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Summary

� Local adaptation is an important process in plant evolution, which can be impacted by dif-

ferential pathogen pressures along environmental gradients. However, the degree to which

pathogen resistance loci vary in effect across space and time is incompletely described.
� To understand how the genetic architecture of resistance varies across time and geographic

space, we quantified rust (Puccinia spp.) severity in switchgrass (Panicum virgatum) plantings

at eight locations across the central USA for 3 yr and conducted quantitative trait locus (QTL)

mapping for rust progression.
� We mapped several variable QTLs, but two large-effect QTLs which we have named Prr1

and Prr2 were consistently associated with rust severity in multiple sites and years, particularly

in northern sites. By contrast, there were numerous small-effect QTLs at southern sites, indi-

cating a genotype-by-environment interaction in rust resistance loci. Interestingly, Prr1 and

Prr2 had a strong epistatic interaction, which also varied in the strength and direction of effect

across space.
� Our results suggest that abiotic factors covarying with latitude interact with the genetic loci

underlying plant resistance to control rust infection severity. Furthermore, our results indicate

that segregating genetic variation in epistatically interacting loci may play a key role in deter-

mining response to infection across geographic space.

Introduction

Understanding the factors that determine how well a particular
population is adapted to its environment is a major goal of evolu-
tionary biology. Plant populations often exhibit local adaptation
(Leimu & Fischer, 2008; Hereford, 2009), in which genotypes in
a particular area are more successful in their local environment
than foreign genotypes transplanted to that area (Kawecki &
Ebert, 2004). A major component of adaptation to a local envi-
ronment is adaptation to biotic factors such as competition,
mutualism, herbivory and pathogens (McKay et al., 2003;
Fournier-Level et al., 2011; He et al., 2018; Price et al., 2018;
Lowry et al., 2019). Pathogens in particular impose strong selec-
tion on plant populations and may thus influence the evolution
of those populations (Giraud et al., 2017; Mursinoff & Tack,

2017). Disease resistance alleles vary in frequency across popula-
tions (Thrall & Burdon, 2002; Kniskern & Rausher, 2006;
Chappell & Rausher, 2016) and may be differentially expressed
depending on environmental conditions (Colhoun, 1973; Atkin-
son & Urwin, 2012; Huot et al., 2017). Thus, a complete under-
standing of local adaptation in plants requires measurement of
the changes in the genetic architecture of pathogen resistance
across multiple environments (Busby et al., 2014).

Population heterogeneity in pathogen resistance loci results in
imperfect resistance for plant species. To explain maintenance of
this variation, previous studies have noted the role of the abiotic
environment in influencing the plant–pathogen relationship
(Atkinson & Urwin, 2012; Huot et al., 2017) as well as coevolu-
tionary dynamics between plants and their pathogens (Thrall et al.,
2012; Bever et al., 2015; Chappell & Rausher, 2016;
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Penczykowski et al., 2016), including fitness costs of both virulence
and resistance (Bergstrom et al., 2000; Tian et al., 2003). The abi-
otic environment can influence the relationship by restricting the
range of pathogens that are, for instance, humidity- or tempera-
ture-sensitive (Shaw & Osborne, 2011). For example, the
oomycete pathogen of dry beans Pythium spp. is highly effective in
high-moisture conditions (Soltani et al., 2018). Therefore, wet-
adapted bean varieties must exhibit higher Pythium resistance
(Soltani et al., 2018). Similarly, abiotic conditions can directly
impact plant molecular immune responses, such as in the case of
temperature-dependent immunity in Arabidopsis (Huot et al.,
2017). In addition, coevolution between pathogens and host
metapopulations can dramatically shape plant evolution, largely
independently of the abiotic environment. As plants evolve
immune responses, pathogens evolve ways to evade immunity,
resulting in population-specific adaptations to variable pathogen
regimes (Thrall et al., 2012; Bever et al., 2015; Penczykowski
et al., 2016; Chappell & Rausher, 2016). Determining the extent
to which plant–pathogen coevolution is shaped by abiotic condi-
tions and ‘arms race’ dynamics requires a pathosystem studied over
several years and a wide range of environmental conditions.

Switchgrass (Panicum virgatum L.) and its obligate fungal
pathogens, especially switchgrass leaf rusts (Puccinia spp.), are an
ideal system to study long-term changes in the molecular basis of
resistance. Switchgrass is a long-lived, polyploid, C4, perennial
grass native to North America east of the Rocky Mountains from
northern Mexico to southern Canada (Gleason & Cronquist,
1963). It is a common prairie and pasture grass grown as both a
forage crop and as a bioenergy feedstock (Casler, 2012; Parrish
et al., 2012). Switchgrass has also become an important study sys-
tem for understanding the causes of ecological specialization
(Casler, 2012; Lowry et al., 2014). Switchgrass is split into two
locally adapted ecotypes, upland and lowland (Morris et al., 2011;
Lowry et al., 2014; Milano et al., 2016). The upland ecotype is
more common in northern North America, has a small stature (up
to 190 cm) and has limited resistance to multiple pathogens,
including rust and other fungal pathogens as well as viruses
(Casler, 2012; Uppalapati et al., 2013; Lovell et al., 2016; Milano
et al., 2016; Alexander et al., 2017). By contrast, the southern low-
land ecotype is large (up to 285 cm) and is more resistant to fungal
pathogens (Casler, 2012; Uppalapati et al., 2013; Lovell et al.,
2016; Milano et al., 2016). While the lowland ecotype produces
more biomass, it also has lower freezing tolerance (Lee et al., 2014;
Peixoto & Sage, 2016), possibly explaining the rarity of lowland
ecotypes in more northern climates. Temperature, moisture
regimes and other aspects of climate often covary with latitude in
the central USA, so over the switchgrass range plant traits respond
to north–south clines (Lowry et al., 2019).

