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ABSTRACT

Tunable microwave and millimeter wave oscillators and bandpass filters with ultra-low phase noise play a critical role in electronic devices,
including wireless communication, microelectronics, and quantum computing. Magnetic materials, such as yttrium iron garnet (YIG), pos-
sess ultra-low phase noise and a ferromagnetic resonance tunable up to tens of gigahertz. Here, we report structural and magnetic properties
of single-crystal 60 and 130 nm-thick YIG films prepared by metal-organic decomposition epitaxy. These films, consisting of multiple homo-
epitaxially grown monolayers, are atomically flat and possess magnetic properties similar to those grown with liquid-phase epitaxy, pulsed
laser deposition, and sputtering. Our approach does not involve expensive high-vacuum deposition systems and is a true low-cost alternative
to current commercial techniques that have the potential to transform the industry.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0067122

Tunable oscillators1 and bandpass filters2 are critical to the func-
tionality of many electronic devices, including cellular communica-
tion, microelectronics, and quantum computing. Compared with
traditional varactor diode-tuned oscillator technology,3 ferromagnetic

resonance-based oscillators with tunable resonance and low damping
promise a significant increase in the data rate of emerging 5G cellular
networks4 owing to a reduced oscillator phase noise (40 dB) and the
commercialization of magnonic electronics,5 transistors,6,7 and logic
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gates8 and harnessing the inverse spin Hall effect;9–11 spin pump-
ing;12–15 magnetostatic surface spin wave-based delay lines;16 and
microwave isolators, circulators, and limiters.17 Wireless communi-
cation alone represents a market with roughly four billion people on
earth owning a smart phone, an annual production of 1.5 � 109,
and the world-wide rolling out of 5G cellular demanding ultra-low
phase noise oscillators for high-data rate transmission. For these
applications, yttrium iron garnet (YIG, Y3Fe5O12)

18 and related gar-
nets are the most likely candidates because of outstanding magnetic
characteristics and the possibility of epitaxial growth of single-
crystal nanometer thick films or nanofilms,19 based on, e.g., liquid-
phase epitaxy (LPE),20 pulsed laser deposition (PLD),10,13,21–25 off-
axis sputtering,26–31 and molecular beam epitaxy.32 These techni-
ques involve high-vacuum fabrication tools, which are less suited
for high-volume manufacturing of the kind needed for 5G cellular
handsets and infrastructure.33

Here, we report structural and magnetic properties, including fer-
romagnetic resonances, of epitaxial YIG nanofilms fabricated by
metal-organic decomposition (MOD)34—an inexpensive alternative
due to low process fabrication costs and low capital equipment costs.
Epitaxial atomically flat layers with thicknesses up to 500nm are
grown through repeated application of MOD epitaxy. The saturation
magnetization, gyromagnetic ratio, effective Gilbert damping, and
inhomogeneous line broadening are very similar to and, in some cases,
even better than those obtained by existing high-vacuum deposition
techniques. The experimental data obtained from broadband spectros-
copy are consistent with micromagnetic simulations and reveal a qual-
ity factor for in-plane geometry of 200–300 (experiment) and 2000
(simulation) at 20GHz. The linear increase in the quality factor with

excitation frequency observed in both experiment and simulations is
essential to high-frequency applications.

The epitaxial YIG nanofilms are synthesized from a FeY-03(5/3)
precursor solution (Kojundo Chemical Laboratory Co., Ltd.) contain-
ing 1.6wt. % Fe2O3 and 1.4wt. % Y2O3. The solution is spin-coated at
500 rpm for 10 s followed by 2000 rpm for 20 s onto ð5� 5Þmm2 and
ð10� 10Þ mm2 gadolinium gallium garnet(111) (GGG, Gd3Ga5O12)
substrates [MTI Corporation and University Wafer (UW)] and dried
for 24 h at room temperature to evaporate organic volatiles. The dry-
ing procedure can be accelerated to 1 h if heated to 150 �C. The dried
compound is heated to 1100 �C for 4 h in a quartz tub furnace in the
presence of a research-grade oxygen atmosphere. During this anneal-
ing process, the layer crystallizes in a three-step process: decomposi-
tion of the metal-organic compounds (pyrolysis); elimination of the
remaining organic material through annealing in oxygen atmosphere;
and migration of metal atoms to form the YIG lattice structure accord-
ing to the GGG substrate (lattice constants: aYIG ¼ 12:38 Å; aGGG
¼ 12:37 Å). The resulting heteroepitaxial layer is atomically flat with a
surface roughness �0:2 nm for MTI GGG substrates [Fig. 1(a)],
ð606 20Þ nm thick, and according to electron backscatter diffraction
single-crystalline [Fig. 1(b)]. Spin-coating and annealing on a non-lat-
tice-matched substrate, such as silicon, yield a polycrystalline structure
[Fig. 1(b)]. The absolute orientation of the crystallographic axis of
the single-crystal YIG nanofilms is determined from x-ray diffraction
[Fig. 1(c)]. Remarkably, repetitive spin coating and annealing to
synthesize bilayers and multilayers show no signs of boundary layer
discontinuity or increased surface roughness corroborating homoepi-
taxial growth for up to at least ten layers. This threshold is the result of
our studies limited to a maximum of ten repetitions. Monolayer and

