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ABSTRACT Manure storage methods can affect the concentration and prevalence of anti-
biotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in cattle manure prior
to land application. The objective of this study was to compare stockpiling and composting
with respect to their effectiveness in reducing ARB and ARGs in beef cattle manure in a
field-scale study. Field experiments were conducted in different seasons with different bulk-
ing agents for composting. For both the winter-spring cycle and the summer-fall cycle, ARB
concentrations declined below the limit of quantification rapidly in both composting piles
and stockpiles; however, ARB prevalence was significantly greater in the composting piles
than in the stockpiles. This was likely due to the introduction of ARB from bulking agents.
There was no significant change in ARG concentrations between initial and final concentra-
tions for either manure storage treatment during the winter-spring cycle, but a significant
reduction of the ARGs erm(B), tet(O), and tet(Q) over time was observed for both the com-
posting pile and stockpile during the summer-fall cycle. Results from this study suggest that
(i) bulking agent may be an important source of ARB and ARGs for composting; (ii) during
cold months, the heterogeneity of the temperature profile in composting piles could result
in poor ARG reduction; and (iii) during warm months, both stockpiling and composting can
be effective in reducing ARG abundance.

IMPORTANCE Proper treatment of manure is essential to reduce the spread of antibiotic re-
sistance and protect human health. Stockpiling and composting are two manure storage
methods which can reduce antibiotic-resistant bacteria and resistance genes, although few
field-scale studies have examined the relative efficiency of each method. This study examined
the ability of both methods in both winter-spring and summer-fall cycles, while also account-
ing for heterogeneity within field-scale manure piles. This study determined that bulking
agents used in composting could contribute antibiotic-resistant bacteria and resistance genes.
Additionally, seasonal variation could hinder the efficacy of composting in colder months due
to heterogeneity in temperature within the pile; however, in warmer months, either method
of manure storage could be effective in reducing the spread of antibiotic resistance.

KEYWORDS antibiotic resistance gene, antibiotic-resistant bacteria, beef cattle
manure, composting, stockpiling

The spread of antibiotic resistance is of growing public health concern, as many bac-
terial pathogens have developed resistance to routine antibiotics (1, 2) and drugs of

last resort, such as carbapenems (3, 4). The spread of antibiotic resistance is partially
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attributed to the use of antibiotics in livestock operations, which accounts for up to 80%
by mass of total antibiotic usage in the United States (5, 6). Administration of antibiotics
to livestock can increase antibiotic-resistant bacteria (ARB) as well as antibiotic resistance
genes (ARGs) in livestock wastes (7, 8). Additionally, livestock wastes can be a reservoir
for zoonotic pathogens such as Escherichia coli O157:H7 (9, 10), Salmonella enterica sero-
var Typhimurium (11), and Listeria and Campylobacter spp. (12). Consequently, the use of
untreated livestock manure for land application may facilitate the spread of ARB, ARGs,
and pathogens to soils and water (13–15). Soil and water receiving these microbial
agents could facilitate their transmissions to human through contamination of food
crops and direct exposure to the contaminated environment (16).

Hence, it is important that proper manure management strategies are used prior to
land application. One common practice for manure storage is stockpiling (17, 18),
through which pen surface materials are piled and the piles are allowed to sit and age
until land application. Manure stockpiles can sometimes heat up initially; however,
they may not reach a sufficiently high temperature or maintain the elevated tempera-
ture for a sufficient length of time to reduce ARG/ARGs. Hence, stockpiling may not be
sufficient treatment to kill off zoonotic pathogens and reduce ARB/ARGs (10).

Composting is an alternative to stockpiling. According to the Food and Drug
Administration Produce Safety Rule for application of soil amendments of animal ori-
gin, static composting must maintain aerobic conditions and temperatures of 55°C for
3 consecutive days, while turned composting must maintain 55°C for 15 cumulative
days, with a minimum of five turning events (19). Similarly, Environmental Protection
Agency guidelines require biosolids from municipal wastewater treatment facilities to
be composted at 55°C and above for 3 days (20, 21). The heat generated during com-
posting is derived from aerobic microbial activities. A bulking agent (e.g., corn stalk res-
idues, wood chips, or sawdust) is commonly added to manure to increase oxygen pen-
etration and meet microbial nutrient needs (22).

While composting is often considered more reliable than stockpiling to reduce patho-
gens in manure, it is also considerably more time-consuming, costly, and labor-intensive
to establish and operate (23–25). The efficacy of composting for reducing ARB and ARGs
has been investigated, mostly with lab-scale setups and some with field-scale piles (26).
Although lab-scale reactors are simple to establish, they cannot adequately simulate full-
scale composting piles. Hence, conclusions from lab-scale composting studies may not
be directly applicable to field-scale composting piles. Field-scale studies have reported
inconsistent results on the efficacy of composting on ARB/ARG reduction (26). Some
field-scale studies have reported consistent decreases in ARB/ARG abundance during
composting (27–31), while others have noted inconsistent effects (i.e., some ARGs
decreased while others persisted or even increased) (32–35). This is not surprising
because of the variability in manure characteristics, choice of bulking agents, ambient
temperature, and pile operation, which could all affect the inactivation of ARB and
reduction of ARGs. In addition, owing to the heterogeneity in full-scale manure piles, the
sampling strategy employed to collect samples from manure piles can also affect the
conclusions. To comprehensively assess the efficacy of composting in reducing ARB and
ARGs in livestock manure, more full-scale studies with systematic sample strategies, to
account for manure pile heterogeneity, are needed.