Because switchgrass ecotypes differ in their susceptibility to
rust infection, this host–pathogen system is useful for testing the
role of local variation in rust species presence in the evolution of
resistance. Switchgrass is infected with at least five species of rust
(Puccinia spp.; Demers et al., 2017). Rusts are basidiomycete
fungi that infect only living leaf tissue (biotrophs). As such, these
fungi are thought to be extirpated from northern switchgrass
populations every winter when switchgrass senesces. Re-infection

may occur from the alternative host, thought to be Euphorbia
corollata (Demers et al., 2017), or through wind-borne spores
from already infected plants. Rust infection is common in switch-
grass stands in North America by late summer, although damage
is less severe in varieties from the lowland ecotype.

While there is still little known about the natural history of
switchgrass rusts, closely related wheat rusts such as Puccinia
striiformis have been extensively studied, and thus provide a
model for thinking about switchgrass rusts. In addition to restric-
tions imposed by obligate biotrophy, winter minimum tempera-
tures below �10°C may kill fungal spores, and high night-time
temperatures limit disease development (Chen, 2005). Further-
more, the spores require high humidity to germinate, and may be
spread between plants by rainfall (Chen, 2005). The geographic
range of switchgrass encompasses many temperature and precipi-
tation regimes, so direct abiotic selection probably plays an
important role in rust biology. Furthermore, the abiotic environ-
ment directly impacts plant resistance to rust. In P. striiformis,
resistance genes such as Yr36 are effective at high, but not low,
temperatures (Fu et al., 2009). Thus, over the geographic range
of the switchgrass–rust interactions, variation in the abiotic envi-
ronment may play an important role in influencing both
pathogen virulence and plant defenses.

The distribution of related pathogen species can have an
important role in the evolution of resistance. Resistance mecha-
nisms can be specific to particular rust species or to specific
strains of a species. Wheat varieties bred for stem rust (Puccinia
graminis f. sp. tritici) resistance were overcome in recent years by
a novel rust lineage known as Ug99 (Singh et al., 2015). Ug99
originated from the dikaryotic parasexual combination of two
asexual rust lineages (Li et al., 2019). If rust species are geographi-
cally restricted, switchgrass may evolve local resistance mecha-
nisms to respond to specific rusts. By contrast, if only one species
is dominant, the genetic basis of resistance may be identical over
a wide geographic range, or population-specific resistance will
occur at the level of pathogen strain, rather than pathogen
species. There is conflicting evidence about the ranges of the five
switchgrass rusts. Demers et al. (2017) found predominantly
P. pammelii and P. graminicola in the midwestern USA, and
P. novopanici predominantly in eastern states. By contrast, Kena-
ley et al. (2018) found that most midwestern switchgrass plant-
ings are infected with P. novopanici, with P. pammelii and
P. graminicola showing up only rarely.

The primary goal of the present study was to understand the
nature of genotype-by-environment (GxE) interactions underly-
ing variation of switchgrass rust resistance across the central USA.
To overcome past limitations due to environmental and temporal
variation in host–pathogen relationships, we measured fungal
resistance over 3 yr at a large geographic scale. We studied quan-
titative trait locus (QTL) mapping populations replicated at eight
sites across more than 1500 km of latitude to map QTLs for rust
resistance. These populations have been previously used to study
QTL9 environment interactions for several morphological and
phenological traits (Lowry et al., 2019), but biotic interactions
have not been assessed before this study. The geographic patterns
of QTL presence and strength allowed us to examine the spatial
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distribution of pathogen resistance expression. If QTL presence
and strength was correlated with latitude of the field sites over the
eight sites, we could infer that the abiotic environment played an
essential role in governing the interaction. However, if resistance
was site-specific, that would be evidence of rust population
dynamics as being a stronger influence on plant resistance. Fur-
thermore, the four mapping cross genotypes allowed us to test
the host-population specificity of resistance. We predicted that
any resistance alleles that we mapped would originate from a low-
land genotype, because lowland plants are more resistant to fun-
gal pathogens. Furthermore, we expected that resistance alleles
would explain substantial variation in other morphological traits
that distinguish ecotypes, indicating that resistance genes are
associated with overall local adaptation in switchgrass.