FIG. 1. Structural and magnetic properties
of YIG nanofilms synthesized using metal-
organic decomposition epitaxy. (a) Atomic
force microscopy revealing atomic terrace
formation. (b) Electron backscatter diffrac-
tion of YIG nanofilms prepared on (left) Si
and (right) GGG(111) demonstrating poly-
crystalline and single-crystalline epitaxial
growth. (c) X-ray diffraction of monolayer
and trilayer films corroborating single-
crystallinity and homoepitaxy. (d) In-plane
magnetic hysteresis loop obtained for
ð2:5� 2:5Þ mm2 corner pieces at room
temperature from vibrating sample mag-
netometry and magneto-optical Kerr effect
magnetometry (scaled) revealing the spa-
tial variations in the coercivity and satura-
tion magnetization.
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trilayer films, investigated in detail below, are 57 and 130nm thick,
respectively, according to x-ray diffraction [Fig. 1(c)]. A constant sur-
face roughness �0:2 nm [Fig. 1(a)] is assigned to the atomic terrace
formation.

These structural properties translate to a coercive field of
(80–400) A/m and a saturation magnetization ranging from 120 to
140 kA/m [Fig. 1(d); Table I], which is in good agreement with the
bulk single-crystal values of 140 kA/m. A closer look at the magnetic
hysteresis loops obtained at room temperature with vibrating sample
magnetometry (VSM, Quantum Design DynaCool PPMS) and
magneto-optical Kerr effect magnetometry (MOKE) reveals local var-
iations in the magnetic properties due to spin coating-induced thicker
edge regions (�1 mm-wide) with impaired crystallization yielding the
larger coercive field and smaller saturation magnetization. The optical
setup features a 30 mW 639nm continuous wave diode laser, whose
intensity is modulated at 2 kHz with a mechanical chopper that is syn-
chronized with a kHz lock-in amplifier and provides a spatial resolu-
tion of about 10lm. An initial annealing of the GGG substrate in a
research-grade oxygen atmosphere at 1100 �C for 4 h promotes (111)
surface reconstruction, minimizes roughness [ð1:0–2:5Þ Å], and, in
turn, reduces strain and magnetic anisotropy. The better crystal quality
of MTI GGG compared with UW GGG results in smoother epitaxial
YIG nanofilms and overall better structural and magnetic properties
(Table I).

The ferromagnetic resonances in the YIG nanofilms are studied
using broadband spectroscopy at room temperature and ambient con-
ditions. The ð5� 5Þmm2 sample is centered and placed face-down on
a coplanar waveguide with a conductor width of 250lm, which avoids
contributions from edge/corner regions with distinct magnetic proper-
ties [Fig. 1(d)]. The field derivative of the ferromagnetic resonance
absorption intensity is acquired using a radio frequency diode com-
bined with a 700Hz modulation field while applying an ac excitation
magnetic field at a constant frequency and sweeping the dc magnetic

field across the resonance [Fig. 2(a)]. Each spectrum is fitted with the
derivative of the sum of symmetric and asymmetric Lorentzians to
extract resonance field, intensity, and full width at half maximum
(FWHM) DHðf Þ. No secondary standing spin-wave mode is observed
in the epitaxial single-crystalline films. The dispersion f(H) is assem-
bled for in-plane and out-of-plane geometries to quantify the effective
Gilbert damping constant a, inhomogeneous line broadening DHð0Þ,
and absolute gyromagnetic ratio c ¼ glB=�h with the Bohr magneton
lB and Land�e factor g (Table I). For in-plane measurements, the
resonance frequency fres relates to the resonance field Hres via 2pf kres

¼ cl0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðHkres þ HipÞðHkres þ Hip þHk þMsÞ

q
.36,37 Using the satura-

tion magnetization from vibrating sample magnetometry, the fits cor-
roborate negligible in-plane (Hip) and perpendicular (Hk) magnetic
anisotropy fields<2 kA/m, and a gyromagnetic ratio c � 0:22 MHz/
(A/m) that is nearly independent of film thicknesses and substrates
and similar to the free-electron values of bulk YIG material, PLD, and
LPE [Fig. 2(b); Table I]. A similar picture is drawn by out-of-plane
measurements, where, for a negligible anisotropy, the dispersion reads
2pf ?res ¼ cl0ðH?res �Meff Þ.36,37 The resonance frequency is signifi-
cantly smaller due to demagnetization field contributions represented
by the effective saturation magnetization (in the normal direction)
Meff ¼ Ms �Hk � Ms.

