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RESEARCH Open Access

Sera from patients with active systemic lupus
erythematosus patients enhance the toll-like
receptor 4 response in monocyte subsets
Tiago Carvalheiro1, Diane Gomes2, Ligia A. Pinto3, Luis Inês4,5,6, Ana Lopes1, Ana Henriques5, Susana Pedreiro1,
António Martinho1, Hélder Trindade1, Howard A. Young7, José António Pereira da Silva4,5 and Artur Paiva1,2*

Abstract

Background: Systemic Lupus Erythematosus (SLE) is an auto-immune disease whose complex pathogenesis
remains unraveled. Here we aim to explore the inflammatory ability of SLE patients’ sera upon peripheral blood (PB)
monocyte subsets and myeloid dendritic cells (mDCs) obtained from healthy donors.

Methods: In this study we included 11 SLE patients with active disease (ASLE), 11 with inactive disease (ISLE) and 10
healthy controls (HC). PB from healthy donors was stimulated with patients’ sera, toll-like receptor (TLR) 4 ligand –
lipopolysaccharide or both. The intracellular production of TNF-α was evaluated in classical, non-classical monocytes
and mDCs, using flow cytometry. TNF-α mRNA expression was assessed in all these purified cells, after sera treatment.

Results: We found that sera of SLE patients did not change spontaneous TNF-α production by monocytes or
dendritic cells. However, upon stimulation of TLR4, the presence of sera from ASLE patients, but not ISLE, significantly
increased the intracellular expression of TNF-α in classical and non-classical monocytes. This ability was related to titers
anti-double stranded DNA antibodies in the serum. High levels of anti-TNF-α in the patients’ sera were associated with
increased TNF-α expression by co-cultured mDCs. No relationship was found with the levels of a wide variety of other
pro-inflammatory cytokines. A slight increase of TNF-α mRNA expression was observed in these purified cells when they
were cultured only in the presence of SLE serum.

Conclusions: Our data suggest that SLE sera induce an abnormal in vitro TLR4 response in classical and non-classical
monocytes, reflected by a higher TNF-α intracellular expression. These effects may be operative in the pathogenesis
of SLE.

Keywords: Systemic lupus erythematosus, Serum, Cytokines, Toll like receptor 4, Classical monocytes, Non-classical
monocytes, Myeloid dendritic cells

Background
Systemic lupus erythematosus (SLE) is a systemic auto-
immune disease characterized by heterogeneous clinical
manifestations with varying degrees of severity and alter-
nating phases of remission and flare. The primary patho-
logical findings in SLE patients are inflammation,
vasculitis, immune complex deposition, and vasculopathy

[1–4]. The disease is characterized by the presence of a var-
iety of autoantibodies against cell components and circulat-
ing proteins, which are associated with differing disease
manifestations [5].
Monocytes are key players in both innate and adaptive

immune responses since they can produce large amounts
of soluble cytokines and are equipped with a large array of
receptors proving them with the ability of recognizing
lipids, dying cells, microorganisms and their derivates.
Given the plasticity of monocytes and their distinct role in
inflammation, repair and healing processes [6, 7], accord-
ing to the recommendations of Ziegler-Heitbrock et al. it
is possible to subdivide human monocytes into three
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subsets on the basis of the expression of CD14 and the
CD16 receptors. The classical monocytes show high CD14
expression but no CD16 (CD14++CD16−), the intermedi-
ate monocytes show a high level of CD14 together with
low CD16 (CD14++CD16+), and the nonclassical
monocytes express a low level of CD14 together with
high CD16 (CD14 + CD16++) [8]. Functionally, clas-
sical monocytes are professional phagocytes that ingest
native low-density lipoprotein, generate reactive oxygen
species and secret cytokines in response to lipopolysac-
charide (LPS) [9]. In contrast, non-classical monocytes
do not generate reactive oxygen species and are weak
phagocytes, taking-up preferentially oxidized low-density
lipoprotein. They secrete substantial amounts of pro-
inflammatory cytokines (tumor necrosis factor [TNF]-
α, interleukin [IL]-1β and CCL3) after toll-like receptor
(TLR) - dependent activation by viruses and nucleic
acids [9–11].
It is also well accepted that dendritic cells (DCs) repre-