Materials and Methods

Development of mapping populations

To identify loci controlling variation in rust progression, we used
a previously developed four-way phase-known (pseudo-testcross)
mapping population derived from both upland and lowland
genotypes (conceptual map in Fig. 1). For full details of the
development of the mapping population see Milano et al. (2016).
We clonally divided the outbred populations by manually split-
ting rhizomes at the Brackenridge Field Laboratory in Austin,
TX, USA. In May–July 2015, the F0, F1 and F2 clones were pot-
ted, moved by truck and transplanted into the field at 10 sites
throughout the USA (Lowry et al., 2019). Thus, at each site, we
planted five or more clones of each of the four F0 genotypes, 15
individuals of each of the two F1 populations and 431 individuals
from the F2 generation. We were able to monitor pathogen
changes throughout the course of this study at eight of these sites:
Kingsville, TX; Austin, TX; Temple, TX; Overton, TX;
Columbia, MO; Manhattan, KS; Mead, NE; and Hickory
Corners, MI (Fig. 1). We assigned plants randomly to a honey-
comb design, with 1.56 m between each plant. To reduce edge
effects, we planted a border of lowland plants around the plot
that were not measured experimentally. We watered plants by
hand in 2015, when necessary to facilitate establishment. Weed
cloth was installed to cover the ground between plants and reduce
weed pressure. After 2015, we removed weeds using pre-emer-
gent herbicides and physical pulling but did not otherwise man-
age plots. To develop a linkage map for QTL mapping we
genotyped 431 second-generation genotypes by whole genome
resequencing (for full sequencing details, see Lowry et al., 2019).

Phenotyping

At each site we scored the presence of leaf rust in 2016, 2017 and
2018. We used a method developed for rust on wheat (McNeal
et al., 1971; Roelfs et al., 1992), which translates well to switch-
grass and has been used in previous studies (Uppalapati et al.,
2013). At each site, we scored rust on a 0–10 scale based on the
total proportion of the canopy covered in rust pustules, a score
which we have defined as ‘rust severity’ for this study (Fig. 2).

The 0–10 scale can be thought of as 1/10 of the per cent of leaf
area covered in rust pustules (a score of 1 corresponds to 10% leaf
cover, 3–30% cover, and so on). We assessed the whole canopy
visually. This subjective rating is imperfect because it relies on
field ratings by technicians rather than a quantitative measure.
However, alternative methods such as leaf collection and scan-
ning are much more labor-intensive and introduce similar biases
when choosing leaves. Other fungal pathogens such as anthrac-
nose and Bipolaris were present in plots but were much less com-
mon than rust and were not reflected in our ratings.

The effort extended to phenotyping rust severity varied among
sites and years due to logistical challenges. However, sampling
generally began 3 wk after green-up (the point at which c. 50% of
plants tiller crop had emerged from the soil) and continued
weekly until severity stopped increasing (Fig. 3). Over 3 yr, this
resulted in more than 149 000 rust ratings, which we used for the
QTL analyses. In addition, we measured other morphological
and physiological traits at all sites, including the number of
tillers, plant height at end of the season, date of first flowering
and end-of-season above-ground biomass (see Milano et al., 2016
and Lowry et al., 2019 for details of this phenotyping effort).

Rust abundance and species composition

Visual pathogen scoring regimes are well known to be subject to
statistical artifacts (Lesaffre & Lawson 2012) and our data were
no exception. Pathogen scores followed a tail-inflated (‘U’-
shaped) distribution. Therefore, we used nonparametric Wil-
coxon signed-rank and Kruskal–Wallis tests through the func-
tions wilcox.test and kruskal.test in the STATS package of R to test
the differences in severity between lineages, years and sites (R
Core Team, 2019). To test for cytoplasmic effects on rust sever-
ity, we compared rust scores between F2 individuals with mater-
nal cytoplasm from upland and lowland grandparents, also with
the aforementioned nonparametric tests.

We assayed the prevalence of various species of rust at study
sites in 2018 by sequencing a portion of the internal transcribed
spacer (ITS) region for subsampled isolates from each site. At
each location, we haphazardly collected leaves from c. 20 individ-
uals, and isolated single pustules from each. By sampling 20 indi-
viduals, we ensured that we would have the power to detect
species present in a substantial portion of the field (> 30%) at a
99.9% confidence level. We followed the same method as Kena-
ley et al. (2018) for DNA extraction, PCR amplification, purifi-
cation and sequencing. Briefly, we extracted genomic DNA from
leaf segments cut from areas with one pustule or very few pustules
using the DNeasy Plant Mini Kit (Qiagen). We then amplified
the ITS2 region using the primer pair RUST2inv (50-
GATGAAGAACACAGTGAAA; Aime et al., 2006) and RUST1
(50-AGTGCACTTTATTGTGGCTCGA; Kropp et al., 1995),
producing a 510 bp fragment. We purified the PCR product
using a QIAquick PCR Purification Kit (Qiagen) and then
sequenced unidirectionally with 180 ng of template, 25 pmol of
primer RUST1, and using a BigDye terminator sequencing kit
(Applied Biosystems, Foster City, CA, USA) on an ABI 3730
DNA Sequencer (Applied Biosystems).
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Genomic architecture

Initially, we mapped QTLs based on pathogen ratings for each
individual time point at which rust prevalence was quantified.
Pathogen ratings were processed in R (v.3.4; R Core Team,
2019) using both packages QTL and FUNQTL (Broman et al., 2003;
Kwak et al., 2016). To examine QTL effects over time, we
scanned for QTLs using Haley–Knott regression for each site by
year combination, with each time point as a separate trait using

the functions scanone in QTL and geteffects in FUNQTL (Broman
et al., 2003; Kwak et al., 2016).

