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a b s t r a c t 

Cytokines mediate and control immune and inflammatory responses. Complex interactions exist among 

cytokines, inflammation, and the innate and adaptive immune responses in maintaining homeostasis, 

health, and well-being. On-demand, local delivery of anti-inflammatory drugs to target tissues provides 

an approach for more effective drug dosing while reducing the adverse effects of systemic drug deliv- 

ery. This work demonstrates a proof-of-concept theranostic approach for inflammation based on analyte- 

kissing induced signaling, whereby a drug (in this report, aspirin) can be released upon the detection 

of a target level of a proinflammatory cytokine ( i.e. , interferon- γ (IFN- γ )) in real time. The structure- 

switching aptamer-based biosensor described here is capable of quantitatively and dynamically detecting 

IFN- γ both in vitro and in vivo with a sensitivity of 10 pg mL −1 . Moreover, the released aspirin triggered 

by the immunoregulatory cytokine IFN- γ is able to inhibit inflammation in a rat model, and the release 

of aspirin can be quantitatively controlled. The data reported here provide a new and promising strat- 

egy for the in vivo detection of proinflammatory cytokines and the subsequent therapeutic delivery of 

anti-inflammatory molecules. This universal theranostic platform is expected to have great potential for 

patient-specific personalized medicine. 

Statement of Significance 

We developed an adaptive in vivo sensing device whereby a drug, aspirin, can be released upon the de- 

tection of a proinflammatory cytokine, interferon- γ (IFN- γ ), in real time with a sensitivity of 10 pg mL −1 . 

Moreover, the aspirin triggered by IFN- γ depressed inflammation in the rat model and was delivered in- 

directly through blood and cerebrospinal fluid or directly to the inflammation tissue or organ without 

adverse gastrointestinal effects observed in the liver and kidney. We envision that, for the first time, pa- 

tients with chronic inflammatory disease can receive the right intervention and treatment at the right 

time. Additionally, this technology may empower patients to monitor their personalized health and dis- 

ease management program, allowing real-time diagnostics, disease monitoring, and precise and effective 

treatments. 

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 

∗ Corresponding author. 

E-mail addresses: chenx2015@xjtu.edu.cn (X. Chen), guozhen.liu@unsw.edu.au 

(G. Liu). 
1 Chaomin Cao and Ronghua Jin contributed equally to this work. 

1. Introduction 

Inflammation is a self-protection defense mechanism that is 

critical to combat harmful stimuli ( e.g. , pathogens) and initiate 

the healing process. However, under many conditions, the in- 

flammatory response becomes chronic and leads to significant 
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tissue/organ damage. [1] Recently, increasing evidence demon- 

strates that an abnormal inflammatory response is closely associ- 

ated with many cancers [2] and numerous autoimmune diseases 

[3] including rheumatoid arthritis, atherosclerosis, inflammatory 

bowel disease, systemic lupus erythematosus, type 2 diabetes, and 

Alzheimer’s disease. Inflammation is caused by a number of phys- 

iological reactions triggered by the immune system in response to 

a physical injury or an infection. However, the precise source of 

the inflammatory stimulus is often unknown and, even if known, 

may be difficult to remove or inhibit. Thus, interest has been 

shown toward therapeutically targeting the inflammatory response 

to inhibit and limit disease progression. Ongoing disease manage- 

ment in the context of chronic inflammation is increasing, with 

major unmet needs in the era of precision diagnostics and treat- 

ment. [4] Although there has been success with anti-inflammatory 

therapy in chronic diseases such as rheumatoid arthritis, there are 

considerable limitations because of the toxicity associated with 

treatment and variation in patient response. In particular, as the 

inflammatory response is critical for host homeostasis, the chal- 

lenges of redundancy, compensation by the host, and the necessity 

for basal immune function often narrow the risk-to-benefit ratio 

of anti-inflammatory drugs. Thus, it is essential for patients with 

chronic inflammatory disease to receive treatments that target the 

abnormal immune response in a timely and precise manner. 

Precision medicine is a medical model that aims for the cus- 

tomization of healthcare with medical decisions, practices, and 

products tailored to the individual patient. On the basis of the 

knowledge of disease mechanisms, precision medicine generally 

combines diagnosis and treatment to achieve optimal disease man- 

agement [5] . The paradigm of intelligent personalized medicine 

holds the promise to revolutionize healthcare by delivering “the 

right drug, at the right dose, and at the right time” [6] . As stated 

above, precision medicine is particularly important in addressing 

individual inflammation [7] and inflammation-based diseases 

[8] . To meet the needs of precision medicine with an approach 

that can be applied to many individuals without the need for 

specialized and costly individualized therapies, we report here the 

development of a technology that meets this targeted goal. 

In this report, we have utilized aptamer technology to mon- 

itor and measure the host inflammatory response. Aptamers are 

oligonucleotides or peptides that can bind to their targets with 

high affinity and specificity [9] . Aptamers, as a potent and specific 

alternative to antibodies, not only have all of the advantages of 

specific interactions with their target molecules but also have 

unique merits including thermal stability, low production cost, 

lack of immunogenicity, ease of chemical synthesis and modi- 

fication, rapid tissue penetration, and unlimited applications in 

diagnostics and therapeutics [10] . Aptamer beacons can reversibly 

load and release a molecular cargo upon binding to a specific 

target analyte [11] . This feature can be deployed for real-time 

sensing, [12–14] computing, actuating, or drug delivery [15–17] , 

thus moving aptamer-based precision medicine closer to reality. 

For example, Ricci and coworkers demonstrated the construction 

of a modular DNA-based nanomachine that can reversibly load 

and release the nucleic acid upon binding to a specific antibody. 

