These 

properties are enhanced by the exchange term 𝐽𝐽. So, comparing Eqs. (𝐴𝐴1) and (𝐴𝐴12) for 

ferromagnets and antiferromagnets, we see that the latter behave very differently in a way 

that the effects are enhanced by the exchange term. Equation (𝐴𝐴1) describes the conic 

motion of the magnetization 𝑚𝑚��⃗  and Eq. (𝐴𝐴12) describes the Néel vector 𝑙𝑙 planar motion 

under the staggered field.  

Case 2: Uniform field 𝐻𝐻��⃗ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖,𝑠𝑠 = 𝐻𝐻��⃗ 0 , 𝐻𝐻��⃗ 𝐻𝐻,𝑠𝑠 = (−1)𝑠𝑠 𝐻𝐻��⃗ 𝐻𝐻; 𝑠𝑠 = 0,1 𝑓𝑓𝑜𝑜𝑟𝑟 𝐴𝐴,𝐵𝐵. In this case, 

we obtain 

𝜕𝜕𝑚𝑚��⃗
𝜕𝜕𝑡𝑡

= 𝛾𝛾(𝑚𝑚��⃗ × 𝐻𝐻��⃗ 0) + 𝛾𝛾(𝑙𝑙 × 𝐻𝐻��⃗ 𝐻𝐻), (𝐴𝐴12) 
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𝜕𝜕𝑙𝑙
𝜕𝜕𝑡𝑡

= 𝛾𝛾�𝑙𝑙 × 𝐻𝐻��⃗ 0� + 𝛾𝛾(𝑚𝑚��⃗ × 𝐻𝐻��⃗ 𝐻𝐻) − 𝛾𝛾𝐽𝐽 𝑙𝑙 × 𝑚𝑚��⃗ . (𝐴𝐴13) 

Going through the same process as in case 1, we find that 

𝑚𝑚��⃗ = −
1
𝛾𝛾𝐽𝐽𝑙𝑙2

�𝑙𝑙̇× 𝑙𝑙 + 𝛾𝛾 𝑙𝑙�𝐻𝐻��⃗ 0. 𝑙𝑙� − 𝛾𝛾𝑙𝑙2 𝐻𝐻��⃗ 0 � , (𝐴𝐴14) 

𝑙𝑙̈× 𝑙𝑙 = −𝛾𝛾 𝑙𝑙�̇𝐻𝐻��⃗ 0. 𝑙𝑙� + 𝛾𝛾 �𝑙𝑙 × 𝐻𝐻��⃗ 0��𝐻𝐻��⃗ 0. 𝑙𝑙� − 𝛾𝛾2𝐽𝐽𝑙𝑙2�𝑙𝑙 × 𝐻𝐻��⃗ 𝐻𝐻� . (𝐴𝐴15) 

Considering the field to be parallel to 𝑙𝑙, we have  

𝑙𝑙̈× 𝑙𝑙 = −𝛾𝛾 𝑙𝑙  ̇𝐻𝐻0𝑙𝑙 − 𝛾𝛾2𝐽𝐽𝑙𝑙2�𝑙𝑙 × 𝐻𝐻��⃗ 𝐻𝐻�, (𝐴𝐴16) 

and for the field perpendicular to 𝑙𝑙, 

𝑙𝑙̈× 𝑙𝑙 = 𝛾𝛾2𝐽𝐽𝑙𝑙2�𝑙𝑙 × 𝐻𝐻��⃗ 𝐻𝐻�. (𝐴𝐴17) 

Therefore, when the magnetic field is applied parallel to the Néel vector, the magnetic 

field affects the dynamics of the Néel vector in our approximation scheme. 
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Appendix B: Magnetic Ground State of Antiperovskites ANMn3 

Table B1 lists the calculated lattice parameters, the magnitude of the magnetic moments, 

and the ground state energies for ANMn3 (A = Ga, Ni, Sn, and Pt). We find that GaNMn3 

and PtNMn3 have the Γ5𝑔𝑔 ground state, and NiNMn3 and SnNMn3 have the Γ4𝑔𝑔 ground 

state. The calculated results are consistent well with the experimentally observed and 

previously calculated values. We find that the differences in the lattice parameters and 

magnetic moments for the Γ4𝑔𝑔 and Γ5𝑔𝑔 phases are negligible. 

  

 Table B1. Calculated lattice parameters (𝑎𝑎) and magnetic moments (|𝑚𝑚��⃗ |) for 

ANMn3 (A = Ga, Ni, Sn, and Pt). 

 GaNMn3 NiNMn3 SnNMn3 PtNMn3 

𝒂𝒂 (Å) 3.87 3.84 3.99 3.93 

|𝒎𝒎���⃗ | (𝝁𝝁𝑩𝑩/Mn) 2.16 2.45 2.33 2.72 

𝑬𝑬𝟓𝟓𝟓𝟓 − 𝑬𝑬𝟒𝟒𝟓𝟓 (meV) -0.5 0.1 0.02 -0.5 
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Appendix C: Geometry Dependence of Anomalous Hall Conductivity 

The Anomalous Hall Conductivity (AHC) tensor depends on geometry used in transport 

measurements. Table 3.1 in Chapter 3 shows the AHC tensor for GaNMn3 (001) growth 

orientation corresponding to the standard Cartesian coordinates with x along [100], y 

along [010], and z along [001] directions. For GaNMn3 (111) sample, the AHC can be 

measured for a charge current parallel to the Ga-Mn Kagome lattice. Here we show the 

AHC tensor for a GaNMn3 (111) sample, with x pointing along [1�10], y along [1�1�2] and 

z along [111] directions. The respective AHC tensor 𝜎𝜎[111] can be obtained from  

𝜎𝜎[111] = 𝑅𝑅 𝜎𝜎[001] 𝑅𝑅−1 (C1) 

where  𝜎𝜎[001] is the AHC tensor for GaNMn3 (001) and R represents the respective 

rotation matrix. The resulting AHC tensors for Γ4g and Γ5g phases are shown in Table C1, 

where 𝜎𝜎′𝑥𝑥𝑥𝑥 = −68 Ω−1𝑠𝑠𝑚𝑚−1.  

Table C1. AHC matrix tensors for Γ5g and Γ4g magnetic phases with 𝑥𝑥�||[1�10], 

𝑦𝑦�||[1�1�2] and �̂�𝑧||[111]. 

Magnetic 
Phase Γ5g   Γ4g 

AHC tensor �
0 0 0
0 0 0
0 0 0

� �
0 𝜎𝜎′𝑥𝑥𝑥𝑥 0

−𝜎𝜎′𝑥𝑥𝑥𝑥 0 0
0 0 0

� 
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Appendix D: Moment Orientation Dependence of Anomalous Hall 

Conductivity 

Figure D1 shows the variation of the anomalous Hall conductivity of Ga0.42Ni0.58NMn3 

due to the rotation of the magnetic moments around [111] axis. The calculations were 

carried out for each configuration with a fixed angle ϕ, as shown in Figure D1 (top 

panel). Equation C1 can also be used to obtain the angular dependence of the AHC.  

 

 

 

Figure D1. The calculated anomalous Hall conductivity of Ga0.42Ni0.58NMn3 as a 

function of the magnetic moment orientation determined by angle ϕ. ϕ = 0o 

corresponds the Γ4g magnetic phase while ϕ = 90o corresponds to the Γ5g magnetic 

phase.   
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