We additionally examined QTLs controlling the overall pro-
gression of rust by modeling severity as a function-valued trait
(Kwak et al., 2014). For function-valued traits such as time-
series, QTLs can be summarized across time using the R package
FUNQTL (Kwak et al., 2014, 2016). This method has the advan-
tage of decreasing bias introduced by differences among raters at
different sites as well as phenology differences by summarizing

AP13 DAC6 WBC VS16

: A x DF1

F1

F1: W x V

Generation: mapping plants

Individual 1 Ind. 2

Ind. 3 Ind. 4

Ind. 5 ... Ind. 431

GenerationF0

20

30

40

50

−120 −110 −100 −90 −80 −70

La
tit

ud
e

KBSM

LINC

CLMB
MNHT

OVTN
TMPL
PKLE

KING

Cross Design Experimental Sites (a) (b)

Fig. 1 Experimental design. (a) Conceptual map of four-way cross design. Horizontal bars represent copies of chromosome 9N, for example. In the F0
generation (grandparents), each genotype has two mostly homozygous haplotypes, shown by the color of the bars. In the F1 cross generation, there are
two combinations of haplotypes: A9D for AP139DAC6, and W9 V for WBC39VS16. The F2 generation combines the F1 haplotypes, so each of the
431 offspring individuals have some combination of the four grandparental alleles at any one locus. (b) Locations of experimental switchgrass planting sites
in central North America. KING: Kingsville, TX; PKLE: Austin, TX; TMPL: Temple, TX; OVTN: Overton, TX; CLMB: Columbia, MO; MNHT: Manhattan, KS;
LINC: Mead, NE; KBSM: Hickory Corners, MI. We additionally collected rust samples from sites in Stillwater, OK (STIL), and Brookings, SD (BRKG), but
were not able to assess rust infection scores at these sites.

Fig. 2 (a) Heavily infected single switchgrass leaf. (b) Lightly infected small switchgrass plant. This individual would be rated a 3, as c. 30% of the leaf
surface is covered with rust pustules.
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multiple QTLs using a penalized likelihood approach (Kwak
et al., 2014). Previous studies have used area under disease pro-
gress curve (AUDPC) measurements to quantify resistance (Jeger
& Viljanen-Rollinson, 2001). AUDPC is robust and useful but
may show bias when infection timing differs among sites (Jeger
& Viljanen-Rollinson, 2001). The FUNQTL method yields two
scores for each phenotype, the mean LOD (SLOD) and the max-
imum LOD (MLOD). The first is useful for identifying loci that
show large effects over time, while the second identifies loci that
have a large effect for a single time point (Kwak et al., 2014).
Because we were most interested in QTLs with effects across the
season, we focused on SLOD scores. We conducted 1000 permu-
tations to calculate a penalty for the SLOD score that reduces the
rate of inclusion of extra loci to 5% (Broman & Sen, 2009). To
estimate the percentage explained variation (PEV) for each

significant QTL, we fit single-QTL models for each time point
with the fitqtl command in the QTL package, then used the maxi-
mum PEV value (Broman et al., 2003). We examined geographic
and temporal variation by mapping QTLs separately for each site
and year, but we also generated a combined test that summarizes
variation in this experiment. For this test, we summed SLOD
scores across multiple sites and years, and concatenated permuta-
tions to generate a critical SLOD cutoff. We produced all plots
using FUNQTL and GGPLOT2 (Kwak et al., 2016; Wickham, 2016).

Finally, we estimated the allele-specific effects of the significant
QTLs we discovered. In the four-way cross design, second-gener-
ation offspring will have one of four possible genotypes at each
locus: AP13 & WBC3, AP13 & VS16, WBC3 & DAC6, or
DAC6 & VS16. These genotypes represent the combination of
alleles from each of the four grandparents of the cross (lowland
AP13 and WBC; upland DAC and VS16; Fig. 1). For each locus,
we compared the pathogen scores for the individuals with the ‘re-
sistant’ QTL alleles to those with the ‘susceptible’ alleles. We
additionally made this comparison for morphological traits,
including biomass, flowering time, tiller count and green-up
date. We tested for difference in means using nonparametric Wil-
coxon signed-rank tests for pathogen ratings through the func-
tion wilcox.test in the STATS package, and a two-sample t-test for
all morphological traits through the function t.test in the STATS

package (R Core Team, 2019). R code for all analyses is available
for download on the author’s Github page: https://github.com/
avanwallendael/switchgrass_rust_qtl.