sent a heterogeneous population of potent lineage-negative
HLA-DR+ antigen-presenting cells [12]. It is possible to
identify at least two subsets of circulating DCs on the
blood [8]; the myeloid DC (mDC) subpopulation, strongly
expressing HLA-DR and the myeloid-associated anti-
gens CD11c and CD33 and the plasmacytoid DC
(pDCs) subset, expressing high levels of both HLA-DR
and CD123, without expressing myeloid associated an-
tigens [13].
Abnormalities in monocytes and DCs from SLE pa-

tients have already been described [14–16] and an
important role of DCs in SLE pathogenesis been advo-
cated [17, 18]. It has been reported that sera of SLE pa-
tients can induce the production of IFN-α in normal
plasmacytoid DCs [19, 20]. SLE sera have also been
shown to induce the differentiation of normal mono-
cytes into DCs [21], and to promote a B cell response
[22]. This pro-inflammatory activity apparently requires
the presence of circulating immune complexes in the
sera [20]. However the ability of the soluble mediators
presents in SLE patients’ serum to activate normal per-
ipheral blood monocytes subsets and mDCs is not well
established.
In this context, we have evaluated the ability of sera

from SLE patients to induce the intracellular production
of TNF-α by classical, non-classical monocytes and
mDCs. We examined the effect of SLE sera in the pres-
ence and absence of TLR4 stimulation by LPS. Interest-
ingly, SLE sera did not change the intracellular
production of TNF-α in the absence of TLR4 stimula-
tion. However, the stimulation with TLR4 ligand in the
presence of sera from ALSE resulted in a higher intracel-
lular production of TNF-α by classical and non-classical
monocytes, than in the presence of sera obtained from
healthy controls and ISLE.

Materials and methods
Patients
Twenty two patients with SLE, according to the 1997
American College of Rheumatology classification criteria
[23] followed at the Lupus Clinic, Rheumatology Depart-
ment of the University Hospital Center of Coimbra, were
recruited and asked to provide a blood sample for this
study. Disease activity was assessed at the time of blood col-
lection, according to the SLE Disease Activity Index 2000
(SLEDAI 2 k) [23, 24]. SLE patients were divided into two
groups, one with clinically active disease (ASLE) (SLEDAI
2 k ≥ 5; n = 11, 100 % female, median age 27: 19–52 year)
and the other with clinically inactive disease (ISLE) (SLEDAI
2 k < 5; n = 11, 64 % female, median age 28: 19–45 year)
[25]. Current medication details and additional routine la-
boratory parameters were collected from the patients’ files
(Table 1). Sera samples were stored at −20 °C until analysis.

Controls
The healthy control group (HC) comprised 10 healthy
individuals (90.0 % female, median age 28.5: 25 – 35 year)

Table 1 Clinical findings in 22 patients with systemic lupus
erythematosus (SLE)

ASLE (n = 11) ISLE (n = 11)

Mean SLEDAI scores 10.4 ± 4.1 1.5 ± 1.2

Mean time since diagnosis 6.6 ± 6.0 8.3 ± 4.9

Lupus nephritis 45.5 % 54.5 %

Neurolupus 0 % 18.2 %

Lupus arthritis 72.7 % 63.6 %

Hematological involvement 100 % 90.9 %

Lupus cutaneous involvement 72.7 % 72.7 %

Severe Lupusa 45.5 % 54.5 %

Anti-dsDNA antibodiesb

Negative 0 % 27.2 %

Low positive 9.1 % 36.4 %

Moderate positive 18.2 % 27.3 %

High positive 72.7 % 9.1 %

Treatment

Hydroxychloroquine 90.9 % 90.9 %

Immunossupressantsc 54.5 % 36.4 %

Steroidsd 90.9 % 18.2 %

Low dose 40.0 % 100 %

Moderate dose 30.0 % 0 %

High dose 30.0 % 0 %
aLupus severity in accordance with cumulative major organ involvement
bAnti-dsDNA antibodies: low positive (<20 IU); moderate positive (20–50 IU);
high positive (>50 IU)
cazathioprine, mycophenolate mofetil, cyclosporine, tacrolimus, methotrexate,
cyclophosphamide or rituximab
dLow dose, up to 10 mg/day; moderate dose, 10–30 mg/day; high dose, more
than 30 mg/day
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who provided blood samples for determination of serum
cytokine levels. Five different healthy donors provided
an additional blood samples (90 % female; median age 29:
25 – 33 years) collected in heparin anticoagulant tubes
(6 mL of blood). These participants were required to
complete a brief questionnaire regarding previous or
current medical conditions and therapies. All were free
from autoimmune disease, other active inflammatory con-
ditions and medication with immunomodulatory drugs.