[18] The antibody-powered DNA nanomachines have demonstrated 

great potential in applications including controlled drug release, 

point-of-care diagnostics, and personalized medicine. [19] 

Cytokines, which act as mediators and modulators in the 

differentiation, sensitization, and activation of various immune 

cells, are bioactive soluble proteins produced by the immune 

and nonimmune cells that are directly required for normal host 

immune function as well as disease initiation and progression 

[20 , 21] The elevated concentration of cytokines in the host serum 

or at specific locations (e.g., a solid tumor) normally indicates the 

activation of inflammation or other steps in disease progression 

[22] . Thus, for patients with chronic inflammatory disease or 

cancer to receive treatment at the right time, it will be essen- 

tial to monitor cell functions and cell-to-cell communication, as 

measured by cytokine expression, and then initiate precision drug 

delivery according to the in vivo cytokine concentration. However, 

there are many challenges in meeting this objective, including the 

fact that cytokine-related immune reactions are often extremely 

dynamic and may be transient and/or localized in nature. [22] In 

addition, cytokines are either not detectable or only expressed at 

picomolar concentrations in body fluid or tissues of healthy indi- 

viduals. We have successfully achieved the sensitivity in pg mL −1 

range of cytokine measurement by introducing nanomaterials to 

the sensing interfaces. [23–25] To realize real-time detection of 

cytokines, we have developed different sensing platforms based on 

aptamers for the detection of cytokines. [26 , 27] Taking advantage 

of the structure-switching property of aptamers, we recently 

reported a structure-switching aptamer-based recyclable in vivo 

sensing device for the continuous detection of the cytokine IFN- γ
in mice at a sensitivity of 1 pg mL −1 . [28] In this system, redox 

probes were loaded in the hairpin part of the aptamer, which 

were released upon the detection of IFN- γ . It was observed that 

the released redox probes could be reloaded to aptamers to realize 

the regeneration of the sensing interfaces. Inspired by this system, 

we are interested in developing a smart stimuli-responsive system 

that can enable continuous cytokine monitoring with a high 

sensitivity while drug delivery is triggered when in vivo cytokine 

levels reach a pathological or “alarmed” level. 

Nonsteroidal anti-inflammatory drugs such as aspirin are 

among the earliest agents used in western medicine. Pharmaco- 

logical effects of aspirin are thought to occur through covalent 

modification of cyclooxygenase (COX) [29] . In this report, we 

developed an adaptive in vivo sensing devices ( Fig. 1 ) based on 

a glassy carbon (GC) rod, which provides an approach whereby a 

drug, aspirin, can be released upon the detection of a target level 

of the proinflammatory cytokine interferon- γ (IFN- γ ) in real time. 

The sensor described here is capable of quantitatively and dynam- 

ically detecting IFN- γ both in vitro and in vivo at a sensitivity of 

10 pg mL −1 . Moreover, the released aspirin triggered by IFN- γ
depresses inflammation in a rat model. We demonstrate here that 

aspirin loaded in aptamers and delivered indirectly through blood 

and cerebrospinal fluid or directly to a tissue or organs can avoid 

adverse gastrointestinal effects and other adverse effects observed 

in the liver and kidney. With our approach, we aim, for the first 

time, that patients with chronic inflammatory disease can receive 

the right intervention and treatment at the right time. Additionally, 

this technology may empower patients to precisely monitor their 

personalized health and disease management through real-time 

diagnostics and disease/treatment monitoring. 

2. Experimental section 

2.1. Chemical and materials 

Aspirin, streptavidin, Tris(hydroxymethyl)aminomethane 

(Tris), hydrochloric acid, potassium chloride, magnesium 

chloride, sodium nitrite, potassium ferricyanide, 1-ethyl-3- 

(3-dimethylaminopropyl)carbodiimidehydrochloride (EDC), 4- 

carboxyphenyl aryldiazonium salt, N-hydroxysuccinimide (NHS), 

2-(N-morpholino)ethanesulfonic acid (MES), and lipopolysaccha- 

ride (LPS) were purchased from Sigma-Aldrich. Phosphate buffer 

solution contained 0.05 M KCl and 0.05 M K 2 HPO 4 /KH 2 PO 4 ad- 

justed to pH 7.4 with NaOH or HCl solution. Aqueous solutions 

were prepared using Milli-Q water. Recombinant human IFN- γ
was purchased from R&D Systems (Minneapolis, MN, USA). All 

DNA was produced by Shanghai Sangon Biotech Co. Ltd. (Shanghai, 

China). The sequence of the hairpin aptamer probe (red color is 
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Fig. 1. Schematic of the fabricated adaptive in vivo device for monitoring IFN- γ and IFN- γ -triggered drug delivery. 

the sequence that has affinity to both human and murine IFN- γ ) 

was 5 ′ -Fc-C 6 -GGG GTT GGT TGT GTT GGG TGT GTC CAA CCC 

C-C 3 -biotin-3 ′ . Tris-HCl buffer contained 100 mM Tris-HCl, 100 mM 

NaCl, 1 mM MgCl 2 , and 5 mM KCl, pH at 7.4. 

2.2. Apparatus 

All electrochemical experiments were conducted with CHI660E 

(CH Instruments, Inc., Shanghai). GC electrodes were 3 mm disks 

embedded in epoxy resin (Gaoss Union, China). All experiments 

used a Pt secondary electrode and an SCE (saturated calomel elec- 

trode) reference electrode. X-ray photoelectron spectra (XPS) were 

recorded from GC plates on a VG MultiLab 20 0 0 spectrometer with 

a monochromatic Al K α source, hemispherical analyzer, and mul- 

tichannel detector. The spectra were analyzed using XPSPEAK41 

software. UV–Vis absorption data were recorded on a Shimadzu 

UV–Vis spectrophotometer model 2450. 

2.3. Preparation of aptamer(aspirin) probes 

To prepare the aptamer(aspirin) probes, 100 μL of 20 μM 

aspirin-containing water solution was mixed with 100 μL of 5 μM 

IFN- γ aptamer probe solution, and the mixture solution was in- 

cubated in Tris-HCl buffer solution (pH = 7.4) at room temperature 

for 24 h. After reaction, the sample was filtered using a centrifugal 

filter (Millipore, Amicon Ultra-0.5 mL 30 K) to wash and purify 

the aptamer (aspirin). The achieved aptamer(aspirin) probes were 

stored at 4 °C before use. 

2.4. Preparation of the sensing interface for detection of IFN- γ

The GC electrodes were cleaned by being hand-polished on 

microcloth pads in 1.0, 0.3, and 0.05 μm alumina slurries in suc- 

cession (made from dry alumina and water), and then they were 

thoroughly rinsed with water and sonicated in water for 1 min. 

Before modification with aryldiazonium salts, the GC electrode was 

dried under a stream of nitrogen followed by exposure to 0.5 M 

HCl solution containing 1 mM corresponding diazonium salts, 

which was degassed for 15 min with nitrogen flow in an ice bath. 