Results

Rust abundance and composition

Although infection timing varied, rust was present at all sites
throughout the study period (Fig. 3). The largest divergence in
infection was between upland and lowland F0 (grandparental)
plants, with upland plants experiencing 39.15% more rust than
lowland plants (W = 1.15e7, P< 0.0001). The divergence
between lowland and upland plants in rust severity was compara-
ble in effect size at all sites, and never differed in direction. Rust
severity also differed between generations in the cross
(v2 = 656.98, P < 0.0001), with F0 plants showing the least
amount of rust and F1 plants the greatest (Supporting Informa-
tion Fig. S1). Rust severity was negatively correlated with green-
up date, biomass, flowering time, height and tiller count
(Fig. S2). Field sites differed substantially in mean rust severity
across years (v2 = 1.999 10�5, P< 0.0001; Fig. S3), although
this was confounded by different sampling periods across sites.
Mean rust severity declined in almost every site each year
(Fig. S3), decreasing by 19.75% in 2017 and an additional
30.74% in 2018. This change correlates with biomass increases
of 85.64% in 2017 and an additional 46.89% in 2018. Our cross
design allowed us to test the phenotypic effect of maternal cyto-
plasm, the difference between second-generation plants with an
upland seed parent and those with a lowland seed parent. We
compared rust scores between second-generation individuals with
maternal cytoplasm from upland and lowland F1 plants. There

Fig. 3 Switchgrass rust progression curves for 2016. Black lines show
smoothed mean rust values for sampled dates, black dotted lines show
fitted logistic curves to sampled data. Green and brown vertical lines show
green-up date and date of first flowering, respectively. Green-up was not
quantified at TMPL in 2016 (Temple, TX; see 2017 and 2018 in Supporting
Information Fig. S4). Site codes: KING: Kingsville, TX; PKLE: Austin, TX;
TMPL: Temple, TX; OVTN: Overton, TX; CLMB: Columbia, MO; MNHT:
Manhattan, KS; LINC: Mead, NE; KBSM: Hickory Corners, MI.
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was a significant cytoplasmic effect (W = 1.72e9, P = 0.0059),
but rust scores were only 1.33% higher in plants with lowland
(WBC) cytoplasm than plants with the upland (DAC) cytoplasm
(Fig. S1).

We assayed the prevalence of various species of rust at the
study sites in 2018 by sequencing ITS2 for subsampled iso-
lates from each site. While we found evidence of three rust
species infecting switchgrass, Puccinia novopanici was the pre-
dominant rust species at all field sites that we examined
(Table 1). P. graminicola was present only in Brookings, SD
(BRKG), and Mead, NE (LINC), while P. cumminsii was pre-
sent in only one sample from Austin, TX (PKLE). Given the
rarity of other Puccinia spp., we did not detect statistical dif-
ferences between genotypes or sites in pathogen species com-
position, with the exception of Mead, NE (LINC), which was
35% P. graminicola.

Genomic architecture

Because we collected data on pathogens over several weeks at all
sites, we were able to examine how the genomic architecture of
resistance changed over a single season at each site by treating
each time point as a distinct phenotype for QTL mapping. For
simplicity throughout this paper, we refer to rust resistance as:
Resistance = (1� Severity) (Simms & Triplett, 1994). We found
extensive variation between sites, but some patterns were shared
across several sites. We identified QTLs for resistance on chromo-
somes 3N and 9N that were consistently associated with rust
resistance, which we have named loci PUCCINIA RUST
RESISTANT 1 (Prr1) and PUCCINIA RUST RESISTANT 2
(Prr2), respectively. The lowland allele (AP13) only conferred
greater resistance for one of these loci (Prr2), relative to the
upland allele (DAC). By contrast, the lowland allele (AP13)
increased rust severity relative to the upland allele (DAC) on
chromosome 3N (Prr1). Over the course of the field season, these
QTLs showed effects for c. 40–50 d when mapped for single
time-point measurements, with Prr1 becoming detectable c. 1 wk

after Prr2 (Figs 4 and S5). Overall patterns were similar across
years, although the collection of fewer time points in 2017
resulted in lower-resolution data.

To evaluate the genetic architecture of resistance over the
entire field seasons, we also mapped QTLs to rust severity as a
function-valued trait. Summing across all sites and years, we
found 51 total significant QTLs (Fig. 5a; Table S1). These QTLs
varied in PEV throughout the infection season, with a single
QTL model explaining up to 24.2% of the variation in rust sever-
ity (Table S1). Many of these QTLs were at overlapping genomic
positions, so overall we found 18 locations throughout the
switchgrass genome that were associated with rust in at least one
site. Just four of the 18 switchgrass chromosomes exhibited no
QTLs at any position. Overall, we found the highest number of
QTLs at the most northern site (KBSM), although there was no
clear geographic pattern in QTL number. Additionally, there was
variation between years, with the greatest number of QTLs in
2016 (24 QTLs), and fewer in 2017 and 2018 (15 and 12,
respectively). When we combined QTLs across sites and years
(Fig. 5c), Prr1 and Prr2 had the highest LOD scores in the north.

Given their strength and consistency across sites and years, we
considered Prr2 and Prr1 as the most important QTLs. These
large-effect QTLs differed greatly in their frequency of significant
effect between northern sites and southern sites, showing signifi-
cant effects in the northern four sites 77.2% (17/22) of the time
over the 3 yr, but only 16.6% (4/24) of the time in the southern
four sites. When the southern sites were pooled, we detected nine
significant QTLs across the southern sites, but these were much
weaker in effect (Fig. 5b).