Plotting the FWHM resonance linewidth DHðf Þ ¼ DHð0Þ
þ 4paint f =cþ DHC reveals, for in-plane geometry, a strong non-
linearity with the excitation frequency [Fig. 2(c)]. The effective Gilbert
damping a given in Table I is retrieved from linear fitting the linewidth
in the range ð5� 10Þ GHz without considering DHC, which would
yield a significantly lower intrinsic value aint and prevent a comparison
with the literature. Furthermore, the effective damping is essential for
applications. We focus on the in-plane geometry because of its rele-
vance to high-frequency applications and, in our case, a less reliable
linewidth for out-of-plane geometry measurements. The term DHC

TABLE I. Magnetic properties of epitaxial YIG nanofilms prepared by metal-organic decomposition compared with liquid-phase epitaxy (LPE), pulsed laser deposition (PLD),
and sputtering. Saturation magnetization Ms is obtained from vibrating sample magnetometry. Gyromagnetic ratio c, inhomogeneous line broadening DHð0Þ, and effective
Gilbert damping a for ð5� 10Þ GHz are retrieved from broadband ferromagnetic resonance spectroscopy in in-plane and out-of-plane geometries probing a 250 lm-wide region
of ð5� 5Þ mm2 samples. Film thickness: M1, M2, U1: ð606 20Þ nm; M3, M4, U3: ð1306 20Þ nm. All samples but U3 are annealed.

Sample Ms (kA/m) c [MHz/(A/m)] DHð0Þ (kA/m) a1

In-plane; YIG on MTI GGG(111)
M1 130.36 8.9 0:22ð1Þ 0:23ð1Þ 0:0002ð2Þ
M2 122.36 6.9 0:22ð1Þ 0:45ð1Þ 0:0004ð2Þ
M3 139.96 8.9 0:22ð1Þ 0:45ð1Þ 0:0002ð2Þ
M4 139.06 11.6 0:22ð1Þ 0:43ð2Þ 0:0003ð2Þ
In-plane; YIG on UW GGG(111)
U1 133.76 8.0 0:22ð1Þ 1:37ð5Þ 0:0004ð3Þ
U3 130.16 10.0 0:22ð1Þ 2:32ð5Þ 0:0025ð5Þ
Out-of-plane; YIG on UW GGG(111)
U1 133.76 8.0 0:22ð1Þ 0:15ð5Þ 0:0023ð10Þ
Literature values
LPE20 131:6� 147:6 0.22 0:11� 0:16 > 0.0004
PLD10,21,24 137.2 0.22 0:10� 0:27 > 0.0003
Sputt.28,31,35 130:8� 142:0 0.22 0:55� 1:99 > 0.0001
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describes the line broadening of a nearly uniform precession mode
in epitaxial films due to two-magnon scattering38–42 on defects

DHC ¼ C sin�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f 2þf 2M
p

�f 2Mffiffiffiffiffiffiffiffiffi
f 2þf 2M
p

þf 2M

r
with fM ¼ cl0Ms=2p. This classical two-

magnon model for strong exchange43 and dipole44 interactions, with-
out considering modifications to the spin-wave density of states,45–47

is valid for small low-density defects and describes the eigenmode
mixing.43 Specifically, point defects, nanoscale clusters, strain, and
dislocations may cause uniformly precessing magnetic moments to
dephase local magnon modes with characteristic frequencies because
of translational symmetry breaking of the magnetic system through,
e.g., localized dipolar fields (variations in the saturation magnetiza-
tion).43,48,49 The two-magnon scattering contribution, quantified by
C,43,48,49 varies between 0.9 and 1.8 kA/m due to varying YIG epitaxy.
Among the many nominally same samples, only M3 and M4 reveal
similar dynamic magnetic properties, illustrating the need for future
processes and film optimization and the higher sensitivity of magnon
scattering compared with x-ray diffraction to local defects existing
at internal interfaces and in bulk. Nonetheless, the quality factor
Q ¼ Hres=DH linearly increases with the frequency in the entire fre-
quency range and for all samples [Fig. 2(d)].