The electrochemical reductive modification of the GC electrodes 

with 4-carboxyphenyl (HOOC-ph-GC) was achieved by scanning in 

the potential range from 0.6 V to −1.0 V for 2 cycles with a scan 

rate of 100 mV s −1 . After washing with water and finally drying 

under a stream of nitrogen, the carboxylic group-terminated 

GC surfaces (GC-ph-COOH) were immersed in 10 mM EDC and 

40 mM NHS prepared in 100 mM MES buffer solution for 1 h to 

activate the carboxylic acid group on the electrode surface. After 

rinsing with deionized water and Tris-HCl buffer solution, the ac- 

tivated electrodes were dried under N 2 , followed by incubation in 

200 μg mL −1 streptavidin (STR) in pH = 7.4 Tris-HCl buffer solution 

at room temperature for 4 h to obtain GC-ph-STR surfaces. Finally, 

GC-ph-STR surfaces was immersed into 5 μM aptamer(aspirin) 

solution for 1 h to generate GC-ph-STR-aptamer(aspirin) surfaces 

for the detection of IFN- γ . 

2.5. Electrochemistry measurement of IFN- γ using the 

aptamer(aspirin)-modified sensing interface 

The prepared GC-ph-STR-aptamer(aspirin) surfaces were incu- 

bated with 10 μL Tris-HCl buffer containing IFN- γ at various con- 

centrations for 30 min at room temperature. Then the squarewave 

voltammetry (SWV) of aptamer(aspirin)-modified GC electrodes 

after exposure to IFN- γ was collected using a CHI660E workstation 

by scanning the potential between −0.2 V and 1.2 V with a step po- 

tential of 4 mV, a frequency of 10 Hz, and an amplitude of 40 mV. 

Real-time measurement was carried out by chronoamperometry in 

a series of different concentrations of IFN- γ by fixing the potential 

at 0.2 V for 50 0 0 s for Fc and 0.9 V for 50 0 0 s for aspirin. 

2.6. Cell culture 

Informed consent in this study was obtained under approved 

Animal Research Ethics Committee protocols with the ethics 

number 2017065. Peripheral blood mononuclear cells (PBMCs) 

were purchased from Procell (Wuhan, China). The cells were 

cultured in a T25 cm 

2 flask in RPMI-1640 medium supplemented 

with 10% heat-inactivated human serum AB, 10 U mL −1 of peni- 

cillin, 10 0 0 U mL −1 IL-2, 1100 μg mL −1 of streptomycin,10 μg mL −1 

gentamicin, 2 mM gentamine, and 25 mM HEPES. The cells, at a 

concentration of 1 × 10 6 /mL, were incubated in a 6-well plate at 

37 °C and 5% CO 2 . To harvest, the cells at 80–90% confluence were 

washed twice with Dulbecco’s phosphate-buffered saline, followed 

by trypsinization using 2 mL of trypsin to detach the cells from 

the flask. The trypsin was neutralized by adding 4 mL of fresh 

supplemented medium, and the harvested cells were resuspended 

in complete RPMI-1640 medium, transferred into a centrifuge 
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Fig. 2. (a) Electrochemistry of aptamer(aspirin) probes and aspirin in pH = 7.4 Tris–HCl buffer solution. (b) UV–Vis spectra of aptamer (5 μM), aspirin (50 μM), and ap- 

tamer(aspirin) (5 μM) in pH = 7.4 Tris–HCl buffer solution. 

tube, and centrifuged at 1500 rcf for 10 min. The supernatant 

was discarded, and the cells were resuspended in fresh medium. 

For the preparation of IFN- γ samples, the cells at a density of 

1 × 10 6 /mL were suspended in 1 mL of warm complete medium 

containing 0.1 μg mL −1 LPS to induce IFN- γ expression at 0 h, 2 h, 

4 h, 6 h, 8 h, and 20 h. The supernatants from cells were collected 

in triplicate. The Nunc MaxiSorp 96-well plate and the Galaxy 

plate reader were used for subsequent ELISA. 

2.7. Animal model of endotoxemia 

Adult wild-type Sprague Dawley male rats were purchased 

from Vital River Corporation (Beijing, China). The rats were ran- 

domly divided into two groups (number of animals/group) as (1) 

the control group (no electrode implant) and (2) the electrode 

implant group for corresponding time points at 0 h, 1 h, 6 h, 12 h, 

and 24 h after induction of endotoxemia. Surgery was performed 

under anesthesia by inhalation of 4% isofluorane, and the ani- 

mals were maintained in 2% isofluorane. To induce endotoxemia, 

LPS (5 mg/kg) was injected intraperitoneally. After injection, the 

aspirin-loaded electrodes were implanted into the subcutaneous 

pockets on the back of the animals, and the skin was closed 

with sutures. The animals were euthanized with CO 2 at 0 h, 1 h, 

6 h, 12 h, and 24 h, and the blood and electrodes were harvested 

for analysis. As the lung is the moderately affected tissue in 

endotoxemia, the lungs were collected for histological analysis 

at 24 h. 

2.8. ELISA assays 

To evaluate the effects of aspirin-loaded electrodes, the blood 

specimens of the two groups of rats and the interstitial fluid of 

the lung were collected and processed immediately for further 

cytokine measurement. The levels of inflammatory cytokines (IL-6 

and IFN- γ ) in the serum and fluid were measured using the 

enzyme-linked immunosorbent assay (ELISA) kit (Boster Biological 

Technology, China) according to the manufacturer’s instructions. 

2.9. Histology and immunohistochemistry assay 

The lungs from experimental groups of rats were collected, 

fixed in 10% formalin overnight, embedded in paraffin, and sec- 

tioned at a thickness of 5 μm. The sections were deparaffinized, 

rehydrated, and stained with hematoxylin and eosin (H&E). More- 

over, the sections were also stained with a neutrophil marker (Ly- 

6 G antibody, Thermo Fisher Scientific, USA) for immunohistochem- 

istry measurement. The procedure was carried out according to the 

protocol of the atreptavidin-peroxidase immunohistochemical kit 

with antimouse Ly-6 G/Gr-1 antibodies (1:200, Santa Cruz Biotech- 

nology), followed by antimouse IgG-horseradish peroxidase- 

conjugated secondary antibody (1:200, Jackson), and the 3,3 ′ - 
diaminobenzidine (DAB) coloration kit (Zhongshan Bioengineering 

Co. Ltd, Beijing, China). The immunostaining results were observed 

after samples were treated with a hematoxylin counterstain. For 

histopathological analyses, four inflammatory parameters were 

scored independently from 0 to 4 for each section as previously de- 

scribed [30] : alveolar congestion; (b) hemorrhage; (c) neutrophilic 

infiltration, and (d) thickness of the alveolar wall and hyaline 

membrane formation. Each category was graded on a 0- to 4-point 

scale: 0 = no injury; 1 = injury up to 25% of the field; 2 = injury 

up to 50% of the field; 3 = injury up to 75% of the field; and 

4 = diffuse. [31] Injury slides were randomized, read blindly, and 

scored for each. The inflammatory cell number and the positive 

area of IHC staining were evaluated with Image-Pro-Plus software. 

