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Rooting Out Genetic Structure of Invasive
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ABSTRACT Invasive wild pigs (Sus scrofa), also called feral swine or wild hogs, are recognized as among the
most destructive invasive species in the world. Throughout the United States, invasive wild pigs have ex-
panded rapidly over the past 40 years with populations now established in 38 states. Of the estimated
6.9 million wild pigs distributed throughout the United States, Texas supports approximately 40% of the
population and similarly bears disproportionate ecological and economic costs. Genetic analyses are an
effective tool for understanding invasion pathways and tracking dispersal of invasive species such as wild pigs
and have been used recently in California and Florida, USA, which have similarly long‐established pop-
ulations and high densities of wild pigs. Our goals were to use molecular approaches to elucidate invasion and
migration processes shaping wild pig populations throughout Texas, compare our results with patterns of
genetic structure observed in California and Florida, and provide insights for effective management of this
invasive species. We used a high‐density single nucleotide polymorphism (SNP) array to evaluate population
genetic structure. Genetic clusters of wild pigs throughout Texas demonstrate 2 distinct patterns: weakly
resolved, spatially dispersed clusters and well‐resolved, spatially localized clusters. The disparity in patterns of
genetic structure suggests disparate processes are differentially shaping wild pig populations in various lo-
calities throughout the state. Our results differed from the patterns of genetic structure observed in California
and Florida, which were characterized by localized genetic clusters. These differences suggest distinct bio-
logical and perhaps anthropogenic processes are shaping genetic structure in Texas. Further, these disparities
demonstrate the need for location‐specific management strategies for controlling wild pig populations and
mitigating associated ecological and economic costs. © 2021 The Wildlife Society. This article has been
contributed to by US Government employees and their work is in the public domain in the USA.

KEY WORDS feral swine, invasive species, population genetic structure, SNP, Sus scrofa, Texas, wild pig.

Invasive wild pigs (Sus scrofa) are recognized as among the
most destructive invasive species in the world, damaging
natural and human‐dominated systems (Lowe et al. 2000,
Doherty et al. 2016). We use the term wild pigs, also re-
ferred to as feral swine or wild hogs among other names, to
refer to any free‐living member of Sus scrofa, regardless of
their origins from domestic pigs, wild boar, or hybrids of
the 2 lineages (Keiter et al. 2016, Smyser et al. 2020).
With invasive populations established in North America,
South America, Africa, Australia, and remote Oceanic and
Asian islands, wild pigs have one of the largest geographic
distributions of all terrestrial mammals (Oliver 1993,

Barrios‐Garcia and Ballari 2012). Across this global scale,
wild pigs negatively influence biodiversity and ecosystem
function. Doherty et al. (2016) report that pigs are among
the top 5 invasive mammalian predators contributing to
species decline and extinction, with direct negative effects
on endangered species such as loggerhead sea turtles
(Caretta caretta; Engeman et al. 2019) and golden‐checked
warblers (Setophaga chrysoparia; International Union for
Conservation of Nature [IUCN] 2019). Furthermore, wild
pigs alter habitat through their rooting and wallowing
behaviors and have cascading effects on ecosystems
(Crooks 2002). Physical damage to plants and soils has been
reported to alter soil chemistry and increase nutrient
leaching, increase erosion, and reduce species diversity
among plants and vertebrates (Singer et al. 1984, Bankovich
et al. 2016, Ivey et al. 2019). Within human‐dominated
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landscapes, wild pigs damage numerous agricultural crops
such as potatoes, oats, corn, sugarcane, and sorghum and
depredate livestock, particularly newborn sheep, goats, and
cattle (Seward et al. 2004, Barrios‐Garcia and Ballari 2012).
Additionally, wild pigs damage lawns, gardens, trees, and
structures such as fences (U.S. Department of Agriculture
[USDA] 2019) and have disturbed irreplaceable artifacts at
archaeological sites (Engeman et al. 2013). Finally, wild
pigs carry pathogens, such as Brucella spp., influenza A, and
pseudorabies, that pose risks to the health of humans and
domestic animals (Bevins et al. 2014).
Free‐ranging pig populations have been present in the

contiguous United States since first introduced with the
Spanish expedition led by Hernando de Soto in 1539
(Mayer and Brisbin 1991, Zadik 2005). The de Soto ex-
pedition was provisioned with a large herd of pigs, shep-
herded behind the expeditionary force as a mobile food
supply during their exploration of the Florida peninsula and
what would become the southeastern United States
(Zadik 2005). The de Soto herd ultimately gave rise to wild
populations and managed herds throughout the region as a
result of animals that escaped or were stolen by or traded
with Indigenous peoples (Zadik 2005). Following the es-
tablishment of these initial populations, the number and
distribution of wild pig populations likely continued to ex-
pand as a consequence of the use of traditional husbandry
practices for pig rearing (i.e., the seasonal release of pigs into
forested ecosystems to fatten on fallen mast), which re-
mained a common practice until the mid‐1900s (Mayer and
Brisbin 1991, White 2011). Subsequently, as interest in
recreational hunting grew through the early twentieth cen-
tury, wild boar were introduced from native populations in
Europe to increase the hunting appeal of pigs, ultimately
augmenting and interbreeding with feral populations that
had descended directly from domestic pigs (Mayer and
Brisbin 2009, Smyser et al. 2020). Over the past hundred
years, through processes of range expansion and natural
and anthropogenic gene flow, contemporary wild pig pop-
ulations in the United States have come to overwhelmingly
represent hybrids of Western domestic breeds and wild boar
from Europe (Smyser et al. 2020).
Following initial introductions, self‐sustaining populations