Ethical aspects
The study protocol was approved by the ethics commit-
tee of the University Hospital Center of Coimbra. All
participants provided a signed informed consent prior to
any study procedures and the principles of the Helsinki
Declaration were fully respected.

Peripheral blood cultures with sera from SLE patients and
HC with and without co-stimulation with TLR4 ligand - LPS
To assess the effect of SLE sera upon TNF-α production
by normal peripheral blood monocyte subsets and mDCs,
sera from 11 ASLE patients, 11 ISLE patients and 10
healthy individuals were used. The heparinized whole
blood samples obtained from healthy donors were washed
thrice with NaCl 0.9 % saline solution and resuspended in
0.25 mL; then samples were diluted (1:1) in RPMI-1640
medium (Life Technologies – Thermo Fisher Scientific;
Carlsbad, C.A., USA), supplemented with 2 mM L-glu-
tamine and antibiotic–antimycotic agent (Life Technolo-
gies – Thermo Fisher Scientific) in a total of 0.5 mL. Four
different conditions were created: 1) adding 0.05 mL of
sera from patients with SLE or HC; 2) adding 100 ng/mL
of LPS from Escherichia coli (serotype 055:B5; Sigma) plus
0.05 mL of sera from patients with SLE or HC; 3) adding
100 ng/mL of LPS from Escherichia coli (as a positive con-
trol) and 4) an unstimulated condition (as the negative
control). All experiments included the presence of 10 μg/
mL of Brefeldin A (ref: B7651; Sigma, St. Louis, MO,
USA) to prevent the release of cytokines from the cells.
Samples were incubated for 6 h at 37 °C in a sterile envir-
onment with a 5 % CO2 humid atmosphere.

Immunofluorescent staining
After the 6 h incubation period, samples were aliquoted in
two different tubes (0.250 mL/tube) in order to analyse
the intracellular production of TNF-α in classical and
non-classical monocytes as well as in mDCs. For the iden-
tification of these populations, cells were stained with the
following monoclonal antibody combination: anti-CD45
krome orange (clone: J.33; Beckman Coulter – Immuno-
tech, Marseille, France), anti-CD33 phycoerythrin cyanine 7
tandem (clone: D3HL60.251; Beckman Coulter – Immuno-
tech) anti-CD14 allophycocyanin (clone: RM052; Beckman
Coulter – Immunotech) and anti-HLA-DR peridinin

chlorophyll protein cyanine 5 (clone: L243; Becton and
Dickinson (BD) Biosciences, San Jose, CA, USA). After
gentle mixing, cells were incubated for 15 min at room
temperature in the dark followed by an intracytoplasmatic
permeabilization protocol with IntraPrep Permeabilization
Reagent (Beckman Coulter – Immunotech). Cells were
fixed and permeabilized according to the manufacturer’s
instructions. Thereafter, anti-TNF-α antibody (clone
MAb11; BD Pharmingen, San Diego, CA, USA) was added
and incubated for 15 min at room temperature in the
dark. The cells were then washed twice with phosphate-
buffered saline (Gibco BRL-life Technologies) and resus-
pended in 0.250 mL of this buffer.