The objective of this study was to investigate the effectiveness of composting in
reducing ARB and ARGs in beef cattle manure using field-scale experiments. This
required an experimental design to account for the suspected heterogeneity inside the
stockpiles and composting piles. Both the stockpile and composting piles were oper-
ated for the length of time required for two complete composting cycles. One cycle
was operated during the winter-spring and one cycle was operated during the
summer-fall, allowing for assessment of seasonal differences in full-scale systems. To
better account for the piles, samples were collected at two or three profiles along each
pile and at three depths per profile. Additionally, detailed temperature profile data
were also documented from each pile. These measures were used to facilitate a more
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comprehensive and objective comparison between the stockpiling and composting
methods.

RESULTS
The winter-spring cycle. (i) Temperature. After pile establishment (16 December

2017), the interior temperatures of all four piles, two composting piles and two stockpiles,
quickly exceeded 55°C (see Table S2 in the supplemental material). The two stockpiles
exhibited temperatures above 55°C for about 15days, mostly at layer 4 (138 cm from the
base of the pile) of the piles (Fig. 1). In contrast, the two composting piles exhibited temper-
atures above 55°C in more layers and over a longer period (Fig. S2). For example, compost-
ing pile 2 retained temperatures exceeding 55°C in layers 2 to 4 for about 20days. After the
first turning (29 January 2018), both composting piles achieved temperatures exceeding
55°C in layers 2 to 4 for at least 5 more days. After the second turning (2 April 2018), both
composting piles exhibited temperatures above 55°C in at least two layers for 9 days. The
topmost layer in both composting piles stayed at temperatures above 55°C for 15days
(Table S2). The base of the piles never reached the desired temperature of 55°C, as the
ground was frozen during the winter months.

(ii) Bacterial concentrations and prevalence. Initial concentrations of total E. coli
and enterococci were higher in the pen scrapings than in the corn stalk residues prior
to incorporation (Table 1). However, the corn stalk residues had the only quantifiable
concentration of azithromycin-resistant (azithromycinR) E. coli, which was not detected
in the initial pen scrapings (Table 1). After the initial establishment of manure piles, the
concentrations of total E. coli (Fig. S2) and total enterococci (Fig. S3) declined rapidly in
the stockpiles. In all three depths of the stockpiles, total E. coli concentrations were
undetectable after day 22, and total enterococcus concentrations were undetectable
after day 43. In contrast, both bacteria continued to appear sporadically in the composting

FIG 1 (A) Placement of thermocouples and sampling locations within the composting piles and stockpiles. Black dots represent
thermocouple placement, and red crosses represent sampling locations. (B) Photograph of one of the composting piles from the winter-
spring cycle.

TABLE 1 Initial concentrations of total and antibiotic-resistant E. coli and enterococci in open feedlot pen scrapings and in the bulking agent
for both cycles of the study

Cycle and sample
type

Initial concn (log CFU g21 [wet wt])

Total
E. coli

AzithromycinR

E. coli
TetracyclineR

E. coli
Total
enterococci

TylosinR

enterococci
TetracyclineR

enterococci
Winter-spring
Pen scrapings 7.63 BDLa BDL 11.63 1.38 2.63
Corn stalk residues 4.15 4.30 BDL 4.34 BDL 3.30

Summer-fall
Pen scrapings BDL BDL BDL 3.78 BDL BDL
Rye silage BDL BDL BDL 4.93 BDL BDL

aBDL, below detection limit.
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piles, particularly after each turning event (Fig. S2 and S3). Antibiotic-resistant E. coli
and enterococci fell below the limit of quantification after the day 0 sampling event
for all piles.

Analysis of variance (ANOVA) revealed that there was a significant main effect of
manure storage method on total E. coli (P, 0.001) and total enterococcus (P, 0.001)
(Table 2) concentrations. Contrary to expectation, higher concentrations of both bacte-
ria were observed in the composting piles than in the stockpiles (Table 2). ANOVA also
revealed a significant effect of depth for total E. coli and total enterococci (P = 0.008
and P = 0.001, respectively), with the highest concentrations in the 2.5-cm-depth sam-
ples. Post hoc analyses revealed that this was true only for composting piles.

Similarly, ANOVA results showed a significant effect of manure storage method on the
prevalence of all bacterial populations tested. The frequency of detection was significantly
greater for both E. coli and enterococci, total or resistant, in composting piles than in stock-
piles (P# 0.031 for all cases [Table 2]; see Table S3 for more detailed statistics). The ANOVA
also revealed a significant effect for depth on all but one bacterial population (P# 0.016
for all analyses except for total E. coli [Table 2 and Table S3]). In general, bacterial preva-
lence was significantly greater in 2.5-cm samples than in 76.2-cm samples.