of wild pigs remained largely restricted to California, Texas,
and the southeastern United States through the 1980s.
Since that time, however, rapid population growth has led
to the establishment of populations in as many as 38 states
with abundance in the United States estimated at 5–6.9
million animals (Bevins et al. 2014, Lewis et al. 2019). This
rapid expansion has been facilitated by the animal's gen-
eralist diet, high fecundity, and ability to adapt and thrive in
a variety of natural‐ and human‐dominated landscapes
(Oliver 1993, Taylor et al. 1998, Ballari and Barrios‐García
2014, Bevins et al. 2014, Lewis et al. 2017). Deliberate
introduction of wild pigs by humans into uninvaded land-
scapes, presumably for the creation of new populations for
hunting, has also contributed to recent range expansion and
perpetuation of wild pig populations (Tabak et al. 2017,
Hernández et al. 2018, Smyser et al. 2020). The expanding

distribution of wild pigs in the United States has been
accompanied by growing ecological, health, and economic
consequences, mirroring the detrimental effects docu-
mented throughout the global range. For example, McClure
et al. (2018) estimated that more than 123 species protected
under the United States' Endangered Species Act of 1973
are directly imperiled by the effects of wild pigs. Further,
wild pig damage is economically burdensome with annual
costs for the United States estimated at $1.5 billion annually
(Pimental 2007), although this figure is acknowledged to
represent an underestimate of the cost of wild pigs
(Anderson et al. 2016, McKee et al. 2020).
Texas, in particular, has a long history with wild pigs and

bears significant costs associated with their expanding
distribution (Anderson et al. 2019). Similar to the in-
troduction patterns throughout much of the continental
United States, domestic pigs were brought to Texas as early as
1542 by the de Soto expedition, with feral populations later
interbreeding with wild boar introduced from Europe
throughout the twentieth century (Mayer and Brisbin 1991).
Today, Texas supports more wild pigs than any other state,
about 40% of the United States population, with abundance
estimated at 2.5 million animals and populations established in
all but 1 of the state's 254 counties (Timmons et al. 2012,
Lewis et al. 2019, USDA 2019). Biological and anthropogenic
factors make wild pig management in Texas challenging.
Their vast spatial extent and abundant populations strain
management resources and make complete elimination un-
realistic as a management objective. Further, current state and
federal regulations enable the development of industries as-
sociated with wild pigs, such as hunting‐related services or the
sanctioned collection, slaughter, and processing of wild pig
meat for consumption in the human food chain. These various
economies incentivize the continued presence of wild pigs
despite damages incurred by agricultural producers and other
landowners.
Within the context of invasive species control, genetic

analyses are an effective tool to help guide management ac-
tion (Browett et al. 2020, Pepin et al. 2020). For example,
genetic analyses can elucidate invasion pathways and provide
an understanding of patterns of dispersal and expected rates
of range expansion (Le Roux and Wieczorek 2009). Genetic
structure assessments have also been used to predict how
invasive species may respond to eradication efforts (e.g., re-
colonization, source‐sink dynamics), thus informing the scale
at which management actions should be conducted
(Abdelkrim et al. 2005, Hopken et al. 2015). Understanding
population genetic structure is a precursor to addressing many
wild pig management questions and can offer reliable insights
into invasion processes and provide a useful tool for guiding
management and policy. At a national scale, California,
Florida, and Texas represent 3 anchor points for historical
wild pig populations and contemporary wild pig management
in these states continues to pose significant challenges.
Furthermore, each of these states are predicted to have
moderate (6 individuals/km2) to high (>11 individuals/km2)
population densities of wild pigs into the future (Lewis
et al. 2017). Genetic structure of wild pigs has been
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previously described for California and Florida, with an-
thropogenic influences identified as contributing to local
range expansion (Tabak et al. 2017, Hernández et al. 2018).
In California, Tabak et al. (2017) determined that pop-
ulations were structured at fine spatial scales, which was at-
tributed to the matriarchal social structure and limited
dispersal capacity of wild pigs (Hampton et al. 2004,
Fulgione et al. 2016, Morelle et al. 2016). Further, Tabak
et al. (2017) documented evidence of human‐mediated
translocation of wild pigs with introduction rates positively
associated with the number of pig farms and game farms
(captive hunting facilities) and emigration rates positively
associated with the number of wild pigs harvested by licensed
hunters and the number of big game outfitters. Similar to this
work, Hernández et al. (2018) described finely structured
wild pig populations throughout Florida and further docu-
mented the role of human‐mediated translocation in the
expansion of this invasive species. Although recent genetics
studies have addressed the population structure in California
(Tabak et al. 2017) and Florida (Hernández et al. 2018),
genetic analyses of wild pigs have yet to be conducted for
Texas on a similar state‐wide scale.
Our goals were to use molecular approaches to describe

genetic structure and elucidate the invasion and migration
processes shaping wild pig populations throughout Texas,
compare our results with patterns of genetic structure ob-
served in California and Florida, and use our results to
provide insights for effective management of this invasive
species. We predicted wild pigs in Texas would exhibit
comparable population structure to that of populations in
California and Florida because of their similar introduction
histories and contemporary expansions.