Flow cytometry data acquisition and analysis
Data acquisition was performed in a FACSCanto II flow
cytometer (BD Biosciences) with the FACSDiva software
(BD Biosciences) using the EuroFlow instrument setup
data acquisition standard operating procedures [26]. For
each sample at least 250.000 events were acquired.
Data analysis for each variable was performed using

the flow cytometry software Infinicyt 1.6 (Cytognos,
Salamanca, Spain). The evaluation of TNF-α production
was based on the frequency (%) of positive cells within
each cell subset and their corresponding expression as
determined by the mean fluorescence intensity (MFI),
expressed as a relative logical scale.
Since CD16 expression is lost shortly after LPS stimu-

lation, as also reported by others [27–30], thus preclud-
ing the identification of CD16+ monocyte subsets. On
the other hand CD33 remains unchanged during LPS
stimulation [30] and therefore CD33 was used as an
alternative marker to CD16. Using a combination of
anti-CD16 Pacific Blue (clone: 3G8; BD Pharmingen),
anti-CD14 allophycocyanin, anti-HLA-DR peridinin
chlorophyll protein cyanine 5, anti-CD33 phycoerythrin
cyanine 7 tandem and anti-CD45 krome orange in un-
stimulated cells it is possible distinguish between non-
classical and classical monocytes base on CD33 and CD14
combination (Fig. 1). mDCs were identified base on their
CD33high/HLA-DRhigh expression with intermediate for-
ward and side scatter between lymphocytes and mono-
cytes (Fig. 1) [15, 30].

TNF-α relative gene expression analysis after sorting of
classical, non-classical monocytes, and mDCs, after culture
in the presence of SLE or HC sera
We set out to evaluate the direct effect of sera from
patients with SLE upon TNF-α mRNA expression by
monocytes subsets and dendritic cells from normal in-
dividuals in the absence of LPS. For this purpose, a
heparinized peripheral blood sample from one healthy
subject was washed thrice with NaCl 0.9 % saline solution
and diluted 1:1 in RPMI-1640 medium supplemented with
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2 mM L-glutamine and antibiotic–antimycotic agent.
0.05 mL of serum was added in a final volume of 0.5 mL:
3 from ASLE, 3 from ISLE and 3 from HC. Each sample
was incubated in quadruplicate for 6 h, at 37 °C in a sterile
environment under 5 % CO2.
For the cell sorting of classical monocytes, non-

classical monocytes and mDCs, cells from each sample
were resuspended in a final volume of 1 mL per sample,
and lysed with 10 mL of NH4Cl solution (Sigma) to re-
move the red blood cells. After 20 min of incubation,
samples were centrifuged (5 min, at 540 × g) and the
cell pellet was stained with the following monoclonal
antibodies combination: anti-CD45 Krome Orange,
anti-HLA-DR fluorescein isothiocyanate (clone: Immu-
357; Beckman Coulter – Immunotech), anti-CD14 peri-
din chlorophyll protein – Cyanin 5.5 (clone:M5E2; BD
Pharmingen), anti-CD33 phycoerythrin (clone:P67.6;
BD Biosciences) and anti-CD123 allophycocyanin
(clone: 9 F5; BD Pharmingen). Next, the cells were in-
cubated for 20 min at room temperature in the dark,

washed and resuspended in phosphate-buffered saline
(Gibco BRL-life Technologies).
Cell-sorting and purification were performed in FAC-

SAria II cell sorter (BD Biosciences) using the FACSDiva
software (BD Biosciences). Classical monocytes were
identified and sorted by HLA-DR+/CD14high/CD33high/
CD45high phenotype, non-classical monocytes were HLA-
DRinter/CD33inter/CD123negCD45high, and mDCs were de-
fined as HLA-DRhigh/CD33high/CD14neg/CD123neg.
Sorted cell populations were then centrifuged for

5 min at 300 × g and the pellets were resuspended in
350 μL of RLT Lysis Buffer (Qiagen, Hilden, Germany).
Total RNA extraction was performed with the RNeasy
Micro kit (Qiagen) according to the supplier’s instruc-
tions. Total RNA was eluted in a 14 μl volume of
RNase-free water. In order to quantify the amount of
total RNA extracted and verify RNA integrity, samples
were analyzed using a 6000 Nano Chip kit, in an Agilent
2100 bioanalyzer (Agilent Technologies, Walbronn,
Germany) and 2100 expert software, according to the