The prevalence data for the two manure storage methods are illustrated in Fig. 2
and 3. The prevalence of both E. coli and enterococci, total and resistant, was consis-
tently greater in composting piles than in stockpiles. Further, the detection frequency
within the composting piles tended to increase followed turning events on days 49
and 112 (Fig. 2 and 3). Noticeably, at the end of the 140-day experiment, the total and
resistant E. coli organisms were no longer detectable in the stockpiles but were still
detected frequently in the composting piles.

(iii) ARG concentrations. Based on the ANOVA, there was no significant effect for ma-
nure storage methods for most of the genes tested, except for intI1 (P=0.003 [Table 3]). The
intI1 concentration was greater in the composting piles than in the stockpiles (Table 3 and
Table S4). A significant effect of depth was also observed only for the 16S rRNA gene
(P=0.045) and intI1 (P=0.005). Post hoc tests indicate that this effect was driven by signifi-
cantly greater concentrations at the 2.5-cm depth than at the 76.2-cm depth in stockpiles
for the 16S rRNA gene (P=0.035) and in both stockpiling and composting piles for intI1
(P=0.045 and 0.049, respectively [Fig. 4]). ANOVA revealed a significant time effect on the
concentrations of all ARGs examined following the first turning on day 49 (29 January 2018)
(Table S4). There was an increase in concentration for most ARGs, followed by a decrease of
approximately 1 order of magnitude for the subsequent sampling event (Fig. 5).

TABLE 2Means and P values for storage method and depth for bacterial concentrations and bacterial prevalence in the winter-spring cyclea

Parameter

Concn (log10 CFU g21)b Prevalence (%)

Total
E. coli

Total
enterococci

Total
E. coli

AzithromycinR

E. coli
TetracyclineR

E. coli
Total
enterococci

TylosinR

enterococci
TetracyclineR

enterococci
Storage methodc,d

Composting 1.45 A 1.81 A 58 A 5 A 10 A 96 A 82 A 85 A
Stockpiling 0.22 B 0.32 B 18 B 1 B 5 B 62 B 31 B 27 B

Depth from surface
(cm)c,d

2.5 1.17 A 1.54 A 44 2 A 13 A 92 A 69 A 69 A
45.7 0.76 B 0.98 B 38 6 B 6 B 86 A 59 A 58 A
76.2 0.58 B 0.68 B 32 2 A 5 B 60 B 42 B 42 B

P value
Method ,0.001 ,0.001 0.002 ,0.001 0.031 ,0.001 ,0.001 ,0.001
Depth 0.008 0.001 0.113 0.016 ,0.001 ,0.001 0.003 ,0.001

aStatistics for interaction terms can be found in Table S3.
bAntibiotic-resistant E. coli and enterococci were not quantifiable.
cValues followed by a letter combination sharing one or more letters are not statistically different at the P value of,0.05 based on Tukey’s post hoc test.
dValues are treatment averages which were calculated based on all data for one particular treatment level.

Staley et al. Applied and Environmental Microbiology

August 2021 Volume 87 Issue 16 e00750-21 aem.asm.org 4

https://aem.asm.org


Summer-fall cycle. (i) Temperature. Temperatures for nearly all measured locations
within the composting pile were greater than 55°C for all 47days of the summer-fall
cycle (8 August 2018 to 24 September 2018 [Table S5]). Consequently, the composting
pile was not turned during this cycle of the experiment. Layers 3 and 4 within the stock-
pile consistently exceeded 55°C for about 27days (Table S5). However, temperatures
measured near the bottom of the stockpile never exceeded 55°C (Table S5).

(ii) Bacterial concentrations and prevalence. Pen surface materials for the
summer-fall cycle of the study had considerably lower bacterial concentrations than
for the winter-spring cycle, with only total enterococci being detected above the limit
of quantification (Table 1). The rye silage used as a bulking agent had no detectable
ARB or total E. coli but had total enterococcus concentrations greater than those of the
pen surface materials (Table 1). Similar to the case with the winter-spring cycle, resist-
ant E. coli and enterococci were consistently below the limit of quantification through-
out the study, and quantifiable total E. coli and enterococcus concentrations occurred
sporadically in the stockpile and composting pile.

ANOVA results showed that the manure storage method had a significant impact on
the concentration of total E. coli (P= 0.019 [Table 4]). Similar to what was found in the
winter-spring cycle, total E. coli concentrations were higher in the composting pile than
in the stockpile. Also, the manure storage method had a significant impact on the preva-
lence of resistant E. coli, total enterococci, and tetracyclineR enterococci. For these four
populations, there were significantly greater prevalences in the composting pile than in

FIG 2 Prevalence at three depths on each sampling event of total E. coli (A), azithromycinR E. coli (B), and tetracyclineR E. coli (C) in stockpiles
and total E. coli (D), azithromycinR E. coli (E), and tetracyclineR E. coli (F) in the composting piles during the winter-spring cycle. Black lines
(days 49 and 112) indicate dates on which composting piles were turned and samples were taken immediately after. Error bars represent
standard errors (n= 4 profiles per sampling event).