STUDY AREA

We conducted our study in Texas from May 2012 to
March 2019, with the collection of genetic samples oc-
curring throughout the study period (Table S1, available
online in Supporting Information). Texas spans approx-
imately 695,662 km2 and includes 10 ecoregions that
range in elevation from sea level along the Gulf Prairies
and Marshes region to 2,667m above sea level in the
Trans‐Pecos region (Gould et al. 1960, Texas Parks and
Wildlife Department 2020). Climate, weather, and
dominant flora and fauna vary across the ecoregions in our
study area. Briefly, according to Texas Parks and Wildlife
Department (2020) the state is comprised of the following
ecoregions: 1) Piney Woods, which has a humid sub-
tropical climate, average annual rainfall of 914–1,270mm,
and dominant flora of pine (Pinus spp.) and pine‐
hardwood; 2) Gulf Prairies and Marshes, which has a
humid subtropical climate with average annual rainfall of
762–1,270mm, dominant flora of saltgrass (Distichlis
spicata) marshes, tallgrass prairies, mesquite (Prosopis
spp.), and oak (Quercus spp.), and dominant fauna of
migratory birds, fish, and shrimp; 3) Post Oak Savannah,
which has a humid subtropical climate, average annual
rainfall of 711–1,016mm, and dominant flora of oak and

grassland; 4) Blackland Prairie, which has a humid sub-
tropical climate, average annual rainfall of 711–1,016mm,
and dominant flora of tallgrass prairie; 5) Cross Timbers,
which has a humid subtropical climate with erratic rainfall
and dominant flora of tallgrass prairie, savanna, and
woodland; 6) South Texas Plains, which has a warm semi‐
arid climate, average annual rainfall of 508–813mm, and
dominant flora of brush such as mesquite; 7) Edwards
Plateau, which has a warm semi‐arid to humid subtropical
climate, average annual rainfall of 381–864mm, domi-
nant flora of grasslands, juniper (Juniperus spp.)‐oak, live
oak, and savanna; 8) Rolling Plains, which has a cold
semi‐arid and humid subtropical climate, average annual
rainfall of 508–711mm, and dominant flora of short, mid,
and tallgrass prairie, and mesquite; 9) High Plains, which
has a cold semi‐arid climate, average annual rainfall of
381–559mm, dominant flora of shortgrass prairie, mes-
quite, and juniper, and dominant fauna of bison (Bos
bison), pronghorn (Antilocarpa americana), prairie dogs
(Cynomys spp.), and waterfowl; and 10) Trans‐Pecos,
which has warm and cold desert and warm and cold semi‐
arid climates, average annual rainfall of <305mm, dom-
inant flora of creosote (Larrea tridentata)‐tarbush
(Flourensia cernua) desert scrub, desert grassland, yucca
(Yucca spp.) and juniper savanna, pinion pine (Pinus
edulis), and oak. Additionally, dominant fauna across the
state includes white‐tailed deer (Odocoileus virginianus),
migratory birds, and waterfowl (Texas Parks and Wildlife
Department 2020). Primary land uses are farming,
ranching, and timber (Texas Parks and Wildlife
Department 2020). Current efforts to map the dis-
tribution of wild pigs suggest all but 1 of the 254 counties
in Texas (El Paso County) support wild pig populations
(USDA 2019). Although habitat suitability can be influ-
enced by a number of abiotic and biotic factors, the ma-
jority of the state is occupied by wild pigs with very little
potential for increases in abundance or distribution
because almost all suitable habitat is occupied (Lewis
et al. 2017, 2019; Snow et al. 2017).

METHODS

Sampling and DNA Extraction
We obtained a variety of sample types (i.e., hair, pinna, and
kidney) collected across 101 Texas counties from euthanized
wild pigs that were sampled ancillary to population reduc-
tion and damage mitigation conducted by the United States
Department of Agriculture (USDA) Animal and Plant
Health Inspection Service (APHIS) Wildlife Services (WS)
Feral Swine Damage Management Program between May
2012 and March 2019 (Table S1). We submitted samples to
the National Feral Swine Genetic Archive (USDA APHIS
WS National Wildlife Research Center) for analysis along
with corresponding metadata, which included sex, age class,
date of collection, and collection location (county and
spatial coordinates rounded to the hundredth of a degree
to protect the anonymity of private landowners while pro-
viding spatial accuracy within ~1.1 km). Given that genetic
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samples were collected secondarily to legally authorized
control of wild pigs, sample collection was exempted from
Institutional Animal Care and Use Committee review.
We extracted genomic DNA with a commercially avail-

able magnetic bead recovery kit (MagMax, Thermo Fisher
Scientific, Waltham, MA, USA) using the MagMax
Processor (Applied Biosystems, Waltham, MA, USA). We
then genotyped samples using the GeneSeek Genomic
Profiler for Porcine HD (GeneSeek, a Neogen Corporation,
Lincoln, NE, USA; Illumina, San Diego, CA, USA), a
commercially available genotyping array with 62,128 bial-
lelic, autosomal single nucleotide polymorphisms (SNP)
mapped to the Sscrofa 11.1 genome assembly (Warr
et al. 2019). We used SNP & Variation Suite version 8.8.3
(Golden Helix, Bozeman, MT, USA) to implement
standard quality control measures for SNP data. Specifically,
we pruned loci with low call rates (<95%) and minor allele
frequencies (MAF)< 0.05 (11,800 loci pruned), then re-
moved individuals with low genotype call rates (<95%;
25 samples pruned) and finally, evaluated linkage dis-
equilibrium (LD) among markers and pruned closely linked
loci (r2> 50%; window size= 50, window increment= 5)
within chromosomes (20,505 loci pruned).