A

D

B

E

C

F

Fig. 1 Flow cytometry gate-strategy to identify non-classical and classical monocyte subsets and myeloid dendritic cells (mDCs). In a the conventional
gating strategy is shown, representing classical, intermediate and non-classical monocyte populations based on CD14 and CD16 expression. Since after
LPS stimulation CD16 is downregulated, CD33 was used combined with CD14 to distinguish the classical and non-classical monocytes: R1 classical
monocytes (CD14++CD33++) is equivalent to CD14++CD16−; R2 non-classical monocytes (CD14+/−CD33+/dim) correspond to CD14+CD16++ (b–c). mDCs
(R3) were identified based on the following phenotype: CD14−CD33++HLA-DR++ (a and d). Monocytes and mDCs characteristics of forward scatter
(FSC), side scatter (SSC) and CD45 expression and therefore lymphocytes populations are excluded from the analyses (e–f)
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manufacturer’s instructions. RNA was reverse tran-
scribed with iScriptTM Reverse Transcription Supermix
for RTqPCR (Bio-Rad, Hercules, Calif., USA), according
to the manufacturer’s instructions. Relative quantifica-
tion of gene expression using real-time PCR was per-
formed in the LightCycler 480 II (Roche Diagnostics,
Rotkreuz, Switzerland). Real-time PCR reactions were
carried out using 1 × QuantiTect SYBR Green PCR Mas-
ter Mix (Qiagen), 1 × QuantiTect Primer Assay TRAF1
(QT00095732) (Qiagen) and 20 ng of cDNA sample, in a
total volume of 10 μL. The reactions were performed
using the following thermal profile: 15 min at 95 °C,
and 50 cycles of 15 s at 94 °C, 30 s at 55 °C and 30 s at
72 °C. Melting point analysis was done to ensure ampli-
fication of the specific product. Real-time PCR results
were analyzed with the LightCycler software (Roche
Diagnostics). GeNorm Reference Gene Selection kit
(PrimerDesign Ltd., Southampton, England) in con-
junction with the geNorm software (PrimerDesign Ltd.)
were used to select the reference genes to normalize
data. The reference genes used for gene expression ana-
lysis of classical, non-classical monocytes and mDC
were the beta-2-microglobulin (B2M) (QT00088935)
and the ubiquitin-c (UBC) (QT00234430). The normal-
ized TNF-α gene expression were calculated using the
delta-Ct method [31].

Serum cytokine quantitation
Measurements of IL-17F, IL-17A, IL1-7E, IL-10, IL-
12p70, IL-13, IL-15, IL-22, IL-21, IL-23, IFN-γ and
TNF-α were performed in all serum samples by Luminex
xMAP using the MILLIPLEX MAP Human TH17 Mag-
netic Bead Panel (EMD Millipore, Billerica, MA, USA).
The serum cytokine levels were determined by compari-
son with a standard curve obtained using the corre-
sponding recombinant human cytokines

Statistical analyses
Results were expressed as median/mean and range/inter-
quartile range. Statistical evaluation of data was per-
formed through non-parametric tests: The χ2 and
Fisher’s exact tests were used to evaluate the significance
of associations between categorical variables. Continuous
variables were compared by Kruskal-Wallis test and
Mann–Whitney U test. A Spearman’s rank correlation
was applied to assess the association between different
parameters. The statistical analyses were performed
using Statistical Package for Social Sciences IBM SPSS
20 (IBM, Armonk, NY. USA) and Graphpad Prism ver-
sion 5 (GraphPad Software, San Diego, CA, USA). Dif-
ferences were considered statistically significant when
the p value was less than 0.05.

Results
Higher TNF-α intracellular expression in classical and non-
classical peripheral blood monocytes, after TLR4 ligand
stimulation in the presence of sera from SLE patients with
active disease
In the absence of LPS, the production of TNF-α by the
various monocyte subsets or mDCs was not significantly
affected by the addition of sera from patients with active
or inactive SLE as compared to sera from HCs. The fre-
quency of these cells producing TNF-α was consistently
below 5 %.
In the presence of the TLR4 ligand – LPS, co-culture

with sera from patients with ASLE resulted in a higher
intracellular expression of TNF-α (MFI) in classical and
non-classical monocytes, in comparison to cells cultured
with sera from HCs. Sera from patients with ISLE did
not reveal differences between ASLE or HC. None of the
SLE sera changed the TNF-α expression in mDCs co-
treated with sera from the different groups (Fig. 2a). No
differences were observed in the frequency of classical,
non-classical monocytes or mDCs expressing TNF-α in
the presence of sera from SLE patients when compared
to HC sera (Table 2).