Allelic effects of Prr1 and Prr2

We calculated the combined effects of Prr1 and Prr2 by examin-
ing only individuals containing either resistant or susceptible alle-
les at each locus. For instance, the AP13 allele increased
resistance at Prr1, but the DAC6 allele increased resistance at
Prr2, so the individuals with both of these alleles were designated

Table 1 Species of switchgrass rust detected by field sites, with values shown as the proportion of viable internal transcribed spacer (ITS) sequences that
matched each species.

Site Code Sequences (n)

Puccinia species

P. cumminsii P. graminicola P. novopanici

Brookings, SDa BRKG 29 0 0.17 0.83
Hickory Corners, MI KBSM 21 0 0 1
Mead, NE LINC 26 0 0.35 0.65
Manhattan, KS MNHT 27 0 0 1
Columbia, MO CLMB 23 0 0 1
Stillwater, OKa STIL 13 0 0 1
Overton, TXb OVTN
Temple, TX TMPL 14 0 0 1
Austin, TX PKLE 12 0.08 0 0.92
Kingsville, TX KING 23 0 0 1
Total 188 1 (1%) 14 (7%) 173 (92%)

aSTIL and BRKG were not used in quantitative trait locus (QTL) mapping due to missing rust severity measurements.
bWe were not able to obtain samples from OVTN for species identification.
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as having the ‘resistant’ combination. We compared these resis-
tant plants to those that had susceptible alleles at both Prr1 and
Prr2 to assess the combined effects of the QTLs.

The effects of Prr1 and Prr2 were clear in their impacts on rust
severity. The combination of ‘resistant’ alleles across loci resulted
in 21.35% lower rust scores across the season (W = 31 808 000,
P< 0.0001; Fig. 5b; Table 2). In southern sites, there was no
clear difference between the impact of ‘resistant’ and ‘susceptible’
alleles on rust (W = 734, P = 0.34). To establish whether Prr2
and Prr1 also impacted other important phenotypes, we con-
ducted additional contrasts between the resistant and susceptible
alleles. The resistance alleles were associated with 39.6% higher
biomass (t = 12.34, P < 0.0001; Fig. 5), 17.36% greater tiller
count (t = 6.71, P < 0.0001) and 5.99% greater height (t = 7.49,
P< 0.0001), but had little effect on flowering time (t = 1.94,
P = 0.052; Table 2).

Additionally, we performed a simple test for epistasis between
large-effect loci. Because performing epistasis tests for all QTLs,
phenotypes, sites and years would be computationally pro-
hibitive, we tested one phenotype (peak rust) per site and year for
the two large-effect loci only. We fit with a linear model
(ANOVA) to test for epistasis among these two loci:
R = Prr1 + Prr2 + Prr19Prr2 + e, where R is rust severity, Prr1

and Prr2 are the genotypes at those loci, and e is the residual error
term. Epistasis is represented by a significant interaction term at a
Bonferroni-corrected a of 0.00263 (a = 0.05/19 tests). We used
the functions anova and lm in the STATS package of R and tested
for allele-specific effects using orthogonal contrasts (R Core
Team, 2019).

We found strong evidence for an epistatic interaction between
Prr1 and Prr2 (Fig. 6) that impacted both rust severity and over-
all biomass. For each site and year that both QTLs were present,
the interaction was significant (Fig. 6; Table S2). The interaction
was largest in Columbia, MO, in 2018, where the effect of both
QTLs was strongest (F = 29.7, P< 0.0001; Fig. 6c,d). This effect
was driven by the combination of upland and lowland alleles
inducing rust susceptibility in the mapping population. Individu-
als with the DAC6 allele at Prr1 and the AP13 allele at Prr2 were
on average 10.6 times more susceptible to rust damage
(t = 16.108, P < 0.0001). In addition, the allele combinations
that increase rust tend to also result in lower biomass (Fig. 6d).
However, infrequently the direction of the rust epistatic interac-
tion was reversed, but the biomass interaction was not (Fig. 6e,f).
At the KBSM site in 2018, individuals with the DAC6 allele at
Prr1 and the AP13 allele at Prr2 were on average 2.28 times more
resistant to rust damage (t = 9.560, P < 0.0001). This pattern was
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also observed to a lesser degree in KBSM in 2016 and TMPL in
2018.

Discussion

Overall, we found that there is a marked difference in the genetic
architecture of rust resistance in the northern vs southern regions
of the central USA. The two large-effect QTLs, Prr1 and Prr2,
consistently explained variation in rust severity in the north. By
contrast, these large-effect QTLs rarely had significant effects in
southern sites, indicating that the genetic architecture of rust
resistance is highly dependent on environmental context. The
effects of Prr1 and Prr2 were largely stable across all 3 yr of the
study, indicating that they confer consistent, but region-specific,

resistance. Prr1 and Prr2 also co-localize with QTLs for biomass,
tiller count, height and flowering time. In contrast to our predic-
tion that the lowland grandparental alleles would provide the
most rust resistance, we found that the upland allele at Prr1
increases resistance. An epistatic interaction between upland
(DAC) and lowland alleles (AP13) at Prr1 and Prr2 causes greatly
increased rust susceptibility in most sites and years, but this inter-
action was reversed for some sites across different years of the
study. We discuss the implications of these results below.