Population Structure Analysis
We used 2 independent approaches to describe population
genetic structure. Initial evaluation of genetic relatedness
relative to geographic distance demonstrated patterns of
isolation by distance (Mantel test conducted with R package
vegan; Oksanen et al. 2013, R Core Team 2019) with re-
lationships visualized by fitting a loess curve to a scatterplot
with the R package msir (Scrucca 2011; Table S2 and
Fig. S1, available online in Supporting Information).
Accordingly, we first used the R package conStruct version
1.0.4 to describe patterns of genetic structure (Bradburd
et al. 2018); conStruct explicitly accounts for isolation by
distance to avoid erroneously delineating discrete clusters
from a continuous pattern of genetic variation (Bradburd
et al. 2018). A limitation of conStruct is that it is compu-
tationally intensive, with run times that are prohibitive for
analyses of datasets with large sample sizes. The method,
however, allows for collapsing samples within a sampling
location for analysis of pooled allele frequencies under a
rationale that samples collected from a given location rep-
resent replicates in the estimation of local allele frequencies.
Therefore, we used R package dbscan (Hahsler et al. 2019),
a density‐based spatial clustering method to assign samples
to a collapsed sampling location if they are proximate to
other samples from that location. Given a minimum
number of samples per collapsed location (option
minPts= 2) within a specified radius (epsilon neighborhood
radius= 0.1), we defined 110 collapsed locations with a
range in the number of samples from 2 to 38; we analyzed
outlier points (n= 45) as individual locations, collectively
representing 155 sampling locations for conStruct analysis
(Table S3, available online in Supporting Information). We
then calculated mean allele frequencies for each of the 155
sampling locations and used the centroid of samples within

a collapsed sampling location for spatial analysis. We eval-
uated genetic clusters (K) from 2 to 13 using 20,000 iter-
ations (10,000 burn‐in iterations followed by 10,000
sampling iterations), assessing model convergence and per-
formance for each K across 3 chains. To select the most
informative model of K, we evaluated several elements of
the conStruct output. Under the assumption that multiple
independent runs should converge on the same results, we
examined the log posterior density and parameter estimates
over iterations to evaluate model convergence. For each
value of K, we assessed the layer contributions to identify
clusters with statistical support but only minor biological
support by multiplying within‐cluster covariance with the
admixture proportions of samples in that cluster to calculate
the relative contribution of each cluster to total covariance
(Bradburd et al. 2018). Given that large layer contributions
are present when many samples draw large amounts of ad-
mixture from a cluster or if the layer has a very large within‐
cluster covariance, we interpreted models that included
layers with low contributions (e.g., <0.1) as having poor fit
for the genetic structure of the data. Finally, under the as-
sumption that genetic clusters should be geographically
cohesive, we assigned each collapsed sampling location to a
genetic cluster based on their ancestry proportions (Q; as-
signing the collapsed sampling locations to the cluster from
which they had the strongest association) and mapped their
distribution (ArcMap version 10.6, Esri, Redlands, CA,
USA) to qualitatively evaluate the spatial relationships
within and among genetic clusters and identify levels
of geographic cohesion under alternative values of
K (Puechmaille 2016).
Second, we used ADMIXTURE (Alexander et al. 2009) to

evaluate K from 2 to 30. ADMIXTURE implements the
well‐established, genetic model‐based clustering approach used
in STRUCTURE (Pritchard et al. 2000) but casts the algo-
rithm in a maximum likelihood framework to increase com-
putational efficiency as required for analysis of high‐density
SNP arrays (Libiger and Schork 2013). We used
3 methods to guide selection of the most informative value
of K. One, we used ADMIXTURE's cross‐validation proce-
dure to evaluate relative support for different values
of K. Implementing a random seed, we conducted 10
ADMIXTURE runs for each K from which we calculated the
mean and standard deviation of the cross‐validation error. We
interpreted models with lower mean cross‐validation error and
less variation among runs as having better fit for the genetic
structure within the data. Two, we evaluated the strength of
association of samples to the delineated clusters under the
rationale that more informative models will be characterized
by individuals strongly associated with a given cluster as op-
posed to individuals associated with many clusters (i.e., heavily
admixed; Pritchard et al. 2000). Specifically, we identified the
maximum association (Qmax) of each individual to the K
clusters, estimated by ADMIXTURE as the ancestry fraction
in the Q matrix (Alexander et al. 2009). We then evaluated
mean Qmax values over competing models of K, favoring
models in which individuals were strongly associated with
genetic clusters (i.e., high Qmax values) over those in which
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individuals were highly admixed (i.e., low Qmax values), and
visualized patterns of association among K clusters with
bar plots generated using STRUCTURE PLOT V2.0
(Ramasamy et al. 2014). Three, we assigned individuals to
genetic clusters based on their Qmax values and mapped their
distribution to qualitatively evaluate the spatial relationships
and identify levels of geographic cohesion under alternative
models of K.
Following the identification of the most informative