Comparison of Stockpiling and Composting Applied and Environmental Microbiology

August 2021 Volume 87 Issue 16 e00750-21 aem.asm.org 5

https://aem.asm.org


the stockpile (Fig. 6 and 7 and Table 4; see Table S6 for more detailed statistics). Depth
did not appear to significantly impact the concentrations or the prevalence of the tested
bacterial populations.

(iii) ARG concentrations. ANOVA results indicate that the manure storage method
had no significant effect on the genes tested, except erm(F). The erm(F) gene was sig-
nificantly lower in the composting pile than in the stockpile (Table 5 and Table S7). A
significant main effect for depth was detected for tet(Q) (P = 0.005). The tet(Q) gene
concentration was significantly greater at the 76.2-cm depth than at the 45.7-cm and
2.5-cm depths (P= 0.009 and 0.007, respectively [Fig. 8]). Also, ANOVA results indicated
a significant time effect for the four ARGs (Table S7). For erm(B), tet(O), and tet(Q), this
effect was driven by an overall decline in concentrations in both the stockpile and
composting pile (Fig. 9), while for erm(F), no overall decline was noted and this effect
was driven by an increase in concentrations on 27 August 2018 (day 19).

DISCUSSION

A review of the available literature showed a limited number of full-scale studies eval-
uating the effect of composting of material removed from open-lot beef feedlots on ARB
and ARGs. Some studies reported effective reduction of ARB and ARGs during compost-
ing (28, 36, 37), while others reported inconsistent or contrary results (32–35). Among
previous field-scale studies, differences in manure composition (e.g., caused by species,
feed, etc.) and composting process (e.g., bulking agents) are likely responsible for the

FIG 3 Prevalence at three depths on each sampling event of total enterococci (A), tylosinR enterococci (B), and tetracyclineR enterococci (C)
in stockpiles and total enterococci (D), tylosinR enterococci (E), and tetracyclineR enterococci (F) in the composting piles during the winter-
spring cycle. Black lines (days 49 and 112) indicate dates on which composting piles were turned and samples were taken immediately after.
Error bars represent standard errors (n= 4 profiles per sampling event).
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seemingly contradictory findings. More importantly, the heterogeneity of field-scale ma-
nure piles may or may not be sufficiently accounted for by sampling strategies.
Therefore, this study was designed to account for the heterogeneities by including two
complete composting cycles using different manure, two distinct seasons, and monitor-
ing/sampling multiple locations for temperature and ARB/ARGs throughout the manure
piles.

Effects on temperature. As expected, the internal temperatures of composting piles
were higher than those of stockpiles (Tables S2 and S5). Also, there was less heterogeneity

FIG 4 Concentrations at three depths on each sampling event of the 16S rRNA gene (A) and intI1 (B) in a stockpile and the 16S rRNA gene
(C) and intI1 (D) in a composting pile during the winter-spring cycle. Black lines (days 49 and 112) indicate dates on which composting piles
were turned and samples were taken immediately after. Error bars represent standard deviations (n= 2 profiles per sampling event).

TABLE 3Means and P values for storage method and depth for ARG concentrations in the
winter-spring cyclea

Parameter

Concn (log10 CN g21)

16S rRNA gene intI1 erm(B) erm(F) tet(O) tet(Q)
Storage methodb,c

Composting 9.62 7.77 A 4.93 6.88 4.33 6.01
Stockpiling 9.31 7.37 B 4.53 6.13 3.95 5.55

Depth from surface (cm)b,c

2.5 9.60 A 7.74 A 4.72 6.85 4.19 5.94
45.7 9.41 B 7.60 B 4.78 6.42 4.17 5.90
76.2 9.38 AB 7.36 B 4.70 6.24 4.06 5.49

P value
Method 0.262 0.003 0.333 0.245 0.296 0.326
Depth 0.045 0.005 0.721 0.225 0.909 0.117
Time 0.023 0.007 0.027 0.022 0.004 0.009

aStatistics for interaction terms can be found in Table S4.
bValues followed by a letter combination sharing one or more letters are not statistically different at the P value
of,0.05 based on Tukey’s post hoc test.

cValues are treatment averages which were calculated based on all data for one particular treatment level.
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in the temperature profiles of both composting and stockpiles in the summer-fall cycle
than in the winter-spring cycle. This was due to elevated atmospheric and ground temper-
atures. The mean monthly ambient temperatures were22.8°C, 24.7°C, 25.3°C, 3.9°C, and
5.8°C from December to April during the winter-spring cycle and 22.5°C and 19.2°C in

FIG 5 Concentrations of ARGs for a stockpile (A) and a composting pile (B) over time during the
winter-spring cycle. Black lines (days 49 and 112) indicate dates on which compost piles were turned
and samples were taken immediately after. Error bars represent standard errors (n= 6, 2 profiles� 3
depths per sampling event).