2.10. Statistical methods 

All experiments were performed in at least triplicate, and 

the results were presented as the mean and standard deviation 

of the three replicates. Statistical analyses were performed with 

both Excel and Origin. We considered p < 0.01 as statistical 

significance. 

3. Results and discussion 

3.1. Characterization of aptamer (aspirin) probes 

Initially, the SWVs of GC electrodes in pH = 7.4 Tris-HCl buffer 

solution after applying 10 μL of 20 μM aspirin, 5 μM aptamer, 

and 5 μM aptamer(aspirin) probe were determined. As shown in 

Fig. 2 , a pair of redox peaks was observed for GC electrodes after 

applying the aspirin solution at 0.9 V. However, two pairs of peak 

current were observed after applying the aptamer(aspirin) probe 

on the GC electrode at 0.2 V and 0.9 V, representing ferrocene and 

aspirin, respectively, suggesting that aspirin has been embedded 

into the stem part of the aptamer probe as shown in the schematic 

design in Fig. 1 . This result was confirmed by UV–Vis absorption 

spectroscopy ( Fig. 2 b), as one absorption peak, centered at 260 nm, 

was observed in the UV–Vis absorption spectra of aptamer and 

aptamer (aspirin). Another absorption peak, centered at 295 nm, 

was observed in the UV–Vis absorption spectra of both aspirin 

and aptamer (aspirin) [32] . This result suggested that aspirin 

was successfully intercalated into the double-stranded 5 ′ -GC-3 ′ 
sequences of the aptamer by the force of π–π stacking to confirm 

the aptamer (aspirin) probes [33] . Under optimized conditions, we 

quantified the number of aspirin molecules loaded on the aptamer 
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Fig. 3. (a) C1s spectra for GC-ph-COOH. (b) N1s spectra for GC-ph-COOH. (c) C1s spectra for GC-ph-STR-aptamer(aspirin). (d) N1s spectra for GC-ph-STR-aptamer(aspirin). 

(e) P2p spectra for GC-ph-STR-aptamer(aspirin). (f) GC-ph-STR-aptamer(aspirin) after exposure to 500 pg mL −1 IFN- γ for 30 min followed by washing. (g) XPS survey spectra 

for stepwise modification of the sensing interfaces. 

complex according to the modified protocol [34] . Supplementary 

Figure S1 shows the SWV curves that were obtained by reacting 

100 μL of 5 μM aptamer solution with different concentrations 

of 100 μL aspirin solution for 24 h. The oxidation peak current of 

aspirin increased with the increase in the concentration of aspirin 

from 5 to 100 μM, and it reached a plateau when a concentration 

of more than 20 μM was added. Thus, the optimized concentration 

of the aspirin solution was 20 μM (Supplementary Figure S1 a). 

On the basis of the calibration curve between aspirin concentra- 

tion and absorbance (Supplementary Figure S1 b), the maximal 

absorbance of the aspirin was observed when the ratio of aspirin 

and aptamer reached 3:1, suggesting three aspirin molecules could 

intercalate into one aptamer. To provide more information about 

the loading capacity of aspirin on each electrode, the optimized 

electrode was heated to 95 °C to release all the encapsulated 

aspirin as a result of DNA denaturation. The released aspirin 

was measured by UV–Vis absorption spectroscopy, indicating the 

amount of aspirin on each electrode was approximately 3.1 μmol. 

3.2. XPS characterization of the stepwise fabricated sensing interface 

XPS measurements were carried out to further characterize GC 

surfaces after stepwise modification with different species. C1s has 

two peaks at around 284.7 eV and 288.9 eV. The peak at 288.9 eV 

is assigned to the carbon of the carboxyl groups on the surface of 

GC-ph-COOH ( Fig. 3 a) [35] . However, N1s has two peaks at about 

400.2 eV, which are assigned to unreacted carboxyphenyl ( Fig. 3 b). 

For the GC-ph-STR-aptamer(aspirin) surface, C1s has four peaks 

at around 284.4 eV, 286.1 eV, 287.7 eV, and 291.2 eV ( Fig. 3 c). The 

peak at 286.1 eV is assigned to the –C 

–O 

–C- species in streptavidin 

[36] . The peak at 287.7 eV is assigned to the peptide bond formed 

by the interaction between -COOH from 4-carboxyphenyl on 

electrodes and amine from streptavidin [26] . The peak at 291.2 eV 

is assigned to the -COO 

–CH 3 - species in aspirin [33] . In addition, 

the peak at 133.6 eV was assigned to phosphorus in the aptamer 

DNA ( Fig. 3 e) [37] . The results suggest that aptamer(aspirin) was 

successfully attached onto the GC-ph-COOH surface. However, 

two peaks at 399.7 eV and 401.2 eV were observed in the N1 

species on the GC-ph-STR-aptamer(aspirin) surfaces, and these 

were assigned to unreacted EDC and NHS, respectively ( Fig. 3 d). 