delineation of genetic structure, we used the R packages
HierFstat to calculate global and pairwise FST and StAMPP
to calculate Nei's genetic distance among all pairwise
combinations of K clusters (Goudet 2005, Pembleton
et al. 2013). To visualize the patterns of genetic association
among the K genetic clusters, we then constructed a
neighbor‐joining tree with SplitsTree4 (Huson and
Bryant 2006) by linking the least distant pair of clusters, as
described with Nei's genetic distance, followed by succes-
sively more distant clusters. Finally, we used the R package
adegenet to perform a principal component analysis (PCA;
Jombart 2008), treating genotypes as multivariate data un-
constrained by a specific genetic model. The use of PCA to
describe genetic structure is recognized to provide a com-
plementary perspective to clustering analyses that is better
suited for describing continuous patterns of genetic struc-
ture as opposed to discrete genetic clusters, which is
more effectively delineated with clustering analyses
(McVean 2009, Petkova et al. 2016). We plotted pairwise
combinations of principal components (PCs) to visualize
genetic structure among the samples.

RESULTS

We sampled 767 wild pigs distributed across 101 counties in
Texas. After implementing standard quality control meas-
ures for both the retention of loci and individual genotypes,
our dataset consisted of 742 wild pigs genotyped with
29,823 loci.
Visual inspection of the log posterior density and parameter

estimates from conStruct showed similar output across
multiple chains for K= 2 to 13, suggesting acceptable model
convergence using 20,000 iterations. Both clusters within
K= 2 had approximately equal layer contribution values
(Fig. S2, available online in Supporting Information). Higher
models of K contained ≥1 clusters with weak layer
contribution (i.e., values <0.1), ranging from 33% of clusters
(K= 3) to 86% of clusters (K= 6), which is indicative of poor
model performance. In evaluating spatial patterns of genetic
clusters, K= 2 bifurcated the state along a north‐south
gradient (Fig. 1A). Increasing values of K were charac-
terized by the addition of numerically small clusters with few,
weakly associated sampling locations. Although these outliers
did not group into clearly defined clusters, they demonstrated
weak but interesting patterns, namely highly admixed pockets
of collapsed locations along the east and west borders of the
state. Based on layer contribution results and spatial patterns
of clustering, we concluded K= 2 was the most informative
model for describing genetic structure with an explicit spatial
component (Figs. 1A and 2A).

The cross‐validation error returned from ADMIXTURE
decreased asymptotically to K= 22, after which the cross‐
validation error was relatively flat but variable for higher
values of K (Fig. S3, available online in Supporting
Information). Standard deviation of the cross‐validation
error calculated across 10 runs for each K was consistently
small from 2 to 14 but increased for higher values of K,
indicative of declining model performance. Distribution of
Qmax values varied across K models, with average Qmax

ranging from 0.55 (K= 6) to 0.85 (K= 2; Fig. S4, available
online in Supporting Information). In evaluating spatial
patterns of genetic clusters, K= 2 bifurcated the state along
a north‐south gradient. Both clusters within K= 2 were
well‐resolved, with >70% of individuals showing Qmax

values >0.80 (Fig. 2B). From within these 2 broad regional

Figure 1. Geographic distribution of invasive wild pigs collected
across 101 counties in Texas, USA, May 2012–March 2019.
A) Centroid of 155 collapsed sampling locations pooled with dbscan
(Hasler et al. 2019) across 2 genetic clusters (K) as delineated using
conStruct. B) Sample collection locations of 742 individuals across 11
genetic clusters as delineated using ADMIXTURE. For improved
visualization, coordinates were jittered with the addition of a random
number (x̄ = 0, SD= 0.045 degrees). Point colors correspond to assigned
clusters and point size and shape correspond to the maximum association
(Qmax) of each individual (or collapsed sampling location) to its assigned
cluster.
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groups, more geographically restricted, distinct clusters
emerged with increasing values of K. There was a consistent
pattern from K= 4 to 30 in which a single cluster was poorly
characterized, with no individuals strongly associated with
the specified cluster. We designated this outlier cluster
across models of K as other, a group without strong bio-
logical meaning; however, the remaining clusters within a
given model of K from 4 to 30 remain biologically in-
formative. Based on these cross‐validation results, Qmax

values, and spatial patterns, we concluded K= 11 was the
most informative model for describing genetic structure and
guiding management within Texas given the available data
(Fig. 1B). With K= 11, 192 individuals (26%) assigned
strongly to a genetic cluster (Qmax> 0.8) with an overall
average Qmax of 0.59 (Figs. 2B and S4).
Based on the delineation of individuals among clusters