North–south difference in QTL expression

The large difference in the genetic architecture of resistance
between southern and northern field sites suggests that variation

Position

*

*

*

*

*

*

*

*

*

*

*

*

*

**

***

*

**

**

*

* **

*

*

*

*

*

*

**

*

*

*

*

*

***

*

**

***

*

*

1K 1N 2K 2N 3K 3N 4K 4N 5K 5N 6K 6N 7K 7N 8K 8N 9K 9N

K
B

S
M

LIN
C

M
N

H
T

C
LM

B
O

V
T

N
T

M
P

L
P

K
LE

K
IN

G

0

2

4

6

8

0

2

4

6

0

2

4

6

8

0

4

8

12

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

Year

*
*
*

2016

2017

2018

Chromosome

1K 1N 2K 2N 3K 3N 4K 4N 5K 5N 6K 6N 7K 7N 8K 8N 9K 9N

N
orth

S
outh

10

20

30

40

5

10

15

20

Position

S
LO

D
S

LO
D

* −34.08%

0.0

0.5

1.0

1.5

2.0

Resistant Susceptible

Allele Effect

M
ea

n 
R

us
t E

ar
ly

* 44.326%

0

1

2

3

4

Resistant Susceptible
Allele Effect

M
ea

n 
bi

om
as

s 
(k

g)

Position

S
LO

D

(a) (b)

(c)

Fig. 5 (a) Quantitative trait locus (QTLs) for all sites and years for switchgrass rust resistance. SLOD shows the mean log-odds score for function-valued
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Table 2 Genotype-specific effects for the combination of Prr1 and Prr2 for switchgrass rust resistance, with bold values significant at a = 0.05.

Susceptible Resistant D (%) Statistic P

Rust score 3.346 4.255 21.35 W = 31 808 000 <0.0001
Biomass (kg) 0.776 1.084 39.64 t = 12.341 <0.0001
Flowering time (Julian day) 163.8 166.4 1.560 t = 1.9428 0.05213
Tiller count 158.7 186.3 17.36 t = 6.7063 <0.0001
Height (cm) 151.4 160.5 5.988 t = 7.4901 <0.0001
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in climate, correlated with latitude, may directly impact the
expression of resistance to switchgrass rust. We anticipated that
variation across field sites in QTL effects could be caused by dif-
ferences in rust species composition at each of these sites. How-
ever, we found an overwhelming predominance of one species,
Puccinia novopanici, at all sites other than Mead, NE (LINC).
While we were not able to sample species composition for all
years of this study, the dominance of P. novopanici in the central
USA is corroborated by previous reports on this system (Kenaley
et al., 2018). The hypothesis that large-scale climatic variation
accounts for QTL variation in switchgrass was also supported in
another study that used these same mapping populations (Lowry
et al., 2019). That study showed evidence that many QTLs for
morphological and phenological traits, including several that
colocalize with Prr1 and Prr2, exhibit GxE interactions across
the north–south range of the experiment, and that overall cli-
matic variation across the range explains the gradient (Lowry
et al., 2019). Greater knowledge of the genes underlying these
QTLs would improve our understanding of these interactions,
but annotation in the switchgrass genome is incomplete as of the
time of this publication. Eleven genes are in the 1.5 LOD-drop
interval for Prr1, and 48 in the interval for Prr2, but none con-
tain clear immune motifs such as leucine-rich repeat regions, or
are known to be part of established immune defense pathways
(list of genes in Table S3).

The north–south split implicates an abiotic pattern, but the
means by which climate influences resistance remains undeter-
mined. In other pathosystems, rust strain diversity and expression
of resistance genes have been documented to cause variation in
resistance. Pathogens often exhibit strain-specific avirulence genes
that may or may not be recognized by plant R-genes (Jones &
Dangl, 2006). Therefore, over geographic space, the distribution
of pathogen genetic diversity can determine host resistance
expression (Chappell & Rausher, 2016). Rust pathogens can be
geographically constrained by their low freezing tolerance and the
distribution of their alternative host (Kenaley et al., 2018).
Therefore, if rust population diversity is higher in southern
regions, as is true for wheat rusts in Asia (Ali et al., 2014), switch-
grass resistance expression may involve more loci than in north-
ern populations, resulting in a more complicated genetic
architecture.

Alternatively, the mode of resistance itself may directly
respond to the climate. In Arabidopsis, a change from 10–23°C
to 23–32°C is sufficient to induce a change from the specific
immune system (effector-triggered immunity) to the generalized
immune system (pattern-triggered immunity; Cheng et al.,
2013). Wheat rust defense mechanisms have been specifically
documented to show temperature-dependence (Fu et al., 2009).
The northern sites in our study were planted in either hardiness
zone 5 or 6, while the southern sites were in either zone 8 or 9
(Daly et al., 2012), suggesting that temperature may play a role.
However, we cannot be certain that resistance mechanisms are
directly impacted by temperature until we can isolate the genes
responsible for resistance. Further work in this system should
focus on determining the genetic distributions of P. novopanici
populations to better understand whether resistance is strain-

specific, and to identify potential resistance genes underlying
large-effect QTLs.

Allele-specific effects and epistatic interactions of Prr2 and
Prr1

We initially expected that resistance alleles would come exclu-
sively from lowland grandparents, because lowland genotypes are
more rust-resistant in all sites we planted. However, F2 individu-
als with an upland DAC6 allele at Prr2 were overall more resis-
tant to rust than those with a lowland AP13 allele. This indicates
that upland genotypes harbor resistance alleles that diverge from
lowland resistance.