Sera of SLE patients with moderate to high positive levels
of anti-dsDNA antibodies demonstrated an increased abil-
ity to induce TNF-α expression in classical and non-
classical monocytes, co-stimulated with TLR4 ligand
SLE patients were categorized according to the serum
levels of anti-dsDNA antibodies into negative-low positive
(<20 IU) and moderate-high positive (>20 IU) (Table 1).
Data analysis demonstrated that classical monocytes ex-
posed to sera from patients with moderate-high positive
anti-dsDNA antibodies presented a higher TNF-α expres-
sion than those exposed to sera from HC (Fig. 2b). Non-
classical monocytes followed a similar trend but without
reaching statistical significance (Fig. 2b). As before, no dif-
ferences were demonstrated for TNF-α expression in
mDCs (Fig. 2b).

High TNF-α levels in the serum of SLE donors is associ-
ated with higher intracellular expression of TNF-α in
mDCs but not with peripheral blood monocytes
We next investigated the relationship between TNF-α
production in monocytes subsets and mDCs and the
levels of IL-17F, IL-17A, IL-17E, IL-10, IL-12p70, IL-13,
IL-15, IL-22, IL-21, IL-23, IFN-γ and TNF-α in the
serum added to the cultures. Our data revealed a posi-
tive correlation between the levels of TNF-α in the sera
of SLE patients and the intracellular TNF-α expression
in mDCs (Fig. 3). These levels were not correlated with
intracellular TNF-α expression in peripheral blood
monocytes. No significant correlations was found be-
tween the levels of TNF-α in the sera from HCs and
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intracellular TNF-α expression in either mDCs (p = 0.535)
or monocytes subsets.
The others cytokines levels did not correlate with the

intracellular expression of TNF-α either in cultured
mDCs or monocyte subsets. Additionally, no differences
were found in the cytokines levels between the three
groups of participants (Table 3).

TNF-α mRNA gene expression in sorted monocytes
subsets and mDCs in the presence of SLE patient´s serum
without LPS co-stimulation
Since the presence of SLE sera alone did not demon-
strated the ability to shift the TNF-α intracellular expres-
sion in monocytes subsets and mDCs as measured by
flow cytometry, we next used qRT-PCR to measure the
TNF-α mRNA expression in these purified cells after
treatment with SLE or HC sera, in the absence of LPS.
For this analysis, we selected 6 SLE sera (3 ASLE pa-
tients and 3 ISLE patients) and 3 HC sera. Only a trend
for a higher TNF-α mRNA expression in the presence of
SLE sera versus HC sera in both classical and non-
classical monocytes was observed (Fig. 4), although no
statically significant differences were observed.

Discussion
SLE is a chronic autoimmune disorder associated with a
large number of immunological abnormalities, which

includes phenotypic and functional alterations in mono-
cytes and DCs [14, 15, 32, 33]. These cell types have an
increasingly recognized role in this complex disease. Sol-
uble mediators present in SLE patient’s sera are able to per-
petuate the cellular activation in this disease [20, 34, 35],
however their effects on monocyte subsets (classical and
non-classical monocytes), as well as mDCs are poorly
understood.
The production of pro-inflammatory cytokines, such as

TNF-α, can be directly stimulated by signaling immuno-
globulin receptors, complement receptors or through sev-
eral other cellular receptors, including pattern recognition
receptors as TLRs [36]. The TNF-α intracellular expres-
sion in classical, non-classical monocytes and mDCs
remained unchanged when these cells are exposed to sera
form ISLE, ASLE or HCs. This may be due to the absence
of sufficient amounts of primary TNF-α production acti-
vators in these sera. However, it is also possible that the
expression of inhibitory Fc gamma receptors (FcγR), par-
ticularly FcγRIIB, is stimulated in these cells which may
bind IgG immune complexes without triggering activation
but preventing self-responses [37].
On other hand, in the presence of TLR4 ligand, clas-

sical and non-classical monocytes co-treated with sera
from ALSE exhibit a higher production of TNF-α when
compared to cells exposed to sera from HCs. Our data
suggests that TLR4 activation in the presence of ASLE