with K= 11, the neighbor‐joining tree further elucidated
patterns from the ADMXITURE analysis. Specifically, the
northernmost clusters (1 and 2) were distinct, grouped
tightly together, and corroborated the north‐south bifurca-
tion observed with K= 2 (Figs. 2 and 3). Further, the most
divergent clusters were 5, 6, 7, 8, and 11, which were well‐
resolved clusters with high Qmax values (Figs. 1B and 2B).
Clusters 3, 4, 9, and 10 also grouped together as expected,
given the broad spatial distribution and spatial overlap
observed (Fig. 1B). Pairwise FST results reflected similar
patterns of structure and differentiation with a mix of

genetically distinct and similar clusters (Table S4, available
online in Supporting Information; min. FST= 0.026; max.
FST= 0.234), whereas global FST remained moderate
(FST= 0.103). Additionally, PCA corroborated the patterns
of genetic structure resolved with model‐based approaches
(i.e., ADMIXTURE and conStruct). In particular, rela-
tionships among the modeled clusters illustrated grouping
of the northernmost clusters (1 and 2) and genetically dis-
tinct clusters (e.g., 7), which distinctly separate into unique
PCA space (Fig. 4).

DISCUSSION

At the broadest scale, with the least resolution (i.e., K= 2),
we identified a north‐south bifurcation of wild pigs in
Texas. When we interpret higher models of genetic struc-
ture (i.e., K= 11), however, biologically meaningful clusters
are revealed and provide important insights for manage-
ment. Genetic clusters of wild pigs demonstrated 2 distinct
patterns: weakly resolved, spatially dispersed clusters in
contrast with well‐resolved, spatially localized clusters. The
disparity in patterns of genetic structure suggests distinct
processes of connectivity and isolation are shaping wild pig
populations throughout the state in which some populations
are structured through patterns of isolation by distance,
whereas others appear to reflect founder effects and drift.
The differential biological processes shaping genetic
clusters throughout Texas will require the development of

Figure 2. Bar plots generated with STRUCTURE PLOT (Ramasamy et al. 2014) representing the strength of assignment (Q) to clusters for various models
of genetic structure (K) of invasive wild pigs collected across 101 counties in Texas, USA, May 2012–March 2019. A) The most informative model of genetic
structure, K= 2, as derived from the conStruct analysis. We calculated the proportion of assigned membership using the mean allele frequency for 155
collapsed sampling locations, which were pooled with dbscan (Hasler et al. 2019). B) Bar plots for 742 wild pigs as delineated with ADMIXTURE for K= 2
and 11; numeric cluster identifiers for K= 11 are presented below the plots. A dashed line in the K= 11 panel marks assignment strength of 0.8, and the
percent of individuals per cluster with strong membership assignment (Q> 0.8) are displayed at the base of each cluster. Individuals in the K= 2 plot are
displayed in the same order as the K= 11 plot. Both the conStruct (A) and ADMIXTURE (B) K= 2 bar plots illuminate an early north‐south bifurcation
trend seen through increasing values of K in both analyses. The average maximum association (Qmax) of individuals to their assigned cluster is shown at the
right for reference.
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location‐specific management strategies for effective wild
pig control and damage mitigation. Further, the patterns of
genetic structure resolved for Texas differed from patterns
observed in California and Florida, suggesting that there
are regional differences in processes of invasion and con-
nectivity across landscapes (Tabak et al. 2017, Hernández
et al. 2018).
All clusters described within the Texas landscape appeared

to be hierarchically structured with clusters differentiated
between north (ADMIXTURE clusters 1 and 2, aligning
with conStruct northern delineation) and south
(ADMIXTURE clusters 3–11, aligning with conStruct
southern delineation). This differentiation mirrors historical
patterns of expansion of wild pigs in Texas. Early in-
troductions established feral populations in southern Texas,
whereas wild pig populations have become established
throughout the state only over the past 40 years (Bevins
et al. 2014). Northward expansion solely due to natural and
gradual range expansion would be expected to produce a
continuous pattern of isolation by distance as opposed to the
discrete north‐south division we observed. We therefore
hypothesize that the northern clusters could be attributed to
a distinct invasion, likely associated with introductions or
range expansion from neighboring states. Although there
are many documented cases of wild pig transport into and
out of Texas, there are no explicit accounts of invasion
pressure from the north (i.e., OK or NM; Mayer and
Brisbin 1991). Thus, additional research is needed to
identify origins of wild pigs in northern Texas.
Large portions of the Texas landscape were encompassed

within weakly resolved, spatially dispersed genetic clusters
identified with ADMIXTURE, indicative of connectivity

Figure 3. Neighbor‐joining tree generated with SplitsTree4 (Huson and
Bryant 2006) representing the model of genetic clustering (K)= 11 of 742
invasive wild pigs from 101 counties in Texas, USA, collected May
2012–March 2019 as delineated with ADMIXTURE. The relational tree
is constructed by linking genetically similar pairs of clusters, followed by
successively more distant clusters. Distances between clusters, based on the
scale bar, represent pairwise genetic associations estimated with Nei's
genetic distance.