To augment these experimental data and explore the maximal
quality factor possible at a reasonable resonance intensity, we perform
micromagnetic simulations using Boris computational spintronics50 and
the Landau–Lifshitz–Gilbert formalism at 0K. The YIG nanofilm is
modeled as a rectangular film (250�250lm2�t) with periodic bound-
ary conditions along x and y axes and film thicknesses t¼ 10, 60, and
130nm. The mesh discretization along all three directions is half of the

magneto-static exchange length, i.e., 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A= 1

2 l0M2
s

� �q
¼ 8:7 nm. The

discretization in the normal direction of 10nm-thick films is 5 nm.
These values are ten times smaller than the magneto-crystalline

exchange length
ffiffiffiffiffiffiffiffiffiffiffiffi
A=jKj

p
¼ 78 nm. This estimation and numerical

modeling are based on the following YIG material parameters:
Heisenberg exchange J¼ 3.7 pJ/m,51 perpendicular magnetic anisotropy
K¼ –600 J/m3 (in-plane easy-plane),25,52 and Ms¼ 140kA/m,
a ¼ 0:0005, and g¼ 2 [c ¼ 0:22 MHz/(A/m)] chosen according to
experimental data (Table I). The demagnetization field is calculated
using multilayered convolution. The magnetization is excited via a mag-
netic field pulse [sincf2pfc � ðt � tf =2Þg kA/m] along x and perpendic-
ular to the dc magnetic field (y for in-plane and z for out-of-plane). To
provide sufficient temporal and frequency resolution, a simulation time
of tf¼ 100ns and a cutoff frequency of fc¼ 400GHz are used. The latter
enables us to probe magnon modes up to this value. The dc magnetic
field is varied from 50kA/m to 1 MA/m in steps of 25kA/m. For all
cases, the dispersion is linear, possesses the same slope, and shows excel-
lent agreement with the experimental data (Fig. 3). Resonances in the
out-of-plane geometry reveal a film thickness dependence that coincides
with the 60nm-thick films [Fig. 3(b)], and the in-plane spectra of
10nm-thick films unveil a sizable satellite peak at f kres � 0:7 GHz.
Similar to the experimental data, the modeled quality factors Q ¼
fres=Df for the in-plane geometry increases with the resonance fre-
quency and exceeds 1000 at 20GHz. The latter is ten times larger than
the experimental values likely due to the omission of disorder and two-
magnon scattering. The large, yet systematic, variations in the quality
factor are due to limited resolution in the reciprocal space despite the
100ns simulation time. For the out-of-plane geometry, a saturation
value of 1000 is observed. This difference between in-plane and out-of-

FIG. 2. Experimental ferromagnetic reso-
nance spectroscopy probing a 250lm-wide
central region of ð5� 5Þ mm2 samples at
room temperature. (a) Intensity across
ferromagnetic resonance at 20GHz and in
the in-plane geometry. (b) Dispersion for
various epitaxial YIG nanofilms revealing
nearly the same frequency independent of
film thicknesses and substrates. The disper-
sion for in-plane and out-of-plane geome-
tries is fitted using the Kittel equations
discussed in the text. (c) Full width at half
maximum for various YIG nanofilms dem-
onstrating significant contributions from
two-magnon scattering (fit). (d) Quality fac-
tor linearly increasing with resonance fre-
quency. (c) and (d) are shown for in-plane
geometry and refer to the same data.
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plane geometries is consistent with the experimental Gilbert damping
values, which are indirectly proportional to the quality factor.

In conclusion, the epitaxial YIG nanofilms prepared by metal-
organic decomposition possess similar magnetic properties as those
synthesized by high-vacuum techniques that can be analytically and
numerically described. The resonance frequency is virtually indepen-
dent of the film thickness and substrates. Variations in the film quality
are apparent by a sizable indeterministic effect on resonance linewidth,
effective Gilbert damping, and quality factor due to two-magnon scat-
tering. The in-plane quality factor (200� 300 at 20GHz) increases
linearly with excitation frequency and sets ferromagnetic resonance-
based oscillators apart from traditional varactor diode-tuned oscilla-
tors [Q< 2 at the C-band 5G frequencies (�3:5 GHz)]. Numerical
modeling of YIG nanofilms without structural defects predicts a qual-
ity factor>1000. This increase, obtained with an economical synthesis
process, is significant for high-frequency 5G applications. A fully func-
tional YIG oscillator or filter will require a magnetic field to tune the
ferromagnetic resonance or, as shown by simulations, to tailor the
magnetic anisotropy of the YIG nanofilm. While the latter is not

feasible, the former can be achieved using an electromagnet (current-
driven selection of the resonance frequency) and/or a permanent mag-
net (energy efficiency).
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