Furthermore, the presence of a negative epistatic interaction
between Prr2 and Prr1 indicates that genes underlying these loci
interact directly to impact rust resistance. Epistatic interactions
are commonly found in studies of pathogen resistance in plants.
For example, recent QTL studies of wheat stripe and leaf rust
resistance identified multiple significant epistatic interactions
(Singh et al., 2014; Vazquez et al., 2015; Zeng et al., 2019).
Despite the commonality of epistatic interactions among
pathogen resistance loci, we were surprised by the degree to
which the epistatic interaction was negatively synergistic, espe-
cially at sites such as CLMB in 2018. This negative epistasis
between an upland allele at one locus and a lowland allele is simi-
lar to a Bateson–Dobzhansky–Muller incompatibility (BDMI),
an epistatic interaction that decreases fitness when independently
evolving alleles are brought together through hybridization (re-
viewed by Fishman & Sweigart, 2018). Pathogen resistance genes
have often been implicated in BDMIs, although negative epistasis
of incompatible resistance loci generally causes an autoimmune
response (reviewed by Bomblies & Weigel, 2007; Traw &
Bergelson, 2010; see also Atanasov et al., 2018). However, in
switchgrass, the incompatibility usually results in lower pathogen
resistance, suggesting a different mechanism.

As discussed earlier, pathogen strain diversity can play an
important role in determining the spatial distribution of host
resistance (Chappell & Rausher, 2016). The switchgrass
genotype-specificity of the epistatic interaction, as well as the
reversal of the pattern in certain sites and years, indicates
that strain-specificity may be involved. If overall resistance
between lowland and upland ecotypes were explained by
generalized differences in fungal resistance genes, we would
expect that resistance mechanisms would segregate by eco-
type. Instead, we see that particular F0 alleles and allele
combinations can have large impacts on rust severity. The
large impact of the DAC6–AP13 epistatic interaction may
indicate that these parental populations have evolved separate
and mutually exclusive resistance mechanisms.

The rare reversal of the epistatic interaction from negatively
to positively synergistic also is evidence of strain-specificity. In
the epistatic interaction, F2 individuals with the lowland AP13
allele at Prr2 and the upland DAC6 allele at Prr1 are typically
more susceptible to the rust pathogen (Fig. 6c). This suscepti-
bility is reversed in several sites and years, however, with the
lowland AP13 allele at Prr2 and the upland DAC6 allele at
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Prr1 causing resistance (Fig. 6e). While it is possible that this
change was driven by climate, the sites and years for which the
pattern was reversed were divergent in any major component
of climate. It seems more likely that a different strain of rust
was more prevalent for which the Prr1–Prr2 interaction was
able to provide resistance. Greater knowledge of the genes
underlying these loci will be necessary to understand the nature
of this strain-specificity.

The interaction of rust resistance interaction with other
traits

Typically, resistance alleles were associated with higher
biomass and other overall morphological traits. Prr2 and
Prr1 QTLs colocalize with biomass and tiller count QTLs
found in a previous study (Lowry et al., 2019), suggesting
either close linkage or a pleiotropic effect (Fig. S6). That is,
these loci may contain genes for resistance that are in close
genetic linkage with genes that influence biomass, or resis-
tance may directly increase biomass and tiller count by
improving the health of the plant. One piece of evidence
that favors close linkage over pleiotropy is that when the
epistatic pattern is reversed for rust resistance, it is not
reversed for biomass (Fig. 6d,f). This close linkage of pheno-
typically important traits indicates that these particular
genomic regions may have been important in underlying the
ecotypic divergence between lowland and upland switchgrass.
Future work in this system should focus on determining the
genes underlying the Prr1 and Prr2 QTLs to map the distri-
bution of alternative alleles at these loci across the range of
switchgrass.

We note also that rust ratings on average generally decreased
over the course of this study (Fig. S3), which may have been due
to an increase in resistance but is more likely to be due to the fact
that older plants grow more quickly before disease onset, and
therefore have a lower proportion of canopy infection. The high
correlation between switchgrass traits and strong epistasis
between major resistance loci indicate that future breeding efforts
will be complicated.

Conclusion

Our results show the temporal and geographic variation in the
genetic architecture of rust resistance in two locally adapted
switchgrass ecotypes. Two large-effect loci explain both pathogen
defense and morphological differences between ecotypes, but
show a limited effectiveness in the south. We found little evi-
dence for the possibility that this pattern is driven by pathogen
species differences, as rust populations were dominated by a sin-
gle species, Puccinia novopanici. This pattern raises important
questions about the drivers of genetic architecture of pathogen
resistance and underlines the importance of assaying pathogen
resistance across both time and space to capture the inherent vari-
ability in the interplay of biotic and abiotic drivers of genetic
change. Furthermore, the importance of an epistatic interaction
in shaping variation in resistance shows the challenges of single-

gene models for pathogen resistance. Future work in this system
will focus on measuring the genetic variation in the rust pathogen
strains, and uncovering the genes underlying Prr1 and Prr2.
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