A B

Fig. 2 TNF-α expression after TLR4 co-stimulation with different sera. TNF-α intracellular expression in classical, non-classical monocytes and mDCs
according to the disease activity a and the amount of anti-dsDNA antibodies b. ***Statistically significant differences were considered when p <
0.05 (Mann–Whitney U test)

Table 2 Frequency of classical, non-classical monocytes and mDCs producing TNF-α
Classical monocytes Non-classical monocytes mDCs

Basal 2.08 (1.27–3.19) 4.78 (3.99–5.12) 5.67 (2.94–7.79)

TLR4 ligand 95.81 (93.92–96.46) 84.67 (49.64–99.323) 65.66 (61.98–78.30)

HC sera + TLR4 ligand 95.80 (93.40–97.55) 95.69 (82.25–99.66) 64.04 (35.68–77.44)

ISLE sera + TLR4 ligand 95.59 (93.88–98.51) 96.02 (81.13–98.98) 42.51 (26.03–77.20)

ASLE sera + TLR4 ligand 97.01 (92.53–98.96) 93.33 (72.85–99.35) 41.03 (26.35–72.9)

Results expressed in percentage (%) as median (minimum-maximum)
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sera results in an aberrant response by classical and
non-classical monocytes. These results are in line with
the findings of Leadbetter et al. that reported an aber-
rant B-cell response mediated by IgG complexes and
TLR4 activation in their mice experiments [38].
In order to better define which serum components

could be implicated in the activation of monocytes, we

explored the relationship between this activations and
the serum levels of anti-dsDNA antibodies and cyto-
kines. Remarkably, moderate-high levels of anti-dsDNA
were associated with more intense activation of TNF-α
production by classical and non-classical monocytes.
This finding enhances the hypothesis that the presence
of auto-antibodies and immune-complexes, with the
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Fig. 3 Correlation between SLE sera TNF-α levels and TNF-α intracellular expression after TLR4 co-stimulation with different sera. Statistical significant
differences were considered when p < 0.05. The correlations were assessed by the Spearman’s rank correlation

Table 3 Cytokine levels obtained in the 22 SLE patients and 10 healthy individuals

HC n = 10 ISLE n = 11 ASLE n = 11 P value significance

IL-17A Cytokine level (pg/mL) 0.0 (0.0–0.0): 0.00 0.0 (0.0–113.40): 12.69 0.0 (0.0–62.04): 9.28 ns

% of samples detected (n) 0 % (n = 0) 18.2 % (n = 2) 27.3 % (n = 3) ns

IL-17E Cytokine level (pg/mL) 0.0 (0.0–286.21): 81.27 0.0 (0.0–1364.68): 159.38 0.0 (0.0–57.10): 5.19 ns

% of samples detected (n) 30 % (n = 3) 18.2 % (n = 2) 9.1 % (n = 1) ns

IL-17F Cytokine level (pg/mL) 0.0 (0.0–14.49): 3.93 0.0 (0.00–158.44): 19.10 0.0 (0.0–57.10): 5.19 ns

% of samples detected (n) 30 % (n = 3) 27.3 % (n = 3) 9.1 % (n = 1) ns

IL-12p70 Cytokine level (pg/mL) 0.0 (0.0–46.87): 6.98 0.96 (0.0–60.76): 8.05 0.0 (0.0–85.52): 8.85 ns

% of samples detected (n) 30 % (n = 3) 54.5 % (n = 6) 36.4 % (n = 4) ns

IL-23 Cytokine level (pg/mL) 0.0 (0.0–1134.54): 276.46 0.0 (0.0–11221.86): 1216.17 0.0 (0.0–2547.96): 258.94 ns

% of samples detected (n) 30 % (n = 3) 18.2 % (n = 2) 18.2 % (n = 2) ns

TNF-α Cytokine level (pg/mL) 7.68 (6.25–33.50): 12.38 13.57 (4.30–26.73): 13.66 14.51 (1.01–27.90): 16.47 ns

% of samples detected (n) 100 % (n = 10) 100 % (n = 11) 100 % (n = 11) ns

IFN-γ Cytokine level (pg/mL) 0.0 (0.0–8.96): 2.95 0.0 (0.0–167.11): 21.90 2.77 (0.0–79.40): 12.36 ns