Figure 4. Principal component analysis (PCA) plot generated with adegenet (Jombart 2008) depicting 742 invasive wild pigs across principal component
(PC) 1 versus PC2. Samples were collected across 101 counties in Texas, USA, May 2012–March 2019. Point colors correspond to the model of genetic
clustering (K)= 11 clusters as delineated with ADMIXTURE. Principal component 1 explains 5% of the variance and PC2 explains 2% of the variance.
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that follows patterns of isolation by distance with ongoing
gene flow (i.e., clusters 1, 2, 3, 4, 9, and 10; Figs. 1B
and 2B). We recognized cluster 4 as a statistical artifact of
the clustering analysis and interpret it as an other cluster
(i.e., all individuals have Qmax values < 0.63) from which we
do not draw biological inference. These 6 clusters were
characterized by low average Qmax values (<0.72) and con-
tact zones—the sympatric occurrence of individuals that
assign to adjacent genetic clusters (Fig. 1B). These weakly
resolved, spatially dispersed genetic clusters differed from
patterns of genetic structure described previously for wild
pigs (Hampton et al. 2004, Spencer and Hampton 2005,
Tabak et al. 2017, Hernández et al. 2018). Specifically, wild
pig populations are often genetically structured at fine spa-
tial scales with populations organized into discrete genetic
clusters—a pattern that has been attributed to the limited
dispersal distance of wild pigs relative to their body size and
a social structure characterized by female site‐fidelity and
the formation of matriarchal social groups (i.e., sounders;
Hampton et al. 2004, Spencer and Hampton 2005, Tabak
et al. 2017, Hernández et al. 2018). One potential hy-
pothesis to explain the different genetic structure observed
in Texas is that the rapid expansion of wild pigs since the
1980s has not afforded sufficient time for genetic differ-
entiation to occur. Well‐resolved genetic structure, however,
has been characterized throughout California and Florida,
which have similar introduction histories and widespread
populations. Alternatively, a lack of observed genetic
structure in Texas could be attributed to inadequate sam-
pling or genetic resolution. Yet with similar sample sizes
(nTX= 742 vs. nCA= 736, nFL= 482) and ample genetic
resolution afforded with the use of a high‐density SNP array
(29,823 SNPs vs. 43 microsatellite loci and 52 microsatellite
loci for CA and FL, respectively; Liu et al. 2005, Morin
et al. 2009, Helyar et al. 2011), we conclude that distinct
processes are shaping wild pig populations across these
landscapes (Tabak et al. 2017, Hernández et al. 2018).
The higher levels of genetic connectivity necessary to

create the spatially diffuse patterns of genetic structure ob-
served in Texas may be attributable to higher levels of dis-
persal among populations as a result of the saturation of an
invaded landscape, larger individual home ranges due to
differences in resource availability, or elevated anthro-
pogenic movement of wild pigs. Although our current study
did not explicitly evaluate the influence of these attributes
on the unique patterns observed for Texas, previous research
allows us to evaluate the relative support for these hypoth-
eses. First, we would predict that natal dispersal would be
greater in a saturated landscape, such as Texas, relative to
California and Florida, states with lower abundance (Lewis
et al. 2019). A direct comparison of dispersal distances
between these states is not currently possible, however, be-
cause research on the natal dispersal of wild pigs in North
America has thus far been limited (Gray et al. 2019).
Second, differences in the availability and distribution of
resources between Texas, California, and Florida may affect
individual home range sizes. Trends reported by Kay et al.
(2017) suggest wild pigs in Texas move greater distances per

day and have larger home ranges than wild pigs in Florida.
Conversely, a more recent study conducted across 10 states
reported similar movement patterns of radio‐collared wild
pigs in Texas, California, and Florida, suggesting the ob-
served regional differences in genetic structure may not be
attributable to differences in wild pig movement patterns
(Gray et al. 2019). Third, anthropogenic movement of wild
pigs in Texas may be sufficient to disrupt the formation of
genetic structure generally observed among wild pigs. The
weakly resolved, spatially dispersed genetic clusters that
dominate much of the Texas landscape make it challenging
to identify migrants that could unequivocally be associated
with anthropogenic movement. In the absence of well‐
defined genetic structure, it is possible that individuals are
moved hundreds of kilometers and yet are still sampled
within the spatial extent of the same broad cluster. A recent
study restricted to wild pigs in southern Texas revealed
similar patterns of highly admixed populations, which was
attributed to multiple introductions and anthropogenic
movement (Delgado‐Acevedo et al. 2021). Our preliminary
isolation by distance analysis (Fig. S1) provided only a
single clear example of long‐distance migration, identified
by high genetic relatedness of an individual from the South
Texas Plains to 3 individuals in the western Trans‐Pecos
region, separated by approximately 600 km. In California,
translocation rates were positively associated with anthro-
pogenic predictors related to recreational hunting and re-
lated industries (Tabak et al. 2017). Similarly, in Florida,
wild pig holding facilities, where wild pigs are temporarily
held before being sold for slaughter or released into captive
hunting facilities (Florida Department of Agriculture and
Consumer Services 2020), served as foci for long‐distance
immigration. The extent of translocation in both states,
however, was sufficiently limited that a clear signal of ge-
netic structure could be resolved, and long‐distance mi-
grants could subsequently be identified (Tabak et al. 2017,
Hernández et al. 2018). In contrast, in Texas, where in-
dustries associated with wild pig hunting and live capture
and slaughter of wild pigs are well established, anthro-
pogenic movement has likely contributed to the relative lack
of genetic structure.
Accounting for these regional differences in rates of con-