TABLE 4Means and P values for storage method and depth for bacterial concentrations and bacterial prevalence in the summer-fall cyclea

Parameter

Concn (log10 CFU g21)b Prevalence (%)

Total
E. coli

Total
enterococci

Total
E. coli

AzithromycinR

E. coli
TetracyclineR

E. coli
Total
enterococci

TylosinR

enterococci
TetracyclineR

enterococci
Storage methodc,d

Composting 0.66 A 0.85 54 18 A 13 A 87 A 23 36 A
Stockpiling 0.52 B 0.82 49 3 B 0 B 67 B 19 17 B

Depth from surface
(cm)c,d

2.5 0.80 0.98 61 15 8 88 29 33
45.7 0.61 0.74 49 8 4 80 21 29
76.2 0.33 0.78 45 8 8 64 13 17

P value
Method 0.019 0.518 0.462 0.001 ,0.001 ,0.001 0.060 0.002
Depth 0.265 0.594 0.477 0.198 0.683 0.120 0.198 0.256

aStatistics for interaction terms can be found in Table S6.
bAntibiotic-resistant forms of E. coli and enterococci were not quantifiable.
cValues followed by a letter combination sharing one or more letters are not statistically different at the P value of,0.05 based on Tukey’s post hoc test.
dValues are treatment averages which were calculated based on all data for one particular treatment level.
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August and September during the summer-fall cycle. In the summer-fall cycle, tempera-
tures exceeding 55°C were achieved nearly everywhere in the composting pile. In contrast,
in the winter-spring cycle temperatures exceeding 55°C were reached only in upper por-
tion of the composting piles due to frozen ground.

Effects on bacteria. Our data suggest that certain bulking agents could introduce
additional ARB to composting piles and that these elevated ARB concentrations could
persist. Compared to their stockpiling counterparts, the composting piles in both
cycles displayed greater prevalence of ARB (Tables 2 and 4). During the winter-spring
cycle, the corn stalk residues used as the bulking agent contained high concentrations
of ARB, including azithromycinR E. coli, which was absent in pen scrapings (Table 1). A
previous survey showed ARB are commonly found on corn stalk residues, with ARB
detected in 54% of corn stalk residues surveyed in Nebraska (38). Unlike the corn stalk
residues used in the winter-spring round, the bulking agent rye silage used in the
summer-fall cycle contained no quantifiable ARB (Table 1). However, post hoc analyses
found significantly greater prevalence of azithromycinR E. coli, tetracyclineR E. coli, total
enterococci, and tetracyclineR enterococci in the composting pile than in the stockpile
(Table 4). This is likely attributable to rye silage. As the bulking agents were mixed with
pen scrapings at a 40:60 ratio, they could represent a considerable source of ARB to
the composting piles. Hence, choosing a bulking agent free of ARB could be important
to achieving ARB control in composting piles. It is noted that in the summer-fall round,

FIG 6 Prevalence at three depths on each sampling event of total E. coli (A), azithromycinR E. coli (B), and tetracyclineR E. coli (C) in the
stockpile and total E. coli (D), azithromycinR E. coli (E), and tetracyclineR E. coli (F) in the composting pile during the summer-fall cycle. Error
bars represent standard errors (n= 3 profiles per sampling event).
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both pen scrapings and rye silage initially had E. coli concentrations below the limit of
detection. However, quantifiable E. coli concentrations were later found in both piles,
suggesting the possibility of growth of E. coli in portions of the manure piles during
both stockpiling and composting.

Turning events appeared to cause transient increases in ARB concentration in com-
posting piles. Turning could stimulate microbial activities by redistributing nutrients
and replenishing oxygen inside manure piles, sustaining the heating of composting
piles (39). During the winter-spring cycle with the low atmospheric temperature and
frozen ground, portions of the composting pile never exceeded 55°C. Instead, temper-
atures favorable to bacterial growth (;35 to 45°C) (40, 41) occurred in the lower sec-
tion of the piles sitting on frozen ground. In contrast, the base of the stockpiles
remained at very low temperatures throughout the experiment. During turning events,
materials that previously resided in portions where temperatures favorable to bacterial
growth occurred were mixed with materials from other portions of the manure piles
and served as bacterial seed. This may explain why there were transient increases in
bacterial concentration (Fig. S2 and S3) and prevalence (Fig. 2 and 3) after turning.

In order to identify common trends between the relationship of temperature and
prevalence of indicator bacteria under the two treatment regimes, we combined the
data from the winter-spring round and the summer-fall round of experiments. When
all data points were pooled, it was found that there were consistently higher

FIG 7 Prevalence at three depths on each sampling event of total enterococci (A), tylosinR enterococci (B), and tetracyclineR enterococci (C)
in the stockpile and total enterococci (D), tylosinR enterococci (E), and tetracyclineR enterococci (F) in the composting pile during the
summer-fall cycle. Error bars represent standard errors (n= 3 profiles per sampling event).
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prevalences of total and resistant E. coli and enterococci under composting treatment
than under stockpiling treatment (Fig. S4A and C). When only data points with meas-
ured temperatures at or above 55°C were considered, the distinctions in prevalence
between composting and stockpiling become much less pronounced (Fig. S4B and D).
These findings suggest that temperature above 55°C is a reliable predictor for the inac-
tivation of total and resistant indicator bacteria regardless of treatment regime.
Furthermore, when bulking agents potentially contribute to the total and resistant in-
dicator bacteria, the portions of composting piles with temperatures below 55°C
become the “hot spots” of these microbes.