% of samples detected (n) 40 % (n = 4) 27.3 % (n = 3) 63.6 % (n = 7) ns

IL-15 Cytokine level (pg/mL) 0.0 (0.0–0.0): 0.0 0.0 (0.0–7.45): 1.41 0.0 (0.0–0.0): 0.0 ns

% of samples detected (n) 0 % (n = 0) 18.2 % (n = 2) 0 % (n = 0) ns

IL-10 Cytokine level (pg/mL) 0.0 (0.0–0.0): 0.0 0.0 (0.0–6.58): 0.99 0.0 (0.0–5.36): 0.89 ns

% of samples detected (n) 0 % (n = 0) 100 % (n = 11) 100 % (n = 11) ns

IL-22 Cytokine level (pg/mL) 0.0 (0.0–100.8): 18.77 0.0 (0.0–598.67): 64.06 0.0 (0.0–159.85): 14.53 ns

% of samples detected (n) 30 % (n = 3) 18.2 % (n = 2) 9.1 % (n = 1) ns

IL-21 Cytokine level (pg/mL) 0.0 (0.0–5.61): 0.80 0.0 (0.0–105.58): 12.13 0.0 (0.0–24.07): 2.68 ns

% of samples detected (n) 10 % (n = 1) 18.2 % (n = 2) 18.2 % (n = 2) ns

IL-13 Cytokine level (pg/mL) 0.0 (0.0–0.0): 0.0 0.0 (0.0–56.44): 6.76 0.0 (0.0–0.0): 0.0 ns

% of samples detected (n) 0 % (n = 0) 18.8 % (n = 2) 0 % (n = 0) ns

Results expressed in pg/mL as median (minimum-maximum): mean
% and (n =) represent the percentage (number of cases) of samples detected
p values were calculated by Kruskal-Wallis test and Mann–Whitney U test for continuous variables, and χ2 and Fisher’s exact tests were used to measure associations
between categorical variables. ns: non-significant
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ability to activate FcγR and TLRs, leads to increased pro-
duction of TNF-α [20, 39]. This is supported by the evi-
dence that cross-linking between IgGs to FcγRs triggers
a wide variety of cellular functions, including release of
inflammatory mediators, like cytokines, chemokines and
reactive oxygen species [40, 41].
mDCs was not sensitive to the effects of sera of these

diverse origins upon TNF-α expression, both in the ab-
sence and in the presence of LPS. This suggests that
this subpopulation of DCs is less sensitive to a periph-
eral inflammatory environment, probably due to the
fact that the majority of PB mDCs have an immature
phenotype [14, 15]. In fact, the different pattern of
TNF-α expression observed in classical monocytes,
non-classical monocytes and mDCs can also be related
with the differential expression of FcγRs. Classical
monocytes constitutively express CD64 (FcγRI), a high
affinity receptor, while non-classical monocytes ex-
presses CD16 (FcγRIII), a low affinity receptor, and
mDCs express low levels of CD32 (FcγRII) an inter-
mediate affinity receptor [42–44].
We also explored the relationship between TNF-α ex-

pression and the levels of a large array of cytokines in the
serum added to the cultures. Interestingly, we observed a
positive correlation between TNF-α sera levels and TNF-α
intracellular expression in mDC co-stimulated with TLR4
ligand in the presence of SLE sera. This finding is in line
with the ability of soluble TNF-α induces mDCs matur-
ation as well as TNF-α production [45, 46].
Finally, we analyzed whether SLE sera in the absence

of TLR4 ligand, could result in alterations of TNF-α
mRNA expression in classical, non-classical monocytes
and mDCs. A slight, non-significant increase in the
TNF-α mRNA expression was observed in both mono-
cyte subsets in the presence of SLE sera.

Conclusion
In summary, our data demonstrated that sera from pa-
tients with active SLE increase TNF-α production by
classical and non-classical monocytes, in the presence of

LPS. This effect may be partially explained by circulating
auto-antibodies since the high levels of anti-dsDNA anti-
bodies are associated with an enhanced TNF-α intracel-
lular expression. This supports the concept that the
presence of the immune-complexes is an important fac-
tor in cell activation and in the maintenance of chronic
inflammation in SLE.
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