However, the peak of C1s at 291.2 eV disappeared after exposure 

of the aptamer(aspirin)-modified GC surfaces to 500 pg mL −1 

IFN- γ , suggesting that the GC-ph-STR-aptamer(aspirin) surfaces 

could release aspirin in the presence of IFN- γ ( Fig. 3 f). Fig. 3 g 

illustrates XPS survey spectra confirming the successful stepwise 

modification of the sensing interfaces. 
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3.3. Electrochemistry characterization of the stepwise fabricated 

sensing interface 

The stepwise fabrication of the GC-ph-STR-aptamer(aspirin) 

sensing surfaces was also characterized by electrochemistry. The 

first sweep of the electrochemical modification of GC with the 

4-carboxyphenyl groups (Supplementary Figure S1 c) produced an 

irreversible reduction wave at −0.4 V corresponding to the reduc- 

tion of the carboxyl acid group to a radical anion . On the second 

scan, the first wave at −0.4 V vanished, suggesting inhibition of 

the electron transfer by the 4-carboxyphenyl group grafted on the 

GC surfaces. After the modification of 4-carboxyphenyl layers, the 

redox peaks of Fe(CN) 6 
3- observed with bare GC electrodes were 

completely suppressed (Supplementary Figure S1 d), giving strong 

evidence that a monolayer of 4-carboxyphenyl, which blocked the 

access of redox molecules to the GC electrode, had formed on the 

GC surfaces. The SWV curves of bare GC, HOOC-ph-GC, STR-GC, and 

aptamer(aspirin)-GC in PBS buffer are displayed in Supplementary 

Figure S1 e. A redox peak was observed at 0.8 V, which is the char- 

acteristic peak of STR, suggesting that STR was successfully mod- 

ified onto the electrode surface [38] . After modification of the ap- 

tamer(aspirin) onto the GC electrode to form aptamer (GC) through 

the interaction between biotin and streptavidin, a symbolic peak 

from Fc was observed in SWV (Supplementary Figure S1 f). 

3.4. In vitro real-time monitoring of IFN- γ and IFN- γ -triggered 

aspirin release using the GC-ph-STR-aptamer (aspirin) interface 

After the successful fabrication of the GC-ph-STR- 

aptamer(aspirin) sensing interface, the electrochemical response 

of the GC-ph-STR-aptamer(aspirin) sensing interface to IFN- γ was 

analyzed ( Fig. 4 ). In the absence of IFN- γ , there was an obvious 

redox peak observed at 0.2 V, which belongs to a ferrocene-free 

aptamer ( Fig. 4 a). According to the redox peak of Fc in Fig. 4 a, the 

surface coverage of the aptamer was calculated to be 5.1 x How- 

ever, the peak at 0.2 V disappeared, and a pair of redox peaks at 

approximately 0.9 V, characteristic of aspirin, appeared after expo- 

sure to IFN- γ followed by extensive washing. The electrochemical 

signal switching was due to the binding of IFN- γ to the loop part 

of the aptamer, leading to the opening of the stem part of aptamer, 

followed by the subsequent release of aspirin molecules into the 

environment. This then induced the electric communication be- 

tween the released aspirin and the underneath GC electrode, 

resulting in the subsequent Faradic current at 0.9 V. Furthermore, 

Fc redox molecules labeled on aptamers were dissociated away 

from the electrode surface because of the configuration change 

of the aptamer, resulting in decreased electron transfer efficiency 

between the aptamers and underlying electrodes and, consequen- 

tially, switching off of the current. To confirm this hypothesis, 

SWV, as a more sensitive electrochemical technique, was used to 

quantitatively monitor the electrochemical response ( Fig. 4 b). 

The real-time sensor described here is based on analyte- 

kissing-induced structure-switching aptamers and subsequent 

aspirin-releasing signaling molecules. Thus, any factors that affect 

the binding of aspirin to the aptamer will contribute to the sen- 

sor performance. To investigate environmental influences on the 

sensor, the effect of pH, salt concentration, and temperature on 

the stability of the GC-ph-STR-aptamer(aspirin) sensing interface 

(the release of aspirin) was analyzed (Supplementary Fig. S2). It 

was observed that under acidic conditions, the DNA was deprived 

of purines leading to the release of aspirin. Thus, less aspirin was 

released after reaction with IFN- γ , resulting in a smaller current. 

However, when the pH reached 8 (Supplementary Fig. S2 a), the 

aptamer was denatured by the alkaline condition, and that neutral- 

ized the charge of acids but caused the hydrolysis of bases upon 

prolonged treatment. Consequently, pH 7.4 was found to be the 

optimized condition required to monitor IFN- γ levels. The sensing 

provided the optimized performance when the salt concentration 

was 100 mM (Supplementary Figure S2 b). In addition, increasing 

the temperature from 25 °C to 95 °C also caused the release of 

aspirin molecules before reaction with IFN- γ . Heating the ap- 

tamer(aspirin) solution to 95 °C leads to DNA denaturation by sep- 

arating a double strand into two single strands, thus subsequently 

releasing the incorporated aspirin molecules, a process that oc- 

curred when the hydrogen bonds between the DNA strands were 

broken [39] . Consequently, the stem part of the aptamer opens 

and releases the incorporated aspirin molecules (Supplementary 

Figure S2 c). However, the GC-ph-STR-aptamer(aspirin) sensing 

interface performed well at physiological temperature, i.e., 37 °C, 

which makes it stable under physiological conditions. The reaction 

time with IFN- γ was also investigated by monitoring the change 

in current with the reaction time (Supplementary Fig. S2 d). The 

current increased with the reaction time and reached a plateau 

when the reaction time was 60 min. The current at 30 min was ap- 

proximately 90% of that observed at 60 min and thus was selected 

as the optimized reaction time. Under optimized conditions, the 

peak current corresponding to IFN- γ decreased with the increase 

in IFN- γ concentration ( Fig. 4 c). There was a linear range of 10–

500 pg mL −1 for the detection of IFN- γ with the lowest detection 

limit of 10 pg mL −1 in Tris buffer. As determined from the mid- 

point of the IFN- γ calibration curve shown in Fig. 4 d, the affinity 

constant between IFN- γ (molecular weight 16.9 kDa) and the ap- 

tamer(aspirin) was calculated to be approximately 5.3 × 10 10 M 

− 1 . 

The typical affinity constant K a for antigen–antibody reactions is in 

the range of 10 8 to 10 12 M 

−1 [40] , and hence, the data presented 

here indicate that the aptamer(aspirin) probe has a very high 

affinity to IFN- γ . Furthermore, the electrochemistry responsible 

for the released aspirin was recorded ( Fig. 4 e), and the SWV peak 

current increased with increasing IFN- γ concentration. The peak 

current at approximately 0.9 V demonstrated a linear relationship 

with the concentration of IFN- γ in the range of 0–500 pg mL −1 . 