Effects on ARGs. No obvious advantage of composting was observed with respect
to ARG reduction in either cycle of this study. Neither stockpiling nor composting

FIG 8 Concentrations of tet(Q) at each sampling depth from two profiles on each sampling day of
the summer-fall cycle in the stockpile (A) and the composting pile (B). Error bars represent standard
deviations (n= 2 profiles per sampling event).

TABLE 5Means and P values for storage method and depth for ARG concentrations in the
winter-spring cyclea

Parameter

Concn (log10 CN g21)

16S rRNA intI1 erm(B) erm(F) tet(O) tet(Q)
Storage methodb,c

Composting 9.35 7.15 4.31 6.25 A 4.66 5.33
Stockpiling 9.52 7.39 4.78 6.98 B 4.91 5.70

Depth from surface (cm)b,c

2.5 9.46 7.38 4.54 6.87 4.55 5.25 A
45.7 9.52 7.40 4.45 6.39 4.69 5.31 A
76.2 9.31 7.04 4.65 6.58 5.11 5.97 C

P value
Method 0.367 0.508 0.162 0.013 0.447 0.472
Depth 0.106 0.083 0.377 0.053 0.106 0.005
Time 0.159 0.393 ,0.001 0.002 ,0.001 ,0.001

aStatistics for interaction terms can be found in Table S7.
bValues followed by a letter combination sharing one or more letters are not statistically different at the P value
of,0.05 based on Tukey’s post hoc test.

cValues are treatment averages which were calculated based on all data for one particular treatment level.

Comparison of Stockpiling and Composting Applied and Environmental Microbiology

August 2021 Volume 87 Issue 16 e00750-21 aem.asm.org 11

https://aem.asm.org


showed a significant reduction in ARGs when their final concentrations were compared
with the initial concentrations during the winter-spring cycle according to post hoc anal-
yses, despite fluctuating ARG concentrations over time (Table 3). Because the ARG reduc-
tion performance was poor for both stockpiling and composting, there was no signifi-
cant difference between the two methods (Table 3 and Table S4). In contrast, during the
summer-fall cycle, post hoc analyses showed that the final concentrations of erm(B) and
tet(O) were significantly lower than the initial concentrations in both stockpiles (P= 0.020
and 0.007, respectively) and composting piles (P= 0.007 and 0.038, respectively).
Because a significant reduction occurred in both stockpiles and composting piles, the
difference between the two storage methods was not significant (Table 5).

The fate of ARGs in manure composting piles is likely linked to the fate of their bacte-
rial hosts, based on their thermotolerance (28, 36, 42). Composting with sawdust (30) and
red mud (29) as bulking agents could result in reduction of ARGs by stimulating the
growth and activity of certain microbial populations in composting piles (43, 44).
Inconsistent reduction in ARGs and alterations in the microbial community were noted in
a field-scale study composting cattle manure with straw as a bulking agent (32). In that
2016 study by Qian et al., the ARGs tet(C) and tet(X) increased, while tet(Q), tet(M), and
tet(W) decreased, as different bacterial community profiles were found to be associated
with changes in the ARG profile as a factor of composting time. Another field-scale com-
posting study in which hyperthermophilic temperatures (.90°C) were reached similarly
found significant reductions in tet genes, associating the reduction with the removal of
thermotolerant bacterial species and associated mobile genetic elements (27). Several
studies have also linked ARG expression with changes in microbial community com-
position during the composting process. For example, Firmicutes were the most tran-
scriptionally active ARG carriers during the mesophilic phase (;40°C) of composting,

FIG 9 Concentrations of the 16S rRNA gene, intI1, and three ARGs from two profiles for each manure
storage method over time during the summer-fall cycle in the stockpile (A) and the composting pile
(B). Error bars represent standard errors (n= 6; 2 profiles � 3 depths per sampling event).
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while Firmicutes, Actinobacteria, Bacteroides, and Proteobacteria were the most tran-
scriptionally active ARG carriers during the thermophilic phase (.60°C) of the com-
posting, in one study (45). Consequently, despite notable declines in less thermoto-
lerant bacterial taxa, ARG abundance can remain the same as antibiotic-resistant
thermotolerant taxa thrive or obtain ARGs via horizontal gene transfer under thermophilic
conditions (46).

Compared to stockpiling, composting did not consistently reduce ARB or ARGs in
the open feedlot pen scrapings in this study. The use of a bulking agent in composting
piles appeared to increase ARB concentrations and prevalence due to the introduction
of additional ARB from bulking agents. The heterogeneity in temperature profiles,
caused by low ambient air temperature and frozen ground in winter and spring
months, also contributed to increased ARB prevalence in composting piles by creating
temperature gradients that were favorable to bacterial growth. Composting did not ex-
hibit superior performance on ARG reduction over stockpiling, as no ARG was signifi-
cantly reduced under either method in the winter-spring cycle and was significantly
reduced under both methods in the summer-fall cycle. Results from this study suggest
that (i) bulking agent can be an important source of ARGs for composting; (ii) during
cold months, the heterogeneity of the temperature profile in composting piles could
result in poor ARG reduction; and (iii) during warm months, both stockpiling and com-
posting can be effective in reducing ARG abundance.