nectivity and associated immigration pressure is important
when making large‐scale (i.e., nationwide) management
decisions regarding this invasive species. Our results un-
equivocally demonstrate extensive connectivity among wild
pig populations in Texas, attributable to either natural
connectivity, translocation, or both, yet we lack the pop-
ulation structure to clearly identify sources of migrants.
Under any scenario, as abundance increases and wild pigs
saturate available habitat, management strategies generally
shift from an objective of local elimination to one of pop-
ulation control and damage mitigation (West et al. 2009).
Weakly resolved, spatially dispersed genetic clusters that
dominated large portions of the landscape will make
complete elimination of wild pigs from the spatial extent of
these clusters challenging because widespread connectivity
poses a persistent reinvasion risk (Delgado‐Acevedo
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et al. 2013). These vast areas of admixed and spatially dis-
persed clusters create additional challenges. For example,
the control of a foreign animal disease upon introduction in
a weakly resolved, spatially dispersed genetic cluster would
necessitate the coordination of management action across an
extensive area (Brown et al. 2020, Delgado‐Acevedo
et al. 2021). With genetic patterns demonstrating high
rates of connectivity throughout and among these spatially
dispersed clusters, policies are needed to limit anthro-
pogenic movement and remove economic incentives that
encourage the translocation and release of wild pigs.
In contrast to weakly resolved, spatially dispersed clusters

distributed across Texas, analysis with ADMIXTURE re-
vealed 5 well‐resolved, spatially localized clusters (clusters 5,
6, 7, 8, and 11; Fig. 1B) that were more akin to the genetic
patterns described in California and Florida (Tabak
et al. 2017, Hernández et al. 2018). Although these well‐
resolved clusters were not similarly identified with
conStruct, this is not unexpected given that clustering al-
gorithms are influenced by sample size and our use of
conStruct represented an analysis of collapsed sampling lo-
cations as opposed to individual genotypes (Puechmaille
2016, Lawson et al. 2018). These spatially localized clusters
(range = 11 to 39 samples/cluster) were represented by only
1 to 3 sampling locations in the conStruct analysis.
Although conStruct is a superior clustering method when
accounting for isolation by distance, our results suggest that
the loss of fine‐scale information necessitates the integration
of both analysis approaches when making management
decisions. These well‐resolved clusters exhibit the greatest
divergence in the neighbor‐joining tree (Fig. 3), have the
strongest cluster assignments (average Qmax values >0.85;
Fig. 2B), and are geographically localized (Fig. 1B).
Furthermore, clusters 5, 8, and 11 group tightly together in
PCA space, and cluster 7 was clearly differentiated from
other clusters along the second PC axis (Fig. 4). These
numerically small and spatially limited clusters are likely
attributable to similar processes shaping wild pig pop-
ulations as were described in California and Florida.
Hernández et al. (2018) attribute spatially localized clusters
in Florida to introductions from distinct genetic sources.
Similar novel introductions (e.g., wild boar; Mayer and
Brisbin 1991) and subsequent isolation may be occurring in
Texas. Finally, distinct genetic signatures may be attribut-
able to isolation as a result of landscape attributes, allowing
allele frequencies to drift independently. For example, the
majority of individuals from cluster 7 (35 of the 39 wild
pigs) were collected on a military training base surrounded
by a semi‐permeable fence. Fencing and other landscape
attributes (i.e., urban development) may limit natural
movement and gene flow, thus making clusters susceptible
to genetic drift. Well‐resolved, localized clusters, especially
in isolated areas such as these, are ideal locations for wild
pig elimination efforts given that immigration appears to
have limited influence on local demographic processes
(Barrios‐Garcia and Ballari 2012). Accordingly, clusters 5,
6, 7, 8, and 11 could be prioritized for local elimination
because a history of genetic isolation suggests there would

be minimal contemporary immigration pressure that might
offset population control efforts. Further, the limited spatial
extent of these clusters (i.e., 1–3 counties covered by each
cluster) would allow for wild pig control to be organized and
conducted at a local scale.
Our study addresses a knowledge gap by evaluating ge-

netic attributes of wild pigs throughout Texas, the state with
the greatest wild pig abundance, while complementing
previous genetic studies conducted elsewhere. Although
wild pigs in Texas have a similar history of introduction and
contemporary expansion to populations in California and
Florida, our results suggest distinct processes are shaping
wild pig populations in the state (Tabak et al. 2017,
Hernández et al. 2018). We have described large regions in
Texas characterized by high levels of genetic connectivity that
contrast with isolated pockets of wild pigs and contribute ad-
ditional genetic evidence of anthropogenic movement. Each of
these factors will need to be considered in the development of
management plans and allocation of resources for population
control. Future research may build upon genetic structure to
investigate the influence of policy and management on wild
pig damage, movement, and control.

MANAGEMENT IMPLICATIONS

Given the magnitude of the management challenges posed
by wild pigs in Texas, the application of genetic tools to
elucidate contemporary processes shaping invasive pop-
ulations can be important in guiding the allocation of lim-
ited management resources. Our research demonstrates that
the processes of invasions, genetic connectivity, and iso-
lation are influencing the structure of wild pig populations
differently in Texas than has been described in California
and Florida. Identifying population genetic structure can be
a first step for developing efficacious management strategies
for the control of wild pigs, as appropriate control measures
may vary on both regional and local scales.
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