This observation indicates that aspirin was released, which can 

be quantitatively measured according to the current change in 

0.9 V. This further confirms that our proof-of-concept system 

for cytokine detection and cytokine-triggered drug delivery was 

effective. 

To investigate the real-time sensing capability of the GC-ph- 

STR-aptamer(aspirin) interface, a chronoamperometry experiment 

at a constant potential of 0.2 V (close to the oxidation potential 

of Fc) was carried out by adding different concentrations of IFN- γ
under constant stirring ( Fig. 5 a). Fig. 5 b shows the calibration 

curve based on the chronoamperometry measurement. The linear 

range obtained here was 10–500 pg mL −1 , which is comparable to 

that obtained by SWV as shown in Fig. 3 d. Upon the addition of 

IFN- γ , the monitored current of the GC-ph-STR-aptamer(aspirin) 

sensing interface decreased with the increase of the IFN- γ concen- 

tration. A chronoamperometry experiment at a constant potential 

of 0.9 V (close to the oxidation potential of aspirin) was carried 

out by adding different concentrations of IFN- γ under constant 

stirring ( Fig. 5 c). Upon the addition of IFN- γ , the monitored 

current of the GC-ph-STR-aptamer(aspirin), in contrast to the 

current observed by a constant potential of 0.2 V, increased with 

increasing IFN- γ concentration. This suggests that the presence 

of IFN- γ induced the configuration change of the aptamer and 

the subsequent release of aspirin, resulting in increased current at 

0.9 V. To confirm the proposed mechanism of the analyte-induced 

drug delivery, we measured the rate of aspirin release in the pres- 

ence of IFN- γ . According to Chow’s method [41] , the drug release 

rate can be calculated using the equation K = ln(C /C 0 ) / (t-t 0 ). In 

the presence of IFN- γ , the rate of aspirin release was calculated 

to be 0.033 μM min 

−1 , suggesting a quantitatively controlled drug 

release. 
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Fig. 4. (a) Cyclic voltammetries and (b) Squarewave voltammetries of the GC-ph-STR-aptamer(aspirin) sensing interface in pH 7.4 Tris buffer before and after exposure to 

500 pg mL −1 IFN- γ . (c) Spectrum of the Fc peak generated by the SWV of GC-ph-STR-aptamer(aspirin) after exposure to different concentrations of IFN- γ (0, 10, 50, 200, 

30 0, 40 0, 50 0, 80 0, and 10 0 0 pg mL −1 ). (d) The relationship of the peak current of Fc at (c) with the log concentration of IFN- γ . (e) Spectra of the aspirin peak generated by 

the SWV of GC-ph-STR-aptamer(aspirin) after exposure to different concentrations of IFN- γ . (f) The relationship of the peak current corresponding to aspirin in (e) with the 

concentration of IFN- γ . 

To investigate the selectivity of the fabricated sensor, seven 

potentially interfering compounds, namely, bovine serum albu- 

min (BSA, 2 mg mL −1 ), prostate-specific antigen (PSA, 1 μg mL −1 ), 

cancer antigen 125 (CA-125, 1 μg mL −1 ), IL-6 (1 μg mL −1 ), TNF- 

ɑ (1 μg mL −1 ), IFN- α (1 μg mL −1 ), and IFN- β (1 μg mL −1 ), were 

added to the detection buffer solution in the presence of IFN- γ
(500 pg mL −1 ) (Supplementary Figure S2 e). No significant ef- 

fect from these seven nonspecific proteins was detected. The 

retained current percentage for all nonspecific proteins was above 

90%, suggesting an insignificant degree of interference by these 

molecules tested in relation to the control ( < 10%). The stability of 

the sensing interface was also analyzed by incubating the GC-ph- 

STR-aptamer(aspirin) sensing interface in Tris buffer for 1, 2, 3, 5, 

10, 15, 20, 25, and 30 days at room temperature, respectively. The 

electrochemistry was monitored at each time point (Supplemen- 

tary Figure S2 e). Less than 5% of the signal was lost from Fc after 

25 days, indicating that the GC-ph-STR-aptamer(aspirin) sensing 

interface was stable for at least 25 days. 

3.5. Detection of IFN- γ in a cellular microenvironment 

The GC-ph-STR-aptamer(aspirin) sensing interface was tested 

for the detection of IFN- γ secreted by PBMCs ( Fig. 6 ). First, a 

chronoamperometry experiment at a constant potential of 0.2 V 

was carried out in a medium containing 1 × 10 6 cells under 

stirring, to which IFN- γ , at concentrations of 10–10 0 0 pg mL −1 , 

was added ( Fig. 6 a). It was observed that the current decreased 

continuously after adding IFN- γ until it reached a plateau when 

the concentration of IFN- γ was 500 pg mL −1 . The calibration curve 

for real-time measurement of IFN- γ in the cell culture medium 

was plotted as shown in Fig. 6 b. The supernatant of the 1 × 10 6 

PBMCs was collected for IFN- γ analysis after LPS stimulation for 2, 

4, 6, 8, and 12 h. The supernatant samples were subsequently an- 

alyzed by ELISA and prepared for the GC-ph-STR-aptamer(aspirin) 

sensing interface. As shown in Fig. 6 b, the concentration of IFN- γ
increased with the duration of the 10 ng mL −1 LPS treatment, and 

the maximum level of 500 pg mL −1 IFN- γ was obtained after 
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Fig. 5. (a) The current record as a function of time for GC-ph-STR-aptamer(aspirin) in pH = 7.4 Tris–HCl buffer solution at a constant potential of 0.2 V after adding IFN- γ at 

different concentrations. (b) The calibration curve of the GC-ph-GO-aptamer (Ru) sensing interface obtained by the chronoamperometry in (a) and another two independent 

measurements. (c) The current record as a function of time for GC-ph-STR-aptamer(aspirin) in pH = 7.4 Tris–HCl buffer solution at a constant potential of 0.9 V after adding 

IFN- γ at different concentrations. (d) The calibration curve of the GC-ph-GO-aptamer(Ru) sensing interface obtained by the chronoamperometry in (c) and another two 

independent measurements. (e) I-t curves of aspirin at different concentrations of IFN- γ . (f) The standard linear calibration curve of cytokine according to (e) and another 

two independent measurements. 