MATERIALS ANDMETHODS
Setup and sampling of composting and stockpiles. (i) Winter-spring. Two composting piles and

two stockpiles were established at the USDA U.S. Meat Animal Research Center (MARC) near Clay Center,
NE. The stockpiles consisted of pen scrapings from beef cattle feedlot pens, while the composting piles
consisted of a 60:40 ratio of pen scrapings to ground corn stalks, which were used as the bulking agent.
This ratio was determined based on literature values for the carbon and nitrogen levels in cattle manure
and corn stalk residues to achieve a final C/N ratio of 30:1 in compost piles (47). All four piles were
approximately 6.1 m long, 3.0 m wide, and 1.8 m high. All four piles were set up on 11 December 2017
and operated until 30 April 2018. Composting piles were turned by physically moving the piles to an ad-
jacent site 3 m to the side using a Bobcat front loader after day 49 (29 January 2018) and day 112 (2
April 2018), when the interior temperature dropped and remained below 50°C. Within each composting
and stockpile, eight type-T thermocouples (Omega Engineering, Inc., Norwalk, CT) were placed along
four horizontal layers within a profile (Fig. 1), with vertical distances 30.5, 45.8, 91.5, and 138 cm from
the ground, to record temperature hourly using an OM-CP-OCTTemp A 8-channel multiplexer/data log-
ger (Omega Engineering, Inc.).

Samples were collected from the four piles after the initial establishment and on days 7, 22, 28, 35,
43, 49, 56, 70, 84, 98, 112, 119, and 140. A grab sample of the corn stalk, prior to being incorporated into
the composting piles, was collected for ARB analysis. To account for the potential heterogeneity along
the manure piles, samples were collected from two profiles per pile at all sampling intervals. At each
sampling interval, the sampling profiles were moved 0.15 m away from the immediate past sampling
event. At each sampling profile, samples were collected from three depths from pile surface, 2.5 cm,
45.7 cm, and 76.2 cm, into the center of the pile (Fig. 1). Hence, six samples (2 profiles� 3 depths) were
collected per pile per sampling event. Approximately 50 g of material was obtained at each depth.
Samples at the 2.5-cm depth were collected via grab sampling, while those at the 45.7- and 76.2-cm
depths were collected using an ethanol-sterilized push probe. Only the bottom section of manure in the
push probe was recovered to avoid bacterial contamination from the superficial layer. All samples were
placed in sterile 50-ml centrifuge tubes, stored on ice, and transported to the environmental engineer-
ing lab at the University of Nebraska—Lincoln (UNL) within 2 h of collection.

(ii) Summer-fall. During the second cycle of study, a composting pile and a stockpile were estab-
lished and operated at MARC from 8 August 2018 through 24 September 2018. The stockpile similarly
consisted of pen scrapings, while the composting pile consisted of a 60:40 ratio of pen scraping and rye
silage, used as the bulking agent. Pile dimensions and thermocouple placement were the same as for
the first cycle. The interior temperature of the composting pile never dropped below 50°C; hence, the
composting pile was not turned during the study period.

The sampling procedure for the winter-spring cycle was largely adopted for the summer-fall cycle,
with some modifications. Samples were collected after initial pile establishment and at days 5, 19, 33,
and 47. Instead of two, three profiles were sampled per pile per sampling event. Within each sampling
profile, samples from the same three depths as the first cycle were collected. A total of nine samples (3
profiles� 3 depths) were collected per pile per sampling event. A sample of rye silage was taken for ARB
analysis prior to incorporation with pen scrapings. All samples were placed in polyethylene bags, stored
on ice, and transported to the UNL environmental engineering lab within 2 h of collection.

ARB enumeration and detection. All samples were assessed for abundance and presence of total
culturable E. coli and enterococci, as well as culturable forms of both bacteria with resistance to a
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macrolide antibiotic (azithromycin and tylosin, respectively) and tetracycline. Tetracycline and tylosin
are veterinary antibiotics commonly used on beef cattle and were used at the MARC facility (48–50).
Tylosin and azithromycin both belong to the macrolide antibiotic family. Because E. coli is intrinsically re-
sistant to tylosin, azithromycin was used to screen for macrolide-resistant E. coli (51). All solid samples
were suspended 1:10 (wt/vol) in phosphate-buffered tryptic soy broth (Becton, Dickinson, Sparks, MD;
TSB-PO4), shaken vigorously for 2min to dislocate bacteria associated with the samples, and plated for
enumeration. E. coli organisms were enumerated on MacConkey agar (Becton, Dickinson) with no antibi-
otic, 20 mg liter21 of azithromycin, or 32 mg liter21 of tetracycline, while enterococci were quantified on
Slanetz-Bartley agar (Oxoid, Hampshire, England) with no antibiotics, 32 mg liter21 of tylosin, or 32 mg
liter21 of tetracycline (48–50). Concentrations of antibiotics were selected based on previously described
clinical breakpoints and results with cattle manure (51, 52). An Eddy Jet 2 spiral plater (IUL, S.A.,
Barcelona, Spain) was used for plating. MacConkey plates were incubated at 37°C for 24 h, and Slanetz-
Bartley plates were incubated at 44°C for 48 h. Quantifiable results are reported as CFU per gram of com-
posted or stockpiled materials. Colony counting was performed using spiral counting grids provided by
IUL, S.A., made specifically for the Eddy Jet 2 as per the instrument instruction manual, with a limit of
quantification of 1 CFU 100 ml21 of suspension.