Fig. 6. (a) Chronoamperometry recording of GC-ph-STR-aptamer(aspirin) sensing cell culture media of PBMCs at a constant potential of 0.2 V after LPS treatment. (b) Cali- 

bration curve of the GC-ph-STR-aptamer(aspirin) sensing interface obtained by chronoamperometry in (a) and another two independent measurements. The inset in (b) is a 

comparison of the IFN- γ secretion profile between the presented sensor and the traditional ELISA after 10 ng mL −1 LPS stimulation. 
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Fig. 7. Reduced Fc currents and increased aspirin currents measured in the blood of rats with inflammation using the GC-ph-STR-aptamer(aspirin) sensor. Currents generated 

at constant potentials of 0.2 V (a) and 0.9 V (b) were measured. 

Fig. 8. Relationship between peak current and implantation time, which was obtained by the SWV measurement of the GC-ph-STR-aptamer(aspirin) device after implantation 

into the inflammatory rat model for different time points, in Tris–HCl buffer with the potential between 0 V and 0.5 V (a) and in Tris–HCl buffer containing 10 0 0 pg/mL of 

IFN- γ with the potential between 0.7 V and 1.2 V (b). (a) Fc signal on the electrode and (b) the residual aspirin on the electrode. The inset shows the release profile of aspirin 

against the implantation time calculated from (b). 

8 h LPS stimulation, a finding that was consistent to what we 

previously reported. [30] A comparison of IFN- γ detection using 

the proposed biosensor device and the traditional ELISA method 

is included in the inset of Fig. 6 b. The sensor reported herein and 

ELISA displayed similar IFN- γ secretion patterns, suggesting that 

the performance of the sensor was comparable with that of ELISA 

for the detection of IFN- γ in a cell microenvironment. 

3.6. Detection of IFN- γ and IFN- γ -triggered aspirin release in blood 

samples 

The performance of the GC-ph-STR-aptamer(aspirin) for the 

detection of IFN- γ and simultaneous aspirin release was investi- 

gated in blood samples obtained from male rats intraperitoneally 

injected with LPS to induce endotoxemia (designated “inflam- 

matory rat”). Blood samples were collected using heparinized 

capillary tubes at 0 h and 24 h after implantation. The GC-ph-STR- 

aptamer(aspirin)-modified in vivo devices were incubated in 1 mL 

of the blood collected from normal rats and the inflammatory 

rat model for 1 h. Then 1 mL of Tris–HCl buffer was added, and 

the chronoamperometry experiment at a constant potential of 

0.2 V (Fc) and 0.9 V (aspirin) was performed utilizing these blood 

samples. As shown in Fig. 7 and Supplementary Figure S3, the 

monitored current of the GC-ph-STR-aptamer(aspirin) for the Fc 

peak in the blood of normal rats was much higher than that 

measured in the blood of the inflammatory rat model, while a 

completely contrasting phenomenon was observed in the current 

for the aspirin peak. This observation suggested that IFN- γ levels 

in the blood of the inflammatory rat model were much higher than 

those measured in the blood of normal rats. These results also 

demonstrated that only IFN- γ in the blood of the inflammatory rat 

model was able to release the aspirin from the GC-ph-STR-aptamer, 

thereby changing the configuration of aptamer to suppress the 

electrochemical signal of Fc. This demonstrated the potential of 

the GC-ph-STR-aptamer(aspirin) sensing device for the integrative 

detection of pro-inflammatory signals and subsequent therapy. 

3.7. Detection of IFN- γ and IFN- γ -triggered aspirin release in living 

rats 

To further investigate the in vivo performance of the GC- 

ph-STR-aptamer(aspirin) device for IFN- γ detection and aspirin 

release, the electrodes were initially implanted into the sub- 

cutaneous tissue of rats treated with LPS for 0–24 h. Then the 

withdrawn electrodes were measured by SWV in Tris-HCl buffer 

with the potential between −0 V and 0.5 V and in Tris-HCl buffer 

containing 10 0 0 pg mL −1 of IFN- γ with the potential between 0.7 V 

and 1.2 V to check the remnant Fc and aspirin signal using pro- 

cedures identical to those detailed above. As shown in Fig. 8 and 

Supplementary Figure S3, the SWV curves and current peak of the 

GC-ph-STR-aptamer(aspirin) devices against the implantation time 

in LPS-treated rats display dramatic peak current drops with time 

extension. The gradually decrease in the Fc and aspirin signals, 

respectively, demonstrated the specific detection of our sensor 

of inflammation (i.e . , IFN- γ expression) and the inflammation- 

triggered aspirin release. Moreover, the difference in peak current 

between the untreated electrode (from the original aspirin) and 

the withdrawn electrodes (from the remnant aspirin) was used to 

calculate the percentage of aspirin release during the treatment. 

The consequence of the in vivo binding of IFN- γ on the GC- 

ph-STR-aptamer(aspirin) electrode was the immediate release of 

aspirin. The relationship between the release percentage of aspirin 

and the treatment time was also obtained ( Fig. 8 ), revealing the 

prospect of the sensor for in vivo detection and subsequent aspirin 

delivery targeted to the treatment of inflammation. As shown in 

the inset of Fig. 8 , the in vivo release efficiency of aspirin could 

reach up to 85.6% after 24 h. Considering that the body weight of 

rats used herein was approximately 180 g, each electrode would 
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Fig. 9. (a) The quantification of inflammatory cells per field of lung tissue. (b-c) Expression level of inflammatory cytokines (IFN- γ and IL-6) in the interstitial fluid of the lung 

tissue by ELISA. (d) Histological analysis indicated that LPS injection caused capillary expansion and congestion, as well as neutrophil infiltration into the lung tissue, while 

the lung injury was well controlled by applying the electrode. The scale bar is 100 μm. (e) Lung injury score increased significantly after LPS administration and significantly 

reduced after electrode treatment ( ∗∗ , p < 0.01 compared with the LPS group). (f) Immunohistochemically identified neutrophils in the lung after LPS administration and 

electrode treatment. Yellow arrows represent the positive area. The scale bar is 100 μm. (g) Score of Ly-6 G protein expression levels increased in the lung sections of two 

groups ( ∗∗ , p < 0.01 compared with the LPS group). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

release an aspirin level of 2.7 mg/kg in rat blood after 24 h of 

implantation. This aspirin concentration was lower than the ideal 

amount (10 mg/kg/day) used for traditionally anti-inflammatory 

treatment in a murine model [42] . 

3.8. In vivo inflammation control using the adaptive 

GC-ph-STR-aptamer (aspirin) devices 

LPS is the major element of the outer membrane in gram- 

negative bacteria. LPS-induced endotoxemia can lead to serious 

acute lung injury (ALI), which is characterized by an increase in 

capillary permeability and neutrophil migration into the lungs 

[43] . Moreover, exposure to LPS can induce the secretion of ad- 

ditional proinflammatory cytokines, resulting in the activation of 

polymorphonuclear neutrophils (PMNs) and further inflammatory 

responses in the lung [44] . To demonstrate the performance of 

adaptive GC-ph-STR-aptamer(aspirin) in vivo devices, we collected 

lungs from the inflammatory rat model with and without electrode 

implantation for 24 h, and then the quantitative analysis of these 

lung samples was performed to provide evidence for the in vivo 

therapeutic efficacy of our electrode. As shown in Fig. 9 a, the num- 

ber of inflammatory cells was significantly reduced after electrode 

administration under LPS treatment condition. In addition, the 

ELISA results show that the expression of inflammatory cytokines 

(IFN- γ and IL-6) in the interstitial fluid obviously deregulated, 

indicating the effective inhibition of the inflammation ( Fig. 9 b and 

c). These lung samples were also stained with hematoxylin and 

eosin (H&E) for histological analysis and neutrophil marker (Ly-6G) 

for polymorphonuclear (PMN) leukocyte infiltration by immuno- 

histochemistry detection, indicating that PMN cells infiltrated 

more into the lungs of the untreated group 24 h after LPS injection 

than those of the electrode-treated group ( Fig. 9 d and f). Moreover, 

Fig. 9 e and g show that the degree of lung injury was significantly 

improved while the number of neutrophil expression was dramati- 

cally reduced after treatment with our electrode, providing further 

evidence of the therapeutic efficacy of our electrode. 

To further evaluate the therapy, the blood specimens of the 

electrode-treated and untreated inflammatory rat model were col- 

lected for the measurement of the inflammatory cytokines IFN- γ
and IL-6. As shown in Fig. 10 , the levels of inflammatory cytokines 

(IL-6 and IFN- γ ) in the electrode-treated rats have no obvious 

change within 24 h after LPS injection, which is in accordance with 
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Fig. 10. The inflammation induced by LPS (control, untreated group) was inhibited by the GC-ph-STR-aptamer(aspirin) sensor (electrode-treated group) or pure aspirin 

(aspirin-treated group). The concentration of IFN- γ (a) and IL-6 (b) was measured in the serum of the inflammatory rat model with and without treatments. 

the pure aspirin-treated rats. However, the concentration of both 

inflammatory cytokines in rats without treatment dramatically in- 

creased only in several hours. This indicates that the inflammation 

could be effectively and consistently suppressed by application of 

our electrodes. These results revealed that this adaptive GC-ph- 

STR-aptamer(aspirin) in vivo device could achieve the on-demand 

release of aspirin to effectively inhibit inflammation. 

4. Conclusions 

Cytokines, the signaling molecules in the immune system, play 

a key role in mediating and controlling immune and inflamma- 

tory responses. [45] Complex interactions exist among cytokines, 

inflammation, and the adaptive and innate responses to maintain 

normal homeostasis. It is essential to develop accurate and sen- 

sitive methods for the measurement of cytokines in real time to 

dynamically monitor inflammation, and such measurements can 

be an important basis for the proper treatment of developing and 

ongoing disease. [22 , 30 , 46] Recently, there has been increasing 

evidence that an abnormal inflammatory response is closely as- 

sociated with various disease conditions. [1] Thus, interest has 

been shown toward therapeutically targeting the inflammatory 

response. Lack of precise, directed application of therapeutics and 

reduced effectiveness with chronic use are current limitations for 

the treatment of inflammation. To overcome these issues, preci- 

sion or personalized medicine has demonstrated the capability of 

diagnosis and triggered treatment by delivering “the right drug, at 

the right dose, and at the right time” [6] . 

On-demand, local delivery of anti-inflammatory drugs to target 

tissues provides a means for effective drug dosing while reducing 

the adverse effects of systemic drug delivery. The study reported 

here has demonstrated a proof-of-concept theranostic approach for 

inflammation based on analyte-kissing-induced signaling whereby 

a drug (in this report, aspirin) can be released upon the detection 

of a target level of a proinflammatory cytokine (i.e., interferon- γ
(IFN- γ )) in real time. The structure-switching aptamer-based 

biosensor described here is capable of quantitatively and dynam- 

ically detecting IFN- γ both in vitro and in vivo with a sensitivity 

of 10 pg mL −1 . Moreover, the released aspirin triggered by the 

inflammatory cytokine IFN- γ is able to inhibit inflammation in a 

rat model, and the release of aspirin can be quantitatively con- 

trolled. This study is a an advancement of our previous study that 

reported a sensitive sensing device for monitoring inflammation 

in mice. [30] In our previous report, the positively charged redox 

probes (ruthenium hexamine), acting as the signaling molecules, 

were loaded into the structure-switching aptamers. The presence 

of IFN- γ triggers the release of redox probes, resulting in an 

electrochemical signal that measures the concentration of IFN- γ . 

Although the sensitivity of this sensor is high, this in vivo sensing 

device has three limitations: 1) it cannot act as a real-time sen- 

sor, 2) the release of redox probes into the mice might cause a 

potential safety problem, and 3) it does not have the therapeutic 

function of the device reported in this study. 

Specifically, here we prepared the adaptive device based on 

the aspirin intercalating hairpin aptamer that can realize the 

spatially localized monitoring of IFN- γ in real time along with the 

simultaneous delivery of aspirin. Furthermore, the performance of 

this adaptive device has been investigated in vitro , in cell culture 

medium, in blood samples, and in the serum of LPS-treated rats. 

To the best of our knowledge, this is the first study to provide 

a technology for the in vivo real-time monitoring of proinflam- 

matory cytokines and the subsequent therapeutic delivery of 

anti-inflammatory molecules. Thus, this report provides a new and 

promising strategy for the precision theranostic of inflammation. 

By varying the aptamer probes targeted to different analytes 

(such as cancer biomarkers) and also the availability of small 

therapeutic drugs (such as doxorubicin), this universal theranostic 

platform has significant potential for personalized medicine and 

the effective treatment of numerous health conditions. 
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