To assess the presence/absence of each bacterial target, all samples were subjected to a 24-h enrich-
ment step for prevalence assessment. E. coli organisms were enriched in TSB-PO4 and enterococci were
enriched in Enterococcosel broth (Becton, Dickinson, Sparks, MD), both at 37°C for 24 h, prior to the
same plating and incubation procedures as mentioned above.

To verify that colonies grown on MacConkey agar were E. coli, 20 isolates from one sampling event
were selected and incubated in nutrient broth with 4-methylumbelliferyl-b-D-glucuronide (Difco, Sparks,
MD). All were confirmed to be E. coli according to EPA method 9221F (53). An additional 426 colonies
were also verified as E. coli via matrix-assisted laser desorption ionization–time of flight mass spectrome-
try (MALDI-TOF MS; Shimadzu, Kyoto, Japan).

Propidium monoazide DNA extraction. A subset of samples was chosen for ARG analyses from
one composting and one stockpile in the winter-spring cycle (i.e., days 0, 7, 22, 35, 49, 70, 112, and 140)
and from one composting and one stockpile in the summer-fall cycle (i.e., days 0, 5, 19, 33, and 47). A
modified DNA extraction protocol involving propidium monoazide (PMA) was optimized for composted
and stockpiled materials (Fig. S1) and employed in this study.

The modified DNA extraction procedure involved weighing out 0.1 g of sample, suspending it in 0.9
ml of autoclaved ultrapure water, and vortexing the suspension for 30 s. Fifteen microliters of 20 mM
PMA was then added to the suspension for a final PMA concentration of 300 mM. Samples were then
incubated in the dark for 5 min with shaking prior to being transferred to sterile Pyrex petri dishes. Petri
dishes were placed on ice and exposed to a 500-W halogen light 15 cm away for 30 min (54, 55). The ice
was replaced every 10 min. Following light exposure, the suspension was transferred to a PowerBead
tube and DNA extraction was performed using a DNeasy PowerLyzer PowerSoil kit (Qiagen, Hilden,
Germany) as per the manufacturer’s instructions.

ARG quantification. Quantitative PCR (qPCR) was performed to quantify the 16S rRNA gene (56) and
the intI1 gene (57), as well as macrolide resistance genes erm(B) and erm(F) (58) and tetracycline resistance
genes tet(O) and tet(Q) (59). These genes were selected because of their prevalence in agricultural environ-
ments and their previous detection in manure obtained from MARC (58, 60–62). Each reaction consisted of
2� KiCqStart universal SYBR green ReadyMix (Sigma-Aldrich, St. Louis, MO) and final primer concentrations
of 0.3 mM for genes intI1 and tet(Q), 0.375 mM for the 16S rRNA gene, 0.4 mM for erm(B), and 0.5 mM for
genes erm(F) and tet(O). Reactions were carried out in duplicates, including no-template controls, on an
Eppendorf Realplex2 thermocycler (Eppendorf, Hamburg, Germany). Cycling conditions for each gene are
presented in Table S1. Standard curves were run on all plates for all qPCR assays and were constructed
using synthesized plasmid DNA (pIDTSMART with ampicillin resistance; Integrated DNA Technologies,
Coralville, IA). DNA used for the standard curve was serially diluted in PCR-grade reagent water (Sigma-
Aldrich). All qPCR runs had an efficiency between 90% and 105%, with an R2 of .0.95. Results were
reported as copy number (CN) per gram (wet weight) of manure or compost.

Statistical analyses. For results from culture-based analyses, ARB were detected at quantifiable con-
centrations only immediately following pile establishment in both cycles and were therefore not included
in the statistical analyses. With regard to bacterial prevalence (presence/absence), a split-plot ANOVA was
conducted with manure storage method (i.e., composting versus stockpiling) as the main treatment factor
and depth as a repeated-measure factor. Time was not included as a repeated-measure factor due to spo-
radic detection, and consequently, each time point was considered a replicate for storage method and
depth. The response variable was the total number of detections of total and resistant E. coli and entero-
cocci over the course of the study. Tukey’s post hoc test was performed if a significant effect was detected.

For results from qPCR analyses, split/split-plot ANOVA was conducted with manure storage method
(i.e., composting versus stockpiling) as the main treatment factor and both depth and time as repeated
measures providing a split-plot-in-time type of analysis. Log10-transformed gene concentrations were
response variables. For both cycles, gene analyses were conducted on two profiles from each manure
pile and these profiles were treated as pseudoreplicates. All statistical analyses were performed in
Statistica (Dell, Tulsa, OK) v.12, and results were considered significant at the level of 0.05.
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